1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkOpAngle.h"
8 #include "SkOpSegment.h"
9 #include "SkPathOpsCurve.h"
10 #include "SkTSort.h"
11 
12 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
13    positive y. The largest angle has a positive x and a zero y. */
14 
15 #if DEBUG_ANGLE
CompareResult(const char * func,SkString * bugOut,SkString * bugPart,int append,bool compare)16     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
17              bool compare) {
18         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
19         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
20         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
21         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
22         return compare;
23     }
24 
25     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
26             compare)
27 #else
28     #define COMPARE_RESULT(append, compare) compare
29 #endif
30 
31 /*             quarter angle values for sector
32 
33 31   x > 0, y == 0              horizontal line (to the right)
34 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
35 1    x > 0, y > 0, x > y        nearer horizontal angle
36 2                  x + e == y   quad/cubic 45 going horiz
37 3    x > 0, y > 0, x == y       45 angle
38 4                  x == y + e   quad/cubic 45 going vert
39 5    x > 0, y > 0, x < y        nearer vertical angle
40 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
41 7    x == 0, y > 0              vertical line (to the top)
42 
43                                       8  7  6
44                                  9       |       5
45                               10         |          4
46                             11           |            3
47                           12  \          |           / 2
48                          13              |              1
49                         14               |               0
50                         15 --------------+------------- 31
51                         16               |              30
52                          17              |             29
53                           18  /          |          \ 28
54                             19           |           27
55                               20         |         26
56                                  21      |      25
57                                      22 23 24
58 */
59 
60 // return true if lh < this < rh
after(SkOpAngle * test)61 bool SkOpAngle::after(SkOpAngle* test) {
62     SkOpAngle* lh = test;
63     SkOpAngle* rh = lh->fNext;
64     SkASSERT(lh != rh);
65 #if DEBUG_ANGLE
66     SkString bugOut;
67     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
68                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
69                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
70             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
71             lh->fStart->t(), lh->fEnd->t(),
72             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
73             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
74             rh->fStart->t(), rh->fEnd->t());
75     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
76 #endif
77     if (lh->fComputeSector && !lh->computeSector()) {
78         return COMPARE_RESULT(1, true);
79     }
80     if (fComputeSector && !this->computeSector()) {
81         return COMPARE_RESULT(2, true);
82     }
83     if (rh->fComputeSector && !rh->computeSector()) {
84         return COMPARE_RESULT(3, true);
85     }
86 #if DEBUG_ANGLE  // reset bugOut with computed sectors
87     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
88                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
89                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
90             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
91             lh->fStart->t(), lh->fEnd->t(),
92             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
93             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
94             rh->fStart->t(), rh->fEnd->t());
95 #endif
96     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
97     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
98     int lrOrder;  // set to -1 if either order works
99     if (!lrOverlap) {  // no lh/rh sector overlap
100         if (!ltrOverlap) {  // no lh/this/rh sector overlap
101             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
102                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
103         }
104         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
105         /* A tiny change can move the start +/- 4. The order can only be determined if
106            lr gap is not 12 to 20 or -12 to -20.
107                -31 ..-21      1
108                -20 ..-12     -1
109                -11 .. -1      0
110                  0          shouldn't get here
111                 11 ..  1      1
112                 12 .. 20     -1
113                 21 .. 31      0
114          */
115         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
116     } else {
117         lrOrder = (int) lh->orderable(rh);
118         if (!ltrOverlap) {
119             return COMPARE_RESULT(5, !lrOrder);
120         }
121     }
122     int ltOrder;
123     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
124     if (lh->fSectorMask & fSectorMask) {
125         ltOrder = (int) lh->orderable(this);
126     } else {
127         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
128         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
129     }
130     int trOrder;
131     if (rh->fSectorMask & fSectorMask) {
132         trOrder = (int) orderable(rh);
133     } else {
134         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
135         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
136     }
137     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
138         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
139     }
140     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
141 // There's not enough information to sort. Get the pairs of angles in opposite planes.
