1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20 #include <stdint.h>
21 #include <memory>
22
23 #include "common_runtime_test.h"
24 #include "globals.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/class_loader.h"
28 #include "mirror/object-inl.h"
29 #include "scoped_thread_state_change.h"
30 #include "thread_list.h"
31 #include "zygote_space.h"
32
33 namespace art {
34 namespace gc {
35 namespace space {
36
37 template <class Super>
38 class SpaceTest : public Super {
39 public:
40 jobject byte_array_class_ = nullptr;
41
42 void AddSpace(ContinuousSpace* space, bool revoke = true) {
43 Heap* heap = Runtime::Current()->GetHeap();
44 if (revoke) {
45 heap->RevokeAllThreadLocalBuffers();
46 }
47 {
48 ScopedThreadStateChange sts(Thread::Current(), kSuspended);
49 ScopedSuspendAll ssa("Add image space");
50 heap->AddSpace(space);
51 }
52 heap->SetSpaceAsDefault(space);
53 }
54
GetByteArrayClass(Thread * self)55 mirror::Class* GetByteArrayClass(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_) {
56 StackHandleScope<1> hs(self);
57 auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
58 if (byte_array_class_ == nullptr) {
59 mirror::Class* byte_array_class =
60 Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
61 EXPECT_TRUE(byte_array_class != nullptr);
62 byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
63 EXPECT_TRUE(byte_array_class_ != nullptr);
64 }
65 return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
66 }
67
Alloc(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)68 mirror::Object* Alloc(space::MallocSpace* alloc_space,
69 Thread* self,
70 size_t bytes,
71 size_t* bytes_allocated,
72 size_t* usable_size,
73 size_t* bytes_tl_bulk_allocated)
74 SHARED_REQUIRES(Locks::mutator_lock_) {
75 StackHandleScope<1> hs(self);
76 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
77 mirror::Object* obj = alloc_space->Alloc(self,
78 bytes,
79 bytes_allocated,
80 usable_size,
81 bytes_tl_bulk_allocated);
82 if (obj != nullptr) {
83 InstallClass(obj, byte_array_class.Get(), bytes);
84 }
85 return obj;
86 }
87
AllocWithGrowth(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)88 mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
89 Thread* self,
90 size_t bytes,
91 size_t* bytes_allocated,
92 size_t* usable_size,
93 size_t* bytes_tl_bulk_allocated)
94 SHARED_REQUIRES(Locks::mutator_lock_) {
95 StackHandleScope<1> hs(self);
96 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
97 mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
98 bytes_tl_bulk_allocated);
99 if (obj != nullptr) {
100 InstallClass(obj, byte_array_class.Get(), bytes);
101 }
102 return obj;
103 }
104
InstallClass(mirror::Object * o,mirror::Class * byte_array_class,size_t size)105 void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
106 SHARED_REQUIRES(Locks::mutator_lock_) {
107 // Note the minimum size, which is the size of a zero-length byte array.
108 EXPECT_GE(size, SizeOfZeroLengthByteArray());
109 EXPECT_TRUE(byte_array_class != nullptr);
110 o->SetClass(byte_array_class);
111 if (kUseBakerOrBrooksReadBarrier) {
112 // Like the proper heap object allocation, install and verify
113 // the correct read barrier pointer.
