1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/hydrogen.h"
6 
7 #include <sstream>
8 
9 #include "src/allocation-site-scopes.h"
10 #include "src/ast/ast-numbering.h"
11 #include "src/ast/scopeinfo.h"
12 #include "src/code-factory.h"
13 #include "src/crankshaft/hydrogen-bce.h"
14 #include "src/crankshaft/hydrogen-bch.h"
15 #include "src/crankshaft/hydrogen-canonicalize.h"
16 #include "src/crankshaft/hydrogen-check-elimination.h"
17 #include "src/crankshaft/hydrogen-dce.h"
18 #include "src/crankshaft/hydrogen-dehoist.h"
19 #include "src/crankshaft/hydrogen-environment-liveness.h"
20 #include "src/crankshaft/hydrogen-escape-analysis.h"
21 #include "src/crankshaft/hydrogen-gvn.h"
22 #include "src/crankshaft/hydrogen-infer-representation.h"
23 #include "src/crankshaft/hydrogen-infer-types.h"
24 #include "src/crankshaft/hydrogen-load-elimination.h"
25 #include "src/crankshaft/hydrogen-mark-deoptimize.h"
26 #include "src/crankshaft/hydrogen-mark-unreachable.h"
27 #include "src/crankshaft/hydrogen-osr.h"
28 #include "src/crankshaft/hydrogen-range-analysis.h"
29 #include "src/crankshaft/hydrogen-redundant-phi.h"
30 #include "src/crankshaft/hydrogen-removable-simulates.h"
31 #include "src/crankshaft/hydrogen-representation-changes.h"
32 #include "src/crankshaft/hydrogen-sce.h"
33 #include "src/crankshaft/hydrogen-store-elimination.h"
34 #include "src/crankshaft/hydrogen-uint32-analysis.h"
35 #include "src/crankshaft/lithium-allocator.h"
36 #include "src/crankshaft/typing.h"
37 #include "src/full-codegen/full-codegen.h"
38 #include "src/ic/call-optimization.h"
39 #include "src/ic/ic.h"
40 // GetRootConstructor
41 #include "src/ic/ic-inl.h"
42 #include "src/isolate-inl.h"
43 #include "src/parsing/parser.h"
44 #include "src/runtime/runtime.h"
45 
46 #if V8_TARGET_ARCH_IA32
47 #include "src/crankshaft/ia32/lithium-codegen-ia32.h"  // NOLINT
48 #elif V8_TARGET_ARCH_X64
49 #include "src/crankshaft/x64/lithium-codegen-x64.h"  // NOLINT
50 #elif V8_TARGET_ARCH_ARM64
51 #include "src/crankshaft/arm64/lithium-codegen-arm64.h"  // NOLINT
52 #elif V8_TARGET_ARCH_ARM
53 #include "src/crankshaft/arm/lithium-codegen-arm.h"  // NOLINT
54 #elif V8_TARGET_ARCH_PPC
55 #include "src/crankshaft/ppc/lithium-codegen-ppc.h"  // NOLINT
56 #elif V8_TARGET_ARCH_MIPS
57 #include "src/crankshaft/mips/lithium-codegen-mips.h"  // NOLINT
58 #elif V8_TARGET_ARCH_MIPS64
59 #include "src/crankshaft/mips64/lithium-codegen-mips64.h"  // NOLINT
60 #elif V8_TARGET_ARCH_X87
61 #include "src/crankshaft/x87/lithium-codegen-x87.h"  // NOLINT
62 #else
63 #error Unsupported target architecture.
64 #endif
65 
66 namespace v8 {
67 namespace internal {
68 
HBasicBlock(HGraph * graph)69 HBasicBlock::HBasicBlock(HGraph* graph)
70     : block_id_(graph->GetNextBlockID()),
71       graph_(graph),
72       phis_(4, graph->zone()),
73       first_(NULL),
74       last_(NULL),
75       end_(NULL),
76       loop_information_(NULL),
77       predecessors_(2, graph->zone()),
78       dominator_(NULL),
79       dominated_blocks_(4, graph->zone()),
80       last_environment_(NULL),
81       argument_count_(-1),
82       first_instruction_index_(-1),
83       last_instruction_index_(-1),
84       deleted_phis_(4, graph->zone()),
85       parent_loop_header_(NULL),
86       inlined_entry_block_(NULL),
87       is_inline_return_target_(false),
88       is_reachable_(true),
89       dominates_loop_successors_(false),
90       is_osr_entry_(false),
91       is_ordered_(false) { }
92 
93 
isolate() const94 Isolate* HBasicBlock::isolate() const {
95   return graph_->isolate();
96 }
97 
98 
MarkUnreachable()99 void HBasicBlock::MarkUnreachable() {
100   is_reachable_ = false;
101 }
102 
103 
AttachLoopInformation()104 void HBasicBlock::AttachLoopInformation() {
105   DCHECK(!IsLoopHeader());
106   loop_information_ = new(zone()) HLoopInformation(this, zone());
107 }
108 
109 
DetachLoopInformation()110 void HBasicBlock::DetachLoopInformation() {
111   DCHECK(IsLoopHeader());
112   loop_information_ = NULL;
113 }
114 
115 
AddPhi(HPhi * phi)116 void HBasicBlock::AddPhi(HPhi* phi) {
117   DCHECK(!IsStartBlock());
118   phis_.Add(phi, zone());
119   phi->SetBlock(this);
120 }
121 
122 
RemovePhi(HPhi * phi)123 void HBasicBlock::RemovePhi(HPhi* phi) {
124   DCHECK(phi->block() == this);
125   DCHECK(phis_.Contains(phi));
126   phi->Kill();
127   phis_.RemoveElement(phi);
128   phi->SetBlock(NULL);
129 }
130 
131 
AddInstruction(HInstruction * instr,SourcePosition position)132 void HBasicBlock::AddInstruction(HInstruction* instr, SourcePosition position) {
133   DCHECK(!IsStartBlock() || !IsFinished());
134   DCHECK(!instr->IsLinked());
135   DCHECK(!IsFinished());
136 
137   if (!position.IsUnknown()) {
138     instr->set_position(position);
139   }
140   if (first_ == NULL) {
141     DCHECK(last_environment() != NULL);
142     DCHECK(!last_environment()->ast_id().IsNone());
143     HBlockEntry* entry = new(zone()) HBlockEntry();
144     entry->InitializeAsFirst(this);
145     if (!position.IsUnknown()) {
146       entry->set_position(position);
147     } else {
148       DCHECK(!FLAG_hydrogen_track_positions ||
149              !graph()->info()->IsOptimizing() || instr->IsAbnormalExit());
150     }
151     first_ = last_ = entry;
152   }
153   instr->InsertAfter(last_);
154 }
155 
156 
AddNewPhi(int merged_index)157 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
158   if (graph()->IsInsideNoSideEffectsScope()) {
159     merged_index = HPhi::kInvalidMergedIndex;
160   }
161   HPhi* phi = new(zone()) HPhi(merged_index, zone());
162   AddPhi(phi);
163   return phi;
164 }
165 
166 
CreateSimulate(BailoutId ast_id,RemovableSimulate removable)167 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
168                                        RemovableSimulate removable) {
169   DCHECK(HasEnvironment());
170   HEnvironment* environment = last_environment();
171   DCHECK(ast_id.IsNone() ||
172          ast_id == BailoutId::StubEntry() ||
173          environment->closure()->shared()->VerifyBailoutId(ast_id));
174 
175   int push_count = environment->push_count();
176   int pop_count = environment->pop_count();
177 
178   HSimulate* instr =
179       new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
180 #ifdef DEBUG
181   instr->set_closure(environment->closure());
182 #endif
183   // Order of pushed values: newest (top of stack) first. This allows
184   // HSimulate::MergeWith() to easily append additional pushed values
185   // that are older (from further down the stack).
186   for (int i = 0; i < push_count; ++i) {
187     instr->AddPushedValue(environment->ExpressionStackAt(i));
188   }
189   for (GrowableBitVector::Iterator it(environment->assigned_variables(),
190                                       zone());
191        !it.Done();
192        it.Advance()) {
193     int index = it.Current();
194     instr->AddAssignedValue(index, environment->Lookup(index));
195   }
196   environment->ClearHistory();
197   return instr;
198 }
199 
200 
Finish(HControlInstruction * end,SourcePosition position)201 void HBasicBlock::Finish(HControlInstruction* end, SourcePosition position) {
202   DCHECK(!IsFinished());
203   AddInstruction(end, position);
204   end_ = end;
205   for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
206     it.Current()->RegisterPredecessor(this);
207   }
208 }
209 
210 
Goto(HBasicBlock * block,SourcePosition position,FunctionState * state,bool add_simulate)211 void HBasicBlock::Goto(HBasicBlock* block, SourcePosition position,
212                        FunctionState* state, bool add_simulate) {
213   bool drop_extra = state != NULL &&
214       state->inlining_kind() == NORMAL_RETURN;
215 
216   if (block->IsInlineReturnTarget()) {
217     HEnvironment* env = last_environment();
218     int argument_count = env->arguments_environment()->parameter_count();
219     AddInstruction(new(zone())
220                    HLeaveInlined(state->entry(), argument_count),
221                    position);
222     UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
223   }
224 
225   if (add_simulate) AddNewSimulate(BailoutId::None(), position);
226   HGoto* instr = new(zone()) HGoto(block);
227   Finish(instr, position);
228 }
229 
230 
AddLeaveInlined(HValue * return_value,FunctionState * state,SourcePosition position)231 void HBasicBlock::AddLeaveInlined(HValue* return_value, FunctionState* state,
232                                   SourcePosition position) {
233   HBasicBlock* target = state->function_return();
234   bool drop_extra = state->inlining_kind() == NORMAL_RETURN;
235 
236   DCHECK(target->IsInlineReturnTarget());
237   DCHECK(return_value != NULL);
238   HEnvironment* env = last_environment();
239   int argument_count = env->arguments_environment()->parameter_count();
240   AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
241                  position);
242   UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
243   last_environment()->Push(return_value);
244   AddNewSimulate(BailoutId::None(), position);
245   HGoto* instr = new(zone()) HGoto(target);
246   Finish(instr, position);
247 }
248 
249 
SetInitialEnvironment(HEnvironment * env)250 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
251   DCHECK(!HasEnvironment());
252   DCHECK(first() == NULL);
253   UpdateEnvironment(env);
254 }
255 
256 
UpdateEnvironment(HEnvironment * env)257 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
258   last_environment_ = env;
259   graph()->update_maximum_environment_size(env->first_expression_index());
260 }
261 
262 
SetJoinId(BailoutId ast_id)263 void HBasicBlock::SetJoinId(BailoutId ast_id) {
264   int length = predecessors_.length();
265   DCHECK(length > 0);
266   for (int i = 0; i < length; i++) {
267     HBasicBlock* predecessor = predecessors_[i];
268     DCHECK(predecessor->end()->IsGoto());
269     HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
270     DCHECK(i != 0 ||
271            (predecessor->last_environment()->closure().is_null() ||
272             predecessor->last_environment()->closure()->shared()
273               ->VerifyBailoutId(ast_id)));
274     simulate->set_ast_id(ast_id);
275     predecessor->last_environment()->set_ast_id(ast_id);
276   }
277 }
278 
279 
Dominates(HBasicBlock * other) const280 bool HBasicBlock::Dominates(HBasicBlock* other) const {
281   HBasicBlock* current = other->dominator();
282   while (current != NULL) {
283     if (current == this) return true;
284     current = current->dominator();
285   }
286   return false;
287 }
288 
289 
EqualToOrDominates(HBasicBlock * other) const290 bool HBasicBlock::EqualToOrDominates(HBasicBlock* other) const {
291   if (this == other) return true;
292   return Dominates(other);
293 }
294 
295 
LoopNestingDepth() const296 int HBasicBlock::LoopNestingDepth() const {
297   const HBasicBlock* current = this;
298   int result  = (current->IsLoopHeader()) ? 1 : 0;
299   while (current->parent_loop_header() != NULL) {
300     current = current->parent_loop_header();
301     result++;
302   }
303   return result;
304 }
305 
306 
PostProcessLoopHeader(IterationStatement * stmt)307 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
308   DCHECK(IsLoopHeader());
309 
310   SetJoinId(stmt->EntryId());
311   if (predecessors()->length() == 1) {
312     // This is a degenerated loop.
313     DetachLoopInformation();
314     return;
315   }
316 
317   // Only the first entry into the loop is from outside the loop. All other
318   // entries must be back edges.
319   for (int i = 1; i < predecessors()->length(); ++i) {
320     loop_information()->RegisterBackEdge(predecessors()->at(i));
321   }
322 }
323 
324 
MarkSuccEdgeUnreachable(int succ)325 void HBasicBlock::MarkSuccEdgeUnreachable(int succ) {
326   DCHECK(IsFinished());
327   HBasicBlock* succ_block = end()->SuccessorAt(succ);
328 
329   DCHECK(succ_block->predecessors()->length() == 1);
330   succ_block->MarkUnreachable();
331 }
332 
333 
RegisterPredecessor(HBasicBlock * pred)334 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
335   if (HasPredecessor()) {
336     // Only loop header blocks can have a predecessor added after
337     // instructions have been added to the block (they have phis for all
338     // values in the environment, these phis may be eliminated later).
339     DCHECK(IsLoopHeader() || first_ == NULL);
340     HEnvironment* incoming_env = pred->last_environment();
341     if (IsLoopHeader()) {
342       DCHECK_EQ(phis()->length(), incoming_env->length());
343       for (int i = 0; i < phis_.length(); ++i) {
344         phis_[i]->AddInput(incoming_env->values()->at(i));
345       }
346     } else {
347       last_environment()->AddIncomingEdge(this, pred->last_environment());
348     }
349   } else if (!HasEnvironment() && !IsFinished()) {
350     DCHECK(!IsLoopHeader());
351     SetInitialEnvironment(pred->last_environment()->Copy());
352   }
353 
354   predecessors_.Add(pred, zone());
355 }
356 
357 
AddDominatedBlock(HBasicBlock * block)358 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
359   DCHECK(!dominated_blocks_.Contains(block));
360   // Keep the list of dominated blocks sorted such that if there is two
361   // succeeding block in this list, the predecessor is before the successor.
362   int index = 0;
363   while (index < dominated_blocks_.length() &&
364          dominated_blocks_[index]->block_id() < block->block_id()) {
365     ++index;
366   }
367   dominated_blocks_.InsertAt(index, block, zone());
368 }
369 
370 
AssignCommonDominator(HBasicBlock * other)371 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
372   if (dominator_ == NULL) {
373     dominator_ = other;
374     other->AddDominatedBlock(this);
375   } else if (other->dominator() != NULL) {
376     HBasicBlock* first = dominator_;
377     HBasicBlock* second = other;
378 
379     while (first != second) {
380       if (first->block_id() > second->block_id()) {
381         first = first->dominator();
382       } else {
383         second = second->dominator();
384       }
385       DCHECK(first != NULL && second != NULL);
386     }
387 
388     if (dominator_ != first) {
389       DCHECK(dominator_->dominated_blocks_.Contains(this));
390       dominator_->dominated_blocks_.RemoveElement(this);
391       dominator_ = first;
392       first->AddDominatedBlock(this);
393     }
394   }
395 }
396 
397 
AssignLoopSuccessorDominators()398 void HBasicBlock::AssignLoopSuccessorDominators() {
399   // Mark blocks that dominate all subsequent reachable blocks inside their
400   // loop. Exploit the fact that blocks are sorted in reverse post order. When
401   // the loop is visited in increasing block id order, if the number of
402   // non-loop-exiting successor edges at the dominator_candidate block doesn't
403   // exceed the number of previously encountered predecessor edges, there is no
404   // path from the loop header to any block with higher id that doesn't go
405   // through the dominator_candidate block. In this case, the
406   // dominator_candidate block is guaranteed to dominate all blocks reachable
407   // from it with higher ids.
408   HBasicBlock* last = loop_information()->GetLastBackEdge();
409   int outstanding_successors = 1;  // one edge from the pre-header
410   // Header always dominates everything.
411   MarkAsLoopSuccessorDominator();
412   for (int j = block_id(); j <= last->block_id(); ++j) {
413     HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
414     for (HPredecessorIterator it(dominator_candidate); !it.Done();
415          it.Advance()) {
416       HBasicBlock* predecessor = it.Current();
417       // Don't count back edges.
418       if (predecessor->block_id() < dominator_candidate->block_id()) {
419         outstanding_successors--;
420       }
421     }
422 
423     // If more successors than predecessors have been seen in the loop up to
424     // now, it's not possible to guarantee that the current block dominates
425     // all of the blocks with higher IDs. In this case, assume conservatively
426     // that those paths through loop that don't go through the current block
427     // contain all of the loop's dependencies. Also be careful to record
428     // dominator information about the current loop that's being processed,
429     // and not nested loops, which will be processed when
430     // AssignLoopSuccessorDominators gets called on their header.
431     DCHECK(outstanding_successors >= 0);
432     HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
433     if (outstanding_successors == 0 &&
434         (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
435       dominator_candidate->MarkAsLoopSuccessorDominator();
436     }
437     HControlInstruction* end = dominator_candidate->end();
438     for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
439       HBasicBlock* successor = it.Current();
440       // Only count successors that remain inside the loop and don't loop back
441       // to a loop header.
442       if (successor->block_id() > dominator_candidate->block_id() &&
443           successor->block_id() <= last->block_id()) {
444         // Backwards edges must land on loop headers.
445         DCHECK(successor->block_id() > dominator_candidate->block_id() ||
446                successor->IsLoopHeader());
447         outstanding_successors++;
448       }
449     }
450   }
451 }
452 
453 
PredecessorIndexOf(HBasicBlock * predecessor) const454 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
455   for (int i = 0; i < predecessors_.length(); ++i) {
456     if (predecessors_[i] == predecessor) return i;
457   }
458   UNREACHABLE();
459   return -1;
460 }
461 
462 
463 #ifdef DEBUG
Verify()464 void HBasicBlock::Verify() {
465   // Check that every block is finished.
466   DCHECK(IsFinished());
467   DCHECK(block_id() >= 0);
468 
469   // Check that the incoming edges are in edge split form.
470   if (predecessors_.length() > 1) {
471     for (int i = 0; i < predecessors_.length(); ++i) {
472       DCHECK(predecessors_[i]->end()->SecondSuccessor() == NULL);
473     }
474   }
475 }
476 #endif
477 
478 
RegisterBackEdge(HBasicBlock * block)479 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
480   this->back_edges_.Add(block, block->zone());
481   AddBlock(block);
482 }
483 
484 
GetLastBackEdge() const485 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
486   int max_id = -1;
487   HBasicBlock* result = NULL;
488   for (int i = 0; i < back_edges_.length(); ++i) {
489     HBasicBlock* cur = back_edges_[i];
490     if (cur->block_id() > max_id) {
491       max_id = cur->block_id();
492       result = cur;
493     }
494   }
495   return result;
496 }
497 
498 
AddBlock(HBasicBlock * block)499 void HLoopInformation::AddBlock(HBasicBlock* block) {
500   if (block == loop_header()) return;
501   if (block->parent_loop_header() == loop_header()) return;
502   if (block->parent_loop_header() != NULL) {
503     AddBlock(block->parent_loop_header());
504   } else {
505     block->set_parent_loop_header(loop_header());
506     blocks_.Add(block, block->zone());
507     for (int i = 0; i < block->predecessors()->length(); ++i) {
508       AddBlock(block->predecessors()->at(i));
509     }
510   }
511 }
512 
513 
514 #ifdef DEBUG
515 
516 // Checks reachability of the blocks in this graph and stores a bit in
517 // the BitVector "reachable()" for every block that can be reached
518 // from the start block of the graph. If "dont_visit" is non-null, the given
519 // block is treated as if it would not be part of the graph. "visited_count()"
520 // returns the number of reachable blocks.
521 class ReachabilityAnalyzer BASE_EMBEDDED {
522  public:
ReachabilityAnalyzer(HBasicBlock * entry_block,int block_count,HBasicBlock * dont_visit)523   ReachabilityAnalyzer(HBasicBlock* entry_block,
524                        int block_count,
525                        HBasicBlock* dont_visit)
526       : visited_count_(0),
527         stack_(16, entry_block->zone()),
528         reachable_(block_count, entry_block->zone()),
529         dont_visit_(dont_visit) {
530     PushBlock(entry_block);
531     Analyze();
532   }
533 
visited_count() const534   int visited_count() const { return visited_count_; }
reachable() const535   const BitVector* reachable() const { return &reachable_; }
536 
537  private:
PushBlock(HBasicBlock * block)538   void PushBlock(HBasicBlock* block) {
539     if (block != NULL && block != dont_visit_ &&
540         !reachable_.Contains(block->block_id())) {
541       reachable_.Add(block->block_id());
542       stack_.Add(block, block->zone());
543       visited_count_++;
544     }
545   }
546 
Analyze()547   void Analyze() {
548     while (!stack_.is_empty()) {
549       HControlInstruction* end = stack_.RemoveLast()->end();
550       for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
551         PushBlock(it.Current());
552       }
553     }
554   }
555 
556   int visited_count_;
557   ZoneList<HBasicBlock*> stack_;
558   BitVector reachable_;
559   HBasicBlock* dont_visit_;
560 };
561 
562 
Verify(bool do_full_verify) const563 void HGraph::Verify(bool do_full_verify) const {
564   Heap::RelocationLock relocation_lock(isolate()->heap());
565   AllowHandleDereference allow_deref;
566   AllowDeferredHandleDereference allow_deferred_deref;
567   for (int i = 0; i < blocks_.length(); i++) {
568     HBasicBlock* block = blocks_.at(i);
569 
570     block->Verify();
571 
572     // Check that every block contains at least one node and that only the last
573     // node is a control instruction.
574     HInstruction* current = block->first();
575     DCHECK(current != NULL && current->IsBlockEntry());
576     while (current != NULL) {
577       DCHECK((current->next() == NULL) == current->IsControlInstruction());
578       DCHECK(current->block() == block);
579       current->Verify();
580       current = current->next();
581     }
582 
583     // Check that successors are correctly set.
584     HBasicBlock* first = block->end()->FirstSuccessor();
585     HBasicBlock* second = block->end()->SecondSuccessor();
586     DCHECK(second == NULL || first != NULL);
587 
588     // Check that the predecessor array is correct.
589     if (first != NULL) {
590       DCHECK(first->predecessors()->Contains(block));
591       if (second != NULL) {
592         DCHECK(second->predecessors()->Contains(block));
593       }
594     }
595 
596     // Check that phis have correct arguments.
597     for (int j = 0; j < block->phis()->length(); j++) {
598       HPhi* phi = block->phis()->at(j);
599       phi->Verify();
600     }
601 
602     // Check that all join blocks have predecessors that end with an
603     // unconditional goto and agree on their environment node id.
604     if (block->predecessors()->length() >= 2) {
605       BailoutId id =
606           block->predecessors()->first()->last_environment()->ast_id();
607       for (int k = 0; k < block->predecessors()->length(); k++) {
608         HBasicBlock* predecessor = block->predecessors()->at(k);
609         DCHECK(predecessor->end()->IsGoto() ||
610                predecessor->end()->IsDeoptimize());
611         DCHECK(predecessor->last_environment()->ast_id() == id);
612       }
613     }
614   }
615 
616   // Check special property of first block to have no predecessors.
617   DCHECK(blocks_.at(0)->predecessors()->is_empty());
618 
619   if (do_full_verify) {
620     // Check that the graph is fully connected.
621     ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
622     DCHECK(analyzer.visited_count() == blocks_.length());
623 
624     // Check that entry block dominator is NULL.
625     DCHECK(entry_block_->dominator() == NULL);
626 
627     // Check dominators.
628     for (int i = 0; i < blocks_.length(); ++i) {
629       HBasicBlock* block = blocks_.at(i);
630       if (block->dominator() == NULL) {
631         // Only start block may have no dominator assigned to.
632         DCHECK(i == 0);
633       } else {
634         // Assert that block is unreachable if dominator must not be visited.
635         ReachabilityAnalyzer dominator_analyzer(entry_block_,
636                                                 blocks_.length(),
637                                                 block->dominator());
638         DCHECK(!dominator_analyzer.reachable()->Contains(block->block_id()));
639       }
640     }
641   }
642 }
643 
644 #endif
645 
646 
GetConstant(SetOncePointer<HConstant> * pointer,int32_t value)647 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
648                                int32_t value) {
649   if (!pointer->is_set()) {
650     // Can't pass GetInvalidContext() to HConstant::New, because that will
651     // recursively call GetConstant
652     HConstant* constant = HConstant::New(isolate(), zone(), NULL, value);
653     constant->InsertAfter(entry_block()->first());
654     pointer->set(constant);
655     return constant;
656   }
657   return ReinsertConstantIfNecessary(pointer->get());
658 }
659 
660 
ReinsertConstantIfNecessary(HConstant * constant)661 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
662   if (!constant->IsLinked()) {
663     // The constant was removed from the graph. Reinsert.
