1 /******************************************************************************
2  *
3  * Copyright (C) 2015 The Android Open Source Project
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at:
8  *
9  * http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  *
17  *****************************************************************************
18  * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19 */
20 
21 /**
22 *******************************************************************************
23 * @file
24 *  ih264e_cabac.c
25 *
26 * @brief
27 *  Contains all leaf level functions for CABAC entropy coding.
28 *
29 *
30 * @author
31 * Doney Alex
32 *
33 * @par List of Functions:
34 *
35 *
36 * @remarks
37 *  None
38 *
39 *******************************************************************************
40 */
41 
42 /*****************************************************************************/
43 /* File Includes                                                             */
44 /*****************************************************************************/
45 
46 /* System include files */
47 #include <stdio.h>
48 #include <assert.h>
49 #include <limits.h>
50 #include <string.h>
51 
52 /* User include files */
53 #include "ih264e_config.h"
54 #include "ih264_typedefs.h"
55 #include "iv2.h"
56 #include "ive2.h"
57 #include "ih264_debug.h"
58 #include "ih264_defs.h"
59 #include "ih264e_defs.h"
60 #include "ih264_macros.h"
61 #include "ih264e_error.h"
62 #include "ih264e_bitstream.h"
63 #include "ime_distortion_metrics.h"
64 #include "ime_defs.h"
65 #include "ime_structs.h"
66 #include "ih264_error.h"
67 #include "ih264_structs.h"
68 #include "ih264_trans_quant_itrans_iquant.h"
69 #include "ih264_inter_pred_filters.h"
70 #include "ih264_mem_fns.h"
71 #include "ih264_padding.h"
72 #include "ih264_platform_macros.h"
73 #include "ih264_intra_pred_filters.h"
74 #include "ih264_deblk_edge_filters.h"
75 #include "ih264_cabac_tables.h"
76 #include "irc_cntrl_param.h"
77 #include "irc_frame_info_collector.h"
78 #include "ih264e_rate_control.h"
79 #include "ih264e_cabac_structs.h"
80 #include "ih264e_structs.h"
81 #include "ih264e_cabac.h"
82 #include "ih264e_encode_header.h"
83 #include "ih264_cavlc_tables.h"
84 #include "ih264e_statistics.h"
85 #include "ih264e_trace.h"
86 
87 
88 /*****************************************************************************/
89 /* Function Definitions                                                      */
90 /*****************************************************************************/
91 
92 
93 /**
94  *******************************************************************************
95  *
96  * @brief
97  *  k-th order Exp-Golomb (UEGk) binarization process: Implements concatenated
98  *   unary/ k-th order Exp-Golomb  (UEGk) binarization process,
99  *   where k = 0 as defined in 9.3.2.3 of  ITU_T_H264-201402
100  *
101  * @param[in] i2_sufs
102  *  Suffix bit string
103  *
104  * @param[in] pi1_bins_len
105  *  Pointer to length of tthe string
106  *
107  * @returns Binarized value
108  *
109  * @remarks
110  *  None
111  *
112  *******************************************************************************
113  */
114 
ih264e_cabac_UEGk0_binarization(WORD16 i2_sufs,WORD8 * pi1_bins_len)115 UWORD32 ih264e_cabac_UEGk0_binarization(WORD16 i2_sufs, WORD8 *pi1_bins_len)
116 {
117     WORD32 unary_length;
118     UWORD32 u4_sufs_shiftk_plus1, u4_egk, u4_unary_bins;
119 
120     u4_sufs_shiftk_plus1 = i2_sufs + 1;
121 
122     unary_length = (32 - CLZ(u4_sufs_shiftk_plus1) + (0 == u4_sufs_shiftk_plus1));
123 
124     /* unary code with (unary_length-1) '1's and terminating '0' bin */
125     u4_unary_bins = (1 << unary_length) - 2;
126 
127     /* insert the symbol prefix of (unary length - 1)  bins */
128     u4_egk = (u4_unary_bins << (unary_length - 1))
129                     | (u4_sufs_shiftk_plus1 & ((1 << (unary_length - 1)) - 1));
130 
131     /* length of the code = 2 *(unary_length - 1) + 1 + k */
132     *pi1_bins_len = (2 * unary_length) - 1;
133 
134     return (u4_egk);
135 }
136 
137 /**
138  *******************************************************************************
139  *
140  * @brief
141  *  Get cabac context for the MB :calculates the pointers to Top and   left
142  *          cabac neighbor context depending upon neighbor  availability.