114 if (kUseBrooksReadBarrier) {
115 o->SetReadBarrierPointer(o);
116 }
117 o->AssertReadBarrierPointer();
118 }
119 mirror::Array* arr = o->AsArray<kVerifyNone>();
120 size_t header_size = SizeOfZeroLengthByteArray();
121 int32_t length = size - header_size;
122 arr->SetLength(length);
123 EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
124 }
125
SizeOfZeroLengthByteArray()126 static size_t SizeOfZeroLengthByteArray() {
127 return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
128 }
129
130 typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
131 size_t capacity, uint8_t* requested_begin);
132
133 void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
134 int round, size_t growth_limit);
135 void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
136 };
137
test_rand(size_t * seed)138 static inline size_t test_rand(size_t* seed) {
139 *seed = *seed * 1103515245 + 12345;
140 return *seed;
141 }
142
143 template <class Super>
SizeFootPrintGrowthLimitAndTrimBody(MallocSpace * space,intptr_t object_size,int round,size_t growth_limit)144 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
145 intptr_t object_size,
146 int round,
147 size_t growth_limit) {
148 if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
149 ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
150 // No allocation can succeed
151 return;
152 }
153
154 // The space's footprint equals amount of resources requested from system
155 size_t footprint = space->GetFootprint();
156
157 // The space must at least have its book keeping allocated
158 EXPECT_GT(footprint, 0u);
159
160 // But it shouldn't exceed the initial size
161 EXPECT_LE(footprint, growth_limit);
162
163 // space's size shouldn't exceed the initial size
164 EXPECT_LE(space->Size(), growth_limit);
165
166 // this invariant should always hold or else the space has grown to be larger than what the
167 // space believes its size is (which will break invariants)
168 EXPECT_GE(space->Size(), footprint);
169
170 // Fill the space with lots of small objects up to the growth limit
171 size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
172 std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
173 size_t last_object = 0; // last object for which allocation succeeded
174 size_t amount_allocated = 0; // amount of space allocated
175 Thread* self = Thread::Current();
176 ScopedObjectAccess soa(self);
177 size_t rand_seed = 123456789;
178 for (size_t i = 0; i < max_objects; i++) {
179 size_t alloc_fails = 0; // number of failed allocations
180 size_t max_fails = 30; // number of times we fail allocation before giving up
181 for (; alloc_fails < max_fails; alloc_fails++) {
182 size_t alloc_size;
183 if (object_size > 0) {
184 alloc_size = object_size;
185 } else {
186 alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
187 // Note the minimum size, which is the size of a zero-length byte array.
188 size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
189 if (alloc_size < size_of_zero_length_byte_array) {
190 alloc_size = size_of_zero_length_byte_array;
191 }
192 }
193 StackHandleScope<1> hs(soa.Self());
194 auto object(hs.NewHandle<mirror::Object>(nullptr));
195 size_t bytes_allocated = 0;
196 size_t bytes_tl_bulk_allocated;
197 if (round <= 1) {
198 object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
199 &bytes_tl_bulk_allocated));
200 } else {
201 object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
202 &bytes_tl_bulk_allocated));
203 }
204 footprint = space->GetFootprint();
205 EXPECT_GE(space->Size(), footprint); // invariant
206 if (object.Get() != nullptr) { // allocation succeeded
207 lots_of_objects[i] = object.Get();
208 size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
209 EXPECT_EQ(bytes_allocated, allocation_size);
210 if (object_size > 0) {
211 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
212 } else {
213 EXPECT_GE(allocation_size, 8u);
214 }
215 EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
216 bytes_tl_bulk_allocated >= allocation_size);
217 amount_allocated += allocation_size;
218 break;
219 }
220 }
221 if (alloc_fails == max_fails) {
222 last_object = i;
223 break;
224 }
225 }
226 CHECK_NE(last_object, 0u); // we should have filled the space
227 EXPECT_GT(amount_allocated, 0u);
228
229 // We shouldn't have gone past the growth_limit
230 EXPECT_LE(amount_allocated, growth_limit);
231 EXPECT_LE(footprint, growth_limit);
232 EXPECT_LE(space->Size(), growth_limit);
233
234 // footprint and size should agree with amount allocated
235 EXPECT_GE(footprint, amount_allocated);
236 EXPECT_GE(space->Size(), amount_allocated);
237
238 // Release storage in a semi-adhoc manner
239 size_t free_increment = 96;
240 while (true) {
241 {
242 ScopedThreadStateChange tsc(self, kNative);
243 // Give the space a haircut.