664     constant->ClearFlag(HValue::kIsDead);
665     constant->InsertAfter(entry_block()->first());
666   }
667   return constant;
668 }
669 
670 
GetConstant0()671 HConstant* HGraph::GetConstant0() {
672   return GetConstant(&constant_0_, 0);
673 }
674 
675 
GetConstant1()676 HConstant* HGraph::GetConstant1() {
677   return GetConstant(&constant_1_, 1);
678 }
679 
680 
GetConstantMinus1()681 HConstant* HGraph::GetConstantMinus1() {
682   return GetConstant(&constant_minus1_, -1);
683 }
684 
685 
GetConstantBool(bool value)686 HConstant* HGraph::GetConstantBool(bool value) {
687   return value ? GetConstantTrue() : GetConstantFalse();
688 }
689 
690 
691 #define DEFINE_GET_CONSTANT(Name, name, type, htype, boolean_value)            \
692 HConstant* HGraph::GetConstant##Name() {                                       \
693   if (!constant_##name##_.is_set()) {                                          \
694     HConstant* constant = new(zone()) HConstant(                               \
695         Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
696         Unique<Map>::CreateImmovable(isolate()->factory()->type##_map()),      \
697         false,                                                                 \
698         Representation::Tagged(),                                              \
699         htype,                                                                 \
700         true,                                                                  \
701         boolean_value,                                                         \
702         false,                                                                 \
703         ODDBALL_TYPE);                                                         \
704     constant->InsertAfter(entry_block()->first());                             \
705     constant_##name##_.set(constant);                                          \
706   }                                                                            \
707   return ReinsertConstantIfNecessary(constant_##name##_.get());                \
708 }
709 
710 
DEFINE_GET_CONSTANT(Undefined,undefined,undefined,HType::Undefined (),false)711 DEFINE_GET_CONSTANT(Undefined, undefined, undefined, HType::Undefined(), false)
712 DEFINE_GET_CONSTANT(True, true, boolean, HType::Boolean(), true)
713 DEFINE_GET_CONSTANT(False, false, boolean, HType::Boolean(), false)
714 DEFINE_GET_CONSTANT(Hole, the_hole, the_hole, HType::None(), false)
715 DEFINE_GET_CONSTANT(Null, null, null, HType::Null(), false)
716 
717 
718 #undef DEFINE_GET_CONSTANT
719 
720 #define DEFINE_IS_CONSTANT(Name, name)                                         \
721 bool HGraph::IsConstant##Name(HConstant* constant) {                           \
722   return constant_##name##_.is_set() && constant == constant_##name##_.get();  \
723 }
724 DEFINE_IS_CONSTANT(Undefined, undefined)
725 DEFINE_IS_CONSTANT(0, 0)
726 DEFINE_IS_CONSTANT(1, 1)
727 DEFINE_IS_CONSTANT(Minus1, minus1)
728 DEFINE_IS_CONSTANT(True, true)
729 DEFINE_IS_CONSTANT(False, false)
730 DEFINE_IS_CONSTANT(Hole, the_hole)
731 DEFINE_IS_CONSTANT(Null, null)
732 
733 #undef DEFINE_IS_CONSTANT
734 
735 
736 HConstant* HGraph::GetInvalidContext() {
737   return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
738 }
739 
740 
IsStandardConstant(HConstant * constant)741 bool HGraph::IsStandardConstant(HConstant* constant) {
742   if (IsConstantUndefined(constant)) return true;
743   if (IsConstant0(constant)) return true;
744   if (IsConstant1(constant)) return true;
745   if (IsConstantMinus1(constant)) return true;
746   if (IsConstantTrue(constant)) return true;
747   if (IsConstantFalse(constant)) return true;
748   if (IsConstantHole(constant)) return true;
749   if (IsConstantNull(constant)) return true;
750   return false;
751 }
752 
753 
IfBuilder()754 HGraphBuilder::IfBuilder::IfBuilder() : builder_(NULL), needs_compare_(true) {}
755 
756 
IfBuilder(HGraphBuilder * builder)757 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
758     : needs_compare_(true) {
759   Initialize(builder);
760 }
761 
762 
IfBuilder(HGraphBuilder * builder,HIfContinuation * continuation)763 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder,
764                                     HIfContinuation* continuation)
765     : needs_compare_(false), first_true_block_(NULL), first_false_block_(NULL) {
766   InitializeDontCreateBlocks(builder);
767   continuation->Continue(&first_true_block_, &first_false_block_);
768 }
769 
770 
InitializeDontCreateBlocks(HGraphBuilder * builder)771 void HGraphBuilder::IfBuilder::InitializeDontCreateBlocks(
772     HGraphBuilder* builder) {
773   builder_ = builder;
774   finished_ = false;
775   did_then_ = false;
776   did_else_ = false;
777   did_else_if_ = false;
778   did_and_ = false;
779   did_or_ = false;
780   captured_ = false;
781   pending_merge_block_ = false;
782   split_edge_merge_block_ = NULL;
783   merge_at_join_blocks_ = NULL;
784   normal_merge_at_join_block_count_ = 0;
785   deopt_merge_at_join_block_count_ = 0;
786 }
787 
788 
Initialize(HGraphBuilder * builder)789 void HGraphBuilder::IfBuilder::Initialize(HGraphBuilder* builder) {
790   InitializeDontCreateBlocks(builder);
791   HEnvironment* env = builder->environment();
792   first_true_block_ = builder->CreateBasicBlock(env->Copy());
793   first_false_block_ = builder->CreateBasicBlock(env->Copy());
794 }
795 
796 
AddCompare(HControlInstruction * compare)797 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
798     HControlInstruction* compare) {
799   DCHECK(did_then_ == did_else_);
800   if (did_else_) {
801     // Handle if-then-elseif
802     did_else_if_ = true;
803     did_else_ = false;
804     did_then_ = false;
805     did_and_ = false;
806     did_or_ = false;
807     pending_merge_block_ = false;
808     split_edge_merge_block_ = NULL;
809     HEnvironment* env = builder()->environment();
810     first_true_block_ = builder()->CreateBasicBlock(env->Copy());
811     first_false_block_ = builder()->CreateBasicBlock(env->Copy());
812   }
813   if (split_edge_merge_block_ != NULL) {
814     HEnvironment* env = first_false_block_->last_environment();
815     HBasicBlock* split_edge = builder()->CreateBasicBlock(env->Copy());
816     if (did_or_) {
817       compare->SetSuccessorAt(0, split_edge);
818       compare->SetSuccessorAt(1, first_false_block_);
819     } else {
820       compare->SetSuccessorAt(0, first_true_block_);
821       compare->SetSuccessorAt(1, split_edge);
822     }
823     builder()->GotoNoSimulate(split_edge, split_edge_merge_block_);
824   } else {
825     compare->SetSuccessorAt(0, first_true_block_);
826     compare->SetSuccessorAt(1, first_false_block_);
827   }
828   builder()->FinishCurrentBlock(compare);
829   needs_compare_ = false;
830   return compare;
831 }
832 
833 
Or()834 void HGraphBuilder::IfBuilder::Or() {
835   DCHECK(!needs_compare_);
836   DCHECK(!did_and_);
837   did_or_ = true;
838   HEnvironment* env = first_false_block_->last_environment();
839   if (split_edge_merge_block_ == NULL) {
840     split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
841     builder()->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
842     first_true_block_ = split_edge_merge_block_;
843   }
844   builder()->set_current_block(first_false_block_);
845   first_false_block_ = builder()->CreateBasicBlock(env->Copy());
846 }
847 
848 
And()849 void HGraphBuilder::IfBuilder::And() {
850   DCHECK(!needs_compare_);
851   DCHECK(!did_or_);
852   did_and_ = true;
853   HEnvironment* env = first_false_block_->last_environment();
854   if (split_edge_merge_block_ == NULL) {
855     split_edge_merge_block_ = builder()->CreateBasicBlock(env->Copy());
856     builder()->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
857     first_false_block_ = split_edge_merge_block_;
858   }
859   builder()->set_current_block(first_true_block_);
860   first_true_block_ = builder()->CreateBasicBlock(env->Copy());
861 }
862 
863 
CaptureContinuation(HIfContinuation * continuation)864 void HGraphBuilder::IfBuilder::CaptureContinuation(
865     HIfContinuation* continuation) {
866   DCHECK(!did_else_if_);
867   DCHECK(!finished_);
868   DCHECK(!captured_);
869 
870   HBasicBlock* true_block = NULL;
871   HBasicBlock* false_block = NULL;
872   Finish(&true_block, &false_block);
873   DCHECK(true_block != NULL);
874   DCHECK(false_block != NULL);
875   continuation->Capture(true_block, false_block);
876   captured_ = true;
877   builder()->set_current_block(NULL);
878   End();
879 }
880 
881 
JoinContinuation(HIfContinuation * continuation)882 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
883   DCHECK(!did_else_if_);
884   DCHECK(!finished_);
885   DCHECK(!captured_);
886   HBasicBlock* true_block = NULL;
887   HBasicBlock* false_block = NULL;
888   Finish(&true_block, &false_block);
889   merge_at_join_blocks_ = NULL;
890   if (true_block != NULL && !true_block->IsFinished()) {
891     DCHECK(continuation->IsTrueReachable());
892     builder()->GotoNoSimulate(true_block, continuation->true_branch());
893   }
894   if (false_block != NULL && !false_block->IsFinished()) {
895     DCHECK(continuation->IsFalseReachable());
896     builder()->GotoNoSimulate(false_block, continuation->false_branch());
897   }
898   captured_ = true;
899   End();
900 }
901 
902 
Then()903 void HGraphBuilder::IfBuilder::Then() {
904   DCHECK(!captured_);
905   DCHECK(!finished_);
906   did_then_ = true;
907   if (needs_compare_) {
908     // Handle if's without any expressions, they jump directly to the "else"
909     // branch. However, we must pretend that the "then" branch is reachable,
910     // so that the graph builder visits it and sees any live range extending
911     // constructs within it.
912     HConstant* constant_false = builder()->graph()->GetConstantFalse();
913     ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
914     boolean_type.Add(ToBooleanStub::BOOLEAN);
915     HBranch* branch = builder()->New<HBranch>(
916         constant_false, boolean_type, first_true_block_, first_false_block_);
917     builder()->FinishCurrentBlock(branch);
918   }
919   builder()->set_current_block(first_true_block_);
920   pending_merge_block_ = true;
921 }
922 
923 
Else()924 void HGraphBuilder::IfBuilder::Else() {
925   DCHECK(did_then_);
926   DCHECK(!captured_);
927   DCHECK(!finished_);
928   AddMergeAtJoinBlock(false);
929   builder()->set_current_block(first_false_block_);
930   pending_merge_block_ = true;
931   did_else_ = true;
932 }
933 
934 
Deopt(Deoptimizer::DeoptReason reason)935 void HGraphBuilder::IfBuilder::Deopt(Deoptimizer::DeoptReason reason) {
936   DCHECK(did_then_);
937   builder()->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
938   AddMergeAtJoinBlock(true);
939 }
940 
941 
Return(HValue * value)942 void HGraphBuilder::IfBuilder::Return(HValue* value) {
943   HValue* parameter_count = builder()->graph()->GetConstantMinus1();
944   builder()->FinishExitCurrentBlock(
945       builder()->New<HReturn>(value, parameter_count));
946   AddMergeAtJoinBlock(false);
947 }
948 
949 
AddMergeAtJoinBlock(bool deopt)950 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
951   if (!pending_merge_block_) return;
952   HBasicBlock* block = builder()->current_block();
953   DCHECK(block == NULL || !block->IsFinished());
954   MergeAtJoinBlock* record = new (builder()->zone())
955       MergeAtJoinBlock(block, deopt, merge_at_join_blocks_);
956   merge_at_join_blocks_ = record;
957   if (block != NULL) {
958     DCHECK(block->end() == NULL);
959     if (deopt) {
960       normal_merge_at_join_block_count_++;
961     } else {
962       deopt_merge_at_join_block_count_++;
963     }
964   }
965   builder()->set_current_block(NULL);
966   pending_merge_block_ = false;
967 }
968 
969 
Finish()970 void HGraphBuilder::IfBuilder::Finish() {
971   DCHECK(!finished_);
972   if (!did_then_) {
973     Then();
974   }
975   AddMergeAtJoinBlock(false);
976   if (!did_else_) {
977     Else();
978     AddMergeAtJoinBlock(false);
979   }
980   finished_ = true;
981 }
982 
983 
Finish(HBasicBlock ** then_continuation,HBasicBlock ** else_continuation)984 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
985                                       HBasicBlock** else_continuation) {
986   Finish();
987 
988   MergeAtJoinBlock* else_record = merge_at_join_blocks_;
989   if (else_continuation != NULL) {
990     *else_continuation = else_record->block_;
991   }
992   MergeAtJoinBlock* then_record = else_record->next_;
993   if (then_continuation != NULL) {
994     *then_continuation = then_record->block_;
995   }
996   DCHECK(then_record->next_ == NULL);
997 }
998 
999 
EndUnreachable()1000 void HGraphBuilder::IfBuilder::EndUnreachable() {
1001   if (captured_) return;
1002   Finish();
1003   builder()->set_current_block(nullptr);
1004 }
1005 
1006 
End()1007 void HGraphBuilder::IfBuilder::End() {
1008   if (captured_) return;
1009   Finish();
1010 
1011   int total_merged_blocks = normal_merge_at_join_block_count_ +
1012     deopt_merge_at_join_block_count_;
1013   DCHECK(total_merged_blocks >= 1);
1014   HBasicBlock* merge_block =
1015       total_merged_blocks == 1 ? NULL : builder()->graph()->CreateBasicBlock();
1016 
1017   // Merge non-deopt blocks first to ensure environment has right size for
1018   // padding.
1019   MergeAtJoinBlock* current = merge_at_join_blocks_;
1020   while (current != NULL) {
1021     if (!current->deopt_ && current->block_ != NULL) {
1022       // If there is only one block that makes it through to the end of the
1023       // if, then just set it as the current block and continue rather then
1024       // creating an unnecessary merge block.
1025       if (total_merged_blocks == 1) {
1026         builder()->set_current_block(current->block_);
1027         return;
1028       }
1029       builder()->GotoNoSimulate(current->block_, merge_block);
1030     }
1031     current = current->next_;
1032   }
1033 
1034   // Merge deopt blocks, padding when necessary.
1035   current = merge_at_join_blocks_;
1036   while (current != NULL) {
1037     if (current->deopt_ && current->block_ != NULL) {
1038       current->block_->FinishExit(
1039           HAbnormalExit::New(builder()->isolate(), builder()->zone(), NULL),
1040           SourcePosition::Unknown());
1041     }
1042     current = current->next_;
1043   }
1044   builder()->set_current_block(merge_block);
1045 }
1046 
1047 
LoopBuilder(HGraphBuilder * builder)1048 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder) {
1049   Initialize(builder, NULL, kWhileTrue, NULL);
1050 }
1051 
1052 
LoopBuilder(HGraphBuilder * builder,HValue * context,LoopBuilder::Direction direction)1053 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1054                                         LoopBuilder::Direction direction) {
1055   Initialize(builder, context, direction, builder->graph()->GetConstant1());
1056 }
1057 
1058 
LoopBuilder(HGraphBuilder * builder,HValue * context,LoopBuilder::Direction direction,HValue * increment_amount)1059 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, HValue* context,
1060                                         LoopBuilder::Direction direction,
1061                                         HValue* increment_amount) {
1062   Initialize(builder, context, direction, increment_amount);
1063   increment_amount_ = increment_amount;
1064 }
1065 
1066 
Initialize(HGraphBuilder * builder,HValue * context,Direction direction,HValue * increment_amount)1067 void HGraphBuilder::LoopBuilder::Initialize(HGraphBuilder* builder,
1068                                             HValue* context,
1069                                             Direction direction,
1070                                             HValue* increment_amount) {
1071   builder_ = builder;
1072   context_ = context;
1073   direction_ = direction;
1074   increment_amount_ = increment_amount;
1075 
1076   finished_ = false;
1077   header_block_ = builder->CreateLoopHeaderBlock();
1078   body_block_ = NULL;
1079   exit_block_ = NULL;
1080   exit_trampoline_block_ = NULL;
1081 }
1082 
1083 
BeginBody(HValue * initial,HValue * terminating,Token::Value token)1084 HValue* HGraphBuilder::LoopBuilder::BeginBody(
1085     HValue* initial,
1086     HValue* terminating,
1087     Token::Value token) {
1088   DCHECK(direction_ != kWhileTrue);
1089   HEnvironment* env = builder_->environment();
1090   phi_ = header_block_->AddNewPhi(env->values()->length());
1091   phi_->AddInput(initial);
1092   env->Push(initial);
1093   builder_->GotoNoSimulate(header_block_);
1094 
1095   HEnvironment* body_env = env->Copy();
1096   HEnvironment* exit_env = env->Copy();
1097   // Remove the phi from the expression stack
1098   body_env->Pop();
1099   exit_env->Pop();
1100   body_block_ = builder_->CreateBasicBlock(body_env);
1101   exit_block_ = builder_->CreateBasicBlock(exit_env);
1102 
1103   builder_->set_current_block(header_block_);
1104   env->Pop();
1105   builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
1106           phi_, terminating, token, body_block_, exit_block_));
1107 
1108   builder_->set_current_block(body_block_);
1109   if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
1110     Isolate* isolate = builder_->isolate();
1111     HValue* one = builder_->graph()->GetConstant1();
1112     if (direction_ == kPreIncrement) {
1113       increment_ = HAdd::New(isolate, zone(), context_, phi_, one);
1114     } else {
1115       increment_ = HSub::New(isolate, zone(), context_, phi_, one);
1116     }
1117     increment_->ClearFlag(HValue::kCanOverflow);
1118     builder_->AddInstruction(increment_);
1119     return increment_;
1120   } else {
1121     return phi_;
1122   }
1123 }
1124 
1125 
BeginBody(int drop_count)1126 void HGraphBuilder::LoopBuilder::BeginBody(int drop_count) {
1127   DCHECK(direction_ == kWhileTrue);
1128   HEnvironment* env = builder_->environment();
1129   builder_->GotoNoSimulate(header_block_);
1130   builder_->set_current_block(header_block_);
1131   env->Drop(drop_count);
1132 }
1133 
1134 
Break()1135 void HGraphBuilder::LoopBuilder::Break() {
1136   if (exit_trampoline_block_ == NULL) {
1137     // Its the first time we saw a break.
1138     if (direction_ == kWhileTrue) {
1139       HEnvironment* env = builder_->environment()->Copy();
1140       exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1141     } else {
1142       HEnvironment* env = exit_block_->last_environment()->Copy();
1143       exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1144       builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
1145     }
1146   }
1147 
1148   builder_->GotoNoSimulate(exit_trampoline_block_);
1149   builder_->set_current_block(NULL);
1150 }
1151 
1152 
EndBody()1153 void HGraphBuilder::LoopBuilder::EndBody() {
1154   DCHECK(!finished_);
1155 
1156   if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
1157     Isolate* isolate = builder_->isolate();
1158     if (direction_ == kPostIncrement) {
1159       increment_ =
1160           HAdd::New(isolate, zone(), context_, phi_, increment_amount_);
1161     } else {
1162       increment_ =
1163           HSub::New(isolate, zone(), context_, phi_, increment_amount_);
1164     }
1165     increment_->ClearFlag(HValue::kCanOverflow);
1166     builder_->AddInstruction(increment_);
1167   }
1168 
1169   if (direction_ != kWhileTrue) {
1170     // Push the new increment value on the expression stack to merge into
1171     // the phi.
1172     builder_->environment()->Push(increment_);
1173   }
1174   HBasicBlock* last_block = builder_->current_block();
1175   builder_->GotoNoSimulate(last_block, header_block_);
1176   header_block_->loop_information()->RegisterBackEdge(last_block);
1177 
1178   if (exit_trampoline_block_ != NULL) {
1179     builder_->set_current_block(exit_trampoline_block_);
1180   } else {
1181     builder_->set_current_block(exit_block_);
1182   }
1183   finished_ = true;
1184 }
1185 
1186 
CreateGraph()1187 HGraph* HGraphBuilder::CreateGraph() {
1188   graph_ = new(zone()) HGraph(info_);
1189   if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
1190   CompilationPhase phase("H_Block building", info_);
1191   set_current_block(graph()->entry_block());
1192   if (!BuildGraph()) return NULL;
1193   graph()->FinalizeUniqueness();
1194   return graph_;
1195 }
1196 
1197 
AddInstruction(HInstruction * instr)1198 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
1199   DCHECK(current_block() != NULL);
1200   DCHECK(!FLAG_hydrogen_track_positions ||
1201          !position_.IsUnknown() ||
1202          !info_->IsOptimizing());
1203   current_block()->AddInstruction(instr, source_position());
1204   if (graph()->IsInsideNoSideEffectsScope()) {
1205     instr->SetFlag(HValue::kHasNoObservableSideEffects);
1206   }
1207   return instr;
1208 }
1209 
1210 
FinishCurrentBlock(HControlInstruction * last)1211 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
1212   DCHECK(!FLAG_hydrogen_track_positions ||
1213          !info_->IsOptimizing() ||
1214          !position_.IsUnknown());
1215   current_block()->Finish(last, source_position());
1216   if (last->IsReturn() || last->IsAbnormalExit()) {
1217     set_current_block(NULL);
1218   }
1219 }
1220 
1221 
FinishExitCurrentBlock(HControlInstruction * instruction)1222 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
1223   DCHECK(!FLAG_hydrogen_track_positions || !info_->IsOptimizing() ||
1224          !position_.IsUnknown());
1225   current_block()->FinishExit(instruction, source_position());
1226   if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
1227     set_current_block(NULL);
1228   }
1229 }
1230 
1231 
AddIncrementCounter(StatsCounter * counter)1232 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
1233   if (FLAG_native_code_counters && counter->Enabled()) {
1234     HValue* reference = Add<HConstant>(ExternalReference(counter));
1235     HValue* old_value =
1236         Add<HLoadNamedField>(reference, nullptr, HObjectAccess::ForCounter());
1237     HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
1238     new_value->ClearFlag(HValue::kCanOverflow);  // Ignore counter overflow
1239     Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
1240                           new_value, STORE_TO_INITIALIZED_ENTRY);
1241   }
1242 }
1243 
1244 
AddSimulate(BailoutId id,RemovableSimulate removable)1245 void HGraphBuilder::AddSimulate(BailoutId id,
1246                                 RemovableSimulate removable) {
1247   DCHECK(current_block() != NULL);
1248   DCHECK(!graph()->IsInsideNoSideEffectsScope());
1249   current_block()->AddNewSimulate(id, source_position(), removable);
1250 }
1251 
1252 
CreateBasicBlock(HEnvironment * env)1253 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
1254   HBasicBlock* b = graph()->CreateBasicBlock();
1255   b->SetInitialEnvironment(env);
1256   return b;
1257 }
1258 
1259 
CreateLoopHeaderBlock()1260 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
1261   HBasicBlock* header = graph()->CreateBasicBlock();
1262   HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
1263   header->SetInitialEnvironment(entry_env);
1264   header->AttachLoopInformation();
1265   return header;
1266 }
1267 
1268 
BuildGetElementsKind(HValue * object)1269 HValue* HGraphBuilder::BuildGetElementsKind(HValue* object) {
1270   HValue* map = Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMap());
1271 
1272   HValue* bit_field2 =
1273       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField2());
1274   return BuildDecodeField<Map::ElementsKindBits>(bit_field2);
1275 }
1276 
1277 
BuildCheckHeapObject(HValue * obj)1278 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
1279   if (obj->type().IsHeapObject()) return obj;
1280   return Add<HCheckHeapObject>(obj);
1281 }
1282 
1283 
FinishExitWithHardDeoptimization(Deoptimizer::DeoptReason reason)1284 void HGraphBuilder::FinishExitWithHardDeoptimization(
1285     Deoptimizer::DeoptReason reason) {
1286   Add<HDeoptimize>(reason, Deoptimizer::EAGER);
1287   FinishExitCurrentBlock(New<HAbnormalExit>());
1288 }
1289 
1290 
BuildCheckString(HValue * string)1291 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
1292   if (!string->type().IsString()) {
1293     DCHECK(!string->IsConstant() ||
1294            !HConstant::cast(string)->HasStringValue());
1295     BuildCheckHeapObject(string);
1296     return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
1297   }
1298   return string;
1299 }
1300 
1301 
BuildWrapReceiver(HValue * object,HValue * function)1302 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
1303   if (object->type().IsJSObject()) return object;
1304   if (function->IsConstant() &&
1305       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
1306     Handle<JSFunction> f = Handle<JSFunction>::cast(
1307         HConstant::cast(function)->handle(isolate()));
1308     SharedFunctionInfo* shared = f->shared();
1309     if (is_strict(shared->language_mode()) || shared->native()) return object;
1310   }
1311   return Add<HWrapReceiver>(object, function);
1312 }
1313 
1314 
BuildCheckAndGrowElementsCapacity(HValue * object,HValue * elements,ElementsKind kind,HValue * length,HValue * capacity,HValue * key)1315 HValue* HGraphBuilder::BuildCheckAndGrowElementsCapacity(
1316     HValue* object, HValue* elements, ElementsKind kind, HValue* length,
1317     HValue* capacity, HValue* key) {
1318   HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
1319   HValue* max_capacity = AddUncasted<HAdd>(capacity, max_gap);
1320   Add<HBoundsCheck>(key, max_capacity);
1321 
1322   HValue* new_capacity = BuildNewElementsCapacity(key);
1323   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind, kind,
1324                                                    length, new_capacity);
1325   return new_elements;
1326 }
1327 
1328 
BuildCheckForCapacityGrow(HValue * object,HValue * elements,ElementsKind kind,HValue * length,HValue * key,bool is_js_array,PropertyAccessType access_type)1329 HValue* HGraphBuilder::BuildCheckForCapacityGrow(
1330     HValue* object,
1331     HValue* elements,
1332     ElementsKind kind,
1333     HValue* length,
1334     HValue* key,
1335     bool is_js_array,
1336     PropertyAccessType access_type) {
1337   IfBuilder length_checker(this);
1338 
1339   Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
1340   length_checker.If<HCompareNumericAndBranch>(key, length, token);
1341 
1342   length_checker.Then();
1343 
1344   HValue* current_capacity = AddLoadFixedArrayLength(elements);
1345 
1346   if (top_info()->IsStub()) {
1347     IfBuilder capacity_checker(this);
1348     capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
1349                                                   Token::GTE);
1350     capacity_checker.Then();
1351     HValue* new_elements = BuildCheckAndGrowElementsCapacity(
1352         object, elements, kind, length, current_capacity, key);
1353     environment()->Push(new_elements);
1354     capacity_checker.Else();
1355     environment()->Push(elements);
1356     capacity_checker.End();
1357   } else {
1358     HValue* result = Add<HMaybeGrowElements>(
1359         object, elements, key, current_capacity, is_js_array, kind);
1360     environment()->Push(result);
1361   }
1362 
1363   if (is_js_array) {
1364     HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
1365     new_length->ClearFlag(HValue::kCanOverflow);
1366 
1367     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
1368                           new_length);
1369   }
1370 
1371   if (access_type == STORE && kind == FAST_SMI_ELEMENTS) {
1372     HValue* checked_elements = environment()->Top();
1373 
1374     // Write zero to ensure that the new element is initialized with some smi.
1375     Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), nullptr,
1376                      kind);
1377   }
1378 
1379   length_checker.Else();
1380   Add<HBoundsCheck>(key, length);
1381 
1382   environment()->Push(elements);
1383   length_checker.End();
1384 
1385   return environment()->Pop();
1386 }
1387 
1388 
BuildCopyElementsOnWrite(HValue * object,HValue * elements,ElementsKind kind,HValue * length)1389 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
1390                                                 HValue* elements,
1391                                                 ElementsKind kind,
1392                                                 HValue* length) {
1393   Factory* factory = isolate()->factory();
1394 
1395   IfBuilder cow_checker(this);
1396 
1397   cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
1398   cow_checker.Then();
1399 
1400   HValue* capacity = AddLoadFixedArrayLength(elements);
1401 
1402   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
1403                                                    kind, length, capacity);
1404 
1405   environment()->Push(new_elements);
1406 
1407   cow_checker.Else();
1408 
1409   environment()->Push(elements);
1410 
1411   cow_checker.End();
1412 
1413   return environment()->Pop();
1414 }
1415 
1416 
BuildTransitionElementsKind(HValue * object,HValue * map,ElementsKind from_kind,ElementsKind to_kind,bool is_jsarray)1417 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
1418                                                 HValue* map,
1419                                                 ElementsKind from_kind,
1420                                                 ElementsKind to_kind,
1421                                                 bool is_jsarray) {
1422   DCHECK(!IsFastHoleyElementsKind(from_kind) ||
1423          IsFastHoleyElementsKind(to_kind));
1424 
1425   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
1426     Add<HTrapAllocationMemento>(object);
1427   }
1428 
1429   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
1430     HInstruction* elements = AddLoadElements(object);
1431 
1432     HInstruction* empty_fixed_array = Add<HConstant>(
1433         isolate()->factory()->empty_fixed_array());
1434 
1435     IfBuilder if_builder(this);
1436 
1437     if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
1438 
1439     if_builder.Then();
1440 
1441     HInstruction* elements_length = AddLoadFixedArrayLength(elements);
1442 
1443     HInstruction* array_length =
1444         is_jsarray
1445             ? Add<HLoadNamedField>(object, nullptr,
1446                                    HObjectAccess::ForArrayLength(from_kind))
1447             : elements_length;
1448 
1449     BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
1450                               array_length, elements_length);
1451 
1452     if_builder.End();
1453   }
1454 
1455   Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
1456 }
1457 
1458 
BuildJSObjectCheck(HValue * receiver,int bit_field_mask)1459 void HGraphBuilder::BuildJSObjectCheck(HValue* receiver,
1460                                        int bit_field_mask) {
1461   // Check that the object isn't a smi.
1462   Add<HCheckHeapObject>(receiver);
1463 
1464   // Get the map of the receiver.
1465   HValue* map =
1466       Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1467 
1468   // Check the instance type and if an access check is needed, this can be
1469   // done with a single load, since both bytes are adjacent in the map.