142 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
143     // FIXME : once all variants are understood, rewrite this more simply
144     if (ltOrder == 0 && lrOrder == 0) {
145         SkASSERT(trOrder < 0);
146         // FIXME : once this is verified to work, remove one opposite angle call
147         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
148         bool ltOpposite = lh->oppositePlanes(this);
149         SkASSERT(lrOpposite != ltOpposite);
150         return COMPARE_RESULT(8, ltOpposite);
151     } else if (ltOrder == 1 && trOrder == 0) {
152         SkASSERT(lrOrder < 0);
153         SkDEBUGCODE(bool ltOpposite = lh->oppositePlanes(this));
154         bool trOpposite = oppositePlanes(rh);
155         SkASSERT(ltOpposite != trOpposite);
156         return COMPARE_RESULT(9, trOpposite);
157     } else if (lrOrder == 1 && trOrder == 1) {
158         SkASSERT(ltOrder < 0);
159         SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
160         bool lrOpposite = lh->oppositePlanes(rh);
161         SkASSERT(lrOpposite != trOpposite);
162         return COMPARE_RESULT(10, lrOpposite);
163     }
164     if (lrOrder < 0) {
165         if (ltOrder < 0) {
166             return COMPARE_RESULT(11, trOrder);
167         }
168         return COMPARE_RESULT(12, ltOrder);
169     }
170     return COMPARE_RESULT(13, !lrOrder);
171 }
172 
173 // given a line, see if the opposite curve's convex hull is all on one side
174 // returns -1=not on one side    0=this CW of test   1=this CCW of test
allOnOneSide(const SkOpAngle * test)175 int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
176     SkASSERT(!fIsCurve);
177     SkASSERT(test->fIsCurve);
178     const SkDPoint& origin = test->fCurvePart[0];
179     SkVector line;
180     if (segment()->verb() == SkPath::kLine_Verb) {
181         const SkPoint* linePts = segment()->pts();
182         int lineStart = fStart->t() < fEnd->t() ? 0 : 1;
183         line = linePts[lineStart ^ 1] - linePts[lineStart];
184     } else {
185         line = (fCurvePart[1] - fCurvePart[0]).asSkVector();
186     }
187     float crosses[3];
188     SkPath::Verb testVerb = test->segment()->verb();
189     int iMax = SkPathOpsVerbToPoints(testVerb);
190 //    SkASSERT(origin == test.fCurveHalf[0]);
191     const SkDCurve& testCurve = test->fCurvePart;
192     for (int index = 1; index <= iMax; ++index) {
193         float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
194         float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
195         crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
196     }
197     if (crosses[0] * crosses[1] < 0) {
198         return -1;
199     }
200     if (SkPath::kCubic_Verb == testVerb) {
201         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
202             return -1;
203         }
204     }
205     if (crosses[0]) {
206         return crosses[0] < 0;
207     }
208     if (crosses[1]) {
209         return crosses[1] < 0;
210     }
211     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
212         return crosses[2] < 0;
213     }
214     fUnorderable = true;
215     return -1;
216 }
217 
checkCrossesZero() const218 bool SkOpAngle::checkCrossesZero() const {
219     int start = SkTMin(fSectorStart, fSectorEnd);
220     int end = SkTMax(fSectorStart, fSectorEnd);
221     bool crossesZero = end - start > 16;
222     return crossesZero;
223 }
224 
checkParallel(SkOpAngle * rh)225 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
226     SkDVector scratch[2];
227     const SkDVector* sweep, * tweep;
228     if (!this->fUnorderedSweep) {
229         sweep = this->fSweep;
230     } else {
231         scratch[0] = this->fCurvePart[1] - this->fCurvePart[0];
232         sweep = &scratch[0];
233     }
234     if (!rh->fUnorderedSweep) {
235         tweep = rh->fSweep;
236     } else {
237         scratch[1] = rh->fCurvePart[1] - rh->fCurvePart[0];
238         tweep = &scratch[1];
239     }
240     double s0xt0 = sweep->crossCheck(*tweep);
241     if (tangentsDiverge(rh, s0xt0)) {
242         return s0xt0 < 0;
243     }
244     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
245     // if the intersections within the t range, do a cross check on those
246     bool inside;
247     if (!fCurvePart[SkPathOpsVerbToPoints(this->segment()->verb())].approximatelyEqual(
248             rh->fCurvePart[SkPathOpsVerbToPoints(rh->segment()->verb())])) {
249         if (this->endToSide(rh, &inside)) {
250             return inside;
251         }
252         if (rh->endToSide(this, &inside)) {
253             return !inside;
254         }
255     }
256     if (this->midToSide(rh, &inside)) {
257         return inside;
258     }
259     if (rh->midToSide(this, &inside)) {
260         return !inside;
261     }
262     // compute the cross check from the mid T values (last resort)
263     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
264     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
265     double m0xm1 = m0.crossCheck(m1);
266     if (m0xm1 == 0) {
267         this->fUnorderable = true;