143  *
144  * @param[in] ps_ent_ctxt
145  *  Pointer to entropy context structure
146  *
147  * @param[in] u4_mb_type
148  *  Type of MB
149  *
150  * @returns
151  *
152  * @remarks
153  *  None
154  *
155  *******************************************************************************
156  */
ih264e_get_cabac_context(entropy_ctxt_t * ps_ent_ctxt,WORD32 u4_mb_type)157 void ih264e_get_cabac_context(entropy_ctxt_t *ps_ent_ctxt, WORD32 u4_mb_type)
158 {
159 
160     /* CABAC context */
161     cabac_ctxt_t *ps_cabac_ctxt = ps_ent_ctxt->ps_cabac;
162     mb_info_ctxt_t *ps_ctx_inc_mb_map;
163     cab_csbp_t *ps_lft_csbp;
164 
165     WORD32 i4_lft_avail, i4_top_avail, i4_is_intra;
166     WORD32 i4_mb_x, i4_mb_y;
167     UWORD8 *pu1_slice_idx = ps_ent_ctxt->pu1_slice_idx;
168 
169     i4_is_intra = ((u4_mb_type == I16x16) || (u4_mb_type == I8x8)
170                     || (u4_mb_type == I4x4));
171 
172     /* derive neighbor availability */
173     i4_mb_x = ps_ent_ctxt->i4_mb_x;
174     i4_mb_y = ps_ent_ctxt->i4_mb_y;
175     pu1_slice_idx += (i4_mb_y * ps_ent_ctxt->i4_wd_mbs);
176     /* left macroblock availability */
177     i4_lft_avail = (i4_mb_x == 0
178                     || (pu1_slice_idx[i4_mb_x - 1] != pu1_slice_idx[i4_mb_x])) ?
179                     0 : 1;
180     /* top macroblock availability */
181     i4_top_avail = (i4_mb_y == 0
182                     || (pu1_slice_idx[i4_mb_x - ps_ent_ctxt->i4_wd_mbs]
183                                     != pu1_slice_idx[i4_mb_x])) ? 0 : 1;
184     i4_mb_x = ps_ent_ctxt->i4_mb_x;
185     ps_ctx_inc_mb_map = ps_cabac_ctxt->ps_mb_map_ctxt_inc;
186     ps_cabac_ctxt->ps_curr_ctxt_mb_info = ps_ctx_inc_mb_map + i4_mb_x;
187     ps_cabac_ctxt->ps_left_ctxt_mb_info = ps_cabac_ctxt->ps_def_ctxt_mb_info;
188     ps_cabac_ctxt->ps_top_ctxt_mb_info = ps_cabac_ctxt->ps_def_ctxt_mb_info;
189     ps_lft_csbp = ps_cabac_ctxt->ps_lft_csbp;
190     ps_cabac_ctxt->pu1_left_y_ac_csbp = &ps_lft_csbp->u1_y_ac_csbp_top_mb;
191     ps_cabac_ctxt->pu1_left_uv_ac_csbp = &ps_lft_csbp->u1_uv_ac_csbp_top_mb;
192     ps_cabac_ctxt->pu1_left_yuv_dc_csbp = &ps_lft_csbp->u1_yuv_dc_csbp_top_mb;
193     ps_cabac_ctxt->pi1_left_ref_idx_ctxt_inc =
194                     &ps_cabac_ctxt->i1_left_ref_idx_ctx_inc_arr[0][0];
195     ps_cabac_ctxt->pu1_left_mv_ctxt_inc =
196                     ps_cabac_ctxt->u1_left_mv_ctxt_inc_arr[0];
197 
198     if (i4_lft_avail)
199         ps_cabac_ctxt->ps_left_ctxt_mb_info =
200                         ps_cabac_ctxt->ps_curr_ctxt_mb_info - 1;
201     if (i4_top_avail)
202         ps_cabac_ctxt->ps_top_ctxt_mb_info =
203                         ps_cabac_ctxt->ps_curr_ctxt_mb_info;
204 
205     if (!i4_lft_avail)
206     {
207         UWORD8 u1_def_csbp = i4_is_intra ? 0xf : 0;
208         *(ps_cabac_ctxt->pu1_left_y_ac_csbp) = u1_def_csbp;
209         *(ps_cabac_ctxt->pu1_left_uv_ac_csbp) = u1_def_csbp;
210         *(ps_cabac_ctxt->pu1_left_yuv_dc_csbp) = u1_def_csbp;
211         *((UWORD32 *) ps_cabac_ctxt->pi1_left_ref_idx_ctxt_inc) = 0;
212         memset(ps_cabac_ctxt->pu1_left_mv_ctxt_inc, 0, 16);
213     }
214     if (!i4_top_avail)
215     {
216         UWORD8 u1_def_csbp = i4_is_intra ? 0xff : 0;
217         ps_cabac_ctxt->ps_top_ctxt_mb_info->u1_yuv_ac_csbp = u1_def_csbp;
218         ps_cabac_ctxt->ps_top_ctxt_mb_info->u1_yuv_dc_csbp = u1_def_csbp;
219         ps_cabac_ctxt->ps_curr_ctxt_mb_info->i1_ref_idx[0] =
220         ps_cabac_ctxt->ps_curr_ctxt_mb_info->i1_ref_idx[1] =
221         ps_cabac_ctxt->ps_curr_ctxt_mb_info->i1_ref_idx[2] =