1470   HObjectAccess access(HObjectAccess::ForMapInstanceTypeAndBitField());
1471   HValue* instance_type_and_bit_field =
1472       Add<HLoadNamedField>(map, nullptr, access);
1473 
1474   HValue* mask = Add<HConstant>(0x00FF | (bit_field_mask << 8));
1475   HValue* and_result = AddUncasted<HBitwise>(Token::BIT_AND,
1476                                              instance_type_and_bit_field,
1477                                              mask);
1478   HValue* sub_result = AddUncasted<HSub>(and_result,
1479                                          Add<HConstant>(JS_OBJECT_TYPE));
1480   Add<HBoundsCheck>(sub_result,
1481                     Add<HConstant>(LAST_JS_OBJECT_TYPE + 1 - JS_OBJECT_TYPE));
1482 }
1483 
1484 
BuildKeyedIndexCheck(HValue * key,HIfContinuation * join_continuation)1485 void HGraphBuilder::BuildKeyedIndexCheck(HValue* key,
1486                                          HIfContinuation* join_continuation) {
1487   // The sometimes unintuitively backward ordering of the ifs below is
1488   // convoluted, but necessary.  All of the paths must guarantee that the
1489   // if-true of the continuation returns a smi element index and the if-false of
1490   // the continuation returns either a symbol or a unique string key. All other
1491   // object types cause a deopt to fall back to the runtime.
1492 
1493   IfBuilder key_smi_if(this);
1494   key_smi_if.If<HIsSmiAndBranch>(key);
1495   key_smi_if.Then();
1496   {
1497     Push(key);  // Nothing to do, just continue to true of continuation.
1498   }
1499   key_smi_if.Else();
1500   {
1501     HValue* map = Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForMap());
1502     HValue* instance_type =
1503         Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1504 
1505     // Non-unique string, check for a string with a hash code that is actually
1506     // an index.
1507     STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
1508     IfBuilder not_string_or_name_if(this);
1509     not_string_or_name_if.If<HCompareNumericAndBranch>(
1510         instance_type,
1511         Add<HConstant>(LAST_UNIQUE_NAME_TYPE),
1512         Token::GT);
1513 
1514     not_string_or_name_if.Then();
1515     {
1516       // Non-smi, non-Name, non-String: Try to convert to smi in case of
1517       // HeapNumber.
1518       // TODO(danno): This could call some variant of ToString
1519       Push(AddUncasted<HForceRepresentation>(key, Representation::Smi()));
1520     }
1521     not_string_or_name_if.Else();
1522     {
1523       // String or Name: check explicitly for Name, they can short-circuit
1524       // directly to unique non-index key path.
1525       IfBuilder not_symbol_if(this);
1526       not_symbol_if.If<HCompareNumericAndBranch>(
1527           instance_type,
1528           Add<HConstant>(SYMBOL_TYPE),
1529           Token::NE);
1530 
1531       not_symbol_if.Then();
1532       {
1533         // String: check whether the String is a String of an index. If it is,
1534         // extract the index value from the hash.
1535         HValue* hash = Add<HLoadNamedField>(key, nullptr,
1536                                             HObjectAccess::ForNameHashField());
1537         HValue* not_index_mask = Add<HConstant>(static_cast<int>(
1538             String::kContainsCachedArrayIndexMask));
1539 
1540         HValue* not_index_test = AddUncasted<HBitwise>(
1541             Token::BIT_AND, hash, not_index_mask);
1542 
1543         IfBuilder string_index_if(this);
1544         string_index_if.If<HCompareNumericAndBranch>(not_index_test,
1545                                                      graph()->GetConstant0(),
1546                                                      Token::EQ);
1547         string_index_if.Then();
1548         {
1549           // String with index in hash: extract string and merge to index path.
1550           Push(BuildDecodeField<String::ArrayIndexValueBits>(hash));
1551         }
1552         string_index_if.Else();
1553         {
1554           // Key is a non-index String, check for uniqueness/internalization.
1555           // If it's not internalized yet, internalize it now.
1556           HValue* not_internalized_bit = AddUncasted<HBitwise>(
1557               Token::BIT_AND,
1558               instance_type,
1559               Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1560 
1561           IfBuilder internalized(this);
1562           internalized.If<HCompareNumericAndBranch>(not_internalized_bit,
1563                                                     graph()->GetConstant0(),
1564                                                     Token::EQ);
1565           internalized.Then();
1566           Push(key);
1567 
1568           internalized.Else();
1569           Add<HPushArguments>(key);
1570           HValue* intern_key = Add<HCallRuntime>(
1571               Runtime::FunctionForId(Runtime::kInternalizeString), 1);
1572           Push(intern_key);
1573 
1574           internalized.End();
1575           // Key guaranteed to be a unique string
1576         }
1577         string_index_if.JoinContinuation(join_continuation);
1578       }
1579       not_symbol_if.Else();
1580       {
1581         Push(key);  // Key is symbol
1582       }
1583       not_symbol_if.JoinContinuation(join_continuation);
1584     }
1585     not_string_or_name_if.JoinContinuation(join_continuation);
1586   }
1587   key_smi_if.JoinContinuation(join_continuation);
1588 }
1589 
1590 
BuildNonGlobalObjectCheck(HValue * receiver)1591 void HGraphBuilder::BuildNonGlobalObjectCheck(HValue* receiver) {
1592   // Get the the instance type of the receiver, and make sure that it is
1593   // not one of the global object types.
1594   HValue* map =
1595       Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
1596   HValue* instance_type =
1597       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1598   HValue* global_type = Add<HConstant>(JS_GLOBAL_OBJECT_TYPE);
1599 
1600   IfBuilder if_global_object(this);
1601   if_global_object.If<HCompareNumericAndBranch>(instance_type, global_type,
1602                                                 Token::EQ);
1603   if_global_object.ThenDeopt(Deoptimizer::kReceiverWasAGlobalObject);
1604   if_global_object.End();
1605 }
1606 
1607 
BuildTestForDictionaryProperties(HValue * object,HIfContinuation * continuation)1608 void HGraphBuilder::BuildTestForDictionaryProperties(
1609     HValue* object,
1610     HIfContinuation* continuation) {
1611   HValue* properties = Add<HLoadNamedField>(
1612       object, nullptr, HObjectAccess::ForPropertiesPointer());
1613   HValue* properties_map =
1614       Add<HLoadNamedField>(properties, nullptr, HObjectAccess::ForMap());
1615   HValue* hash_map = Add<HLoadRoot>(Heap::kHashTableMapRootIndex);
1616   IfBuilder builder(this);
1617   builder.If<HCompareObjectEqAndBranch>(properties_map, hash_map);
1618   builder.CaptureContinuation(continuation);
1619 }
1620 
1621 
BuildKeyedLookupCacheHash(HValue * object,HValue * key)1622 HValue* HGraphBuilder::BuildKeyedLookupCacheHash(HValue* object,
1623                                                  HValue* key) {
1624   // Load the map of the receiver, compute the keyed lookup cache hash
1625   // based on 32 bits of the map pointer and the string hash.
1626   HValue* object_map =
1627       Add<HLoadNamedField>(object, nullptr, HObjectAccess::ForMapAsInteger32());
1628   HValue* shifted_map = AddUncasted<HShr>(
1629       object_map, Add<HConstant>(KeyedLookupCache::kMapHashShift));
1630   HValue* string_hash =
1631       Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForStringHashField());
1632   HValue* shifted_hash = AddUncasted<HShr>(
1633       string_hash, Add<HConstant>(String::kHashShift));
1634   HValue* xor_result = AddUncasted<HBitwise>(Token::BIT_XOR, shifted_map,
1635                                              shifted_hash);
1636   int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
1637   return AddUncasted<HBitwise>(Token::BIT_AND, xor_result,
1638                                Add<HConstant>(mask));
1639 }
1640 
1641 
BuildElementIndexHash(HValue * index)1642 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
1643   int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
1644   HValue* seed = Add<HConstant>(seed_value);
1645   HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
1646 
1647   // hash = ~hash + (hash << 15);
1648   HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
1649   HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
1650                                            graph()->GetConstantMinus1());
1651   hash = AddUncasted<HAdd>(shifted_hash, not_hash);
1652 
1653   // hash = hash ^ (hash >> 12);
1654   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
1655   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1656 
1657   // hash = hash + (hash << 2);
1658   shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
1659   hash = AddUncasted<HAdd>(hash, shifted_hash);
1660 
1661   // hash = hash ^ (hash >> 4);
1662   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
1663   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1664 
1665   // hash = hash * 2057;
1666   hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
1667   hash->ClearFlag(HValue::kCanOverflow);
1668 
1669   // hash = hash ^ (hash >> 16);
1670   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
1671   return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1672 }
1673 
1674 
BuildUncheckedDictionaryElementLoad(HValue * receiver,HValue * elements,HValue * key,HValue * hash,LanguageMode language_mode)1675 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(
1676     HValue* receiver, HValue* elements, HValue* key, HValue* hash,
1677     LanguageMode language_mode) {
1678   HValue* capacity =
1679       Add<HLoadKeyed>(elements, Add<HConstant>(NameDictionary::kCapacityIndex),
1680                       nullptr, nullptr, FAST_ELEMENTS);
1681 
1682   HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
1683   mask->ChangeRepresentation(Representation::Integer32());
1684   mask->ClearFlag(HValue::kCanOverflow);
1685 
1686   HValue* entry = hash;
1687   HValue* count = graph()->GetConstant1();
1688   Push(entry);
1689   Push(count);
1690 
1691   HIfContinuation return_or_loop_continuation(graph()->CreateBasicBlock(),
1692                                               graph()->CreateBasicBlock());
1693   HIfContinuation found_key_match_continuation(graph()->CreateBasicBlock(),
1694                                                graph()->CreateBasicBlock());
1695   LoopBuilder probe_loop(this);
1696   probe_loop.BeginBody(2);  // Drop entry, count from last environment to
1697                             // appease live range building without simulates.
1698 
1699   count = Pop();
1700   entry = Pop();
1701   entry = AddUncasted<HBitwise>(Token::BIT_AND, entry, mask);
1702   int entry_size = SeededNumberDictionary::kEntrySize;
1703   HValue* base_index = AddUncasted<HMul>(entry, Add<HConstant>(entry_size));
1704   base_index->ClearFlag(HValue::kCanOverflow);
1705   int start_offset = SeededNumberDictionary::kElementsStartIndex;
1706   HValue* key_index =
1707       AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset));
1708   key_index->ClearFlag(HValue::kCanOverflow);
1709 
1710   HValue* candidate_key =
1711       Add<HLoadKeyed>(elements, key_index, nullptr, nullptr, FAST_ELEMENTS);
1712   IfBuilder if_undefined(this);
1713   if_undefined.If<HCompareObjectEqAndBranch>(candidate_key,
1714                                              graph()->GetConstantUndefined());
1715   if_undefined.Then();
1716   {
1717     // element == undefined means "not found". Call the runtime.
1718     // TODO(jkummerow): walk the prototype chain instead.
1719     Add<HPushArguments>(receiver, key);
1720     Push(Add<HCallRuntime>(
1721         Runtime::FunctionForId(is_strong(language_mode)
1722                                    ? Runtime::kKeyedGetPropertyStrong
1723                                    : Runtime::kKeyedGetProperty),
1724         2));
1725   }
1726   if_undefined.Else();
1727   {
1728     IfBuilder if_match(this);
1729     if_match.If<HCompareObjectEqAndBranch>(candidate_key, key);
1730     if_match.Then();
1731     if_match.Else();
1732 
1733     // Update non-internalized string in the dictionary with internalized key?
1734     IfBuilder if_update_with_internalized(this);
1735     HValue* smi_check =
1736         if_update_with_internalized.IfNot<HIsSmiAndBranch>(candidate_key);
1737     if_update_with_internalized.And();
1738     HValue* map = AddLoadMap(candidate_key, smi_check);
1739     HValue* instance_type =
1740         Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
1741     HValue* not_internalized_bit = AddUncasted<HBitwise>(
1742         Token::BIT_AND, instance_type,
1743         Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1744     if_update_with_internalized.If<HCompareNumericAndBranch>(
1745         not_internalized_bit, graph()->GetConstant0(), Token::NE);
1746     if_update_with_internalized.And();
1747     if_update_with_internalized.IfNot<HCompareObjectEqAndBranch>(
1748         candidate_key, graph()->GetConstantHole());
1749     if_update_with_internalized.AndIf<HStringCompareAndBranch>(candidate_key,
1750                                                                key, Token::EQ);
1751     if_update_with_internalized.Then();
1752     // Replace a key that is a non-internalized string by the equivalent
1753     // internalized string for faster further lookups.
1754     Add<HStoreKeyed>(elements, key_index, key, nullptr, FAST_ELEMENTS);
1755     if_update_with_internalized.Else();
1756 
1757     if_update_with_internalized.JoinContinuation(&found_key_match_continuation);
1758     if_match.JoinContinuation(&found_key_match_continuation);
1759 
1760     IfBuilder found_key_match(this, &found_key_match_continuation);
1761     found_key_match.Then();
1762     // Key at current probe matches. Relevant bits in the |details| field must
1763     // be zero, otherwise the dictionary element requires special handling.
1764     HValue* details_index =
1765         AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 2));
1766     details_index->ClearFlag(HValue::kCanOverflow);
1767     HValue* details = Add<HLoadKeyed>(elements, details_index, nullptr, nullptr,
1768                                       FAST_ELEMENTS);
1769     int details_mask = PropertyDetails::TypeField::kMask;
1770     details = AddUncasted<HBitwise>(Token::BIT_AND, details,
1771                                     Add<HConstant>(details_mask));
1772     IfBuilder details_compare(this);
1773     details_compare.If<HCompareNumericAndBranch>(
1774         details, graph()->GetConstant0(), Token::EQ);
1775     details_compare.Then();
1776     HValue* result_index =
1777         AddUncasted<HAdd>(base_index, Add<HConstant>(start_offset + 1));
1778     result_index->ClearFlag(HValue::kCanOverflow);
1779     Push(Add<HLoadKeyed>(elements, result_index, nullptr, nullptr,
1780                          FAST_ELEMENTS));
1781     details_compare.Else();
1782     Add<HPushArguments>(receiver, key);
1783     Push(Add<HCallRuntime>(
1784         Runtime::FunctionForId(is_strong(language_mode)
1785                                    ? Runtime::kKeyedGetPropertyStrong
1786                                    : Runtime::kKeyedGetProperty),
1787         2));
1788     details_compare.End();
1789 
1790     found_key_match.Else();
1791     found_key_match.JoinContinuation(&return_or_loop_continuation);
1792   }
1793   if_undefined.JoinContinuation(&return_or_loop_continuation);
1794 
1795   IfBuilder return_or_loop(this, &return_or_loop_continuation);
1796   return_or_loop.Then();
1797   probe_loop.Break();
1798 
1799   return_or_loop.Else();
1800   entry = AddUncasted<HAdd>(entry, count);
1801   entry->ClearFlag(HValue::kCanOverflow);
1802   count = AddUncasted<HAdd>(count, graph()->GetConstant1());
1803   count->ClearFlag(HValue::kCanOverflow);
1804   Push(entry);
1805   Push(count);
1806 
1807   probe_loop.EndBody();
1808 
1809   return_or_loop.End();
1810 
1811   return Pop();
1812 }
1813 
1814 
BuildCreateIterResultObject(HValue * value,HValue * done)1815 HValue* HGraphBuilder::BuildCreateIterResultObject(HValue* value,
1816                                                    HValue* done) {
1817   NoObservableSideEffectsScope scope(this);
1818 
1819   // Allocate the JSIteratorResult object.
1820   HValue* result =
1821       Add<HAllocate>(Add<HConstant>(JSIteratorResult::kSize), HType::JSObject(),
1822                      NOT_TENURED, JS_ITERATOR_RESULT_TYPE);
1823 
1824   // Initialize the JSIteratorResult object.
1825   HValue* native_context = BuildGetNativeContext();
1826   HValue* map = Add<HLoadNamedField>(
1827       native_context, nullptr,
1828       HObjectAccess::ForContextSlot(Context::ITERATOR_RESULT_MAP_INDEX));
1829   Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
1830   HValue* empty_fixed_array = Add<HLoadRoot>(Heap::kEmptyFixedArrayRootIndex);
1831   Add<HStoreNamedField>(result, HObjectAccess::ForPropertiesPointer(),
1832                         empty_fixed_array);
1833   Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(),
1834                         empty_fixed_array);
1835   Add<HStoreNamedField>(result, HObjectAccess::ForObservableJSObjectOffset(
1836                                     JSIteratorResult::kValueOffset),
1837                         value);
1838   Add<HStoreNamedField>(result, HObjectAccess::ForObservableJSObjectOffset(
1839                                     JSIteratorResult::kDoneOffset),
1840                         done);
1841   STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
1842   return result;
1843 }
1844 
1845 
BuildRegExpConstructResult(HValue * length,HValue * index,HValue * input)1846 HValue* HGraphBuilder::BuildRegExpConstructResult(HValue* length,
1847                                                   HValue* index,
1848                                                   HValue* input) {
1849   NoObservableSideEffectsScope scope(this);
1850   HConstant* max_length = Add<HConstant>(JSArray::kInitialMaxFastElementArray);
1851   Add<HBoundsCheck>(length, max_length);
1852 
1853   // Generate size calculation code here in order to make it dominate
1854   // the JSRegExpResult allocation.
1855   ElementsKind elements_kind = FAST_ELEMENTS;
1856   HValue* size = BuildCalculateElementsSize(elements_kind, length);
1857 
1858   // Allocate the JSRegExpResult and the FixedArray in one step.
1859   HValue* result = Add<HAllocate>(
1860       Add<HConstant>(JSRegExpResult::kSize), HType::JSArray(),
1861       NOT_TENURED, JS_ARRAY_TYPE);
1862 
1863   // Initialize the JSRegExpResult header.
1864   HValue* native_context = Add<HLoadNamedField>(
1865       context(), nullptr,
1866       HObjectAccess::ForContextSlot(Context::NATIVE_CONTEXT_INDEX));
1867   Add<HStoreNamedField>(
1868       result, HObjectAccess::ForMap(),
1869       Add<HLoadNamedField>(
1870           native_context, nullptr,
1871           HObjectAccess::ForContextSlot(Context::REGEXP_RESULT_MAP_INDEX)));
1872   HConstant* empty_fixed_array =
1873       Add<HConstant>(isolate()->factory()->empty_fixed_array());
1874   Add<HStoreNamedField>(
1875       result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
1876       empty_fixed_array);
1877   Add<HStoreNamedField>(
1878       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1879       empty_fixed_array);
1880   Add<HStoreNamedField>(
1881       result, HObjectAccess::ForJSArrayOffset(JSArray::kLengthOffset), length);
1882 
1883   // Initialize the additional fields.
1884   Add<HStoreNamedField>(
1885       result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kIndexOffset),
1886       index);
1887   Add<HStoreNamedField>(
1888       result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kInputOffset),
1889       input);
1890 
1891   // Allocate and initialize the elements header.
1892   HAllocate* elements = BuildAllocateElements(elements_kind, size);
1893   BuildInitializeElementsHeader(elements, elements_kind, length);
1894 
1895   if (!elements->has_size_upper_bound()) {
1896     HConstant* size_in_bytes_upper_bound = EstablishElementsAllocationSize(
1897         elements_kind, max_length->Integer32Value());
1898     elements->set_size_upper_bound(size_in_bytes_upper_bound);
1899   }
1900 
1901   Add<HStoreNamedField>(
1902       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1903       elements);
1904 
1905   // Initialize the elements contents with undefined.
1906   BuildFillElementsWithValue(
1907       elements, elements_kind, graph()->GetConstant0(), length,
1908       graph()->GetConstantUndefined());
1909 
1910   return result;
1911 }
1912 
1913 
BuildNumberToString(HValue * object,Type * type)1914 HValue* HGraphBuilder::BuildNumberToString(HValue* object, Type* type) {
1915   NoObservableSideEffectsScope scope(this);
1916 
1917   // Convert constant numbers at compile time.
1918   if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
1919     Handle<Object> number = HConstant::cast(object)->handle(isolate());
1920     Handle<String> result = isolate()->factory()->NumberToString(number);
1921     return Add<HConstant>(result);
1922   }
1923 
1924   // Create a joinable continuation.
1925   HIfContinuation found(graph()->CreateBasicBlock(),
1926                         graph()->CreateBasicBlock());
1927 
1928   // Load the number string cache.
1929   HValue* number_string_cache =
1930       Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
1931 
1932   // Make the hash mask from the length of the number string cache. It
1933   // contains two elements (number and string) for each cache entry.
1934   HValue* mask = AddLoadFixedArrayLength(number_string_cache);
1935   mask->set_type(HType::Smi());
1936   mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
1937   mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
1938 
1939   // Check whether object is a smi.
1940   IfBuilder if_objectissmi(this);
1941   if_objectissmi.If<HIsSmiAndBranch>(object);
1942   if_objectissmi.Then();
1943   {
1944     // Compute hash for smi similar to smi_get_hash().
1945     HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
1946 
1947     // Load the key.
1948     HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1949     HValue* key = Add<HLoadKeyed>(number_string_cache, key_index, nullptr,
1950                                   nullptr, FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1951 
1952     // Check if object == key.
1953     IfBuilder if_objectiskey(this);
1954     if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
1955     if_objectiskey.Then();
1956     {
1957       // Make the key_index available.
1958       Push(key_index);
1959     }
1960     if_objectiskey.JoinContinuation(&found);
1961   }
1962   if_objectissmi.Else();
1963   {
1964     if (type->Is(Type::SignedSmall())) {
1965       if_objectissmi.Deopt(Deoptimizer::kExpectedSmi);
1966     } else {
1967       // Check if the object is a heap number.
1968       IfBuilder if_objectisnumber(this);
1969       HValue* objectisnumber = if_objectisnumber.If<HCompareMap>(
1970           object, isolate()->factory()->heap_number_map());
1971       if_objectisnumber.Then();
1972       {
1973         // Compute hash for heap number similar to double_get_hash().
1974         HValue* low = Add<HLoadNamedField>(
1975             object, objectisnumber,
1976             HObjectAccess::ForHeapNumberValueLowestBits());
1977         HValue* high = Add<HLoadNamedField>(
1978             object, objectisnumber,
1979             HObjectAccess::ForHeapNumberValueHighestBits());
1980         HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
1981         hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
1982 
1983         // Load the key.
1984         HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1985         HValue* key =
1986             Add<HLoadKeyed>(number_string_cache, key_index, nullptr, nullptr,
1987                             FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1988 
1989         // Check if the key is a heap number and compare it with the object.
1990         IfBuilder if_keyisnotsmi(this);
1991         HValue* keyisnotsmi = if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
1992         if_keyisnotsmi.Then();
1993         {
1994           IfBuilder if_keyisheapnumber(this);
1995           if_keyisheapnumber.If<HCompareMap>(
1996               key, isolate()->factory()->heap_number_map());
1997           if_keyisheapnumber.Then();
1998           {
1999             // Check if values of key and object match.
2000             IfBuilder if_keyeqobject(this);
2001             if_keyeqobject.If<HCompareNumericAndBranch>(
2002                 Add<HLoadNamedField>(key, keyisnotsmi,
2003                                      HObjectAccess::ForHeapNumberValue()),
2004                 Add<HLoadNamedField>(object, objectisnumber,
2005                                      HObjectAccess::ForHeapNumberValue()),
2006                 Token::EQ);
2007             if_keyeqobject.Then();
2008             {
2009               // Make the key_index available.
2010               Push(key_index);
2011             }
2012             if_keyeqobject.JoinContinuation(&found);
2013           }
2014           if_keyisheapnumber.JoinContinuation(&found);
2015         }
2016         if_keyisnotsmi.JoinContinuation(&found);
2017       }
2018       if_objectisnumber.Else();
2019       {
2020         if (type->Is(Type::Number())) {
2021           if_objectisnumber.Deopt(Deoptimizer::kExpectedHeapNumber);
2022         }
2023       }
2024       if_objectisnumber.JoinContinuation(&found);
2025     }
2026   }
2027   if_objectissmi.JoinContinuation(&found);
2028 
2029   // Check for cache hit.
2030   IfBuilder if_found(this, &found);
2031   if_found.Then();
2032   {
2033     // Count number to string operation in native code.
2034     AddIncrementCounter(isolate()->counters()->number_to_string_native());
2035 
2036     // Load the value in case of cache hit.
2037     HValue* key_index = Pop();
2038     HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
2039     Push(Add<HLoadKeyed>(number_string_cache, value_index, nullptr, nullptr,
2040                          FAST_ELEMENTS, ALLOW_RETURN_HOLE));
2041   }
2042   if_found.Else();
2043   {
2044     // Cache miss, fallback to runtime.
2045     Add<HPushArguments>(object);
2046     Push(Add<HCallRuntime>(
2047             Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
2048             1));
2049   }
2050   if_found.End();
2051 
2052   return Pop();
2053 }
2054 
2055 
BuildToObject(HValue * receiver)2056 HValue* HGraphBuilder::BuildToObject(HValue* receiver) {
2057   NoObservableSideEffectsScope scope(this);
2058 
2059   // Create a joinable continuation.
2060   HIfContinuation wrap(graph()->CreateBasicBlock(),
2061                        graph()->CreateBasicBlock());
2062 
2063   // Determine the proper global constructor function required to wrap
2064   // {receiver} into a JSValue, unless {receiver} is already a {JSReceiver}, in
2065   // which case we just return it.  Deopts to Runtime::kToObject if {receiver}
2066   // is undefined or null.
2067   IfBuilder receiver_is_smi(this);
2068   receiver_is_smi.If<HIsSmiAndBranch>(receiver);
2069   receiver_is_smi.Then();
2070   {
2071     // Use global Number function.
2072     Push(Add<HConstant>(Context::NUMBER_FUNCTION_INDEX));
2073   }
2074   receiver_is_smi.Else();
2075   {
2076     // Determine {receiver} map and instance type.
2077     HValue* receiver_map =
2078         Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
2079     HValue* receiver_instance_type = Add<HLoadNamedField>(
2080         receiver_map, nullptr, HObjectAccess::ForMapInstanceType());
2081 
2082     // First check whether {receiver} is already a spec object (fast case).
2083     IfBuilder receiver_is_not_spec_object(this);
2084     receiver_is_not_spec_object.If<HCompareNumericAndBranch>(
2085         receiver_instance_type, Add<HConstant>(FIRST_JS_RECEIVER_TYPE),
2086         Token::LT);
2087     receiver_is_not_spec_object.Then();
2088     {
2089       // Load the constructor function index from the {receiver} map.
2090       HValue* constructor_function_index = Add<HLoadNamedField>(
2091           receiver_map, nullptr,
2092           HObjectAccess::ForMapInObjectPropertiesOrConstructorFunctionIndex());
2093 
2094       // Check if {receiver} has a constructor (null and undefined have no
2095       // constructors, so we deoptimize to the runtime to throw an exception).
2096       IfBuilder constructor_function_index_is_invalid(this);
2097       constructor_function_index_is_invalid.If<HCompareNumericAndBranch>(
2098           constructor_function_index,
2099           Add<HConstant>(Map::kNoConstructorFunctionIndex), Token::EQ);
2100       constructor_function_index_is_invalid.ThenDeopt(
2101           Deoptimizer::kUndefinedOrNullInToObject);
2102       constructor_function_index_is_invalid.End();
2103 
2104       // Use the global constructor function.
2105       Push(constructor_function_index);
2106     }
2107     receiver_is_not_spec_object.JoinContinuation(&wrap);
2108   }
2109   receiver_is_smi.JoinContinuation(&wrap);
2110 
2111   // Wrap the receiver if necessary.
2112   IfBuilder if_wrap(this, &wrap);
2113   if_wrap.Then();
2114   {
2115     // Grab the constructor function index.
2116     HValue* constructor_index = Pop();
2117 
2118     // Load native context.
2119     HValue* native_context = BuildGetNativeContext();
2120 
2121     // Determine the initial map for the global constructor.
2122     HValue* constructor = Add<HLoadKeyed>(native_context, constructor_index,
2123                                           nullptr, nullptr, FAST_ELEMENTS);
2124     HValue* constructor_initial_map = Add<HLoadNamedField>(
2125         constructor, nullptr, HObjectAccess::ForPrototypeOrInitialMap());
2126     // Allocate and initialize a JSValue wrapper.