268         rh->fUnorderable = true;
269         return true;
270     }
271     return m0xm1 < 0;
272 }
273 
274 // the original angle is too short to get meaningful sector information
275 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
276 // would cause it to intersect one of the adjacent angles
computeSector()277 bool SkOpAngle::computeSector() {
278     if (fComputedSector) {
279         return !fUnorderable;
280     }
281     fComputedSector = true;
282     bool stepUp = fStart->t() < fEnd->t();
283     const SkOpSpanBase* checkEnd = fEnd;
284     if (checkEnd->final() && stepUp) {
285         fUnorderable = true;
286         return false;
287     }
288     do {
289 // advance end
290         const SkOpSegment* other = checkEnd->segment();
291         const SkOpSpanBase* oSpan = other->head();
292         do {
293             if (oSpan->segment() != segment()) {
294                 continue;
295             }
296             if (oSpan == checkEnd) {
297                 continue;
298             }
299             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
300                 continue;
301             }
302             goto recomputeSector;
303         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
304         checkEnd = stepUp ? !checkEnd->final()
305                 ? checkEnd->upCast()->next() : nullptr
306                 : checkEnd->prev();
307     } while (checkEnd);
308 recomputeSector:
309     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
310             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
311     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
312         fUnorderable = true;
313         return false;
314     }
315     if (stepUp != (fStart->t() < computedEnd->t())) {
316         fUnorderable = true;
317         return false;
318     }
319     SkOpSpanBase* saveEnd = fEnd;
320     fComputedEnd = fEnd = computedEnd;
321     setSpans();
322     setSector();
323     fEnd = saveEnd;
324     return !fUnorderable;
325 }
326 
convexHullOverlaps(const SkOpAngle * rh) const327 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) const {
328     const SkDVector* sweep = this->fSweep;
329     const SkDVector* tweep = rh->fSweep;
330     double s0xs1 = sweep[0].crossCheck(sweep[1]);
331     double s0xt0 = sweep[0].crossCheck(tweep[0]);
332     double s1xt0 = sweep[1].crossCheck(tweep[0]);
333     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
334     double s0xt1 = sweep[0].crossCheck(tweep[1]);
335     double s1xt1 = sweep[1].crossCheck(tweep[1]);
336     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
337     double t0xt1 = tweep[0].crossCheck(tweep[1]);
338     if (tBetweenS) {
339         return -1;
340     }
341     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
342         return -1;
343     }
344     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
345     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
346     if (sBetweenT) {
347         return -1;
348     }
349     // if all of the sweeps are in the same half plane, then the order of any pair is enough
350     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
351         return 0;
352     }
353     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
354         return 1;
355     }
356     // if the outside sweeps are greater than 180 degress:
357         // first assume the inital tangents are the ordering
358         // if the midpoint direction matches the inital order, that is enough
359     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
360     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
361     double m0xm1 = m0.crossCheck(m1);
362     if (s0xt0 > 0 && m0xm1 > 0) {
363         return 0;
364     }
365     if (s0xt0 < 0 && m0xm1 < 0) {
366         return 1;
367     }
368     if (tangentsDiverge(rh, s0xt0)) {
369         return s0xt0 < 0;
370     }
371     return m0xm1 < 0;
372 }
373 
374 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
distEndRatio(double dist) const375 double SkOpAngle::distEndRatio(double dist) const {
376     double longest = 0;
377     const SkOpSegment& segment = *this->segment();
378     int ptCount = SkPathOpsVerbToPoints(segment.verb());
379     const SkPoint* pts = segment.pts();
380     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
381         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
382             if (idx1 == idx2) {
383                 continue;
384             }
385             SkDVector v;
386             v.set(pts[idx2] - pts[idx1]);
387             double lenSq = v.lengthSquared();
388             longest = SkTMax(longest, lenSq);
389         }
390     }
391     return sqrt(longest) / dist;
392 }
393 
endsIntersect(SkOpAngle * rh)394 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
395     SkPath::Verb lVerb = this->segment()->verb();
396     SkPath::Verb rVerb = rh->segment()->verb();
397     int lPts = SkPathOpsVerbToPoints(lVerb);
398     int rPts = SkPathOpsVerbToPoints(rVerb);
399     SkDLine rays[] = {{{this->fCurvePart[0], rh->fCurvePart[rPts]}},