222         ps_cabac_ctxt->ps_curr_ctxt_mb_info->i1_ref_idx[3] = 0;
223         memset(ps_cabac_ctxt->ps_curr_ctxt_mb_info->u1_mv, 0, 16);
224     }
225 
226 }
227 
228 
229 
230 /**
231  *******************************************************************************
232  * @brief
233  *  flushing at termination: Explained in flowchart 9-12(ITU_T_H264-201402).
234  *
235  *  @param[in]   ps_cabac_ctxt
236  *  pointer to cabac context (handle)
237  *
238  * @returns  none
239  *
240  * @remarks
241  *  None
242  *
243  *******************************************************************************
244  */
ih264e_cabac_flush(cabac_ctxt_t * ps_cabac_ctxt)245 void ih264e_cabac_flush(cabac_ctxt_t *ps_cabac_ctxt)
246 {
247 
248     /* bit stream ptr */
249     bitstrm_t *ps_stream = ps_cabac_ctxt->ps_bitstrm;
250     encoding_envirnoment_t *ps_cab_enc_env = &(ps_cabac_ctxt->s_cab_enc_env);
251     UWORD32 u4_low = ps_cab_enc_env->u4_code_int_low;
252     UWORD32 u4_bits_gen = ps_cab_enc_env->u4_bits_gen;
253     UWORD8 *pu1_strm_buf = ps_stream->pu1_strm_buffer;
254     UWORD32 u4_strm_buf_offset = ps_stream->u4_strm_buf_offset;
255     WORD32 zero_run = ps_stream->i4_zero_bytes_run;
256     UWORD32 u4_out_standing_bytes = ps_cab_enc_env->u4_out_standing_bytes;
257 
258     /************************************************************************/
259     /* Insert the carry (propogated in previous byte) along with            */
260     /* outstanding bytes (if any) and flush remaining bits                  */
261     /************************************************************************/
262     {
263         /* carry = 1 => putbit(1); carry propogated due to L renorm */
264         WORD32 carry = (u4_low >> (u4_bits_gen + CABAC_BITS)) & 0x1;
265         WORD32 last_byte;
266         WORD32 bits_left;
267         WORD32 rem_bits;
268 
269         if (carry)
270         {
271             /* CORNER CASE: if the previous data is 0x000003, then EPB will be inserted
272              and the data will become 0x00000303 and if the carry is present, it will
273              be added with the last byte and it will become 0x00000304 which is not correct
274              as per standard */
275             /* so check for previous four bytes and if it is equal to 0x00000303
276              then subtract u4_strm_buf_offset by 1 */
277             if (pu1_strm_buf[u4_strm_buf_offset - 1] == 0x03
278                             && pu1_strm_buf[u4_strm_buf_offset - 2] == 0x03
279                             && pu1_strm_buf[u4_strm_buf_offset - 3] == 0x00
280                             && pu1_strm_buf[u4_strm_buf_offset - 4] == 0x00)
281             {
282                 u4_strm_buf_offset -= 1;
283             }
284             /* previous byte carry add will not result in overflow to        */
285             /* u4_strm_buf_offset - 2 as we track 0xff as outstanding bytes  */
286             pu1_strm_buf[u4_strm_buf_offset - 1] += carry;
287             zero_run = 0;
288         }
289 
290         /*        Insert outstanding bytes (if any)         */
291         while (u4_out_standing_bytes)
292         {
293             UWORD8 u1_0_or_ff = carry ? 0 : 0xFF;
294 
295             PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, u1_0_or_ff, zero_run);
296             u4_out_standing_bytes--;
297         }
298 
299         /*  clear the carry in low */
300         u4_low &= ((1 << (u4_bits_gen + CABAC_BITS)) - 1);
301 
302         /* extract the remaining bits;                                   */