2127     HValue* value =
2128         BuildAllocate(Add<HConstant>(JSValue::kSize), HType::JSObject(),
2129                       JS_VALUE_TYPE, HAllocationMode());
2130     Add<HStoreNamedField>(value, HObjectAccess::ForMap(),
2131                           constructor_initial_map);
2132     HValue* empty_fixed_array = Add<HLoadRoot>(Heap::kEmptyFixedArrayRootIndex);
2133     Add<HStoreNamedField>(value, HObjectAccess::ForPropertiesPointer(),
2134                           empty_fixed_array);
2135     Add<HStoreNamedField>(value, HObjectAccess::ForElementsPointer(),
2136                           empty_fixed_array);
2137     Add<HStoreNamedField>(value, HObjectAccess::ForObservableJSObjectOffset(
2138                                      JSValue::kValueOffset),
2139                           receiver);
2140     Push(value);
2141   }
2142   if_wrap.Else();
2143   { Push(receiver); }
2144   if_wrap.End();
2145   return Pop();
2146 }
2147 
2148 
BuildAllocate(HValue * object_size,HType type,InstanceType instance_type,HAllocationMode allocation_mode)2149 HAllocate* HGraphBuilder::BuildAllocate(
2150     HValue* object_size,
2151     HType type,
2152     InstanceType instance_type,
2153     HAllocationMode allocation_mode) {
2154   // Compute the effective allocation size.
2155   HValue* size = object_size;
2156   if (allocation_mode.CreateAllocationMementos()) {
2157     size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
2158     size->ClearFlag(HValue::kCanOverflow);
2159   }
2160 
2161   // Perform the actual allocation.
2162   HAllocate* object = Add<HAllocate>(
2163       size, type, allocation_mode.GetPretenureMode(),
2164       instance_type, allocation_mode.feedback_site());
2165 
2166   // Setup the allocation memento.
2167   if (allocation_mode.CreateAllocationMementos()) {
2168     BuildCreateAllocationMemento(
2169         object, object_size, allocation_mode.current_site());
2170   }
2171 
2172   return object;
2173 }
2174 
2175 
BuildAddStringLengths(HValue * left_length,HValue * right_length)2176 HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
2177                                              HValue* right_length) {
2178   // Compute the combined string length and check against max string length.
2179   HValue* length = AddUncasted<HAdd>(left_length, right_length);
2180   // Check that length <= kMaxLength <=> length < MaxLength + 1.
2181   HValue* max_length = Add<HConstant>(String::kMaxLength + 1);
2182   Add<HBoundsCheck>(length, max_length);
2183   return length;
2184 }
2185 
2186 
BuildCreateConsString(HValue * length,HValue * left,HValue * right,HAllocationMode allocation_mode)2187 HValue* HGraphBuilder::BuildCreateConsString(
2188     HValue* length,
2189     HValue* left,
2190     HValue* right,
2191     HAllocationMode allocation_mode) {
2192   // Determine the string instance types.
2193   HInstruction* left_instance_type = AddLoadStringInstanceType(left);
2194   HInstruction* right_instance_type = AddLoadStringInstanceType(right);
2195 
2196   // Allocate the cons string object. HAllocate does not care whether we
2197   // pass CONS_STRING_TYPE or CONS_ONE_BYTE_STRING_TYPE here, so we just use
2198   // CONS_STRING_TYPE here. Below we decide whether the cons string is
2199   // one-byte or two-byte and set the appropriate map.
2200   DCHECK(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
2201                                             CONS_ONE_BYTE_STRING_TYPE));
2202   HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
2203                                     HType::String(), CONS_STRING_TYPE,
2204                                     allocation_mode);
2205 
2206   // Compute intersection and difference of instance types.
2207   HValue* anded_instance_types = AddUncasted<HBitwise>(
2208       Token::BIT_AND, left_instance_type, right_instance_type);
2209   HValue* xored_instance_types = AddUncasted<HBitwise>(
2210       Token::BIT_XOR, left_instance_type, right_instance_type);
2211 
2212   // We create a one-byte cons string if
2213   // 1. both strings are one-byte, or
2214   // 2. at least one of the strings is two-byte, but happens to contain only
2215   //    one-byte characters.
2216   // To do this, we check
2217   // 1. if both strings are one-byte, or if the one-byte data hint is set in
2218   //    both strings, or
2219   // 2. if one of the strings has the one-byte data hint set and the other
2220   //    string is one-byte.
2221   IfBuilder if_onebyte(this);
2222   STATIC_ASSERT(kOneByteStringTag != 0);
2223   STATIC_ASSERT(kOneByteDataHintMask != 0);
2224   if_onebyte.If<HCompareNumericAndBranch>(
2225       AddUncasted<HBitwise>(
2226           Token::BIT_AND, anded_instance_types,
2227           Add<HConstant>(static_cast<int32_t>(
2228                   kStringEncodingMask | kOneByteDataHintMask))),
2229       graph()->GetConstant0(), Token::NE);
2230   if_onebyte.Or();
2231   STATIC_ASSERT(kOneByteStringTag != 0 &&
2232                 kOneByteDataHintTag != 0 &&
2233                 kOneByteDataHintTag != kOneByteStringTag);
2234   if_onebyte.If<HCompareNumericAndBranch>(
2235       AddUncasted<HBitwise>(
2236           Token::BIT_AND, xored_instance_types,
2237           Add<HConstant>(static_cast<int32_t>(
2238                   kOneByteStringTag | kOneByteDataHintTag))),
2239       Add<HConstant>(static_cast<int32_t>(
2240               kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
2241   if_onebyte.Then();
2242   {
2243     // We can safely skip the write barrier for storing the map here.
2244     Add<HStoreNamedField>(
2245         result, HObjectAccess::ForMap(),
2246         Add<HConstant>(isolate()->factory()->cons_one_byte_string_map()));
2247   }
2248   if_onebyte.Else();
2249   {
2250     // We can safely skip the write barrier for storing the map here.
2251     Add<HStoreNamedField>(
2252         result, HObjectAccess::ForMap(),
2253         Add<HConstant>(isolate()->factory()->cons_string_map()));
2254   }
2255   if_onebyte.End();
2256 
2257   // Initialize the cons string fields.
2258   Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2259                         Add<HConstant>(String::kEmptyHashField));
2260   Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2261   Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
2262   Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
2263 
2264   // Count the native string addition.
2265   AddIncrementCounter(isolate()->counters()->string_add_native());
2266 
2267   return result;
2268 }
2269 
2270 
BuildCopySeqStringChars(HValue * src,HValue * src_offset,String::Encoding src_encoding,HValue * dst,HValue * dst_offset,String::Encoding dst_encoding,HValue * length)2271 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
2272                                             HValue* src_offset,
2273                                             String::Encoding src_encoding,
2274                                             HValue* dst,
2275                                             HValue* dst_offset,
2276                                             String::Encoding dst_encoding,
2277                                             HValue* length) {
2278   DCHECK(dst_encoding != String::ONE_BYTE_ENCODING ||
2279          src_encoding == String::ONE_BYTE_ENCODING);
2280   LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
2281   HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
2282   {
2283     HValue* src_index = AddUncasted<HAdd>(src_offset, index);
2284     HValue* value =
2285         AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
2286     HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
2287     Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
2288   }
2289   loop.EndBody();
2290 }
2291 
2292 
BuildObjectSizeAlignment(HValue * unaligned_size,int header_size)2293 HValue* HGraphBuilder::BuildObjectSizeAlignment(
2294     HValue* unaligned_size, int header_size) {
2295   DCHECK((header_size & kObjectAlignmentMask) == 0);
2296   HValue* size = AddUncasted<HAdd>(
2297       unaligned_size, Add<HConstant>(static_cast<int32_t>(
2298           header_size + kObjectAlignmentMask)));
2299   size->ClearFlag(HValue::kCanOverflow);
2300   return AddUncasted<HBitwise>(
2301       Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
2302           ~kObjectAlignmentMask)));
2303 }
2304 
2305 
BuildUncheckedStringAdd(HValue * left,HValue * right,HAllocationMode allocation_mode)2306 HValue* HGraphBuilder::BuildUncheckedStringAdd(
2307     HValue* left,
2308     HValue* right,
2309     HAllocationMode allocation_mode) {
2310   // Determine the string lengths.
2311   HValue* left_length = AddLoadStringLength(left);
2312   HValue* right_length = AddLoadStringLength(right);
2313 
2314   // Compute the combined string length.
2315   HValue* length = BuildAddStringLengths(left_length, right_length);
2316 
2317   // Do some manual constant folding here.
2318   if (left_length->IsConstant()) {
2319     HConstant* c_left_length = HConstant::cast(left_length);
2320     DCHECK_NE(0, c_left_length->Integer32Value());
2321     if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2322       // The right string contains at least one character.
2323       return BuildCreateConsString(length, left, right, allocation_mode);
2324     }
2325   } else if (right_length->IsConstant()) {
2326     HConstant* c_right_length = HConstant::cast(right_length);
2327     DCHECK_NE(0, c_right_length->Integer32Value());
2328     if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2329       // The left string contains at least one character.
2330       return BuildCreateConsString(length, left, right, allocation_mode);
2331     }
2332   }
2333 
2334   // Check if we should create a cons string.
2335   IfBuilder if_createcons(this);
2336   if_createcons.If<HCompareNumericAndBranch>(
2337       length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
2338   if_createcons.Then();
2339   {
2340     // Create a cons string.
2341     Push(BuildCreateConsString(length, left, right, allocation_mode));
2342   }
2343   if_createcons.Else();
2344   {
2345     // Determine the string instance types.
2346     HValue* left_instance_type = AddLoadStringInstanceType(left);
2347     HValue* right_instance_type = AddLoadStringInstanceType(right);
2348 
2349     // Compute union and difference of instance types.
2350     HValue* ored_instance_types = AddUncasted<HBitwise>(
2351         Token::BIT_OR, left_instance_type, right_instance_type);
2352     HValue* xored_instance_types = AddUncasted<HBitwise>(
2353         Token::BIT_XOR, left_instance_type, right_instance_type);
2354 
2355     // Check if both strings have the same encoding and both are
2356     // sequential.
2357     IfBuilder if_sameencodingandsequential(this);
2358     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2359         AddUncasted<HBitwise>(
2360             Token::BIT_AND, xored_instance_types,
2361             Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2362         graph()->GetConstant0(), Token::EQ);
2363     if_sameencodingandsequential.And();
2364     STATIC_ASSERT(kSeqStringTag == 0);
2365     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2366         AddUncasted<HBitwise>(
2367             Token::BIT_AND, ored_instance_types,
2368             Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
2369         graph()->GetConstant0(), Token::EQ);
2370     if_sameencodingandsequential.Then();
2371     {
2372       HConstant* string_map =
2373           Add<HConstant>(isolate()->factory()->string_map());
2374       HConstant* one_byte_string_map =
2375           Add<HConstant>(isolate()->factory()->one_byte_string_map());
2376 
2377       // Determine map and size depending on whether result is one-byte string.
2378       IfBuilder if_onebyte(this);
2379       STATIC_ASSERT(kOneByteStringTag != 0);
2380       if_onebyte.If<HCompareNumericAndBranch>(
2381           AddUncasted<HBitwise>(
2382               Token::BIT_AND, ored_instance_types,
2383               Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2384           graph()->GetConstant0(), Token::NE);
2385       if_onebyte.Then();
2386       {
2387         // Allocate sequential one-byte string object.
2388         Push(length);
2389         Push(one_byte_string_map);
2390       }
2391       if_onebyte.Else();
2392       {
2393         // Allocate sequential two-byte string object.
2394         HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
2395         size->ClearFlag(HValue::kCanOverflow);
2396         size->SetFlag(HValue::kUint32);
2397         Push(size);
2398         Push(string_map);
2399       }
2400       if_onebyte.End();
2401       HValue* map = Pop();
2402 
2403       // Calculate the number of bytes needed for the characters in the
2404       // string while observing object alignment.
2405       STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
2406       HValue* size = BuildObjectSizeAlignment(Pop(), SeqString::kHeaderSize);
2407 
2408       IfBuilder if_size(this);
2409       if_size.If<HCompareNumericAndBranch>(
2410           size, Add<HConstant>(Page::kMaxRegularHeapObjectSize), Token::LT);
2411       if_size.Then();
2412       {
2413         // Allocate the string object. HAllocate does not care whether we pass
2414         // STRING_TYPE or ONE_BYTE_STRING_TYPE here, so we just use STRING_TYPE.
2415         HAllocate* result =
2416             BuildAllocate(size, HType::String(), STRING_TYPE, allocation_mode);
2417         Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
2418 
2419         // Initialize the string fields.
2420         Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2421                               Add<HConstant>(String::kEmptyHashField));
2422         Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2423 
2424         // Copy characters to the result string.
2425         IfBuilder if_twobyte(this);
2426         if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
2427         if_twobyte.Then();
2428         {
2429           // Copy characters from the left string.
2430           BuildCopySeqStringChars(
2431               left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING, result,
2432               graph()->GetConstant0(), String::TWO_BYTE_ENCODING, left_length);
2433 
2434           // Copy characters from the right string.
2435           BuildCopySeqStringChars(
2436               right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING, result,
2437               left_length, String::TWO_BYTE_ENCODING, right_length);
2438         }
2439         if_twobyte.Else();
2440         {
2441           // Copy characters from the left string.
2442           BuildCopySeqStringChars(
2443               left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING, result,
2444               graph()->GetConstant0(), String::ONE_BYTE_ENCODING, left_length);
2445 
2446           // Copy characters from the right string.
2447           BuildCopySeqStringChars(
2448               right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING, result,
2449               left_length, String::ONE_BYTE_ENCODING, right_length);
2450         }
2451         if_twobyte.End();
2452 
2453         // Count the native string addition.
2454         AddIncrementCounter(isolate()->counters()->string_add_native());
2455 
2456         // Return the sequential string.
2457         Push(result);
2458       }
2459       if_size.Else();
2460       {
2461         // Fallback to the runtime to add the two strings. The string has to be
2462         // allocated in LO space.
2463         Add<HPushArguments>(left, right);
2464         Push(Add<HCallRuntime>(Runtime::FunctionForId(Runtime::kStringAdd), 2));
2465       }
2466       if_size.End();
2467     }
2468     if_sameencodingandsequential.Else();
2469     {
2470       // Fallback to the runtime to add the two strings.
2471       Add<HPushArguments>(left, right);
2472       Push(Add<HCallRuntime>(Runtime::FunctionForId(Runtime::kStringAdd), 2));
2473     }
2474     if_sameencodingandsequential.End();
2475   }
2476   if_createcons.End();
2477 
2478   return Pop();
2479 }
2480 
2481 
BuildStringAdd(HValue * left,HValue * right,HAllocationMode allocation_mode)2482 HValue* HGraphBuilder::BuildStringAdd(
2483     HValue* left,
2484     HValue* right,
2485     HAllocationMode allocation_mode) {
2486   NoObservableSideEffectsScope no_effects(this);
2487 
2488   // Determine string lengths.
2489   HValue* left_length = AddLoadStringLength(left);
2490   HValue* right_length = AddLoadStringLength(right);
2491 
2492   // Check if left string is empty.
2493   IfBuilder if_leftempty(this);
2494   if_leftempty.If<HCompareNumericAndBranch>(
2495       left_length, graph()->GetConstant0(), Token::EQ);
2496   if_leftempty.Then();
2497   {
2498     // Count the native string addition.
2499     AddIncrementCounter(isolate()->counters()->string_add_native());
2500 
2501     // Just return the right string.
2502     Push(right);
2503   }
2504   if_leftempty.Else();
2505   {
2506     // Check if right string is empty.
2507     IfBuilder if_rightempty(this);
2508     if_rightempty.If<HCompareNumericAndBranch>(
2509         right_length, graph()->GetConstant0(), Token::EQ);
2510     if_rightempty.Then();
2511     {
2512       // Count the native string addition.
2513       AddIncrementCounter(isolate()->counters()->string_add_native());
2514 
2515       // Just return the left string.
2516       Push(left);
2517     }
2518     if_rightempty.Else();
2519     {
2520       // Add the two non-empty strings.
2521       Push(BuildUncheckedStringAdd(left, right, allocation_mode));
2522     }
2523     if_rightempty.End();
2524   }
2525   if_leftempty.End();
2526 
2527   return Pop();
2528 }
2529 
2530 
BuildUncheckedMonomorphicElementAccess(HValue * checked_object,HValue * key,HValue * val,bool is_js_array,ElementsKind elements_kind,PropertyAccessType access_type,LoadKeyedHoleMode load_mode,KeyedAccessStoreMode store_mode)2531 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
2532     HValue* checked_object,
2533     HValue* key,
2534     HValue* val,
2535     bool is_js_array,
2536     ElementsKind elements_kind,
2537     PropertyAccessType access_type,
2538     LoadKeyedHoleMode load_mode,
2539     KeyedAccessStoreMode store_mode) {
2540   DCHECK(top_info()->IsStub() || checked_object->IsCompareMap() ||
2541          checked_object->IsCheckMaps());
2542   DCHECK(!IsFixedTypedArrayElementsKind(elements_kind) || !is_js_array);
2543   // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
2544   // on a HElementsTransition instruction. The flag can also be removed if the
2545   // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
2546   // ElementsKind transitions. Finally, the dependency can be removed for stores
2547   // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
2548   // generated store code.
2549   if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
2550       (elements_kind == FAST_ELEMENTS && access_type == STORE)) {
2551     checked_object->ClearDependsOnFlag(kElementsKind);
2552   }
2553 
2554   bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
2555   bool fast_elements = IsFastObjectElementsKind(elements_kind);
2556   HValue* elements = AddLoadElements(checked_object);
2557   if (access_type == STORE && (fast_elements || fast_smi_only_elements) &&
2558       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
2559     HCheckMaps* check_cow_map = Add<HCheckMaps>(
2560         elements, isolate()->factory()->fixed_array_map());
2561     check_cow_map->ClearDependsOnFlag(kElementsKind);
2562   }
2563   HInstruction* length = NULL;
2564   if (is_js_array) {
2565     length = Add<HLoadNamedField>(
2566         checked_object->ActualValue(), checked_object,
2567         HObjectAccess::ForArrayLength(elements_kind));
2568   } else {
2569     length = AddLoadFixedArrayLength(elements);
2570   }
2571   length->set_type(HType::Smi());
2572   HValue* checked_key = NULL;
2573   if (IsFixedTypedArrayElementsKind(elements_kind)) {
2574     checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
2575 
2576     HValue* external_pointer = Add<HLoadNamedField>(
2577         elements, nullptr,
2578         HObjectAccess::ForFixedTypedArrayBaseExternalPointer());
2579     HValue* base_pointer = Add<HLoadNamedField>(
2580         elements, nullptr, HObjectAccess::ForFixedTypedArrayBaseBasePointer());
2581     HValue* backing_store = AddUncasted<HAdd>(
2582         external_pointer, base_pointer, Strength::WEAK, AddOfExternalAndTagged);
2583 
2584     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
2585       NoObservableSideEffectsScope no_effects(this);
2586       IfBuilder length_checker(this);
2587       length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
2588       length_checker.Then();
2589       IfBuilder negative_checker(this);
2590       HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
2591           key, graph()->GetConstant0(), Token::GTE);
2592       negative_checker.Then();
2593       HInstruction* result = AddElementAccess(
2594           backing_store, key, val, bounds_check, checked_object->ActualValue(),
2595           elements_kind, access_type);
2596       negative_checker.ElseDeopt(Deoptimizer::kNegativeKeyEncountered);
2597       negative_checker.End();
2598       length_checker.End();
2599       return result;
2600     } else {
2601       DCHECK(store_mode == STANDARD_STORE);
2602       checked_key = Add<HBoundsCheck>(key, length);
2603       return AddElementAccess(backing_store, checked_key, val, checked_object,
2604                               checked_object->ActualValue(), elements_kind,
2605                               access_type);
2606     }
2607   }
2608   DCHECK(fast_smi_only_elements ||
2609          fast_elements ||
2610          IsFastDoubleElementsKind(elements_kind));
2611 
2612   // In case val is stored into a fast smi array, assure that the value is a smi
2613   // before manipulating the backing store. Otherwise the actual store may
2614   // deopt, leaving the backing store in an invalid state.
2615   if (access_type == STORE && IsFastSmiElementsKind(elements_kind) &&
2616       !val->type().IsSmi()) {
2617     val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
2618   }
2619 
2620   if (IsGrowStoreMode(store_mode)) {
2621     NoObservableSideEffectsScope no_effects(this);
2622     Representation representation = HStoreKeyed::RequiredValueRepresentation(
2623         elements_kind, STORE_TO_INITIALIZED_ENTRY);
2624     val = AddUncasted<HForceRepresentation>(val, representation);
2625     elements = BuildCheckForCapacityGrow(checked_object, elements,
2626                                          elements_kind, length, key,
2627                                          is_js_array, access_type);
2628     checked_key = key;
2629   } else {
2630     checked_key = Add<HBoundsCheck>(key, length);
2631 
2632     if (access_type == STORE && (fast_elements || fast_smi_only_elements)) {
2633       if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
2634         NoObservableSideEffectsScope no_effects(this);
2635         elements = BuildCopyElementsOnWrite(checked_object, elements,
2636                                             elements_kind, length);
2637       } else {
2638         HCheckMaps* check_cow_map = Add<HCheckMaps>(
2639             elements, isolate()->factory()->fixed_array_map());
2640         check_cow_map->ClearDependsOnFlag(kElementsKind);
2641       }
2642     }
2643   }
2644   return AddElementAccess(elements, checked_key, val, checked_object, nullptr,
2645                           elements_kind, access_type, load_mode);
2646 }
2647 
2648 
BuildAllocateArrayFromLength(JSArrayBuilder * array_builder,HValue * length_argument)2649 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
2650     JSArrayBuilder* array_builder,
2651     HValue* length_argument) {
2652   if (length_argument->IsConstant() &&
2653       HConstant::cast(length_argument)->HasSmiValue()) {
2654     int array_length = HConstant::cast(length_argument)->Integer32Value();
2655     if (array_length == 0) {
2656       return array_builder->AllocateEmptyArray();
2657     } else {
2658       return array_builder->AllocateArray(length_argument,
2659                                           array_length,
2660                                           length_argument);
2661     }
2662   }
2663 
2664   HValue* constant_zero = graph()->GetConstant0();
2665   HConstant* max_alloc_length =
2666       Add<HConstant>(JSArray::kInitialMaxFastElementArray);
2667   HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
2668                                                    max_alloc_length);
2669   IfBuilder if_builder(this);
2670   if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
2671                                           Token::EQ);
2672   if_builder.Then();
2673   const int initial_capacity = JSArray::kPreallocatedArrayElements;
2674   HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
2675   Push(initial_capacity_node);  // capacity
2676   Push(constant_zero);          // length
2677   if_builder.Else();
2678   if (!(top_info()->IsStub()) &&
2679       IsFastPackedElementsKind(array_builder->kind())) {
2680     // We'll come back later with better (holey) feedback.
2681     if_builder.Deopt(
2682         Deoptimizer::kHoleyArrayDespitePackedElements_kindFeedback);
2683   } else {
2684     Push(checked_length);         // capacity
2685     Push(checked_length);         // length
2686   }
2687   if_builder.End();
2688 
2689   // Figure out total size
2690   HValue* length = Pop();
2691   HValue* capacity = Pop();
2692   return array_builder->AllocateArray(capacity, max_alloc_length, length);
2693 }
2694 
2695 
BuildCalculateElementsSize(ElementsKind kind,HValue * capacity)2696 HValue* HGraphBuilder::BuildCalculateElementsSize(ElementsKind kind,
2697                                                   HValue* capacity) {
2698   int elements_size = IsFastDoubleElementsKind(kind)
2699       ? kDoubleSize
2700       : kPointerSize;
2701 
2702   HConstant* elements_size_value = Add<HConstant>(elements_size);
2703   HInstruction* mul =
2704       HMul::NewImul(isolate(), zone(), context(), capacity->ActualValue(),
2705                     elements_size_value);
2706   AddInstruction(mul);
2707   mul->ClearFlag(HValue::kCanOverflow);
2708 
2709   STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
2710 
2711   HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
2712   HValue* total_size = AddUncasted<HAdd>(mul, header_size);
2713   total_size->ClearFlag(HValue::kCanOverflow);
2714   return total_size;
2715 }
2716 
2717 
AllocateJSArrayObject(AllocationSiteMode mode)2718 HAllocate* HGraphBuilder::AllocateJSArrayObject(AllocationSiteMode mode) {
2719   int base_size = JSArray::kSize;
2720   if (mode == TRACK_ALLOCATION_SITE) {
2721     base_size += AllocationMemento::kSize;
2722   }
2723   HConstant* size_in_bytes = Add<HConstant>(base_size);
2724   return Add<HAllocate>(
2725       size_in_bytes, HType::JSArray(), NOT_TENURED, JS_OBJECT_TYPE);
2726 }
2727 
2728 
EstablishElementsAllocationSize(ElementsKind kind,int capacity)2729 HConstant* HGraphBuilder::EstablishElementsAllocationSize(
2730     ElementsKind kind,
2731     int capacity) {
2732   int base_size = IsFastDoubleElementsKind(kind)
2733       ? FixedDoubleArray::SizeFor(capacity)
2734       : FixedArray::SizeFor(capacity);
2735 
2736   return Add<HConstant>(base_size);
2737 }
2738 
2739 
BuildAllocateElements(ElementsKind kind,HValue * size_in_bytes)2740 HAllocate* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
2741                                                 HValue* size_in_bytes) {
2742   InstanceType instance_type = IsFastDoubleElementsKind(kind)
2743       ? FIXED_DOUBLE_ARRAY_TYPE
2744       : FIXED_ARRAY_TYPE;
2745 
2746   return Add<HAllocate>(size_in_bytes, HType::HeapObject(), NOT_TENURED,
2747                         instance_type);
2748 }
2749 
2750 
BuildInitializeElementsHeader(HValue * elements,ElementsKind kind,HValue * capacity)2751 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
2752                                                   ElementsKind kind,
2753                                                   HValue* capacity) {
2754   Factory* factory = isolate()->factory();
2755   Handle<Map> map = IsFastDoubleElementsKind(kind)
2756       ? factory->fixed_double_array_map()
2757       : factory->fixed_array_map();
2758 
2759   Add<HStoreNamedField>(elements, HObjectAccess::ForMap(), Add<HConstant>(map));
2760   Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
2761                         capacity);
2762 }
2763 
2764 
BuildAllocateAndInitializeArray(ElementsKind kind,HValue * capacity)2765 HValue* HGraphBuilder::BuildAllocateAndInitializeArray(ElementsKind kind,
2766                                                        HValue* capacity) {
2767   // The HForceRepresentation is to prevent possible deopt on int-smi
2768   // conversion after allocation but before the new object fields are set.