400             {{this->fCurvePart[0], this->fCurvePart[lPts]}}};
401     if (rays[0][1] == rays[1][1]) {
402         return checkParallel(rh);
403     }
404     double smallTs[2] = {-1, -1};
405     bool limited[2] = {false, false};
406     for (int index = 0; index < 2; ++index) {
407         SkPath::Verb cVerb = index ? rVerb : lVerb;
408         // if the curve is a line, then the line and the ray intersect only at their crossing
409         if (cVerb == SkPath::kLine_Verb) {
410             continue;
411         }
412         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
413         SkIntersections i;
414         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
415         double tStart = index ? rh->fStart->t() : this->fStart->t();
416         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
417         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
418         double t = testAscends ? 0 : 1;
419         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
420             double testT = i[0][idx2];
421             if (!approximately_between_orderable(tStart, testT, tEnd)) {
422                 continue;
423             }
424             if (approximately_equal_orderable(tStart, testT)) {
425                 continue;
426             }
427             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
428             limited[index] = approximately_equal_orderable(t, tEnd);
429         }
430     }
431     bool sRayLonger = false;
432     SkDVector sCept = {0, 0};
433     double sCeptT = -1;
434     int sIndex = -1;
435     bool useIntersect = false;
436     for (int index = 0; index < 2; ++index) {
437         if (smallTs[index] < 0) {
438             continue;
439         }
440         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
441         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
442         SkDVector cept = dPt - rays[index][0];
443         // If this point is on the curve, it should have been detected earlier by ordinary
444         // curve intersection. This may be hard to determine in general, but for lines,
445         // the point could be close to or equal to its end, but shouldn't be near the start.
446         if ((index ? lPts : rPts) == 1) {
447             SkDVector total = rays[index][1] - rays[index][0];
448             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
449                 continue;
450             }
451         }
452         SkDVector end = rays[index][1] - rays[index][0];
453         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
454             continue;
455         }
456         double rayDist = cept.length();
457         double endDist = end.length();
458         bool rayLonger = rayDist > endDist;
459         if (limited[0] && limited[1] && rayLonger) {
460             useIntersect = true;
461             sRayLonger = rayLonger;
462             sCept = cept;
463             sCeptT = smallTs[index];
464             sIndex = index;
465             break;
466         }
467         double delta = fabs(rayDist - endDist);
468         double minX, minY, maxX, maxY;
469         minX = minY = SK_ScalarInfinity;
470         maxX = maxY = -SK_ScalarInfinity;
471         const SkDCurve& curve = index ? rh->fCurvePart : this->fCurvePart;
472         int ptCount = index ? rPts : lPts;
473         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
474             minX = SkTMin(minX, curve[idx2].fX);
475             minY = SkTMin(minY, curve[idx2].fY);
476             maxX = SkTMax(maxX, curve[idx2].fX);
477             maxY = SkTMax(maxY, curve[idx2].fY);
478         }
479         double maxWidth = SkTMax(maxX - minX, maxY - minY);
480         delta /= maxWidth;
481         if (delta > 1e-3 && (useIntersect ^= true)) {  // FIXME: move this magic number
482             sRayLonger = rayLonger;
483             sCept = cept;
484             sCeptT = smallTs[index];
485             sIndex = index;
486         }
487     }
488     if (useIntersect) {
489         const SkDCurve& curve = sIndex ? rh->fCurvePart : this->fCurvePart;
490         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
491         double tStart = sIndex ? rh->fStart->t() : fStart->t();
492         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
493         double septDir = mid.crossCheck(sCept);
494         if (!septDir) {
495             return checkParallel(rh);
496         }
497         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
498     } else {
499         return checkParallel(rh);
500     }
501 }
502 
endToSide(const SkOpAngle * rh,bool * inside) const503 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
504     const SkOpSegment* segment = this->segment();
505     SkPath::Verb verb = segment->verb();
506     SkDLine rayEnd;
507     rayEnd[0].set(this->fEnd->pt());
508     rayEnd[1] = rayEnd[0];
509     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
510             this->fEnd->t());
511     rayEnd[1].fX += slopeAtEnd.fY;
512     rayEnd[1].fY -= slopeAtEnd.fX;