244 space->Trim();
245 }
246
247 // Bounds sanity
248 footprint = space->GetFootprint();
249 EXPECT_LE(amount_allocated, growth_limit);
250 EXPECT_GE(footprint, amount_allocated);
251 EXPECT_LE(footprint, growth_limit);
252 EXPECT_GE(space->Size(), amount_allocated);
253 EXPECT_LE(space->Size(), growth_limit);
254
255 if (free_increment == 0) {
256 break;
257 }
258
259 // Free some objects
260 for (size_t i = 0; i < last_object; i += free_increment) {
261 mirror::Object* object = lots_of_objects.get()[i];
262 if (object == nullptr) {
263 continue;
264 }
265 size_t allocation_size = space->AllocationSize(object, nullptr);
266 if (object_size > 0) {
267 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
268 } else {
269 EXPECT_GE(allocation_size, 8u);
270 }
271 space->Free(self, object);
272 lots_of_objects.get()[i] = nullptr;
273 amount_allocated -= allocation_size;
274 footprint = space->GetFootprint();
275 EXPECT_GE(space->Size(), footprint); // invariant
276 }
277
278 free_increment >>= 1;
279 }
280
281 // The space has become empty here before allocating a large object
282 // below. For RosAlloc, revoke thread-local runs, which are kept
283 // even when empty for a performance reason, so that they won't
284 // cause the following large object allocation to fail due to
285 // potential fragmentation. Note they are normally revoked at each
286 // GC (but no GC here.)
287 space->RevokeAllThreadLocalBuffers();
288
289 // All memory was released, try a large allocation to check freed memory is being coalesced
290 StackHandleScope<1> hs(soa.Self());
291 auto large_object(hs.NewHandle<mirror::Object>(nullptr));
292 size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
293 size_t bytes_allocated = 0;
294 size_t bytes_tl_bulk_allocated;
295 if (round <= 1) {
296 large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
297 &bytes_tl_bulk_allocated));
298 } else {
299 large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
300 nullptr, &bytes_tl_bulk_allocated));
301 }
302 EXPECT_TRUE(large_object.Get() != nullptr);
303
304 // Sanity check footprint
305 footprint = space->GetFootprint();
306 EXPECT_LE(footprint, growth_limit);
307 EXPECT_GE(space->Size(), footprint);
308 EXPECT_LE(space->Size(), growth_limit);
309
310 // Clean up
311 space->Free(self, large_object.Assign(nullptr));
312
313 // Sanity check footprint
314 footprint = space->GetFootprint();
315 EXPECT_LE(footprint, growth_limit);
316 EXPECT_GE(space->Size(), footprint);
317 EXPECT_LE(space->Size(), growth_limit);
318 }
319
320 template <class Super>
SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,CreateSpaceFn create_space)321 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
322 CreateSpaceFn create_space) {
323 if (object_size < SizeOfZeroLengthByteArray()) {
324 // Too small for the object layout/model.
325 return;
326 }
327 size_t initial_size = 4 * MB;
328 size_t growth_limit = 8 * MB;
329 size_t capacity = 16 * MB;
330 MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
331 ASSERT_TRUE(space != nullptr);
332
333 // Basic sanity
334 EXPECT_EQ(space->Capacity(), growth_limit);
335 EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
336
337 // Make space findable to the heap, will also delete space when runtime is cleaned up
338 AddSpace(space);
339
340 // In this round we don't allocate with growth and therefore can't grow past the initial size.
341 // This effectively makes the growth_limit the initial_size, so assert this.
342 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
343 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
344 // Remove growth limit
345 space->ClearGrowthLimit();
346 EXPECT_EQ(space->Capacity(), capacity);
347 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
348 }
349
350 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
351 TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
352 SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
353 }
354
355 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
356 TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
357 SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
358 }
359
360 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
361 class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
362 }; \
363 \
364 TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
365 TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
366 TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
367 TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
368 TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
369 TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
370 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
371 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
372 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
373 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
374 TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
375
376 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
377 class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
378 }; \
379 \
380 TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
381 TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
382 TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
383 TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
384 TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
385 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
386 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
387 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
388 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
389 TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
390
391 } // namespace space
392 } // namespace gc
393 } // namespace art
394
395 #endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
396