303         /* includes additional msb bit of low as per Figure 9-12      */
304         bits_left = u4_bits_gen + 1;
305         rem_bits = (u4_low >> (u4_bits_gen + CABAC_BITS - bits_left));
306 
307         if (bits_left >= 8)
308         {
309             last_byte = (rem_bits >> (bits_left - 8)) & 0xFF;
310             PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, last_byte, zero_run);
311             bits_left -= 8;
312         }
313 
314         /* insert last byte along with rbsp stop bit(1) and 0's in the end */
315         last_byte = (rem_bits << (8 - bits_left))
316                         | (1 << (7 - bits_left) | (1 << (7 - bits_left - 1)));
317         last_byte &= 0xFF;
318         PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, last_byte, zero_run);
319 
320         /* update the state variables and return success */
321         ps_stream->u4_strm_buf_offset = u4_strm_buf_offset;
322         ps_stream->i4_zero_bytes_run = 0;
323         /* Default init values for scratch variables of bitstream context */
324         ps_stream->u4_cur_word = 0;
325         ps_stream->i4_bits_left_in_cw = WORD_SIZE;
326 
327     }
328 }
329 
330 /**
331  ******************************************************************************
332  *
333  *  @brief Puts new byte (and outstanding bytes) into bitstream after cabac
334  *         renormalization
335  *
336  *  @par   Description
337  *  1. Extract the leading byte of low(L)
338  *  2. If leading byte=0xff increment outstanding bytes and return
339  *     (as the actual bits depend on carry propogation later)
340  *  3. If leading byte is not 0xff check for any carry propogation
341  *  4. Insert the carry (propogated in previous byte) along with outstanding
342  *     bytes (if any) and leading byte
343  *
344  *
345  *  @param[in]   ps_cabac_ctxt
346  *  pointer to cabac context (handle)
347  *
348  *  @return
349  *
350  ******************************************************************************
351  */
ih264e_cabac_put_byte(cabac_ctxt_t * ps_cabac_ctxt)352 void ih264e_cabac_put_byte(cabac_ctxt_t *ps_cabac_ctxt)
353 {
354 
355     /* bit stream ptr */
356     bitstrm_t *ps_stream = ps_cabac_ctxt->ps_bitstrm;
357     encoding_envirnoment_t *ps_cab_enc_env = &(ps_cabac_ctxt->s_cab_enc_env);
358     UWORD32 u4_low = ps_cab_enc_env->u4_code_int_low;
359     UWORD32 u4_bits_gen = ps_cab_enc_env->u4_bits_gen;
360     WORD32 lead_byte = u4_low >> (u4_bits_gen + CABAC_BITS - 8);
361 
362     /* Sanity checks */
363     ASSERT((ps_cab_enc_env->u4_code_int_range >= 256)
364                     && (ps_cab_enc_env->u4_code_int_range < 512));
365     ASSERT((u4_bits_gen >= 8));
366 
367     /* update bits generated and low after extracting leading byte */
368     u4_bits_gen -= 8;
369     ps_cab_enc_env->u4_code_int_low &= ((1 << (CABAC_BITS + u4_bits_gen)) - 1);
370     ps_cab_enc_env->u4_bits_gen = u4_bits_gen;
371 
372     /************************************************************************/
373     /* 1. Extract the leading byte of low(L)                                */
374     /* 2. If leading byte=0xff increment outstanding bytes and return       */
375     /*      (as the actual bits depend on carry propogation later)          */
376     /* 3. If leading byte is not 0xff check for any carry propogation       */
377     /* 4. Insert the carry (propogated in previous byte) along with         */
378     /*    outstanding bytes (if any) and leading byte                       */