513     SkIntersections iEnd;
514     const SkOpSegment* oppSegment = rh->segment();
515     SkPath::Verb oppVerb = oppSegment->verb();
516     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
517     double endDist;
518     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
519     if (closestEnd < 0) {
520         return false;
521     }
522     if (!endDist) {
523         return false;
524     }
525     SkDPoint start;
526     start.set(this->fStart->pt());
527     // OPTIMIZATION: multiple times in the code we find the max scalar
528     double minX, minY, maxX, maxY;
529     minX = minY = SK_ScalarInfinity;
530     maxX = maxY = -SK_ScalarInfinity;
531     const SkDCurve& curve = rh->fCurvePart;
532     int oppPts = SkPathOpsVerbToPoints(oppVerb);
533     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
534         minX = SkTMin(minX, curve[idx2].fX);
535         minY = SkTMin(minY, curve[idx2].fY);
536         maxX = SkTMax(maxX, curve[idx2].fX);
537         maxY = SkTMax(maxY, curve[idx2].fY);
538     }
539     double maxWidth = SkTMax(maxX - minX, maxY - minY);
540     endDist /= maxWidth;
541     if (endDist < 5e-11) {  // empirically found
542         return false;
543     }
544     const SkDPoint* endPt = &rayEnd[0];
545     SkDPoint oppPt = iEnd.pt(closestEnd);
546     SkDVector vLeft = *endPt - start;
547     SkDVector vRight = oppPt - start;
548     double dir = vLeft.crossCheck(vRight);
549     if (!dir) {
550         return false;
551     }
552     *inside = dir < 0;
553     return true;
554 }
555 
556 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
557     0    x                      x               x
558     1    x                      x          x
559     2    x                      x    x
560     3    x                  x        x
561     4    x             x             x
562     5    x             x                   x
563     6    x             x                        x
564     7         x        x                        x
565     8             x    x                        x
566     9             x    x                   x
567     10            x    x             x
568     11            x         x        x
569     12            x             x    x
570     13            x             x          x
571     14            x             x               x
572     15        x                 x               x
573 */
findSector(SkPath::Verb verb,double x,double y) const574 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
575     double absX = fabs(x);
576     double absY = fabs(y);
577     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
578     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
579     // one could coin the term sedecimant for a space divided into 16 sections.
580    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
581     static const int sedecimant[3][3][3] = {
582     //       y<0           y==0           y>0
583     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
584         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
585         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
586         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
587     };
588     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
589 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
590     return sector;
591 }
592 
globalState() const593 SkOpGlobalState* SkOpAngle::globalState() const {
594     return this->segment()->globalState();
595 }
596 
597 
598 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
599 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
insert(SkOpAngle * angle)600 void SkOpAngle::insert(SkOpAngle* angle) {
601     if (angle->fNext) {
602         if (loopCount() >= angle->loopCount()) {
603             if (!merge(angle)) {
604                 return;
605             }
606         } else if (fNext) {
607             if (!angle->merge(this)) {
608                 return;
609             }
610         } else {
611             angle->insert(this);
612         }
613         return;
614     }
615     bool singleton = nullptr == fNext;
616     if (singleton) {
617         fNext = this;
618     }
619     SkOpAngle* next = fNext;
620     if (next->fNext == this) {
621         if (singleton || angle->after(this)) {
622             this->fNext = angle;
623             angle->fNext = next;
624         } else {
625             next->fNext = angle;
626             angle->fNext = this;
627         }
628         debugValidateNext();
629         return;
630     }
631     SkOpAngle* last = this;
632     do {
633         SkASSERT(last->fNext == next);
634         if (angle->after(last)) {
635             last->fNext = angle;
636             angle->fNext = next;
637             debugValidateNext();
638             return;
639         }
640         last = next;
641         next = next->fNext;
642         if (last == this) {
643             if (next->fUnorderable) {
644                 fUnorderable = true;
645             } else {
646                 globalState()->setAngleCoincidence();