2769   capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
2770   HValue* size_in_bytes = BuildCalculateElementsSize(kind, capacity);
2771   HValue* new_array = BuildAllocateElements(kind, size_in_bytes);
2772   BuildInitializeElementsHeader(new_array, kind, capacity);
2773   return new_array;
2774 }
2775 
2776 
BuildJSArrayHeader(HValue * array,HValue * array_map,HValue * elements,AllocationSiteMode mode,ElementsKind elements_kind,HValue * allocation_site_payload,HValue * length_field)2777 void HGraphBuilder::BuildJSArrayHeader(HValue* array,
2778                                        HValue* array_map,
2779                                        HValue* elements,
2780                                        AllocationSiteMode mode,
2781                                        ElementsKind elements_kind,
2782                                        HValue* allocation_site_payload,
2783                                        HValue* length_field) {
2784   Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
2785 
2786   HConstant* empty_fixed_array =
2787     Add<HConstant>(isolate()->factory()->empty_fixed_array());
2788 
2789   Add<HStoreNamedField>(
2790       array, HObjectAccess::ForPropertiesPointer(), empty_fixed_array);
2791 
2792   Add<HStoreNamedField>(
2793       array, HObjectAccess::ForElementsPointer(),
2794       elements != NULL ? elements : empty_fixed_array);
2795 
2796   Add<HStoreNamedField>(
2797       array, HObjectAccess::ForArrayLength(elements_kind), length_field);
2798 
2799   if (mode == TRACK_ALLOCATION_SITE) {
2800     BuildCreateAllocationMemento(
2801         array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
2802   }
2803 }
2804 
2805 
AddElementAccess(HValue * elements,HValue * checked_key,HValue * val,HValue * dependency,HValue * backing_store_owner,ElementsKind elements_kind,PropertyAccessType access_type,LoadKeyedHoleMode load_mode)2806 HInstruction* HGraphBuilder::AddElementAccess(
2807     HValue* elements, HValue* checked_key, HValue* val, HValue* dependency,
2808     HValue* backing_store_owner, ElementsKind elements_kind,
2809     PropertyAccessType access_type, LoadKeyedHoleMode load_mode) {
2810   if (access_type == STORE) {
2811     DCHECK(val != NULL);
2812     if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
2813       val = Add<HClampToUint8>(val);
2814     }
2815     return Add<HStoreKeyed>(elements, checked_key, val, backing_store_owner,
2816                             elements_kind, STORE_TO_INITIALIZED_ENTRY);
2817   }
2818 
2819   DCHECK(access_type == LOAD);
2820   DCHECK(val == NULL);
2821   HLoadKeyed* load =
2822       Add<HLoadKeyed>(elements, checked_key, dependency, backing_store_owner,
2823                       elements_kind, load_mode);
2824   if (elements_kind == UINT32_ELEMENTS) {
2825     graph()->RecordUint32Instruction(load);
2826   }
2827   return load;
2828 }
2829 
2830 
AddLoadMap(HValue * object,HValue * dependency)2831 HLoadNamedField* HGraphBuilder::AddLoadMap(HValue* object,
2832                                            HValue* dependency) {
2833   return Add<HLoadNamedField>(object, dependency, HObjectAccess::ForMap());
2834 }
2835 
2836 
AddLoadElements(HValue * object,HValue * dependency)2837 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
2838                                                 HValue* dependency) {
2839   return Add<HLoadNamedField>(
2840       object, dependency, HObjectAccess::ForElementsPointer());
2841 }
2842 
2843 
AddLoadFixedArrayLength(HValue * array,HValue * dependency)2844 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(
2845     HValue* array,
2846     HValue* dependency) {
2847   return Add<HLoadNamedField>(
2848       array, dependency, HObjectAccess::ForFixedArrayLength());
2849 }
2850 
2851 
AddLoadArrayLength(HValue * array,ElementsKind kind,HValue * dependency)2852 HLoadNamedField* HGraphBuilder::AddLoadArrayLength(HValue* array,
2853                                                    ElementsKind kind,
2854                                                    HValue* dependency) {
2855   return Add<HLoadNamedField>(
2856       array, dependency, HObjectAccess::ForArrayLength(kind));
2857 }
2858 
2859 
BuildNewElementsCapacity(HValue * old_capacity)2860 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
2861   HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
2862                                                 graph_->GetConstant1());
2863 
2864   HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
2865   new_capacity->ClearFlag(HValue::kCanOverflow);
2866 
2867   HValue* min_growth = Add<HConstant>(16);
2868 
2869   new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
2870   new_capacity->ClearFlag(HValue::kCanOverflow);
2871 
2872   return new_capacity;
2873 }
2874 
2875 
BuildGrowElementsCapacity(HValue * object,HValue * elements,ElementsKind kind,ElementsKind new_kind,HValue * length,HValue * new_capacity)2876 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
2877                                                  HValue* elements,
2878                                                  ElementsKind kind,
2879                                                  ElementsKind new_kind,
2880                                                  HValue* length,
2881                                                  HValue* new_capacity) {
2882   Add<HBoundsCheck>(new_capacity, Add<HConstant>(
2883           (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >>
2884           ElementsKindToShiftSize(new_kind)));
2885 
2886   HValue* new_elements =
2887       BuildAllocateAndInitializeArray(new_kind, new_capacity);
2888 
2889   BuildCopyElements(elements, kind, new_elements,
2890                     new_kind, length, new_capacity);
2891 
2892   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2893                         new_elements);
2894 
2895   return new_elements;
2896 }
2897 
2898 
BuildFillElementsWithValue(HValue * elements,ElementsKind elements_kind,HValue * from,HValue * to,HValue * value)2899 void HGraphBuilder::BuildFillElementsWithValue(HValue* elements,
2900                                                ElementsKind elements_kind,
2901                                                HValue* from,
2902                                                HValue* to,
2903                                                HValue* value) {
2904   if (to == NULL) {
2905     to = AddLoadFixedArrayLength(elements);
2906   }
2907 
2908   // Special loop unfolding case
2909   STATIC_ASSERT(JSArray::kPreallocatedArrayElements <=
2910                 kElementLoopUnrollThreshold);
2911   int initial_capacity = -1;
2912   if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
2913     int constant_from = from->GetInteger32Constant();
2914     int constant_to = to->GetInteger32Constant();
2915 
2916     if (constant_from == 0 && constant_to <= kElementLoopUnrollThreshold) {
2917       initial_capacity = constant_to;
2918     }
2919   }
2920 
2921   if (initial_capacity >= 0) {
2922     for (int i = 0; i < initial_capacity; i++) {
2923       HInstruction* key = Add<HConstant>(i);
2924       Add<HStoreKeyed>(elements, key, value, nullptr, elements_kind);
2925     }
2926   } else {
2927     // Carefully loop backwards so that the "from" remains live through the loop
2928     // rather than the to. This often corresponds to keeping length live rather
2929     // then capacity, which helps register allocation, since length is used more
2930     // other than capacity after filling with holes.
2931     LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2932 
2933     HValue* key = builder.BeginBody(to, from, Token::GT);
2934 
2935     HValue* adjusted_key = AddUncasted<HSub>(key, graph()->GetConstant1());
2936     adjusted_key->ClearFlag(HValue::kCanOverflow);
2937 
2938     Add<HStoreKeyed>(elements, adjusted_key, value, nullptr, elements_kind);
2939 
2940     builder.EndBody();
2941   }
2942 }
2943 
2944 
BuildFillElementsWithHole(HValue * elements,ElementsKind elements_kind,HValue * from,HValue * to)2945 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
2946                                               ElementsKind elements_kind,
2947                                               HValue* from,
2948                                               HValue* to) {
2949   // Fast elements kinds need to be initialized in case statements below cause a
2950   // garbage collection.
2951 
2952   HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
2953                      ? graph()->GetConstantHole()
2954                      : Add<HConstant>(HConstant::kHoleNaN);
2955 
2956   // Since we're about to store a hole value, the store instruction below must
2957   // assume an elements kind that supports heap object values.
2958   if (IsFastSmiOrObjectElementsKind(elements_kind)) {
2959     elements_kind = FAST_HOLEY_ELEMENTS;
2960   }
2961 
2962   BuildFillElementsWithValue(elements, elements_kind, from, to, hole);
2963 }
2964 
2965 
BuildCopyProperties(HValue * from_properties,HValue * to_properties,HValue * length,HValue * capacity)2966 void HGraphBuilder::BuildCopyProperties(HValue* from_properties,
2967                                         HValue* to_properties, HValue* length,
2968                                         HValue* capacity) {
2969   ElementsKind kind = FAST_ELEMENTS;
2970 
2971   BuildFillElementsWithValue(to_properties, kind, length, capacity,
2972                              graph()->GetConstantUndefined());
2973 
2974   LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2975 
2976   HValue* key = builder.BeginBody(length, graph()->GetConstant0(), Token::GT);
2977 
2978   key = AddUncasted<HSub>(key, graph()->GetConstant1());
2979   key->ClearFlag(HValue::kCanOverflow);
2980 
2981   HValue* element =
2982       Add<HLoadKeyed>(from_properties, key, nullptr, nullptr, kind);
2983 
2984   Add<HStoreKeyed>(to_properties, key, element, nullptr, kind);
2985 
2986   builder.EndBody();
2987 }
2988 
2989 
BuildCopyElements(HValue * from_elements,ElementsKind from_elements_kind,HValue * to_elements,ElementsKind to_elements_kind,HValue * length,HValue * capacity)2990 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
2991                                       ElementsKind from_elements_kind,
2992                                       HValue* to_elements,
2993                                       ElementsKind to_elements_kind,
2994                                       HValue* length,
2995                                       HValue* capacity) {
2996   int constant_capacity = -1;
2997   if (capacity != NULL &&
2998       capacity->IsConstant() &&
2999       HConstant::cast(capacity)->HasInteger32Value()) {
3000     int constant_candidate = HConstant::cast(capacity)->Integer32Value();
3001     if (constant_candidate <= kElementLoopUnrollThreshold) {
3002       constant_capacity = constant_candidate;
3003     }
3004   }
3005 
3006   bool pre_fill_with_holes =
3007     IsFastDoubleElementsKind(from_elements_kind) &&
3008     IsFastObjectElementsKind(to_elements_kind);
3009   if (pre_fill_with_holes) {
3010     // If the copy might trigger a GC, make sure that the FixedArray is
3011     // pre-initialized with holes to make sure that it's always in a
3012     // consistent state.
3013     BuildFillElementsWithHole(to_elements, to_elements_kind,
3014                               graph()->GetConstant0(), NULL);
3015   }
3016 
3017   if (constant_capacity != -1) {
3018     // Unroll the loop for small elements kinds.
3019     for (int i = 0; i < constant_capacity; i++) {
3020       HValue* key_constant = Add<HConstant>(i);
3021       HInstruction* value = Add<HLoadKeyed>(
3022           from_elements, key_constant, nullptr, nullptr, from_elements_kind);
3023       Add<HStoreKeyed>(to_elements, key_constant, value, nullptr,
3024                        to_elements_kind);
3025     }
3026   } else {
3027     if (!pre_fill_with_holes &&
3028         (capacity == NULL || !length->Equals(capacity))) {
3029       BuildFillElementsWithHole(to_elements, to_elements_kind,
3030                                 length, NULL);
3031     }
3032 
3033     LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
3034 
3035     HValue* key = builder.BeginBody(length, graph()->GetConstant0(),
3036                                     Token::GT);
3037 
3038     key = AddUncasted<HSub>(key, graph()->GetConstant1());
3039     key->ClearFlag(HValue::kCanOverflow);
3040 
3041     HValue* element = Add<HLoadKeyed>(from_elements, key, nullptr, nullptr,
3042                                       from_elements_kind, ALLOW_RETURN_HOLE);
3043 
3044     ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
3045                          IsFastSmiElementsKind(to_elements_kind))
3046       ? FAST_HOLEY_ELEMENTS : to_elements_kind;
3047 
3048     if (IsHoleyElementsKind(from_elements_kind) &&
3049         from_elements_kind != to_elements_kind) {
3050       IfBuilder if_hole(this);
3051       if_hole.If<HCompareHoleAndBranch>(element);
3052       if_hole.Then();
3053       HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
3054                                      ? Add<HConstant>(HConstant::kHoleNaN)
3055                                      : graph()->GetConstantHole();
3056       Add<HStoreKeyed>(to_elements, key, hole_constant, nullptr, kind);
3057       if_hole.Else();
3058       HStoreKeyed* store =
3059           Add<HStoreKeyed>(to_elements, key, element, nullptr, kind);
3060       store->SetFlag(HValue::kAllowUndefinedAsNaN);
3061       if_hole.End();
3062     } else {
3063       HStoreKeyed* store =
3064           Add<HStoreKeyed>(to_elements, key, element, nullptr, kind);
3065       store->SetFlag(HValue::kAllowUndefinedAsNaN);
3066     }
3067 
3068     builder.EndBody();
3069   }
3070 
3071   Counters* counters = isolate()->counters();
3072   AddIncrementCounter(counters->inlined_copied_elements());
3073 }
3074 
3075 
BuildCloneShallowArrayCow(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode,ElementsKind kind)3076 HValue* HGraphBuilder::BuildCloneShallowArrayCow(HValue* boilerplate,
3077                                                  HValue* allocation_site,
3078                                                  AllocationSiteMode mode,
3079                                                  ElementsKind kind) {
3080   HAllocate* array = AllocateJSArrayObject(mode);
3081 
3082   HValue* map = AddLoadMap(boilerplate);
3083   HValue* elements = AddLoadElements(boilerplate);
3084   HValue* length = AddLoadArrayLength(boilerplate, kind);
3085 
3086   BuildJSArrayHeader(array,
3087                      map,
3088                      elements,
3089                      mode,
3090                      FAST_ELEMENTS,
3091                      allocation_site,
3092                      length);
3093   return array;
3094 }
3095 
3096 
BuildCloneShallowArrayEmpty(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode)3097 HValue* HGraphBuilder::BuildCloneShallowArrayEmpty(HValue* boilerplate,
3098                                                    HValue* allocation_site,
3099                                                    AllocationSiteMode mode) {
3100   HAllocate* array = AllocateJSArrayObject(mode);
3101 
3102   HValue* map = AddLoadMap(boilerplate);
3103 
3104   BuildJSArrayHeader(array,
3105                      map,
3106                      NULL,  // set elements to empty fixed array
3107                      mode,
3108                      FAST_ELEMENTS,
3109                      allocation_site,
3110                      graph()->GetConstant0());
3111   return array;
3112 }
3113 
3114 
BuildCloneShallowArrayNonEmpty(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode,ElementsKind kind)3115 HValue* HGraphBuilder::BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
3116                                                       HValue* allocation_site,
3117                                                       AllocationSiteMode mode,
3118                                                       ElementsKind kind) {
3119   HValue* boilerplate_elements = AddLoadElements(boilerplate);
3120   HValue* capacity = AddLoadFixedArrayLength(boilerplate_elements);
3121 
3122   // Generate size calculation code here in order to make it dominate
3123   // the JSArray allocation.
3124   HValue* elements_size = BuildCalculateElementsSize(kind, capacity);
3125 
3126   // Create empty JSArray object for now, store elimination should remove
3127   // redundant initialization of elements and length fields and at the same
3128   // time the object will be fully prepared for GC if it happens during
3129   // elements allocation.
3130   HValue* result = BuildCloneShallowArrayEmpty(
3131       boilerplate, allocation_site, mode);
3132 
3133   HAllocate* elements = BuildAllocateElements(kind, elements_size);
3134 
3135   // This function implicitly relies on the fact that the
3136   // FastCloneShallowArrayStub is called only for literals shorter than
3137   // JSArray::kInitialMaxFastElementArray.
3138   // Can't add HBoundsCheck here because otherwise the stub will eager a frame.
3139   HConstant* size_upper_bound = EstablishElementsAllocationSize(
3140       kind, JSArray::kInitialMaxFastElementArray);
3141   elements->set_size_upper_bound(size_upper_bound);
3142 
3143   Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(), elements);
3144 
3145   // The allocation for the cloned array above causes register pressure on
3146   // machines with low register counts. Force a reload of the boilerplate
3147   // elements here to free up a register for the allocation to avoid unnecessary
3148   // spillage.
3149   boilerplate_elements = AddLoadElements(boilerplate);
3150   boilerplate_elements->SetFlag(HValue::kCantBeReplaced);
3151 
3152   // Copy the elements array header.
3153   for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
3154     HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
3155     Add<HStoreNamedField>(
3156         elements, access,
3157         Add<HLoadNamedField>(boilerplate_elements, nullptr, access));
3158   }
3159 
3160   // And the result of the length
3161   HValue* length = AddLoadArrayLength(boilerplate, kind);
3162   Add<HStoreNamedField>(result, HObjectAccess::ForArrayLength(kind), length);
3163 
3164   BuildCopyElements(boilerplate_elements, kind, elements,
3165                     kind, length, NULL);
3166   return result;
3167 }
3168 
3169 
BuildCompareNil(HValue * value,Type * type,HIfContinuation * continuation,MapEmbedding map_embedding)3170 void HGraphBuilder::BuildCompareNil(HValue* value, Type* type,
3171                                     HIfContinuation* continuation,
3172                                     MapEmbedding map_embedding) {
3173   IfBuilder if_nil(this);
3174   bool some_case_handled = false;
3175   bool some_case_missing = false;
3176 
3177   if (type->Maybe(Type::Null())) {
3178     if (some_case_handled) if_nil.Or();
3179     if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
3180     some_case_handled = true;
3181   } else {
3182     some_case_missing = true;
3183   }
3184 
3185   if (type->Maybe(Type::Undefined())) {
3186     if (some_case_handled) if_nil.Or();
3187     if_nil.If<HCompareObjectEqAndBranch>(value,
3188                                          graph()->GetConstantUndefined());
3189     some_case_handled = true;
3190   } else {
3191     some_case_missing = true;
3192   }
3193 
3194   if (type->Maybe(Type::Undetectable())) {
3195     if (some_case_handled) if_nil.Or();
3196     if_nil.If<HIsUndetectableAndBranch>(value);
3197     some_case_handled = true;
3198   } else {
3199     some_case_missing = true;
3200   }
3201 
3202   if (some_case_missing) {
3203     if_nil.Then();
3204     if_nil.Else();
3205     if (type->NumClasses() == 1) {
3206       BuildCheckHeapObject(value);
3207       // For ICs, the map checked below is a sentinel map that gets replaced by
3208       // the monomorphic map when the code is used as a template to generate a
3209       // new IC. For optimized functions, there is no sentinel map, the map
3210       // emitted below is the actual monomorphic map.
3211       if (map_embedding == kEmbedMapsViaWeakCells) {
3212         HValue* cell =
3213             Add<HConstant>(Map::WeakCellForMap(type->Classes().Current()));
3214         HValue* expected_map = Add<HLoadNamedField>(
3215             cell, nullptr, HObjectAccess::ForWeakCellValue());
3216         HValue* map =
3217             Add<HLoadNamedField>(value, nullptr, HObjectAccess::ForMap());
3218         IfBuilder map_check(this);
3219         map_check.IfNot<HCompareObjectEqAndBranch>(expected_map, map);
3220         map_check.ThenDeopt(Deoptimizer::kUnknownMap);
3221         map_check.End();
3222       } else {
3223         DCHECK(map_embedding == kEmbedMapsDirectly);
3224         Add<HCheckMaps>(value, type->Classes().Current());
3225       }
3226     } else {
3227       if_nil.Deopt(Deoptimizer::kTooManyUndetectableTypes);
3228     }
3229   }
3230 
3231   if_nil.CaptureContinuation(continuation);
3232 }
3233 
3234 
BuildCreateAllocationMemento(HValue * previous_object,HValue * previous_object_size,HValue * allocation_site)3235 void HGraphBuilder::BuildCreateAllocationMemento(
3236     HValue* previous_object,
3237     HValue* previous_object_size,
3238     HValue* allocation_site) {
3239   DCHECK(allocation_site != NULL);
3240   HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
3241       previous_object, previous_object_size, HType::HeapObject());
3242   AddStoreMapConstant(
3243       allocation_memento, isolate()->factory()->allocation_memento_map());
3244   Add<HStoreNamedField>(
3245       allocation_memento,
3246       HObjectAccess::ForAllocationMementoSite(),
3247       allocation_site);
3248   if (FLAG_allocation_site_pretenuring) {
3249     HValue* memento_create_count =
3250         Add<HLoadNamedField>(allocation_site, nullptr,
3251                              HObjectAccess::ForAllocationSiteOffset(
3252                                  AllocationSite::kPretenureCreateCountOffset));
3253     memento_create_count = AddUncasted<HAdd>(
3254         memento_create_count, graph()->GetConstant1());
3255     // This smi value is reset to zero after every gc, overflow isn't a problem
3256     // since the counter is bounded by the new space size.
3257     memento_create_count->ClearFlag(HValue::kCanOverflow);
3258     Add<HStoreNamedField>(
3259         allocation_site, HObjectAccess::ForAllocationSiteOffset(
3260             AllocationSite::kPretenureCreateCountOffset), memento_create_count);
3261   }
3262 }
3263 
3264 
BuildGetNativeContext()3265 HInstruction* HGraphBuilder::BuildGetNativeContext() {
3266   return Add<HLoadNamedField>(
3267       context(), nullptr,
3268       HObjectAccess::ForContextSlot(Context::NATIVE_CONTEXT_INDEX));
3269 }
3270 
3271 
BuildGetNativeContext(HValue * closure)3272 HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
3273   // Get the global object, then the native context
3274   HInstruction* context = Add<HLoadNamedField>(
3275       closure, nullptr, HObjectAccess::ForFunctionContextPointer());
3276   return Add<HLoadNamedField>(
3277       context, nullptr,
3278       HObjectAccess::ForContextSlot(Context::NATIVE_CONTEXT_INDEX));
3279 }
3280 
3281 
BuildGetScriptContext(int context_index)3282 HInstruction* HGraphBuilder::BuildGetScriptContext(int context_index) {
3283   HValue* native_context = BuildGetNativeContext();
3284   HValue* script_context_table = Add<HLoadNamedField>(
3285       native_context, nullptr,
3286       HObjectAccess::ForContextSlot(Context::SCRIPT_CONTEXT_TABLE_INDEX));
3287   return Add<HLoadNamedField>(script_context_table, nullptr,
3288                               HObjectAccess::ForScriptContext(context_index));
3289 }
3290 
3291 
BuildGetParentContext(HValue * depth,int depth_value)3292 HValue* HGraphBuilder::BuildGetParentContext(HValue* depth, int depth_value) {
3293   HValue* script_context = context();
3294   if (depth != NULL) {
3295     HValue* zero = graph()->GetConstant0();
3296 
3297     Push(script_context);
3298     Push(depth);
3299 
3300     LoopBuilder loop(this);
3301     loop.BeginBody(2);  // Drop script_context and depth from last environment
3302                         // to appease live range building without simulates.
3303     depth = Pop();
3304     script_context = Pop();
3305 
3306     script_context = Add<HLoadNamedField>(
3307         script_context, nullptr,
3308         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3309     depth = AddUncasted<HSub>(depth, graph()->GetConstant1());
3310     depth->ClearFlag(HValue::kCanOverflow);
3311 
3312     IfBuilder if_break(this);
3313     if_break.If<HCompareNumericAndBranch, HValue*>(depth, zero, Token::EQ);
3314     if_break.Then();
3315     {
3316       Push(script_context);  // The result.
3317       loop.Break();
3318     }
3319     if_break.Else();
3320     {
3321       Push(script_context);
3322       Push(depth);
3323     }
3324     loop.EndBody();
3325     if_break.End();
3326 
3327     script_context = Pop();
3328   } else if (depth_value > 0) {
3329     // Unroll the above loop.
3330     for (int i = 0; i < depth_value; i++) {
3331       script_context = Add<HLoadNamedField>(
3332           script_context, nullptr,
3333           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
3334     }
3335   }
3336   return script_context;
3337 }
3338 
3339 
BuildGetArrayFunction()3340 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
3341   HInstruction* native_context = BuildGetNativeContext();
3342   HInstruction* index =
3343       Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
3344   return Add<HLoadKeyed>(native_context, index, nullptr, nullptr,
3345                          FAST_ELEMENTS);
3346 }
3347 
3348 
BuildArrayBufferViewFieldAccessor(HValue * object,HValue * checked_object,FieldIndex index)3349 HValue* HGraphBuilder::BuildArrayBufferViewFieldAccessor(HValue* object,
3350                                                          HValue* checked_object,
3351                                                          FieldIndex index) {
3352   NoObservableSideEffectsScope scope(this);
3353   HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3354       index.offset(), Representation::Tagged());
3355   HInstruction* buffer = Add<HLoadNamedField>(
3356       object, checked_object, HObjectAccess::ForJSArrayBufferViewBuffer());
3357   HInstruction* field = Add<HLoadNamedField>(object, checked_object, access);
3358 
3359   HInstruction* flags = Add<HLoadNamedField>(
3360       buffer, nullptr, HObjectAccess::ForJSArrayBufferBitField());
3361   HValue* was_neutered_mask =
3362       Add<HConstant>(1 << JSArrayBuffer::WasNeutered::kShift);
3363   HValue* was_neutered_test =
3364       AddUncasted<HBitwise>(Token::BIT_AND, flags, was_neutered_mask);
3365 
3366   IfBuilder if_was_neutered(this);
3367   if_was_neutered.If<HCompareNumericAndBranch>(
3368       was_neutered_test, graph()->GetConstant0(), Token::NE);
3369   if_was_neutered.Then();
3370   Push(graph()->GetConstant0());
3371   if_was_neutered.Else();
3372   Push(field);
3373   if_was_neutered.End();
3374 
3375   return Pop();
3376 }
3377 
3378 
JSArrayBuilder(HGraphBuilder * builder,ElementsKind kind,HValue * allocation_site_payload,HValue * constructor_function,AllocationSiteOverrideMode override_mode)3379 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3380     ElementsKind kind,
3381     HValue* allocation_site_payload,
3382     HValue* constructor_function,
3383     AllocationSiteOverrideMode override_mode) :
3384         builder_(builder),
3385         kind_(kind),
3386         allocation_site_payload_(allocation_site_payload),
3387         constructor_function_(constructor_function) {
3388   DCHECK(!allocation_site_payload->IsConstant() ||
3389          HConstant::cast(allocation_site_payload)->handle(
3390              builder_->isolate())->IsAllocationSite());
3391   mode_ = override_mode == DISABLE_ALLOCATION_SITES
3392       ? DONT_TRACK_ALLOCATION_SITE
3393       : AllocationSite::GetMode(kind);
3394 }
3395 
3396 
JSArrayBuilder(HGraphBuilder * builder,ElementsKind kind,HValue * constructor_function)3397 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3398                                               ElementsKind kind,
3399                                               HValue* constructor_function) :
3400     builder_(builder),
3401     kind_(kind),
3402     mode_(DONT_TRACK_ALLOCATION_SITE),
3403     allocation_site_payload_(NULL),
3404     constructor_function_(constructor_function) {
3405 }
3406 
3407 
EmitMapCode()3408 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
3409   if (!builder()->top_info()->IsStub()) {
3410     // A constant map is fine.
3411     Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
3412                     builder()->isolate());
3413     return builder()->Add<HConstant>(map);
3414   }
3415 
3416   if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
3417     // No need for a context lookup if the kind_ matches the initial
3418     // map, because we can just load the map in that case.
3419     HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3420     return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3421                                            access);
3422   }
3423 
3424   // TODO(mvstanton): we should always have a constructor function if we
3425   // are creating a stub.