379     /************************************************************************/
380     if (lead_byte == 0xff)
381     {
382         /* actual bits depend on carry propogration     */
383         ps_cab_enc_env->u4_out_standing_bytes++;
384         return ;
385     }
386     else
387     {
388         /* carry = 1 => putbit(1); carry propogated due to L renorm */
389         WORD32 carry = (lead_byte >> 8) & 0x1;
390         UWORD8 *pu1_strm_buf = ps_stream->pu1_strm_buffer;
391         UWORD32 u4_strm_buf_offset = ps_stream->u4_strm_buf_offset;
392         WORD32 zero_run = ps_stream->i4_zero_bytes_run;
393         UWORD32 u4_out_standing_bytes = ps_cab_enc_env->u4_out_standing_bytes;
394 
395 
396         /*********************************************************************/
397         /*        Insert the carry propogated in previous byte               */
398         /*                                                                   */
399         /* Note : Do not worry about corruption into slice header align byte */
400         /*        This is because the first bin cannot result in overflow    */
401         /*********************************************************************/
402         if (carry)
403         {
404             /* CORNER CASE: if the previous data is 0x000003, then EPB will be inserted
405              and the data will become 0x00000303 and if the carry is present, it will
406              be added with the last byte and it will become 0x00000304 which is not correct
407              as per standard */
408             /* so check for previous four bytes and if it is equal to 0x00000303
409              then subtract u4_strm_buf_offset by 1 */
410             if (pu1_strm_buf[u4_strm_buf_offset - 1] == 0x03
411                             && pu1_strm_buf[u4_strm_buf_offset - 2] == 0x03
412                             && pu1_strm_buf[u4_strm_buf_offset - 3] == 0x00
413                             && pu1_strm_buf[u4_strm_buf_offset - 4] == 0x00)
414             {
415                 u4_strm_buf_offset -= 1;
416             }
417             /* previous byte carry add will not result in overflow to        */
418             /* u4_strm_buf_offset - 2 as we track 0xff as outstanding bytes  */
419             pu1_strm_buf[u4_strm_buf_offset - 1] += carry;
420             zero_run = 0;
421         }
422 
423         /*        Insert outstanding bytes (if any)         */
424         while (u4_out_standing_bytes)
425         {
426             UWORD8 u1_0_or_ff = carry ? 0 : 0xFF;
427 
428             PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, u1_0_or_ff, zero_run);
429 
430             u4_out_standing_bytes--;
431         }
432         ps_cab_enc_env->u4_out_standing_bytes = 0;
433 
434         /*        Insert the leading byte                   */
435         lead_byte &= 0xFF;
436         PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, lead_byte, zero_run);
437 
438         /* update the state variables and return success */
439         ps_stream->u4_strm_buf_offset = u4_strm_buf_offset;
440         ps_stream->i4_zero_bytes_run = zero_run;
441 
442     }
443 }
444 
445 
446 
447 
448  /**
449  ******************************************************************************
450  *
451  *  @brief Codes a bin based on probablilty and mps packed context model
452  *
453  *  @par   Description
454  *  1. Apart from encoding bin, context model is updated as per state transition
455  *  2. Range and Low renormalization is done based on bin and original state