647                 this->fNext = angle;
648                 angle->fNext = next;
649                 angle->fCheckCoincidence = true;
650             }
651             return;
652         }
653     } while (true);
654 }
655 
lastMarked() const656 SkOpSpanBase* SkOpAngle::lastMarked() const {
657     if (fLastMarked) {
658         if (fLastMarked->chased()) {
659             return nullptr;
660         }
661         fLastMarked->setChased(true);
662     }
663     return fLastMarked;
664 }
665 
loopContains(const SkOpAngle * angle) const666 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
667     if (!fNext) {
668         return false;
669     }
670     const SkOpAngle* first = this;
671     const SkOpAngle* loop = this;
672     const SkOpSegment* tSegment = angle->fStart->segment();
673     double tStart = angle->fStart->t();
674     double tEnd = angle->fEnd->t();
675     do {
676         const SkOpSegment* lSegment = loop->fStart->segment();
677         if (lSegment != tSegment) {
678             continue;
679         }
680         double lStart = loop->fStart->t();
681         if (lStart != tEnd) {
682             continue;
683         }
684         double lEnd = loop->fEnd->t();
685         if (lEnd == tStart) {
686             return true;
687         }
688     } while ((loop = loop->fNext) != first);
689     return false;
690 }
691 
loopCount() const692 int SkOpAngle::loopCount() const {
693     int count = 0;
694     const SkOpAngle* first = this;
695     const SkOpAngle* next = this;
696     do {
697         next = next->fNext;
698         ++count;
699     } while (next && next != first);
700     return count;
701 }
702 
merge(SkOpAngle * angle)703 bool SkOpAngle::merge(SkOpAngle* angle) {
704     SkASSERT(fNext);
705     SkASSERT(angle->fNext);
706     SkOpAngle* working = angle;
707     do {
708         if (this == working) {
709             return false;
710         }
711         working = working->fNext;
712     } while (working != angle);
713     do {
714         SkOpAngle* next = working->fNext;
715         working->fNext = nullptr;
716         insert(working);
717         working = next;
718     } while (working != angle);
719     // it's likely that a pair of the angles are unorderable
720     debugValidateNext();
721     return true;
722 }
723 
midT() const724 double SkOpAngle::midT() const {
725     return (fStart->t() + fEnd->t()) / 2;
726 }
727 
midToSide(const SkOpAngle * rh,bool * inside) const728 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
729     const SkOpSegment* segment = this->segment();
730     SkPath::Verb verb = segment->verb();
731     const SkPoint& startPt = this->fStart->pt();
732     const SkPoint& endPt = this->fEnd->pt();
733     SkDPoint dStartPt;
734     dStartPt.set(startPt);
735     SkDLine rayMid;
736     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
737     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
738     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
739     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
740     SkIntersections iMid;
741     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
742     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
743     if (iOutside < 0) {
744         return false;
745     }
746     const SkOpSegment* oppSegment = rh->segment();
747     SkPath::Verb oppVerb = oppSegment->verb();
748     SkIntersections oppMid;
749     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
750     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
751     if (oppOutside < 0) {
752         return false;
753     }
754     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
755     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
756     double dir = iSide.crossCheck(oppSide);
757     if (!dir) {
758         return false;
759     }
760     *inside = dir < 0;
761     return true;
762 }
763 
oppositePlanes(const SkOpAngle * rh) const764 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
765     int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
766     return startSpan >= 8;
767 }
768 
orderable(SkOpAngle * rh)769 bool SkOpAngle::orderable(SkOpAngle* rh) {
770     int result;
771     if (!fIsCurve) {
772         if (!rh->fIsCurve) {
773             double leftX = fTangentHalf.dx();
774             double leftY = fTangentHalf.dy();
775             double rightX = rh->fTangentHalf.dx();
776             double rightY = rh->fTangentHalf.dy();
777             double x_ry = leftX * rightY;
778             double rx_y = rightX * leftY;
779             if (x_ry == rx_y) {
780                 if (leftX * rightX < 0 || leftY * rightY < 0) {
781                     return true;  // exactly 180 degrees apart
782                 }
783                 goto unorderable;
784             }
785             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
786             return x_ry < rx_y;
787         }
788         if ((result = allOnOneSide(rh)) >= 0) {
789             return result;
790         }
791         if (fUnorderable || approximately_zero(rh->fSide)) {
792             goto unorderable;