3426   HInstruction* native_context = constructor_function_ != NULL
3427       ? builder()->BuildGetNativeContext(constructor_function_)
3428       : builder()->BuildGetNativeContext();
3429 
3430   HObjectAccess access =
3431       HObjectAccess::ForContextSlot(Context::ArrayMapIndex(kind_));
3432   return builder()->Add<HLoadNamedField>(native_context, nullptr, access);
3433 }
3434 
3435 
EmitInternalMapCode()3436 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
3437   // Find the map near the constructor function
3438   HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3439   return builder()->Add<HLoadNamedField>(constructor_function_, nullptr,
3440                                          access);
3441 }
3442 
3443 
AllocateEmptyArray()3444 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
3445   HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
3446   return AllocateArray(capacity,
3447                        capacity,
3448                        builder()->graph()->GetConstant0());
3449 }
3450 
3451 
AllocateArray(HValue * capacity,HConstant * capacity_upper_bound,HValue * length_field,FillMode fill_mode)3452 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3453     HValue* capacity,
3454     HConstant* capacity_upper_bound,
3455     HValue* length_field,
3456     FillMode fill_mode) {
3457   return AllocateArray(capacity,
3458                        capacity_upper_bound->GetInteger32Constant(),
3459                        length_field,
3460                        fill_mode);
3461 }
3462 
3463 
AllocateArray(HValue * capacity,int capacity_upper_bound,HValue * length_field,FillMode fill_mode)3464 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3465     HValue* capacity,
3466     int capacity_upper_bound,
3467     HValue* length_field,
3468     FillMode fill_mode) {
3469   HConstant* elememts_size_upper_bound = capacity->IsInteger32Constant()
3470       ? HConstant::cast(capacity)
3471       : builder()->EstablishElementsAllocationSize(kind_, capacity_upper_bound);
3472 
3473   HAllocate* array = AllocateArray(capacity, length_field, fill_mode);
3474   if (!elements_location_->has_size_upper_bound()) {
3475     elements_location_->set_size_upper_bound(elememts_size_upper_bound);
3476   }
3477   return array;
3478 }
3479 
3480 
AllocateArray(HValue * capacity,HValue * length_field,FillMode fill_mode)3481 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3482     HValue* capacity,
3483     HValue* length_field,
3484     FillMode fill_mode) {
3485   // These HForceRepresentations are because we store these as fields in the
3486   // objects we construct, and an int32-to-smi HChange could deopt. Accept
3487   // the deopt possibility now, before allocation occurs.
3488   capacity =
3489       builder()->AddUncasted<HForceRepresentation>(capacity,
3490                                                    Representation::Smi());
3491   length_field =
3492       builder()->AddUncasted<HForceRepresentation>(length_field,
3493                                                    Representation::Smi());
3494 
3495   // Generate size calculation code here in order to make it dominate
3496   // the JSArray allocation.
3497   HValue* elements_size =
3498       builder()->BuildCalculateElementsSize(kind_, capacity);
3499 
3500   // Bail out for large objects.
3501   HValue* max_regular_heap_object_size =
3502       builder()->Add<HConstant>(Page::kMaxRegularHeapObjectSize);
3503   builder()->Add<HBoundsCheck>(elements_size, max_regular_heap_object_size);
3504 
3505   // Allocate (dealing with failure appropriately)
3506   HAllocate* array_object = builder()->AllocateJSArrayObject(mode_);
3507 
3508   // Fill in the fields: map, properties, length
3509   HValue* map;
3510   if (allocation_site_payload_ == NULL) {
3511     map = EmitInternalMapCode();
3512   } else {
3513     map = EmitMapCode();
3514   }
3515 
3516   builder()->BuildJSArrayHeader(array_object,
3517                                 map,
3518                                 NULL,  // set elements to empty fixed array
3519                                 mode_,
3520                                 kind_,
3521                                 allocation_site_payload_,
3522                                 length_field);
3523 
3524   // Allocate and initialize the elements
3525   elements_location_ = builder()->BuildAllocateElements(kind_, elements_size);
3526 
3527   builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
3528 
3529   // Set the elements
3530   builder()->Add<HStoreNamedField>(
3531       array_object, HObjectAccess::ForElementsPointer(), elements_location_);
3532 
3533   if (fill_mode == FILL_WITH_HOLE) {
3534     builder()->BuildFillElementsWithHole(elements_location_, kind_,
3535                                          graph()->GetConstant0(), capacity);
3536   }
3537 
3538   return array_object;
3539 }
3540 
3541 
AddLoadJSBuiltin(int context_index)3542 HValue* HGraphBuilder::AddLoadJSBuiltin(int context_index) {
3543   HValue* native_context = BuildGetNativeContext();
3544   HObjectAccess function_access = HObjectAccess::ForContextSlot(context_index);
3545   return Add<HLoadNamedField>(native_context, nullptr, function_access);
3546 }
3547 
3548 
HOptimizedGraphBuilder(CompilationInfo * info)3549 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
3550     : HGraphBuilder(info),
3551       function_state_(NULL),
3552       initial_function_state_(this, info, NORMAL_RETURN, 0),
3553       ast_context_(NULL),
3554       break_scope_(NULL),
3555       inlined_count_(0),
3556       globals_(10, info->zone()),
3557       osr_(new(info->zone()) HOsrBuilder(this)) {
3558   // This is not initialized in the initializer list because the
3559   // constructor for the initial state relies on function_state_ == NULL
3560   // to know it's the initial state.
3561   function_state_ = &initial_function_state_;
3562   InitializeAstVisitor(info->isolate());
3563   if (top_info()->is_tracking_positions()) {
3564     SetSourcePosition(info->shared_info()->start_position());
3565   }
3566 }
3567 
3568 
CreateJoin(HBasicBlock * first,HBasicBlock * second,BailoutId join_id)3569 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
3570                                                 HBasicBlock* second,
3571                                                 BailoutId join_id) {
3572   if (first == NULL) {
3573     return second;
3574   } else if (second == NULL) {
3575     return first;
3576   } else {
3577     HBasicBlock* join_block = graph()->CreateBasicBlock();
3578     Goto(first, join_block);
3579     Goto(second, join_block);
3580     join_block->SetJoinId(join_id);
3581     return join_block;
3582   }
3583 }
3584 
3585 
JoinContinue(IterationStatement * statement,HBasicBlock * exit_block,HBasicBlock * continue_block)3586 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
3587                                                   HBasicBlock* exit_block,
3588                                                   HBasicBlock* continue_block) {
3589   if (continue_block != NULL) {
3590     if (exit_block != NULL) Goto(exit_block, continue_block);
3591     continue_block->SetJoinId(statement->ContinueId());
3592     return continue_block;
3593   }
3594   return exit_block;
3595 }
3596 
3597 
CreateLoop(IterationStatement * statement,HBasicBlock * loop_entry,HBasicBlock * body_exit,HBasicBlock * loop_successor,HBasicBlock * break_block)3598 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
3599                                                 HBasicBlock* loop_entry,
3600                                                 HBasicBlock* body_exit,
3601                                                 HBasicBlock* loop_successor,
3602                                                 HBasicBlock* break_block) {
3603   if (body_exit != NULL) Goto(body_exit, loop_entry);
3604   loop_entry->PostProcessLoopHeader(statement);
3605   if (break_block != NULL) {
3606     if (loop_successor != NULL) Goto(loop_successor, break_block);
3607     break_block->SetJoinId(statement->ExitId());
3608     return break_block;
3609   }
3610   return loop_successor;
3611 }
3612 
3613 
3614 // Build a new loop header block and set it as the current block.
BuildLoopEntry()3615 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
3616   HBasicBlock* loop_entry = CreateLoopHeaderBlock();
3617   Goto(loop_entry);
3618   set_current_block(loop_entry);
3619   return loop_entry;
3620 }
3621 
3622 
BuildLoopEntry(IterationStatement * statement)3623 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
3624     IterationStatement* statement) {
3625   HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
3626       ? osr()->BuildOsrLoopEntry(statement)
3627       : BuildLoopEntry();
3628   return loop_entry;
3629 }
3630 
3631 
FinishExit(HControlInstruction * instruction,SourcePosition position)3632 void HBasicBlock::FinishExit(HControlInstruction* instruction,
3633                              SourcePosition position) {
3634   Finish(instruction, position);
3635   ClearEnvironment();
3636 }
3637 
3638 
operator <<(std::ostream & os,const HBasicBlock & b)3639 std::ostream& operator<<(std::ostream& os, const HBasicBlock& b) {
3640   return os << "B" << b.block_id();
3641 }
3642 
3643 
HGraph(CompilationInfo * info)3644 HGraph::HGraph(CompilationInfo* info)
3645     : isolate_(info->isolate()),
3646       next_block_id_(0),
3647       entry_block_(NULL),
3648       blocks_(8, info->zone()),
3649       values_(16, info->zone()),
3650       phi_list_(NULL),
3651       uint32_instructions_(NULL),
3652       osr_(NULL),
3653       info_(info),
3654       zone_(info->zone()),
3655       is_recursive_(false),
3656       use_optimistic_licm_(false),
3657       depends_on_empty_array_proto_elements_(false),
3658       type_change_checksum_(0),
3659       maximum_environment_size_(0),
3660       no_side_effects_scope_count_(0),
3661       disallow_adding_new_values_(false) {
3662   if (info->IsStub()) {
3663     CallInterfaceDescriptor descriptor =
3664         info->code_stub()->GetCallInterfaceDescriptor();
3665     start_environment_ =
3666         new (zone_) HEnvironment(zone_, descriptor.GetRegisterParameterCount());
3667   } else {
3668     if (info->is_tracking_positions()) {
3669       info->TraceInlinedFunction(info->shared_info(), SourcePosition::Unknown(),
3670                                  InlinedFunctionInfo::kNoParentId);
3671     }
3672     start_environment_ =
3673         new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
3674   }
3675   start_environment_->set_ast_id(BailoutId::FunctionContext());
3676   entry_block_ = CreateBasicBlock();
3677   entry_block_->SetInitialEnvironment(start_environment_);
3678 }
3679 
3680 
CreateBasicBlock()3681 HBasicBlock* HGraph::CreateBasicBlock() {
3682   HBasicBlock* result = new(zone()) HBasicBlock(this);
3683   blocks_.Add(result, zone());
3684   return result;
3685 }
3686 
3687 
FinalizeUniqueness()3688 void HGraph::FinalizeUniqueness() {
3689   DisallowHeapAllocation no_gc;
3690   for (int i = 0; i < blocks()->length(); ++i) {
3691     for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
3692       it.Current()->FinalizeUniqueness();
3693     }
3694   }
3695 }
3696 
3697 
SourcePositionToScriptPosition(SourcePosition pos)3698 int HGraph::SourcePositionToScriptPosition(SourcePosition pos) {
3699   return (FLAG_hydrogen_track_positions && !pos.IsUnknown())
3700              ? info()->start_position_for(pos.inlining_id()) + pos.position()
3701              : pos.raw();
3702 }
3703 
3704 
3705 // Block ordering was implemented with two mutually recursive methods,
3706 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
3707 // The recursion could lead to stack overflow so the algorithm has been
3708 // implemented iteratively.
3709 // At a high level the algorithm looks like this:
3710 //
3711 // Postorder(block, loop_header) : {
3712 //   if (block has already been visited or is of another loop) return;
3713 //   mark block as visited;
3714 //   if (block is a loop header) {
3715 //     VisitLoopMembers(block, loop_header);
3716 //     VisitSuccessorsOfLoopHeader(block);
3717 //   } else {
3718 //     VisitSuccessors(block)
3719 //   }
3720 //   put block in result list;
3721 // }
3722 //
3723 // VisitLoopMembers(block, outer_loop_header) {
3724 //   foreach (block b in block loop members) {
3725 //     VisitSuccessorsOfLoopMember(b, outer_loop_header);
3726 //     if (b is loop header) VisitLoopMembers(b);
3727 //   }
3728 // }
3729 //
3730 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
3731 //   foreach (block b in block successors) Postorder(b, outer_loop_header)
3732 // }
3733 //
3734 // VisitSuccessorsOfLoopHeader(block) {
3735 //   foreach (block b in block successors) Postorder(b, block)
3736 // }
3737 //
3738 // VisitSuccessors(block, loop_header) {
3739 //   foreach (block b in block successors) Postorder(b, loop_header)
3740 // }
3741 //
3742 // The ordering is started calling Postorder(entry, NULL).
3743 //
3744 // Each instance of PostorderProcessor represents the "stack frame" of the
3745 // recursion, and particularly keeps the state of the loop (iteration) of the
3746 // "Visit..." function it represents.
3747 // To recycle memory we keep all the frames in a double linked list but
3748 // this means that we cannot use constructors to initialize the frames.
3749 //
3750 class PostorderProcessor : public ZoneObject {
3751  public:
3752   // Back link (towards the stack bottom).
parent()3753   PostorderProcessor* parent() {return father_; }
3754   // Forward link (towards the stack top).
child()3755   PostorderProcessor* child() {return child_; }
block()3756   HBasicBlock* block() { return block_; }
loop()3757   HLoopInformation* loop() { return loop_; }
loop_header()3758   HBasicBlock* loop_header() { return loop_header_; }
3759 
CreateEntryProcessor(Zone * zone,HBasicBlock * block)3760   static PostorderProcessor* CreateEntryProcessor(Zone* zone,
3761                                                   HBasicBlock* block) {
3762     PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
3763     return result->SetupSuccessors(zone, block, NULL);
3764   }
3765 
PerformStep(Zone * zone,ZoneList<HBasicBlock * > * order)3766   PostorderProcessor* PerformStep(Zone* zone,
3767                                   ZoneList<HBasicBlock*>* order) {
3768     PostorderProcessor* next =
3769         PerformNonBacktrackingStep(zone, order);
3770     if (next != NULL) {
3771       return next;
3772     } else {
3773       return Backtrack(zone, order);
3774     }
3775   }
3776 
3777  private:
PostorderProcessor(PostorderProcessor * father)3778   explicit PostorderProcessor(PostorderProcessor* father)
3779       : father_(father), child_(NULL), successor_iterator(NULL) { }
3780 
3781   // Each enum value states the cycle whose state is kept by this instance.
3782   enum LoopKind {
3783     NONE,
3784     SUCCESSORS,
3785     SUCCESSORS_OF_LOOP_HEADER,
3786     LOOP_MEMBERS,
3787     SUCCESSORS_OF_LOOP_MEMBER
3788   };
3789 
3790   // Each "Setup..." method is like a constructor for a cycle state.
SetupSuccessors(Zone * zone,HBasicBlock * block,HBasicBlock * loop_header)3791   PostorderProcessor* SetupSuccessors(Zone* zone,
3792                                       HBasicBlock* block,
3793                                       HBasicBlock* loop_header) {
3794     if (block == NULL || block->IsOrdered() ||
3795         block->parent_loop_header() != loop_header) {
3796       kind_ = NONE;
3797       block_ = NULL;
3798       loop_ = NULL;
3799       loop_header_ = NULL;
3800       return this;
3801     } else {
3802       block_ = block;
3803       loop_ = NULL;
3804       block->MarkAsOrdered();
3805 
3806       if (block->IsLoopHeader()) {
3807         kind_ = SUCCESSORS_OF_LOOP_HEADER;
3808         loop_header_ = block;
3809         InitializeSuccessors();
3810         PostorderProcessor* result = Push(zone);
3811         return result->SetupLoopMembers(zone, block, block->loop_information(),
3812                                         loop_header);
3813       } else {
3814         DCHECK(block->IsFinished());
3815         kind_ = SUCCESSORS;
3816         loop_header_ = loop_header;
3817         InitializeSuccessors();
3818         return this;
3819       }
3820     }
3821   }
3822 
SetupLoopMembers(Zone * zone,HBasicBlock * block,HLoopInformation * loop,HBasicBlock * loop_header)3823   PostorderProcessor* SetupLoopMembers(Zone* zone,
3824                                        HBasicBlock* block,
3825                                        HLoopInformation* loop,
3826                                        HBasicBlock* loop_header) {
3827     kind_ = LOOP_MEMBERS;
3828     block_ = block;
3829     loop_ = loop;
3830     loop_header_ = loop_header;
3831     InitializeLoopMembers();
3832     return this;
3833   }
3834 
SetupSuccessorsOfLoopMember(HBasicBlock * block,HLoopInformation * loop,HBasicBlock * loop_header)3835   PostorderProcessor* SetupSuccessorsOfLoopMember(
3836       HBasicBlock* block,
3837       HLoopInformation* loop,
3838       HBasicBlock* loop_header) {
3839     kind_ = SUCCESSORS_OF_LOOP_MEMBER;
3840     block_ = block;
3841     loop_ = loop;
3842     loop_header_ = loop_header;
3843     InitializeSuccessors();
3844     return this;
3845   }
3846 
3847   // This method "allocates" a new stack frame.
Push(Zone * zone)3848   PostorderProcessor* Push(Zone* zone) {
3849     if (child_ == NULL) {
3850       child_ = new(zone) PostorderProcessor(this);
3851     }
3852     return child_;
3853   }
3854 
ClosePostorder(ZoneList<HBasicBlock * > * order,Zone * zone)3855   void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
3856     DCHECK(block_->end()->FirstSuccessor() == NULL ||
3857            order->Contains(block_->end()->FirstSuccessor()) ||
3858            block_->end()->FirstSuccessor()->IsLoopHeader());
3859     DCHECK(block_->end()->SecondSuccessor() == NULL ||
3860            order->Contains(block_->end()->SecondSuccessor()) ||
3861            block_->end()->SecondSuccessor()->IsLoopHeader());
3862     order->Add(block_, zone);
3863   }
3864 
3865   // This method is the basic block to walk up the stack.
Pop(Zone * zone,ZoneList<HBasicBlock * > * order)3866   PostorderProcessor* Pop(Zone* zone,
3867                           ZoneList<HBasicBlock*>* order) {
3868     switch (kind_) {
3869       case SUCCESSORS:
3870       case SUCCESSORS_OF_LOOP_HEADER:
3871         ClosePostorder(order, zone);
3872         return father_;
3873       case LOOP_MEMBERS:
3874         return father_;
3875       case SUCCESSORS_OF_LOOP_MEMBER:
3876         if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
3877           // In this case we need to perform a LOOP_MEMBERS cycle so we
3878           // initialize it and return this instead of father.
3879           return SetupLoopMembers(zone, block(),
3880                                   block()->loop_information(), loop_header_);
3881         } else {
3882           return father_;
3883         }
3884       case NONE:
3885         return father_;
3886     }
3887     UNREACHABLE();
3888     return NULL;
3889   }
3890 
3891   // Walks up the stack.
Backtrack(Zone * zone,ZoneList<HBasicBlock * > * order)3892   PostorderProcessor* Backtrack(Zone* zone,
3893                                 ZoneList<HBasicBlock*>* order) {
3894     PostorderProcessor* parent = Pop(zone, order);
3895     while (parent != NULL) {
3896       PostorderProcessor* next =
3897           parent->PerformNonBacktrackingStep(zone, order);
3898       if (next != NULL) {
3899         return next;
3900       } else {
3901         parent = parent->Pop(zone, order);
3902       }
3903     }
3904     return NULL;
3905   }
3906 
PerformNonBacktrackingStep(Zone * zone,ZoneList<HBasicBlock * > * order)3907   PostorderProcessor* PerformNonBacktrackingStep(
3908       Zone* zone,
3909       ZoneList<HBasicBlock*>* order) {
3910     HBasicBlock* next_block;
3911     switch (kind_) {
3912       case SUCCESSORS:
3913         next_block = AdvanceSuccessors();
3914         if (next_block != NULL) {
3915           PostorderProcessor* result = Push(zone);
3916           return result->SetupSuccessors(zone, next_block, loop_header_);
3917         }
3918         break;
3919       case SUCCESSORS_OF_LOOP_HEADER:
3920         next_block = AdvanceSuccessors();
3921         if (next_block != NULL) {
3922           PostorderProcessor* result = Push(zone);
3923           return result->SetupSuccessors(zone, next_block, block());
3924         }
3925         break;
3926       case LOOP_MEMBERS:
3927         next_block = AdvanceLoopMembers();
3928         if (next_block != NULL) {
3929           PostorderProcessor* result = Push(zone);
3930           return result->SetupSuccessorsOfLoopMember(next_block,
3931                                                      loop_, loop_header_);
3932         }
3933         break;
3934       case SUCCESSORS_OF_LOOP_MEMBER:
3935         next_block = AdvanceSuccessors();
3936         if (next_block != NULL) {
3937           PostorderProcessor* result = Push(zone);
3938           return result->SetupSuccessors(zone, next_block, loop_header_);
3939         }
3940         break;
3941       case NONE:
3942         return NULL;
3943     }
3944     return NULL;
3945   }
3946 
3947   // The following two methods implement a "foreach b in successors" cycle.
InitializeSuccessors()3948   void InitializeSuccessors() {
3949     loop_index = 0;
3950     loop_length = 0;
3951     successor_iterator = HSuccessorIterator(block_->end());
3952   }
3953 
AdvanceSuccessors()3954   HBasicBlock* AdvanceSuccessors() {
3955     if (!successor_iterator.Done()) {
3956       HBasicBlock* result = successor_iterator.Current();
3957       successor_iterator.Advance();
3958       return result;
3959     }
3960     return NULL;
3961   }
3962 
3963   // The following two methods implement a "foreach b in loop members" cycle.
InitializeLoopMembers()3964   void InitializeLoopMembers() {
3965     loop_index = 0;
3966     loop_length = loop_->blocks()->length();
3967   }
3968 
AdvanceLoopMembers()3969   HBasicBlock* AdvanceLoopMembers() {
3970     if (loop_index < loop_length) {
3971       HBasicBlock* result = loop_->blocks()->at(loop_index);
3972       loop_index++;
3973       return result;
3974     } else {
3975       return NULL;
3976     }
3977   }
3978 
3979   LoopKind kind_;
3980   PostorderProcessor* father_;
3981   PostorderProcessor* child_;
3982   HLoopInformation* loop_;
3983   HBasicBlock* block_;
3984   HBasicBlock* loop_header_;
3985   int loop_index;
3986   int loop_length;
3987   HSuccessorIterator successor_iterator;
3988 };
3989 
3990 
OrderBlocks()3991 void HGraph::OrderBlocks() {
3992   CompilationPhase phase("H_Block ordering", info());
3993 
3994 #ifdef DEBUG
3995   // Initially the blocks must not be ordered.
3996   for (int i = 0; i < blocks_.length(); ++i) {
3997     DCHECK(!blocks_[i]->IsOrdered());
3998   }
3999 #endif
4000 
4001   PostorderProcessor* postorder =
4002       PostorderProcessor::CreateEntryProcessor(zone(), blocks_[0]);
4003   blocks_.Rewind(0);
4004   while (postorder) {
4005     postorder = postorder->PerformStep(zone(), &blocks_);
4006   }
4007 
4008 #ifdef DEBUG
4009   // Now all blocks must be marked as ordered.
4010   for (int i = 0; i < blocks_.length(); ++i) {
4011     DCHECK(blocks_[i]->IsOrdered());
4012   }
4013 #endif
4014 
4015   // Reverse block list and assign block IDs.
4016   for (int i = 0, j = blocks_.length(); --j >= i; ++i) {
4017     HBasicBlock* bi = blocks_[i];
4018     HBasicBlock* bj = blocks_[j];
4019     bi->set_block_id(j);
4020     bj->set_block_id(i);
4021     blocks_[i] = bj;
4022     blocks_[j] = bi;
4023   }
4024 }
4025 
4026 
AssignDominators()4027 void HGraph::AssignDominators() {
4028   HPhase phase("H_Assign dominators", this);
4029   for (int i = 0; i < blocks_.length(); ++i) {
4030     HBasicBlock* block = blocks_[i];
4031     if (block->IsLoopHeader()) {
4032       // Only the first predecessor of a loop header is from outside the loop.
4033       // All others are back edges, and thus cannot dominate the loop header.
4034       block->AssignCommonDominator(block->predecessors()->first());
4035       block->AssignLoopSuccessorDominators();
4036     } else {
4037       for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
4038         blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
4039       }
4040     }
4041   }
4042 }
4043 
4044 
CheckArgumentsPhiUses()4045 bool HGraph::CheckArgumentsPhiUses() {
4046   int block_count = blocks_.length();
4047   for (int i = 0; i < block_count; ++i) {
4048     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4049       HPhi* phi = blocks_[i]->phis()->at(j);
4050       // We don't support phi uses of arguments for now.
4051       if (phi->CheckFlag(HValue::kIsArguments)) return false;
4052     }
4053   }
4054   return true;
4055 }
4056 
4057 
CheckConstPhiUses()4058 bool HGraph::CheckConstPhiUses() {
4059   int block_count = blocks_.length();
4060   for (int i = 0; i < block_count; ++i) {
4061     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4062       HPhi* phi = blocks_[i]->phis()->at(j);
4063       // Check for the hole value (from an uninitialized const).
4064       for (int k = 0; k < phi->OperandCount(); k++) {
4065         if (phi->OperandAt(k) == GetConstantHole()) return false;
4066       }
4067     }
4068   }
4069   return true;
4070 }
4071 
4072 
CollectPhis()4073 void HGraph::CollectPhis() {
4074   int block_count = blocks_.length();
4075   phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
4076   for (int i = 0; i < block_count; ++i) {
4077     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
4078       HPhi* phi = blocks_[i]->phis()->at(j);
4079       phi_list_->Add(phi, zone());
4080     }
4081   }
4082 }
4083 
4084 
4085 // Implementation of utility class to encapsulate the translation state for
4086 // a (possibly inlined) function.
FunctionState(HOptimizedGraphBuilder * owner,CompilationInfo * info,InliningKind inlining_kind,int inlining_id)4087 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
4088                              CompilationInfo* info, InliningKind inlining_kind,
4089                              int inlining_id)
4090     : owner_(owner),
4091       compilation_info_(info),
4092       call_context_(NULL),
4093       inlining_kind_(inlining_kind),
4094       function_return_(NULL),
4095       test_context_(NULL),
4096       entry_(NULL),
4097       arguments_object_(NULL),
4098       arguments_elements_(NULL),
4099       inlining_id_(inlining_id),
4100       outer_source_position_(SourcePosition::Unknown()),
4101       outer_(owner->function_state()) {
4102   if (outer_ != NULL) {
4103     // State for an inline function.
4104     if (owner->ast_context()->IsTest()) {
4105       HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
4106       HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
4107       if_true->MarkAsInlineReturnTarget(owner->current_block());
4108       if_false->MarkAsInlineReturnTarget(owner->current_block());
4109       TestContext* outer_test_context = TestContext::cast(owner->ast_context());
4110       Expression* cond = outer_test_context->condition();
4111       // The AstContext constructor pushed on the context stack.  This newed
4112       // instance is the reason that AstContext can't be BASE_EMBEDDED.
4113       test_context_ = new TestContext(owner, cond, if_true, if_false);
4114     } else {
4115       function_return_ = owner->graph()->CreateBasicBlock();
4116       function_return()->MarkAsInlineReturnTarget(owner->current_block());
4117     }
4118     // Set this after possibly allocating a new TestContext above.
4119     call_context_ = owner->ast_context();
4120   }
4121 
4122   // Push on the state stack.
4123   owner->set_function_state(this);
4124 
4125   if (compilation_info_->is_tracking_positions()) {
4126     outer_source_position_ = owner->source_position();
4127     owner->EnterInlinedSource(
4128       info->shared_info()->start_position(),
4129       inlining_id);
4130     owner->SetSourcePosition(info->shared_info()->start_position());
4131   }
4132 }
4133 
4134 
~FunctionState()4135 FunctionState::~FunctionState() {
4136   delete test_context_;
4137   owner_->set_function_state(outer_);
4138 
4139   if (compilation_info_->is_tracking_positions()) {
4140     owner_->set_source_position(outer_source_position_);
4141     owner_->EnterInlinedSource(
4142       outer_->compilation_info()->shared_info()->start_position(),
4143       outer_->inlining_id());
4144   }
4145 }
4146 
4147 
4148 // Implementation of utility classes to represent an expression's context in
4149 // the AST.
AstContext(HOptimizedGraphBuilder * owner,Expression::Context kind)4150 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
4151     : owner_(owner),
4152       kind_(kind),
4153       outer_(owner->ast_context()),
4154       typeof_mode_(NOT_INSIDE_TYPEOF) {
4155   owner->set_ast_context(this);  // Push.
4156 #ifdef DEBUG
4157   DCHECK(owner->environment()->frame_type() == JS_FUNCTION);
4158   original_length_ = owner->environment()->length();
4159 #endif
4160 }
4161 
4162 
~AstContext()4163 AstContext::~AstContext() {
4164   owner_->set_ast_context(outer_);  // Pop.