456  *  3. After renorm bistream is updated (if required)
457  *
458  *  @param[in]   ps_cabac
459  *  pointer to cabac context (handle)
460  *
461  *  @param[in]   bin
462  *  bin(boolean) to be encoded
463  *
464  *  @param[in]  pu1_bin_ctxts
465  *  index of cabac context model containing pState[bits 5-0] | MPS[bit6]
466  *
467  *  @return
468  *
469  ******************************************************************************
470   */
ih264e_cabac_encode_bin(cabac_ctxt_t * ps_cabac,WORD32 bin,bin_ctxt_model * pu1_bin_ctxts)471 void ih264e_cabac_encode_bin(cabac_ctxt_t *ps_cabac, WORD32 bin,
472                              bin_ctxt_model *pu1_bin_ctxts)
473 {
474 
475     encoding_envirnoment_t *ps_cab_enc_env = &(ps_cabac->s_cab_enc_env);
476     UWORD32 u4_range = ps_cab_enc_env->u4_code_int_range;
477     UWORD32 u4_low = ps_cab_enc_env->u4_code_int_low;
478     UWORD32 u4_rlps;
479     UWORD8 state_mps = (*pu1_bin_ctxts) & 0x3F;
480     UWORD8 u1_mps = !!((*pu1_bin_ctxts) & (0x40));
481     WORD32 shift;
482     UWORD32 u4_table_val;
483     /* Sanity checks */
484     ASSERT((bin == 0) || (bin == 1));
485     ASSERT((u4_range >= 256) && (u4_range < 512));
486 
487     /* Get the lps range from LUT based on quantized range and state */
488     u4_table_val= gau4_ih264_cabac_table[state_mps][(u4_range >> 6) & 0x3];
489     u4_rlps = u4_table_val & 0xFF;
490     u4_range -= u4_rlps;
491 
492     /* check if bin is mps or lps */
493     if (u1_mps ^ bin)
494     {
495         /* lps path;  L= L + R; R = RLPS */
496         u4_low += u4_range;
497         u4_range = u4_rlps;
498         if (state_mps == 0)
499         {
500             /* MPS(CtxIdx) = 1 - MPS(CtxIdx) */
501             u1_mps = 1 - u1_mps;
502         } /* update the context model from state transition LUT */
503 
504         state_mps =  (u4_table_val >> 15) & 0x3F;
505     }
506     else
507     { /* update the context model from state transition LUT */
508         state_mps =  (u4_table_val >> 8) & 0x3F;
509     }
510 
511     (*pu1_bin_ctxts) = (u1_mps << 6) | state_mps;
512 
513         /*****************************************************************/
514         /* Renormalization; calculate bits generated based on range(R)   */
515         /* Note : 6 <= R < 512; R is 2 only for terminating encode       */
516         /*****************************************************************/
517         GETRANGE(shift, u4_range);
518         shift   = 9 - shift;
519         u4_low   <<= shift;
520         u4_range <<= shift;
521 
522         /* bits to be inserted in the bitstream */
523         ps_cab_enc_env->u4_bits_gen += shift;
524         ps_cab_enc_env->u4_code_int_range = u4_range;
525         ps_cab_enc_env->u4_code_int_low   = u4_low;
526 
527         /* generate stream when a byte is ready */
528         if (ps_cab_enc_env->u4_bits_gen > CABAC_BITS)
529         {
530             ih264e_cabac_put_byte(ps_cabac);
531         }
532 
533 }
534 
535 
536 
537 
538  /**
539  *******************************************************************************
540  *
541  * @brief
542  *  Encoding process for a binary decision :implements encoding process of a decision
543  *  as defined in 9.3.4.2 . This function encodes multiple bins, of a symbol. Implements
544  *  flowchart Figure 9-7( ITU_T_H264-201402)
545  *
546  * @param[in] u4_bins
547  * array of bin values
548  *
549  * @param[in] i1_bins_len
550  *  Length of bins, maximum 32
551  *
552  * @param[in] u4_ctx_inc
553  *  CtxInc, byte0- bin0, byte1-bin1 ..