793         }
794     } else if (!rh->fIsCurve) {
795         if ((result = rh->allOnOneSide(this)) >= 0) {
796             return !result;
797         }
798         if (rh->fUnorderable || approximately_zero(fSide)) {
799             goto unorderable;
800         }
801     }
802     if ((result = convexHullOverlaps(rh)) >= 0) {
803         return result;
804     }
805     return endsIntersect(rh);
806 unorderable:
807     fUnorderable = true;
808     rh->fUnorderable = true;
809     return true;
810 }
811 
812 // OPTIMIZE: if this shows up in a profile, add a previous pointer
813 // as is, this should be rarely called
previous() const814 SkOpAngle* SkOpAngle::previous() const {
815     SkOpAngle* last = fNext;
816     do {
817         SkOpAngle* next = last->fNext;
818         if (next == this) {
819             return last;
820         }
821         last = next;
822     } while (true);
823 }
824 
segment() const825 SkOpSegment* SkOpAngle::segment() const {
826     return fStart->segment();
827 }
828 
set(SkOpSpanBase * start,SkOpSpanBase * end)829 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
830     fStart = start;
831     fComputedEnd = fEnd = end;
832     SkASSERT(start != end);
833     fNext = nullptr;
834     fComputeSector = fComputedSector = fCheckCoincidence = false;
835     setSpans();
836     setSector();
837     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
838 }
839 
setCurveHullSweep()840 void SkOpAngle::setCurveHullSweep() {
841     fUnorderedSweep = false;
842     fSweep[0] = fCurvePart[1] - fCurvePart[0];
843     const SkOpSegment* segment = fStart->segment();
844     if (SkPath::kLine_Verb == segment->verb()) {
845         fSweep[1] = fSweep[0];
846         return;
847     }
848     fSweep[1] = fCurvePart[2] - fCurvePart[0];
849     if (SkPath::kCubic_Verb != segment->verb()) {
850         if (!fSweep[0].fX && !fSweep[0].fY) {
851             fSweep[0] = fSweep[1];
852         }
853         return;
854     }
855     SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0];
856     if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
857         fSweep[0] = fSweep[1];
858         fSweep[1] = thirdSweep;
859         if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
860             fSweep[0] = fSweep[1];
861             fCurvePart[1] = fCurvePart[3];
862             fIsCurve = false;
863         }
864         return;
865     }
866     double s1x3 = fSweep[0].crossCheck(thirdSweep);
867     double s3x2 = thirdSweep.crossCheck(fSweep[1]);
868     if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors
869         return;
870     }
871     double s2x1 = fSweep[1].crossCheck(fSweep[0]);
872     // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble
873     // probably such wide sweeps should be artificially subdivided earlier so that never happens
874     SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0);
875     if (s3x2 * s2x1 < 0) {
876         SkASSERT(s2x1 * s1x3 > 0);
877         fSweep[0] = fSweep[1];
878         fUnorderedSweep = true;
879     }
880     fSweep[1] = thirdSweep;
881 }
882 
setSpans()883 void SkOpAngle::setSpans() {
884     fUnorderable = false;
885     fLastMarked = nullptr;
886     if (!fStart) {
887         fUnorderable = true;
888         return;
889     }
890     const SkOpSegment* segment = fStart->segment();
891     const SkPoint* pts = segment->pts();
892     SkDEBUGCODE(fCurvePart.fVerb = SkPath::kCubic_Verb);
893     SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
894             = SK_ScalarNaN);
895     SkDEBUGCODE(fCurvePart.fVerb = segment->verb());
896     segment->subDivide(fStart, fEnd, &fCurvePart);
897     setCurveHullSweep();
898     const SkPath::Verb verb = segment->verb();
899     if (verb != SkPath::kLine_Verb
900             && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
901         SkDLine lineHalf;
902         lineHalf[0].set(fCurvePart[0].asSkPoint());
903         lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint());
904         fTangentHalf.lineEndPoints(lineHalf);
905         fSide = 0;
906     }
907     switch (verb) {
908     case SkPath::kLine_Verb: {
909         SkASSERT(fStart != fEnd);
910         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
911         SkDLine lineHalf;
912         lineHalf[0].set(fStart->pt());
913         lineHalf[1].set(cP1);
914         fTangentHalf.lineEndPoints(lineHalf);
915         fSide = 0;
916         fIsCurve = false;
917         } return;
918     case SkPath::kQuad_Verb:
919     case SkPath::kConic_Verb: {
920         SkLineParameters tangentPart;
921         (void) tangentPart.quadEndPoints(fCurvePart.fQuad);
922         fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only
923         } break;
924     case SkPath::kCubic_Verb: {
925         SkLineParameters tangentPart;
926         (void) tangentPart.cubicPart(fCurvePart.fCubic);
927         fSide = -tangentPart.pointDistance(fCurvePart[3]);
928         double testTs[4];
929         // OPTIMIZATION: keep inflections precomputed with cubic segment?