4165 }
4166 
4167 
~EffectContext()4168 EffectContext::~EffectContext() {
4169   DCHECK(owner()->HasStackOverflow() ||
4170          owner()->current_block() == NULL ||
4171          (owner()->environment()->length() == original_length_ &&
4172           owner()->environment()->frame_type() == JS_FUNCTION));
4173 }
4174 
4175 
~ValueContext()4176 ValueContext::~ValueContext() {
4177   DCHECK(owner()->HasStackOverflow() ||
4178          owner()->current_block() == NULL ||
4179          (owner()->environment()->length() == original_length_ + 1 &&
4180           owner()->environment()->frame_type() == JS_FUNCTION));
4181 }
4182 
4183 
ReturnValue(HValue * value)4184 void EffectContext::ReturnValue(HValue* value) {
4185   // The value is simply ignored.
4186 }
4187 
4188 
ReturnValue(HValue * value)4189 void ValueContext::ReturnValue(HValue* value) {
4190   // The value is tracked in the bailout environment, and communicated
4191   // through the environment as the result of the expression.
4192   if (value->CheckFlag(HValue::kIsArguments)) {
4193     if (flag_ == ARGUMENTS_FAKED) {
4194       value = owner()->graph()->GetConstantUndefined();
4195     } else if (!arguments_allowed()) {
4196       owner()->Bailout(kBadValueContextForArgumentsValue);
4197     }
4198   }
4199   owner()->Push(value);
4200 }
4201 
4202 
ReturnValue(HValue * value)4203 void TestContext::ReturnValue(HValue* value) {
4204   BuildBranch(value);
4205 }
4206 
4207 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)4208 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4209   DCHECK(!instr->IsControlInstruction());
4210   owner()->AddInstruction(instr);
4211   if (instr->HasObservableSideEffects()) {
4212     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4213   }
4214 }
4215 
4216 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)4217 void EffectContext::ReturnControl(HControlInstruction* instr,
4218                                   BailoutId ast_id) {
4219   DCHECK(!instr->HasObservableSideEffects());
4220   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4221   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4222   instr->SetSuccessorAt(0, empty_true);
4223   instr->SetSuccessorAt(1, empty_false);
4224   owner()->FinishCurrentBlock(instr);
4225   HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
4226   owner()->set_current_block(join);
4227 }
4228 
4229 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)4230 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
4231                                        BailoutId ast_id) {
4232   HBasicBlock* true_branch = NULL;
4233   HBasicBlock* false_branch = NULL;
4234   continuation->Continue(&true_branch, &false_branch);
4235   if (!continuation->IsTrueReachable()) {
4236     owner()->set_current_block(false_branch);
4237   } else if (!continuation->IsFalseReachable()) {
4238     owner()->set_current_block(true_branch);
4239   } else {
4240     HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
4241     owner()->set_current_block(join);
4242   }
4243 }
4244 
4245 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)4246 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4247   DCHECK(!instr->IsControlInstruction());
4248   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4249     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4250   }
4251   owner()->AddInstruction(instr);
4252   owner()->Push(instr);
4253   if (instr->HasObservableSideEffects()) {
4254     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4255   }
4256 }
4257 
4258 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)4259 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4260   DCHECK(!instr->HasObservableSideEffects());
4261   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4262     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4263   }
4264   HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
4265   HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
4266   instr->SetSuccessorAt(0, materialize_true);
4267   instr->SetSuccessorAt(1, materialize_false);
4268   owner()->FinishCurrentBlock(instr);
4269   owner()->set_current_block(materialize_true);
4270   owner()->Push(owner()->graph()->GetConstantTrue());
4271   owner()->set_current_block(materialize_false);
4272   owner()->Push(owner()->graph()->GetConstantFalse());
4273   HBasicBlock* join =
4274     owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4275   owner()->set_current_block(join);
4276 }
4277 
4278 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)4279 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
4280                                       BailoutId ast_id) {
4281   HBasicBlock* materialize_true = NULL;
4282   HBasicBlock* materialize_false = NULL;
4283   continuation->Continue(&materialize_true, &materialize_false);
4284   if (continuation->IsTrueReachable()) {
4285     owner()->set_current_block(materialize_true);
4286     owner()->Push(owner()->graph()->GetConstantTrue());
4287     owner()->set_current_block(materialize_true);
4288   }
4289   if (continuation->IsFalseReachable()) {
4290     owner()->set_current_block(materialize_false);
4291     owner()->Push(owner()->graph()->GetConstantFalse());
4292     owner()->set_current_block(materialize_false);
4293   }
4294   if (continuation->TrueAndFalseReachable()) {
4295     HBasicBlock* join =
4296         owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4297     owner()->set_current_block(join);
4298   }
4299 }
4300 
4301 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)4302 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4303   DCHECK(!instr->IsControlInstruction());
4304   HOptimizedGraphBuilder* builder = owner();
4305   builder->AddInstruction(instr);
4306   // We expect a simulate after every expression with side effects, though
4307   // this one isn't actually needed (and wouldn't work if it were targeted).
4308   if (instr->HasObservableSideEffects()) {
4309     builder->Push(instr);
4310     builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4311     builder->Pop();
4312   }
4313   BuildBranch(instr);
4314 }
4315 
4316 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)4317 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4318   DCHECK(!instr->HasObservableSideEffects());
4319   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4320   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4321   instr->SetSuccessorAt(0, empty_true);
4322   instr->SetSuccessorAt(1, empty_false);
4323   owner()->FinishCurrentBlock(instr);
4324   owner()->Goto(empty_true, if_true(), owner()->function_state());
4325   owner()->Goto(empty_false, if_false(), owner()->function_state());
4326   owner()->set_current_block(NULL);
4327 }
4328 
4329 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)4330 void TestContext::ReturnContinuation(HIfContinuation* continuation,
4331                                      BailoutId ast_id) {
4332   HBasicBlock* true_branch = NULL;
4333   HBasicBlock* false_branch = NULL;
4334   continuation->Continue(&true_branch, &false_branch);
4335   if (continuation->IsTrueReachable()) {
4336     owner()->Goto(true_branch, if_true(), owner()->function_state());
4337   }
4338   if (continuation->IsFalseReachable()) {
4339     owner()->Goto(false_branch, if_false(), owner()->function_state());
4340   }
4341   owner()->set_current_block(NULL);
4342 }
4343 
4344 
BuildBranch(HValue * value)4345 void TestContext::BuildBranch(HValue* value) {
4346   // We expect the graph to be in edge-split form: there is no edge that
4347   // connects a branch node to a join node.  We conservatively ensure that
4348   // property by always adding an empty block on the outgoing edges of this
4349   // branch.
4350   HOptimizedGraphBuilder* builder = owner();
4351   if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
4352     builder->Bailout(kArgumentsObjectValueInATestContext);
4353   }
4354   ToBooleanStub::Types expected(condition()->to_boolean_types());
4355   ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
4356 }
4357 
4358 
4359 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
4360 #define CHECK_BAILOUT(call)                     \
4361   do {                                          \
4362     call;                                       \
4363     if (HasStackOverflow()) return;             \
4364   } while (false)
4365 
4366 
4367 #define CHECK_ALIVE(call)                                       \
4368   do {                                                          \
4369     call;                                                       \
4370     if (HasStackOverflow() || current_block() == NULL) return;  \
4371   } while (false)
4372 
4373 
4374 #define CHECK_ALIVE_OR_RETURN(call, value)                            \
4375   do {                                                                \
4376     call;                                                             \
4377     if (HasStackOverflow() || current_block() == NULL) return value;  \
4378   } while (false)
4379 
4380 
Bailout(BailoutReason reason)4381 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
4382   current_info()->AbortOptimization(reason);
4383   SetStackOverflow();
4384 }
4385 
4386 
VisitForEffect(Expression * expr)4387 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
4388   EffectContext for_effect(this);
4389   Visit(expr);
4390 }
4391 
4392 
VisitForValue(Expression * expr,ArgumentsAllowedFlag flag)4393 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
4394                                            ArgumentsAllowedFlag flag) {
4395   ValueContext for_value(this, flag);
4396   Visit(expr);
4397 }
4398 
4399 
VisitForTypeOf(Expression * expr)4400 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
4401   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
4402   for_value.set_typeof_mode(INSIDE_TYPEOF);
4403   Visit(expr);
4404 }
4405 
4406 
VisitForControl(Expression * expr,HBasicBlock * true_block,HBasicBlock * false_block)4407 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
4408                                              HBasicBlock* true_block,
4409                                              HBasicBlock* false_block) {
4410   TestContext for_control(this, expr, true_block, false_block);
4411   Visit(expr);
4412 }
4413 
4414 
VisitExpressions(ZoneList<Expression * > * exprs)4415 void HOptimizedGraphBuilder::VisitExpressions(
4416     ZoneList<Expression*>* exprs) {
4417   for (int i = 0; i < exprs->length(); ++i) {
4418     CHECK_ALIVE(VisitForValue(exprs->at(i)));
4419   }
4420 }
4421 
4422 
VisitExpressions(ZoneList<Expression * > * exprs,ArgumentsAllowedFlag flag)4423 void HOptimizedGraphBuilder::VisitExpressions(ZoneList<Expression*>* exprs,
4424                                               ArgumentsAllowedFlag flag) {
4425   for (int i = 0; i < exprs->length(); ++i) {
4426     CHECK_ALIVE(VisitForValue(exprs->at(i), flag));
4427   }
4428 }
4429 
4430 
BuildGraph()4431 bool HOptimizedGraphBuilder::BuildGraph() {
4432   if (IsSubclassConstructor(current_info()->literal()->kind())) {
4433     Bailout(kSuperReference);
4434     return false;
4435   }
4436 
4437   Scope* scope = current_info()->scope();
4438   SetUpScope(scope);
4439 
4440   // Add an edge to the body entry.  This is warty: the graph's start
4441   // environment will be used by the Lithium translation as the initial
4442   // environment on graph entry, but it has now been mutated by the
4443   // Hydrogen translation of the instructions in the start block.  This
4444   // environment uses values which have not been defined yet.  These
4445   // Hydrogen instructions will then be replayed by the Lithium
4446   // translation, so they cannot have an environment effect.  The edge to
4447   // the body's entry block (along with some special logic for the start
4448   // block in HInstruction::InsertAfter) seals the start block from
4449   // getting unwanted instructions inserted.
4450   //
4451   // TODO(kmillikin): Fix this.  Stop mutating the initial environment.
4452   // Make the Hydrogen instructions in the initial block into Hydrogen
4453   // values (but not instructions), present in the initial environment and
4454   // not replayed by the Lithium translation.
4455   HEnvironment* initial_env = environment()->CopyWithoutHistory();
4456   HBasicBlock* body_entry = CreateBasicBlock(initial_env);
4457   Goto(body_entry);
4458   body_entry->SetJoinId(BailoutId::FunctionEntry());
4459   set_current_block(body_entry);
4460 
4461   VisitDeclarations(scope->declarations());
4462   Add<HSimulate>(BailoutId::Declarations());
4463 
4464   Add<HStackCheck>(HStackCheck::kFunctionEntry);
4465 
4466   VisitStatements(current_info()->literal()->body());
4467   if (HasStackOverflow()) return false;
4468 
4469   if (current_block() != NULL) {
4470     Add<HReturn>(graph()->GetConstantUndefined());
4471     set_current_block(NULL);
4472   }
4473 
4474   // If the checksum of the number of type info changes is the same as the
4475   // last time this function was compiled, then this recompile is likely not
4476   // due to missing/inadequate type feedback, but rather too aggressive
4477   // optimization. Disable optimistic LICM in that case.
4478   Handle<Code> unoptimized_code(current_info()->shared_info()->code());
4479   DCHECK(unoptimized_code->kind() == Code::FUNCTION);
4480   Handle<TypeFeedbackInfo> type_info(
4481       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
4482   int checksum = type_info->own_type_change_checksum();
4483   int composite_checksum = graph()->update_type_change_checksum(checksum);
4484   graph()->set_use_optimistic_licm(
4485       !type_info->matches_inlined_type_change_checksum(composite_checksum));
4486   type_info->set_inlined_type_change_checksum(composite_checksum);
4487 
4488   // Perform any necessary OSR-specific cleanups or changes to the graph.
4489   osr()->FinishGraph();
4490 
4491   return true;
4492 }
4493 
4494 
Optimize(BailoutReason * bailout_reason)4495 bool HGraph::Optimize(BailoutReason* bailout_reason) {
4496   OrderBlocks();
4497   AssignDominators();
4498 
4499   // We need to create a HConstant "zero" now so that GVN will fold every
4500   // zero-valued constant in the graph together.
4501   // The constant is needed to make idef-based bounds check work: the pass
4502   // evaluates relations with "zero" and that zero cannot be created after GVN.
4503   GetConstant0();
4504 
4505 #ifdef DEBUG
4506   // Do a full verify after building the graph and computing dominators.
4507   Verify(true);
4508 #endif
4509 
4510   if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
4511     Run<HEnvironmentLivenessAnalysisPhase>();
4512   }
4513 
4514   if (!CheckConstPhiUses()) {
4515     *bailout_reason = kUnsupportedPhiUseOfConstVariable;
4516     return false;
4517   }
4518   Run<HRedundantPhiEliminationPhase>();
4519   if (!CheckArgumentsPhiUses()) {
4520     *bailout_reason = kUnsupportedPhiUseOfArguments;
4521     return false;
4522   }
4523 
4524   // Find and mark unreachable code to simplify optimizations, especially gvn,
4525   // where unreachable code could unnecessarily defeat LICM.
4526   Run<HMarkUnreachableBlocksPhase>();
4527 
4528   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4529   if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
4530 
4531   if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
4532 
4533   CollectPhis();
4534 
4535   if (has_osr()) osr()->FinishOsrValues();
4536 
4537   Run<HInferRepresentationPhase>();
4538 
4539   // Remove HSimulate instructions that have turned out not to be needed
4540   // after all by folding them into the following HSimulate.
4541   // This must happen after inferring representations.
4542   Run<HMergeRemovableSimulatesPhase>();
4543 
4544   Run<HMarkDeoptimizeOnUndefinedPhase>();
4545   Run<HRepresentationChangesPhase>();
4546 
4547   Run<HInferTypesPhase>();
4548 
4549   // Must be performed before canonicalization to ensure that Canonicalize
4550   // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
4551   // zero.
4552   Run<HUint32AnalysisPhase>();
4553 
4554   if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
4555 
4556   if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
4557 
4558   if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
4559 
4560   if (FLAG_store_elimination) Run<HStoreEliminationPhase>();
4561 
4562   Run<HRangeAnalysisPhase>();
4563 
4564   Run<HComputeChangeUndefinedToNaN>();
4565 
4566   // Eliminate redundant stack checks on backwards branches.
4567   Run<HStackCheckEliminationPhase>();
4568 
4569   if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
4570   if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
4571   if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
4572   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4573 
4574   RestoreActualValues();
4575 
4576   // Find unreachable code a second time, GVN and other optimizations may have
4577   // made blocks unreachable that were previously reachable.
4578   Run<HMarkUnreachableBlocksPhase>();
4579 
4580   return true;
4581 }
4582 
4583 
RestoreActualValues()4584 void HGraph::RestoreActualValues() {
4585   HPhase phase("H_Restore actual values", this);
4586 
4587   for (int block_index = 0; block_index < blocks()->length(); block_index++) {
4588     HBasicBlock* block = blocks()->at(block_index);
4589 
4590 #ifdef DEBUG
4591     for (int i = 0; i < block->phis()->length(); i++) {
4592       HPhi* phi = block->phis()->at(i);
4593       DCHECK(phi->ActualValue() == phi);
4594     }
4595 #endif
4596 
4597     for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
4598       HInstruction* instruction = it.Current();
4599       if (instruction->ActualValue() == instruction) continue;
4600       if (instruction->CheckFlag(HValue::kIsDead)) {
4601         // The instruction was marked as deleted but left in the graph
4602         // as a control flow dependency point for subsequent
4603         // instructions.
4604         instruction->DeleteAndReplaceWith(instruction->ActualValue());
4605       } else {
4606         DCHECK(instruction->IsInformativeDefinition());
4607         if (instruction->IsPurelyInformativeDefinition()) {
4608           instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
4609         } else {
4610           instruction->ReplaceAllUsesWith(instruction->ActualValue());
4611         }
4612       }
4613     }
4614   }
4615 }
4616 
4617 
PushArgumentsFromEnvironment(int count)4618 void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
4619   ZoneList<HValue*> arguments(count, zone());
4620   for (int i = 0; i < count; ++i) {
4621     arguments.Add(Pop(), zone());
4622   }
4623 
4624   HPushArguments* push_args = New<HPushArguments>();
4625   while (!arguments.is_empty()) {
4626     push_args->AddInput(arguments.RemoveLast());
4627   }
4628   AddInstruction(push_args);
4629 }
4630 
4631 
4632 template <class Instruction>
PreProcessCall(Instruction * call)4633 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
4634   PushArgumentsFromEnvironment(call->argument_count());
4635   return call;
4636 }
4637 
4638 
SetUpScope(Scope * scope)4639 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
4640   HEnvironment* prolog_env = environment();
4641   int parameter_count = environment()->parameter_count();
4642   ZoneList<HValue*> parameters(parameter_count, zone());
4643   for (int i = 0; i < parameter_count; ++i) {
4644     HInstruction* parameter = Add<HParameter>(static_cast<unsigned>(i));
4645     parameters.Add(parameter, zone());
4646     environment()->Bind(i, parameter);
4647   }
4648 
4649   HConstant* undefined_constant = graph()->GetConstantUndefined();
4650   // Initialize specials and locals to undefined.
4651   for (int i = parameter_count + 1; i < environment()->length(); ++i) {
4652     environment()->Bind(i, undefined_constant);
4653   }
4654   Add<HPrologue>();
4655 
4656   HEnvironment* initial_env = environment()->CopyWithoutHistory();
4657   HBasicBlock* body_entry = CreateBasicBlock(initial_env);
4658   GotoNoSimulate(body_entry);
4659   set_current_block(body_entry);
4660 
4661   // Initialize context of prolog environment to undefined.
4662   prolog_env->BindContext(undefined_constant);
4663 
4664   // First special is HContext.
4665   HInstruction* context = Add<HContext>();
4666   environment()->BindContext(context);
4667 
4668   // Create an arguments object containing the initial parameters.  Set the
4669   // initial values of parameters including "this" having parameter index 0.
4670   DCHECK_EQ(scope->num_parameters() + 1, parameter_count);
4671   HArgumentsObject* arguments_object = New<HArgumentsObject>(parameter_count);
4672   for (int i = 0; i < parameter_count; ++i) {
4673     HValue* parameter = parameters.at(i);
4674     arguments_object->AddArgument(parameter, zone());
4675   }
4676 
4677   AddInstruction(arguments_object);
4678   graph()->SetArgumentsObject(arguments_object);
4679 
4680   // Handle the arguments and arguments shadow variables specially (they do
4681   // not have declarations).
4682   if (scope->arguments() != NULL) {
4683     environment()->Bind(scope->arguments(), graph()->GetArgumentsObject());
4684   }
4685 
4686   int rest_index;
4687   Variable* rest = scope->rest_parameter(&rest_index);
4688   if (rest) {
4689     return Bailout(kRestParameter);
4690   }
4691 
4692   if (scope->this_function_var() != nullptr ||
4693       scope->new_target_var() != nullptr) {
4694     return Bailout(kSuperReference);
4695   }
4696 
4697   // Trace the call.
4698   if (FLAG_trace && top_info()->IsOptimizing()) {
4699     Add<HCallRuntime>(Runtime::FunctionForId(Runtime::kTraceEnter), 0);
4700   }
4701 }
4702 
4703 
VisitStatements(ZoneList<Statement * > * statements)4704 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
4705   for (int i = 0; i < statements->length(); i++) {
4706     Statement* stmt = statements->at(i);
4707     CHECK_ALIVE(Visit(stmt));
4708     if (stmt->IsJump()) break;
4709   }
4710 }
4711 
4712 
VisitBlock(Block * stmt)4713 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
4714   DCHECK(!HasStackOverflow());
4715   DCHECK(current_block() != NULL);
4716   DCHECK(current_block()->HasPredecessor());
4717 
4718   Scope* outer_scope = scope();
4719   Scope* scope = stmt->scope();
4720   BreakAndContinueInfo break_info(stmt, outer_scope);
4721 
4722   { BreakAndContinueScope push(&break_info, this);
4723     if (scope != NULL) {
4724       if (scope->NeedsContext()) {
4725         // Load the function object.
4726         Scope* declaration_scope = scope->DeclarationScope();
4727         HInstruction* function;
4728         HValue* outer_context = environment()->context();
4729         if (declaration_scope->is_script_scope() ||
4730             declaration_scope->is_eval_scope()) {
4731           function = new (zone())
4732               HLoadContextSlot(outer_context, Context::CLOSURE_INDEX,
4733                                HLoadContextSlot::kNoCheck);
4734         } else {
4735           function = New<HThisFunction>();
4736         }
4737         AddInstruction(function);
4738         // Allocate a block context and store it to the stack frame.
4739         HInstruction* inner_context = Add<HAllocateBlockContext>(
4740             outer_context, function, scope->GetScopeInfo(isolate()));
4741         HInstruction* instr = Add<HStoreFrameContext>(inner_context);
4742         set_scope(scope);
4743         environment()->BindContext(inner_context);
4744         if (instr->HasObservableSideEffects()) {
4745           AddSimulate(stmt->EntryId(), REMOVABLE_SIMULATE);
4746         }
4747       }
4748       VisitDeclarations(scope->declarations());
4749       AddSimulate(stmt->DeclsId(), REMOVABLE_SIMULATE);
4750     }
4751     CHECK_BAILOUT(VisitStatements(stmt->statements()));
4752   }
4753   set_scope(outer_scope);
4754   if (scope != NULL && current_block() != NULL &&
4755       scope->ContextLocalCount() > 0) {
4756     HValue* inner_context = environment()->context();
4757     HValue* outer_context = Add<HLoadNamedField>(
4758         inner_context, nullptr,
4759         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4760 
4761     HInstruction* instr = Add<HStoreFrameContext>(outer_context);
4762     environment()->BindContext(outer_context);
4763     if (instr->HasObservableSideEffects()) {
4764       AddSimulate(stmt->ExitId(), REMOVABLE_SIMULATE);
4765     }
4766   }
4767   HBasicBlock* break_block = break_info.break_block();
4768   if (break_block != NULL) {
4769     if (current_block() != NULL) Goto(break_block);
4770     break_block->SetJoinId(stmt->ExitId());
4771     set_current_block(break_block);
4772   }
4773 }
4774 
4775 
VisitExpressionStatement(ExpressionStatement * stmt)4776 void HOptimizedGraphBuilder::VisitExpressionStatement(
4777     ExpressionStatement* stmt) {
4778   DCHECK(!HasStackOverflow());
4779   DCHECK(current_block() != NULL);
4780   DCHECK(current_block()->HasPredecessor());
4781   VisitForEffect(stmt->expression());
4782 }
4783 
4784 
VisitEmptyStatement(EmptyStatement * stmt)4785 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
4786   DCHECK(!HasStackOverflow());
4787   DCHECK(current_block() != NULL);
4788   DCHECK(current_block()->HasPredecessor());
4789 }
4790 
4791 
VisitSloppyBlockFunctionStatement(SloppyBlockFunctionStatement * stmt)4792 void HOptimizedGraphBuilder::VisitSloppyBlockFunctionStatement(
4793     SloppyBlockFunctionStatement* stmt) {
4794   Visit(stmt->statement());
4795 }
4796 
4797 
VisitIfStatement(IfStatement * stmt)4798 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
4799   DCHECK(!HasStackOverflow());
4800   DCHECK(current_block() != NULL);
4801   DCHECK(current_block()->HasPredecessor());
4802   if (stmt->condition()->ToBooleanIsTrue()) {
4803     Add<HSimulate>(stmt->ThenId());
4804     Visit(stmt->then_statement());
4805   } else if (stmt->condition()->ToBooleanIsFalse()) {
4806     Add<HSimulate>(stmt->ElseId());
4807     Visit(stmt->else_statement());
4808   } else {
4809     HBasicBlock* cond_true = graph()->CreateBasicBlock();
4810     HBasicBlock* cond_false = graph()->CreateBasicBlock();
4811     CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
4812 
4813     if (cond_true->HasPredecessor()) {
4814       cond_true->SetJoinId(stmt->ThenId());
4815       set_current_block(cond_true);
4816       CHECK_BAILOUT(Visit(stmt->then_statement()));
4817       cond_true = current_block();
4818     } else {
4819       cond_true = NULL;
4820     }
4821 
4822     if (cond_false->HasPredecessor()) {
4823       cond_false->SetJoinId(stmt->ElseId());
4824       set_current_block(cond_false);
4825       CHECK_BAILOUT(Visit(stmt->else_statement()));
4826       cond_false = current_block();
4827     } else {
4828       cond_false = NULL;
4829     }
4830 
4831     HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
4832     set_current_block(join);
4833   }
4834 }
4835 
4836 
Get(BreakableStatement * stmt,BreakType type,Scope ** scope,int * drop_extra)4837 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
4838     BreakableStatement* stmt,
4839     BreakType type,
4840     Scope** scope,
4841     int* drop_extra) {
4842   *drop_extra = 0;
4843   BreakAndContinueScope* current = this;
4844   while (current != NULL && current->info()->target() != stmt) {
4845     *drop_extra += current->info()->drop_extra();
4846     current = current->next();
4847   }
4848   DCHECK(current != NULL);  // Always found (unless stack is malformed).
4849   *scope = current->info()->scope();
4850 
4851   if (type == BREAK) {
4852     *drop_extra += current->info()->drop_extra();
4853   }
4854 
4855   HBasicBlock* block = NULL;
4856   switch (type) {
4857     case BREAK:
4858       block = current->info()->break_block();
4859       if (block == NULL) {
4860         block = current->owner()->graph()->CreateBasicBlock();
4861         current->info()->set_break_block(block);
4862       }
4863       break;
4864 
4865     case CONTINUE:
4866       block = current->info()->continue_block();
4867       if (block == NULL) {
4868         block = current->owner()->graph()->CreateBasicBlock();
4869         current->info()->set_continue_block(block);
4870       }
4871       break;
4872   }
4873 
4874   return block;
4875 }
4876 
4877 
VisitContinueStatement(ContinueStatement * stmt)4878 void HOptimizedGraphBuilder::VisitContinueStatement(
4879     ContinueStatement* stmt) {
4880   DCHECK(!HasStackOverflow());
4881   DCHECK(current_block() != NULL);
4882   DCHECK(current_block()->HasPredecessor());
4883   Scope* outer_scope = NULL;
4884   Scope* inner_scope = scope();
4885   int drop_extra = 0;
4886   HBasicBlock* continue_block = break_scope()->Get(
4887       stmt->target(), BreakAndContinueScope::CONTINUE,
4888       &outer_scope, &drop_extra);
4889   HValue* context = environment()->context();
4890   Drop(drop_extra);
4891   int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4892   if (context_pop_count > 0) {
4893     while (context_pop_count-- > 0) {
4894       HInstruction* context_instruction = Add<HLoadNamedField>(
4895           context, nullptr,
4896           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4897       context = context_instruction;
4898     }
4899     HInstruction* instr = Add<HStoreFrameContext>(context);
4900     if (instr->HasObservableSideEffects()) {
4901       AddSimulate(stmt->target()->EntryId(), REMOVABLE_SIMULATE);
4902     }
4903     environment()->BindContext(context);
4904   }
4905 
4906   Goto(continue_block);
4907   set_current_block(NULL);
4908 }
4909 
4910 
VisitBreakStatement(BreakStatement * stmt)4911 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
4912   DCHECK(!HasStackOverflow());
4913   DCHECK(current_block() != NULL);
4914   DCHECK(current_block()->HasPredecessor());
4915   Scope* outer_scope = NULL;
4916   Scope* inner_scope = scope();
4917   int drop_extra = 0;
4918   HBasicBlock* break_block = break_scope()->Get(
4919       stmt->target(), BreakAndContinueScope::BREAK,
4920       &outer_scope, &drop_extra);
4921   HValue* context = environment()->context();
4922   Drop(drop_extra);
4923   int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4924   if (context_pop_count > 0) {
4925     while (context_pop_count-- > 0) {
4926       HInstruction* context_instruction = Add<HLoadNamedField>(
4927           context, nullptr,
4928           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4929       context = context_instruction;
4930     }
4931     HInstruction* instr = Add<HStoreFrameContext>(context);
4932     if (instr->HasObservableSideEffects()) {
4933       AddSimulate(stmt->target()->ExitId(), REMOVABLE_SIMULATE);
4934     }
4935     environment()->BindContext(context);
4936   }
4937   Goto(break_block);
4938   set_current_block(NULL);
4939 }
4940 
4941 
VisitReturnStatement(ReturnStatement * stmt)4942 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
4943   DCHECK(!HasStackOverflow());
4944   DCHECK(current_block() != NULL);
4945   DCHECK(current_block()->HasPredecessor());
4946   FunctionState* state = function_state();
4947   AstContext* context = call_context();
4948   if (context == NULL) {
4949     // Not an inlined return, so an actual one.