554  *
555  * @param[in] i1_valid_len
556  *  valid length of bins, after that CtxInc is constant
557  *
558  * @param[in] pu1_bin_ctxt_type
559  *  Pointer to binary contexts
560 
561  * @param[in] ps_cabac
562  *  Pointer to cabac_context_structure
563  *
564  * @returns
565  *
566  * @remarks
567  *  None
568  *
569  *******************************************************************************
570  */
ih264e_encode_decision_bins(UWORD32 u4_bins,WORD8 i1_bins_len,UWORD32 u4_ctx_inc,WORD8 i1_valid_len,bin_ctxt_model * pu1_bin_ctxt_type,cabac_ctxt_t * ps_cabac)571 void ih264e_encode_decision_bins(UWORD32 u4_bins, WORD8 i1_bins_len,
572                                  UWORD32 u4_ctx_inc, WORD8 i1_valid_len,
573                                  bin_ctxt_model *pu1_bin_ctxt_type,
574                                  cabac_ctxt_t *ps_cabac)
575 {
576     WORD8 i;
577     UWORD8 u1_ctx_inc, u1_bin;
578 
579     for (i = 0; i < i1_bins_len; i++)
580     {
581         u1_bin = (u4_bins & 0x01);
582         u4_bins = u4_bins >> 1;
583         u1_ctx_inc = u4_ctx_inc & 0x0f;
584         if (i < i1_valid_len)
585             u4_ctx_inc = u4_ctx_inc >> 4;
586         /* Encode the bin */
587         ih264e_cabac_encode_bin(ps_cabac, u1_bin,
588                                 pu1_bin_ctxt_type + u1_ctx_inc);
589     }
590 
591 }
592 
593 
594 
595 
596 
597 
598 /**
599  *******************************************************************************
600  * @brief
601  *  Encoding process for a binary decision before termination:Encoding process
602  *  of a termination(9.3.4.5 :ITU_T_H264-201402) . Explained in flowchart 9-11.
603  *
604  * @param[in] ps_cabac
605  *  Pointer to cabac structure
606  *
607  * @param[in] term_bin
608  *  Symbol value, end of slice or not, term_bin is binary
609  *
610  * @returns
611  *
612  * @remarks
613  *  None
614  *
615  *******************************************************************************
616  */
ih264e_cabac_encode_terminate(cabac_ctxt_t * ps_cabac,WORD32 term_bin)617 void ih264e_cabac_encode_terminate(cabac_ctxt_t *ps_cabac, WORD32 term_bin)
618 {
619 
620     encoding_envirnoment_t *ps_cab_enc_env = &(ps_cabac->s_cab_enc_env);
621 
622     UWORD32 u4_range = ps_cab_enc_env->u4_code_int_range;
623     UWORD32 u4_low = ps_cab_enc_env->u4_code_int_low;
624     UWORD32 u4_rlps;
625     WORD32 shift;
626 
627     /* Sanity checks */
628     ASSERT((u4_range >= 256) && (u4_range < 512));
629     ASSERT((term_bin == 0) || (term_bin == 1));
630 
631     /*  term_bin = 1 has lps range = 2 */
632     u4_rlps = 2;
633     u4_range -= u4_rlps;
634 
635     /* if terminate L is incremented by curR and R=2 */
636     if (term_bin)
637     {
638         /* lps path;  L= L + R; R = RLPS */
639         u4_low += u4_range;
640         u4_range = u4_rlps;
641     }
642 
643     /*****************************************************************/
644     /* Renormalization; calculate bits generated based on range(R)   */
645     /* Note : 6 <= R < 512; R is 2 only for terminating encode       */
646     /*****************************************************************/
647     GETRANGE(shift, u4_range);
648     shift = 9 - shift;
649     u4_low <<= shift;
650     u4_range <<= shift;
651 
652     /* bits to be inserted in the bitstream */
653     ps_cab_enc_env->u4_bits_gen += shift;
654     ps_cab_enc_env->u4_code_int_range = u4_range;
655     ps_cab_enc_env->u4_code_int_low = u4_low;
656 
657     /* generate stream when a byte is ready */
658     if (ps_cab_enc_env->u4_bits_gen > CABAC_BITS)
659     {
660         ih264e_cabac_put_byte(ps_cabac);
661     }
662 
663     if (term_bin)
664     {
665         ih264e_cabac_flush(ps_cabac);
666     }
667 
668 }
669 
670 
671 /**
672  *******************************************************************************
673  * @brief
674  * Bypass encoding process for binary decisions:  Explained (9.3.4.4 :ITU_T_H264-201402)
675  * , flowchart 9-10.