930         int testCount = SkDCubic::FindInflections(pts, testTs);
931         double startT = fStart->t();
932         double endT = fEnd->t();
933         double limitT = endT;
934         int index;
935         for (index = 0; index < testCount; ++index) {
936             if (!::between(startT, testTs[index], limitT)) {
937                 testTs[index] = -1;
938             }
939         }
940         testTs[testCount++] = startT;
941         testTs[testCount++] = endT;
942         SkTQSort<double>(testTs, &testTs[testCount - 1]);
943         double bestSide = 0;
944         int testCases = (testCount << 1) - 1;
945         index = 0;
946         while (testTs[index] < 0) {
947             ++index;
948         }
949         index <<= 1;
950         for (; index < testCases; ++index) {
951             int testIndex = index >> 1;
952             double testT = testTs[testIndex];
953             if (index & 1) {
954                 testT = (testT + testTs[testIndex + 1]) / 2;
955             }
956             // OPTIMIZE: could avoid call for t == startT, endT
957             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
958             SkLineParameters tangentPart;
959             tangentPart.cubicEndPoints(fCurvePart.fCubic);
960             double testSide = tangentPart.pointDistance(pt);
961             if (fabs(bestSide) < fabs(testSide)) {
962                 bestSide = testSide;
963             }
964         }
965         fSide = -bestSide;  // compare sign only
966         } break;
967     default:
968         SkASSERT(0);
969     }
970 }
971 
setSector()972 void SkOpAngle::setSector() {
973     if (!fStart) {
974         fUnorderable = true;
975         return;
976     }
977     const SkOpSegment* segment = fStart->segment();
978     SkPath::Verb verb = segment->verb();
979     fSectorStart = this->findSector(verb, fSweep[0].fX, fSweep[0].fY);
980     if (fSectorStart < 0) {
981         goto deferTilLater;
982     }
983     if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same
984         SkASSERT(fSectorStart >= 0);
985         fSectorEnd = fSectorStart;
986         fSectorMask = 1 << fSectorStart;
987         return;
988     }
989     SkASSERT(SkPath::kLine_Verb != verb);
990     fSectorEnd = this->findSector(verb, fSweep[1].fX, fSweep[1].fY);
991     if (fSectorEnd < 0) {
992 deferTilLater:
993         fSectorStart = fSectorEnd = -1;
994         fSectorMask = 0;
995         fComputeSector = true;  // can't determine sector until segment length can be found
996         return;
997     }
998     if (fSectorEnd == fSectorStart
999             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
1000         fSectorMask = 1 << fSectorStart;
1001         return;
1002     }
1003     bool crossesZero = this->checkCrossesZero();
1004     int start = SkTMin(fSectorStart, fSectorEnd);
1005     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
1006     // bump the start and end of the sector span if they are on exact compass points
1007     if ((fSectorStart & 3) == 3) {
1008         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
1009     }
1010     if ((fSectorEnd & 3) == 3) {
1011         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
1012     }
1013     crossesZero = this->checkCrossesZero();
1014     start = SkTMin(fSectorStart, fSectorEnd);
1015     int end = SkTMax(fSectorStart, fSectorEnd);
1016     if (!crossesZero) {
1017         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
1018     } else {
1019         fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
1020     }
1021 }
1022 
starter()1023 SkOpSpan* SkOpAngle::starter() {
1024     return fStart->starter(fEnd);
1025 }
1026 
tangentsDiverge(const SkOpAngle * rh,double s0xt0) const1027 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) const {
1028     if (s0xt0 == 0) {
1029         return false;
1030     }
1031     // if the ctrl tangents are not nearly parallel, use them
1032     // solve for opposite direction displacement scale factor == m
1033     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1034     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1035     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1036     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1037     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1038     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1039     // m = v1.cross(v2) / v1.dot(v2)
1040     const SkDVector* sweep = fSweep;
1041     const SkDVector* tweep = rh->fSweep;
1042     double s0dt0 = sweep[0].dot(tweep[0]);
1043     if (!s0dt0) {
1044         return true;
1045     }
1046     SkASSERT(s0dt0 != 0);
1047     double m = s0xt0 / s0dt0;
1048     double sDist = sweep[0].length() * m;
1049     double tDist = tweep[0].length() * m;
1050     bool useS = fabs(sDist) < fabs(tDist);
1051     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
1052     return mFactor < 2400;  // empirically found limit
1053 }
1054