676  *
677  *  @param[ino]  ps_cabac : pointer to cabac context (handle)
678  *
679  *  @param[in]   bin :  bypass bin(0/1) to be encoded
680  *
681  *  @returns
682  *
683  *  @remarks
684  *  None
685  *
686  *******************************************************************************
687  */
688 
ih264e_cabac_encode_bypass_bin(cabac_ctxt_t * ps_cabac,WORD32 bin)689 void ih264e_cabac_encode_bypass_bin(cabac_ctxt_t *ps_cabac, WORD32 bin)
690 {
691 
692     encoding_envirnoment_t *ps_cab_enc_env = &(ps_cabac->s_cab_enc_env);
693 
694     UWORD32 u4_range = ps_cab_enc_env->u4_code_int_range;
695     UWORD32 u4_low = ps_cab_enc_env->u4_code_int_low;
696 
697     /* Sanity checks */
698     ASSERT((u4_range >= 256) && (u4_range < 512));
699     ASSERT((bin == 0) || (bin == 1));
700 
701     u4_low <<= 1;
702     /* add range if bin is 1 */
703     if (bin)
704     {
705         u4_low += u4_range;
706     }
707 
708     /* 1 bit to be inserted in the bitstream */
709     ps_cab_enc_env->u4_bits_gen++;
710     ps_cab_enc_env->u4_code_int_low = u4_low;
711 
712     /* generate stream when a byte is ready */
713     if (ps_cab_enc_env->u4_bits_gen > CABAC_BITS)
714     {
715         ih264e_cabac_put_byte(ps_cabac);
716     }
717 
718 }
719 
720 
721  /**
722  ******************************************************************************
723  *
724  *  @brief Encodes a series of bypass bins (FLC bypass bins)
725  *
726  *  @par   Description
727  *  This function is more optimal than calling ih264e_cabac_encode_bypass_bin()
728  *  in a loop as cabac low, renorm and generating the stream (8bins at a time)
729  *  can be done in one operation
730  *
731  *  @param[inout]ps_cabac
732  *   pointer to cabac context (handle)
733  *
734  *  @param[in]   u4_bins
735  *   syntax element to be coded (as FLC bins)
736  *
737  *  @param[in]   num_bins
738  *   This is the FLC length for u4_sym
739  *
740  *  @return
741  *
742  ******************************************************************************
743  */
744 
ih264e_cabac_encode_bypass_bins(cabac_ctxt_t * ps_cabac,UWORD32 u4_bins,WORD32 num_bins)745 void ih264e_cabac_encode_bypass_bins(cabac_ctxt_t *ps_cabac, UWORD32 u4_bins,
746                                      WORD32 num_bins)
747 {
748 
749     encoding_envirnoment_t *ps_cab_enc_env = &(ps_cabac->s_cab_enc_env);
750 
751     UWORD32 u4_range = ps_cab_enc_env->u4_code_int_range;
752     WORD32 next_byte;
753 
754     /* Sanity checks */
755     ASSERT((num_bins < 33) && (num_bins > 0));
756     ASSERT((u4_range >= 256) && (u4_range < 512));
757 
758     /* Compute bit always to populate the trace */
759     /* increment bits generated by num_bins */
760 
761     /* Encode 8bins at a time and put in the bit-stream */
762     while (num_bins > 8)
763     {
764         num_bins -= 8;
765 
766         next_byte = (u4_bins >> (num_bins)) & 0xff;
767 
768         /*  L = (L << 8) +  (R * next_byte) */
769         ps_cab_enc_env->u4_code_int_low <<= 8;
770         ps_cab_enc_env->u4_code_int_low += (next_byte * u4_range);
771         ps_cab_enc_env->u4_bits_gen += 8;
772 
773         if (ps_cab_enc_env->u4_bits_gen > CABAC_BITS)
774         {
775             /*  insert the leading byte of low into stream */
776             ih264e_cabac_put_byte(ps_cabac);
777         }
778     }
779 
780     /* Update low with remaining bins and return */
781     next_byte = (u4_bins & ((1 << num_bins) - 1));
782 
783     ps_cab_enc_env->u4_code_int_low <<= num_bins;
784     ps_cab_enc_env->u4_code_int_low += (next_byte * u4_range);
785     ps_cab_enc_env->u4_bits_gen += num_bins;
786 
787     if (ps_cab_enc_env->u4_bits_gen > CABAC_BITS)
788     {
789         /*  insert the leading byte of low into stream */
790         ih264e_cabac_put_byte(ps_cabac);
791     }
792 
793 }
794