4950     CHECK_ALIVE(VisitForValue(stmt->expression()));
4951     HValue* result = environment()->Pop();
4952     Add<HReturn>(result);
4953   } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
4954     // Return from an inlined construct call. In a test context the return value
4955     // will always evaluate to true, in a value context the return value needs
4956     // to be a JSObject.
4957     if (context->IsTest()) {
4958       TestContext* test = TestContext::cast(context);
4959       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4960       Goto(test->if_true(), state);
4961     } else if (context->IsEffect()) {
4962       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4963       Goto(function_return(), state);
4964     } else {
4965       DCHECK(context->IsValue());
4966       CHECK_ALIVE(VisitForValue(stmt->expression()));
4967       HValue* return_value = Pop();
4968       HValue* receiver = environment()->arguments_environment()->Lookup(0);
4969       HHasInstanceTypeAndBranch* typecheck =
4970           New<HHasInstanceTypeAndBranch>(return_value,
4971                                          FIRST_JS_RECEIVER_TYPE,
4972                                          LAST_JS_RECEIVER_TYPE);
4973       HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
4974       HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
4975       typecheck->SetSuccessorAt(0, if_spec_object);
4976       typecheck->SetSuccessorAt(1, not_spec_object);
4977       FinishCurrentBlock(typecheck);
4978       AddLeaveInlined(if_spec_object, return_value, state);
4979       AddLeaveInlined(not_spec_object, receiver, state);
4980     }
4981   } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
4982     // Return from an inlined setter call. The returned value is never used, the
4983     // value of an assignment is always the value of the RHS of the assignment.
4984     CHECK_ALIVE(VisitForEffect(stmt->expression()));
4985     if (context->IsTest()) {
4986       HValue* rhs = environment()->arguments_environment()->Lookup(1);
4987       context->ReturnValue(rhs);
4988     } else if (context->IsEffect()) {
4989       Goto(function_return(), state);
4990     } else {
4991       DCHECK(context->IsValue());
4992       HValue* rhs = environment()->arguments_environment()->Lookup(1);
4993       AddLeaveInlined(rhs, state);
4994     }
4995   } else {
4996     // Return from a normal inlined function. Visit the subexpression in the
4997     // expression context of the call.
4998     if (context->IsTest()) {
4999       TestContext* test = TestContext::cast(context);
5000       VisitForControl(stmt->expression(), test->if_true(), test->if_false());
5001     } else if (context->IsEffect()) {
5002       // Visit in value context and ignore the result. This is needed to keep
5003       // environment in sync with full-codegen since some visitors (e.g.
5004       // VisitCountOperation) use the operand stack differently depending on
5005       // context.
5006       CHECK_ALIVE(VisitForValue(stmt->expression()));
5007       Pop();
5008       Goto(function_return(), state);
5009     } else {
5010       DCHECK(context->IsValue());
5011       CHECK_ALIVE(VisitForValue(stmt->expression()));
5012       AddLeaveInlined(Pop(), state);
5013     }
5014   }
5015   set_current_block(NULL);
5016 }
5017 
5018 
VisitWithStatement(WithStatement * stmt)5019 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
5020   DCHECK(!HasStackOverflow());
5021   DCHECK(current_block() != NULL);
5022   DCHECK(current_block()->HasPredecessor());
5023   return Bailout(kWithStatement);
5024 }
5025 
5026 
VisitSwitchStatement(SwitchStatement * stmt)5027 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
5028   DCHECK(!HasStackOverflow());
5029   DCHECK(current_block() != NULL);
5030   DCHECK(current_block()->HasPredecessor());
5031 
5032   ZoneList<CaseClause*>* clauses = stmt->cases();
5033   int clause_count = clauses->length();
5034   ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
5035 
5036   CHECK_ALIVE(VisitForValue(stmt->tag()));
5037   Add<HSimulate>(stmt->EntryId());
5038   HValue* tag_value = Top();
5039   Type* tag_type = stmt->tag()->bounds().lower;
5040 
5041   // 1. Build all the tests, with dangling true branches
5042   BailoutId default_id = BailoutId::None();
5043   for (int i = 0; i < clause_count; ++i) {
5044     CaseClause* clause = clauses->at(i);
5045     if (clause->is_default()) {
5046       body_blocks.Add(NULL, zone());
5047       if (default_id.IsNone()) default_id = clause->EntryId();
5048       continue;
5049     }
5050 
5051     // Generate a compare and branch.
5052     CHECK_BAILOUT(VisitForValue(clause->label()));
5053     if (current_block() == NULL) return Bailout(kUnsupportedSwitchStatement);
5054     HValue* label_value = Pop();
5055 
5056     Type* label_type = clause->label()->bounds().lower;
5057     Type* combined_type = clause->compare_type();
5058     HControlInstruction* compare = BuildCompareInstruction(
5059         Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
5060         combined_type,
5061         ScriptPositionToSourcePosition(stmt->tag()->position()),
5062         ScriptPositionToSourcePosition(clause->label()->position()),
5063         PUSH_BEFORE_SIMULATE, clause->id());
5064 
5065     HBasicBlock* next_test_block = graph()->CreateBasicBlock();
5066     HBasicBlock* body_block = graph()->CreateBasicBlock();
5067     body_blocks.Add(body_block, zone());
5068     compare->SetSuccessorAt(0, body_block);
5069     compare->SetSuccessorAt(1, next_test_block);
5070     FinishCurrentBlock(compare);
5071 
5072     set_current_block(body_block);
5073     Drop(1);  // tag_value
5074 
5075     set_current_block(next_test_block);
5076   }
5077 
5078   // Save the current block to use for the default or to join with the
5079   // exit.
5080   HBasicBlock* last_block = current_block();
5081   Drop(1);  // tag_value
5082 
5083   // 2. Loop over the clauses and the linked list of tests in lockstep,
5084   // translating the clause bodies.
5085   HBasicBlock* fall_through_block = NULL;
5086 
5087   BreakAndContinueInfo break_info(stmt, scope());
5088   { BreakAndContinueScope push(&break_info, this);
5089     for (int i = 0; i < clause_count; ++i) {
5090       CaseClause* clause = clauses->at(i);
5091 
5092       // Identify the block where normal (non-fall-through) control flow
5093       // goes to.
5094       HBasicBlock* normal_block = NULL;
5095       if (clause->is_default()) {
5096         if (last_block == NULL) continue;
5097         normal_block = last_block;
5098         last_block = NULL;  // Cleared to indicate we've handled it.
5099       } else {
5100         normal_block = body_blocks[i];
5101       }
5102 
5103       if (fall_through_block == NULL) {
5104         set_current_block(normal_block);
5105       } else {
5106         HBasicBlock* join = CreateJoin(fall_through_block,
5107                                        normal_block,
5108                                        clause->EntryId());
5109         set_current_block(join);
5110       }
5111 
5112       CHECK_BAILOUT(VisitStatements(clause->statements()));
5113       fall_through_block = current_block();
5114     }
5115   }
5116 
5117   // Create an up-to-3-way join.  Use the break block if it exists since
5118   // it's already a join block.
5119   HBasicBlock* break_block = break_info.break_block();
5120   if (break_block == NULL) {
5121     set_current_block(CreateJoin(fall_through_block,
5122                                  last_block,
5123                                  stmt->ExitId()));
5124   } else {
5125     if (fall_through_block != NULL) Goto(fall_through_block, break_block);
5126     if (last_block != NULL) Goto(last_block, break_block);
5127     break_block->SetJoinId(stmt->ExitId());
5128     set_current_block(break_block);
5129   }
5130 }
5131 
5132 
VisitLoopBody(IterationStatement * stmt,HBasicBlock * loop_entry)5133 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
5134                                            HBasicBlock* loop_entry) {
5135   Add<HSimulate>(stmt->StackCheckId());
5136   HStackCheck* stack_check =
5137       HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
5138   DCHECK(loop_entry->IsLoopHeader());
5139   loop_entry->loop_information()->set_stack_check(stack_check);
5140   CHECK_BAILOUT(Visit(stmt->body()));
5141 }
5142 
5143 
VisitDoWhileStatement(DoWhileStatement * stmt)5144 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
5145   DCHECK(!HasStackOverflow());
5146   DCHECK(current_block() != NULL);
5147   DCHECK(current_block()->HasPredecessor());
5148   DCHECK(current_block() != NULL);
5149   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5150 
5151   BreakAndContinueInfo break_info(stmt, scope());
5152   {
5153     BreakAndContinueScope push(&break_info, this);
5154     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5155   }
5156   HBasicBlock* body_exit =
5157       JoinContinue(stmt, current_block(), break_info.continue_block());
5158   HBasicBlock* loop_successor = NULL;
5159   if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
5160     set_current_block(body_exit);
5161     loop_successor = graph()->CreateBasicBlock();
5162     if (stmt->cond()->ToBooleanIsFalse()) {
5163       loop_entry->loop_information()->stack_check()->Eliminate();
5164       Goto(loop_successor);
5165       body_exit = NULL;
5166     } else {
5167       // The block for a true condition, the actual predecessor block of the
5168       // back edge.
5169       body_exit = graph()->CreateBasicBlock();
5170       CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
5171     }
5172     if (body_exit != NULL && body_exit->HasPredecessor()) {
5173       body_exit->SetJoinId(stmt->BackEdgeId());
5174     } else {
5175       body_exit = NULL;
5176     }
5177     if (loop_successor->HasPredecessor()) {
5178       loop_successor->SetJoinId(stmt->ExitId());
5179     } else {
5180       loop_successor = NULL;
5181     }
5182   }
5183   HBasicBlock* loop_exit = CreateLoop(stmt,
5184                                       loop_entry,
5185                                       body_exit,
5186                                       loop_successor,
5187                                       break_info.break_block());
5188   set_current_block(loop_exit);
5189 }
5190 
5191 
VisitWhileStatement(WhileStatement * stmt)5192 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
5193   DCHECK(!HasStackOverflow());
5194   DCHECK(current_block() != NULL);
5195   DCHECK(current_block()->HasPredecessor());
5196   DCHECK(current_block() != NULL);
5197   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5198 
5199   // If the condition is constant true, do not generate a branch.
5200   HBasicBlock* loop_successor = NULL;
5201   if (!stmt->cond()->ToBooleanIsTrue()) {
5202     HBasicBlock* body_entry = graph()->CreateBasicBlock();
5203     loop_successor = graph()->CreateBasicBlock();
5204     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5205     if (body_entry->HasPredecessor()) {
5206       body_entry->SetJoinId(stmt->BodyId());
5207       set_current_block(body_entry);
5208     }
5209     if (loop_successor->HasPredecessor()) {
5210       loop_successor->SetJoinId(stmt->ExitId());
5211     } else {
5212       loop_successor = NULL;
5213     }
5214   }
5215 
5216   BreakAndContinueInfo break_info(stmt, scope());
5217   if (current_block() != NULL) {
5218     BreakAndContinueScope push(&break_info, this);
5219     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5220   }
5221   HBasicBlock* body_exit =
5222       JoinContinue(stmt, current_block(), break_info.continue_block());
5223   HBasicBlock* loop_exit = CreateLoop(stmt,
5224                                       loop_entry,
5225                                       body_exit,
5226                                       loop_successor,
5227                                       break_info.break_block());
5228   set_current_block(loop_exit);
5229 }
5230 
5231 
VisitForStatement(ForStatement * stmt)5232 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
5233   DCHECK(!HasStackOverflow());
5234   DCHECK(current_block() != NULL);
5235   DCHECK(current_block()->HasPredecessor());
5236   if (stmt->init() != NULL) {
5237     CHECK_ALIVE(Visit(stmt->init()));
5238   }
5239   DCHECK(current_block() != NULL);
5240   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5241 
5242   HBasicBlock* loop_successor = NULL;
5243   if (stmt->cond() != NULL) {
5244     HBasicBlock* body_entry = graph()->CreateBasicBlock();
5245     loop_successor = graph()->CreateBasicBlock();
5246     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
5247     if (body_entry->HasPredecessor()) {
5248       body_entry->SetJoinId(stmt->BodyId());
5249       set_current_block(body_entry);
5250     }
5251     if (loop_successor->HasPredecessor()) {
5252       loop_successor->SetJoinId(stmt->ExitId());
5253     } else {
5254       loop_successor = NULL;
5255     }
5256   }
5257 
5258   BreakAndContinueInfo break_info(stmt, scope());
5259   if (current_block() != NULL) {
5260     BreakAndContinueScope push(&break_info, this);
5261     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5262   }
5263   HBasicBlock* body_exit =
5264       JoinContinue(stmt, current_block(), break_info.continue_block());
5265 
5266   if (stmt->next() != NULL && body_exit != NULL) {
5267     set_current_block(body_exit);
5268     CHECK_BAILOUT(Visit(stmt->next()));
5269     body_exit = current_block();
5270   }
5271 
5272   HBasicBlock* loop_exit = CreateLoop(stmt,
5273                                       loop_entry,
5274                                       body_exit,
5275                                       loop_successor,
5276                                       break_info.break_block());
5277   set_current_block(loop_exit);
5278 }
5279 
5280 
VisitForInStatement(ForInStatement * stmt)5281 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
5282   DCHECK(!HasStackOverflow());
5283   DCHECK(current_block() != NULL);
5284   DCHECK(current_block()->HasPredecessor());
5285 
5286   if (!FLAG_optimize_for_in) {
5287     return Bailout(kForInStatementOptimizationIsDisabled);
5288   }
5289 
5290   if (!stmt->each()->IsVariableProxy() ||
5291       !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
5292     return Bailout(kForInStatementWithNonLocalEachVariable);
5293   }
5294 
5295   Variable* each_var = stmt->each()->AsVariableProxy()->var();
5296 
5297   CHECK_ALIVE(VisitForValue(stmt->enumerable()));
5298   HValue* enumerable = Top();  // Leave enumerable at the top.
5299 
5300   IfBuilder if_undefined_or_null(this);
5301   if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5302       enumerable, graph()->GetConstantUndefined());
5303   if_undefined_or_null.Or();
5304   if_undefined_or_null.If<HCompareObjectEqAndBranch>(
5305       enumerable, graph()->GetConstantNull());
5306   if_undefined_or_null.ThenDeopt(Deoptimizer::kUndefinedOrNullInForIn);
5307   if_undefined_or_null.End();
5308   BuildForInBody(stmt, each_var, enumerable);
5309 }
5310 
5311 
BuildForInBody(ForInStatement * stmt,Variable * each_var,HValue * enumerable)5312 void HOptimizedGraphBuilder::BuildForInBody(ForInStatement* stmt,
5313                                             Variable* each_var,
5314                                             HValue* enumerable) {
5315   HInstruction* map;
5316   HInstruction* array;
5317   HInstruction* enum_length;
5318   bool fast = stmt->for_in_type() == ForInStatement::FAST_FOR_IN;
5319   if (fast) {
5320     map = Add<HForInPrepareMap>(enumerable);
5321     Add<HSimulate>(stmt->PrepareId());
5322 
5323     array = Add<HForInCacheArray>(enumerable, map,
5324                                   DescriptorArray::kEnumCacheBridgeCacheIndex);
5325     enum_length = Add<HMapEnumLength>(map);
5326 
5327     HInstruction* index_cache = Add<HForInCacheArray>(
5328         enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
5329     HForInCacheArray::cast(array)
5330         ->set_index_cache(HForInCacheArray::cast(index_cache));
5331   } else {
5332     Add<HSimulate>(stmt->PrepareId());
5333     {
5334       NoObservableSideEffectsScope no_effects(this);
5335       BuildJSObjectCheck(enumerable, 0);
5336     }
5337     Add<HSimulate>(stmt->ToObjectId());
5338 
5339     map = graph()->GetConstant1();
5340     Runtime::FunctionId function_id = Runtime::kGetPropertyNamesFast;
5341     Add<HPushArguments>(enumerable);
5342     array = Add<HCallRuntime>(Runtime::FunctionForId(function_id), 1);
5343     Push(array);
5344     Add<HSimulate>(stmt->EnumId());
5345     Drop(1);
5346     Handle<Map> array_map = isolate()->factory()->fixed_array_map();
5347     HValue* check = Add<HCheckMaps>(array, array_map);
5348     enum_length = AddLoadFixedArrayLength(array, check);
5349   }
5350 
5351   HInstruction* start_index = Add<HConstant>(0);
5352 
5353   Push(map);
5354   Push(array);
5355   Push(enum_length);
5356   Push(start_index);
5357 
5358   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5359 
5360   // Reload the values to ensure we have up-to-date values inside of the loop.
5361   // This is relevant especially for OSR where the values don't come from the
5362   // computation above, but from the OSR entry block.
5363   enumerable = environment()->ExpressionStackAt(4);
5364   HValue* index = environment()->ExpressionStackAt(0);
5365   HValue* limit = environment()->ExpressionStackAt(1);
5366 
5367   // Check that we still have more keys.
5368   HCompareNumericAndBranch* compare_index =
5369       New<HCompareNumericAndBranch>(index, limit, Token::LT);
5370   compare_index->set_observed_input_representation(
5371       Representation::Smi(), Representation::Smi());
5372 
5373   HBasicBlock* loop_body = graph()->CreateBasicBlock();
5374   HBasicBlock* loop_successor = graph()->CreateBasicBlock();
5375 
5376   compare_index->SetSuccessorAt(0, loop_body);
5377   compare_index->SetSuccessorAt(1, loop_successor);
5378   FinishCurrentBlock(compare_index);
5379 
5380   set_current_block(loop_successor);
5381   Drop(5);
5382 
5383   set_current_block(loop_body);
5384 
5385   HValue* key =
5386       Add<HLoadKeyed>(environment()->ExpressionStackAt(2),  // Enum cache.
5387                       index, index, nullptr, FAST_ELEMENTS);
5388 
5389   if (fast) {
5390     // Check if the expected map still matches that of the enumerable.
5391     // If not just deoptimize.
5392     Add<HCheckMapValue>(enumerable, environment()->ExpressionStackAt(3));
5393     Bind(each_var, key);
5394   } else {
5395     Add<HPushArguments>(enumerable, key);
5396     Runtime::FunctionId function_id = Runtime::kForInFilter;
5397     key = Add<HCallRuntime>(Runtime::FunctionForId(function_id), 2);
5398     Push(key);
5399     Add<HSimulate>(stmt->FilterId());
5400     key = Pop();
5401     Bind(each_var, key);
5402     IfBuilder if_undefined(this);
5403     if_undefined.If<HCompareObjectEqAndBranch>(key,
5404                                                graph()->GetConstantUndefined());
5405     if_undefined.ThenDeopt(Deoptimizer::kUndefined);
5406     if_undefined.End();
5407     Add<HSimulate>(stmt->AssignmentId());
5408   }
5409 
5410   BreakAndContinueInfo break_info(stmt, scope(), 5);
5411   {
5412     BreakAndContinueScope push(&break_info, this);
5413     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5414   }
5415 
5416   HBasicBlock* body_exit =
5417       JoinContinue(stmt, current_block(), break_info.continue_block());
5418 
5419   if (body_exit != NULL) {
5420     set_current_block(body_exit);
5421 
5422     HValue* current_index = Pop();
5423     Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
5424     body_exit = current_block();
5425   }
5426 
5427   HBasicBlock* loop_exit = CreateLoop(stmt,
5428                                       loop_entry,
5429                                       body_exit,
5430                                       loop_successor,
5431                                       break_info.break_block());
5432 
5433   set_current_block(loop_exit);
5434 }
5435 
5436 
VisitForOfStatement(ForOfStatement * stmt)5437 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
5438   DCHECK(!HasStackOverflow());
5439   DCHECK(current_block() != NULL);
5440   DCHECK(current_block()->HasPredecessor());
5441   return Bailout(kForOfStatement);
5442 }
5443 
5444 
VisitTryCatchStatement(TryCatchStatement * stmt)5445 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
5446   DCHECK(!HasStackOverflow());
5447   DCHECK(current_block() != NULL);
5448   DCHECK(current_block()->HasPredecessor());
5449   return Bailout(kTryCatchStatement);
5450 }
5451 
5452 
VisitTryFinallyStatement(TryFinallyStatement * stmt)5453 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
5454     TryFinallyStatement* stmt) {
5455   DCHECK(!HasStackOverflow());
5456   DCHECK(current_block() != NULL);
5457   DCHECK(current_block()->HasPredecessor());
5458   return Bailout(kTryFinallyStatement);
5459 }
5460 
5461 
VisitDebuggerStatement(DebuggerStatement * stmt)5462 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
5463   DCHECK(!HasStackOverflow());
5464   DCHECK(current_block() != NULL);
5465   DCHECK(current_block()->HasPredecessor());
5466   return Bailout(kDebuggerStatement);
5467 }
5468 
5469 
VisitCaseClause(CaseClause * clause)5470 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
5471   UNREACHABLE();
5472 }
5473 
5474 
VisitFunctionLiteral(FunctionLiteral * expr)5475 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
5476   DCHECK(!HasStackOverflow());
5477   DCHECK(current_block() != NULL);
5478   DCHECK(current_block()->HasPredecessor());
5479   Handle<SharedFunctionInfo> shared_info = Compiler::GetSharedFunctionInfo(
5480       expr, current_info()->script(), top_info());
5481   // We also have a stack overflow if the recursive compilation did.
5482   if (HasStackOverflow()) return;
5483   // Use the fast case closure allocation code that allocates in new
5484   // space for nested functions that don't need literals cloning.
5485   HConstant* shared_info_value = Add<HConstant>(shared_info);
5486   HInstruction* instr;
5487   if (!expr->pretenure() && shared_info->num_literals() == 0) {
5488     FastNewClosureStub stub(isolate(), shared_info->language_mode(),
5489                             shared_info->kind());
5490     FastNewClosureDescriptor descriptor(isolate());
5491     HValue* values[] = {context(), shared_info_value};
5492     HConstant* stub_value = Add<HConstant>(stub.GetCode());
5493     instr = New<HCallWithDescriptor>(stub_value, 0, descriptor,
5494                                      Vector<HValue*>(values, arraysize(values)),
5495                                      NORMAL_CALL);
5496   } else {
5497     Add<HPushArguments>(shared_info_value);
5498     Runtime::FunctionId function_id =
5499         expr->pretenure() ? Runtime::kNewClosure_Tenured : Runtime::kNewClosure;
5500     instr = New<HCallRuntime>(Runtime::FunctionForId(function_id), 1);
5501   }
5502   return ast_context()->ReturnInstruction(instr, expr->id());
5503 }
5504 
5505 
VisitClassLiteral(ClassLiteral * lit)5506 void HOptimizedGraphBuilder::VisitClassLiteral(ClassLiteral* lit) {
5507   DCHECK(!HasStackOverflow());
5508   DCHECK(current_block() != NULL);
5509   DCHECK(current_block()->HasPredecessor());
5510   return Bailout(kClassLiteral);
5511 }
5512 
5513 
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)5514 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
5515     NativeFunctionLiteral* expr) {
5516   DCHECK(!HasStackOverflow());
5517   DCHECK(current_block() != NULL);
5518   DCHECK(current_block()->HasPredecessor());
5519   return Bailout(kNativeFunctionLiteral);
5520 }
5521 
5522 
VisitDoExpression(DoExpression * expr)5523 void HOptimizedGraphBuilder::VisitDoExpression(DoExpression* expr) {
5524   DCHECK(!HasStackOverflow());
5525   DCHECK(current_block() != NULL);
5526   DCHECK(current_block()->HasPredecessor());
5527   return Bailout(kDoExpression);
5528 }
5529 
5530 
VisitConditional(Conditional * expr)5531 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
5532   DCHECK(!HasStackOverflow());
5533   DCHECK(current_block() != NULL);
5534   DCHECK(current_block()->HasPredecessor());
5535   HBasicBlock* cond_true = graph()->CreateBasicBlock();
5536   HBasicBlock* cond_false = graph()->CreateBasicBlock();
5537   CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
5538 
5539   // Visit the true and false subexpressions in the same AST context as the
5540   // whole expression.
5541   if (cond_true->HasPredecessor()) {
5542     cond_true->SetJoinId(expr->ThenId());
5543     set_current_block(cond_true);
5544     CHECK_BAILOUT(Visit(expr->then_expression()));
5545     cond_true = current_block();
5546   } else {
5547     cond_true = NULL;
5548   }
5549 
5550   if (cond_false->HasPredecessor()) {
5551     cond_false->SetJoinId(expr->ElseId());
5552     set_current_block(cond_false);
5553     CHECK_BAILOUT(Visit(expr->else_expression()));
5554     cond_false = current_block();
5555   } else {
5556     cond_false = NULL;
5557   }
5558 
5559   if (!ast_context()->IsTest()) {
5560     HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
5561     set_current_block(join);
5562     if (join != NULL && !ast_context()->IsEffect()) {
5563       return ast_context()->ReturnValue(Pop());
5564     }
5565   }
5566 }
5567 
5568 
5569 HOptimizedGraphBuilder::GlobalPropertyAccess
LookupGlobalProperty(Variable * var,LookupIterator * it,PropertyAccessType access_type)5570 HOptimizedGraphBuilder::LookupGlobalProperty(Variable* var, LookupIterator* it,
5571                                              PropertyAccessType access_type) {
5572   if (var->is_this() || !current_info()->has_global_object()) {
5573     return kUseGeneric;
5574   }
5575 
5576   switch (it->state()) {
5577     case LookupIterator::ACCESSOR:
5578     case LookupIterator::ACCESS_CHECK:
5579     case LookupIterator::INTERCEPTOR:
5580     case LookupIterator::INTEGER_INDEXED_EXOTIC:
5581     case LookupIterator::NOT_FOUND:
5582       return kUseGeneric;
5583     case LookupIterator::DATA:
5584       if (access_type == STORE && it->IsReadOnly()) return kUseGeneric;
5585       return kUseCell;
5586     case LookupIterator::JSPROXY:
5587     case LookupIterator::TRANSITION:
5588       UNREACHABLE();
5589   }
5590   UNREACHABLE();
5591   return kUseGeneric;
5592 }
5593 
5594 
BuildContextChainWalk(Variable * var)5595 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
5596   DCHECK(var->IsContextSlot());
5597   HValue* context = environment()->context();
5598   int length = scope()->ContextChainLength(var->scope());
5599   while (length-- > 0) {
5600     context = Add<HLoadNamedField>(
5601         context, nullptr,
5602         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
5603   }
5604   return context;
5605 }
5606 
5607 
VisitVariableProxy(VariableProxy * expr)5608 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
5609   DCHECK(!HasStackOverflow());
5610   DCHECK(current_block() != NULL);
5611   DCHECK(current_block()->HasPredecessor());
5612   Variable* variable = expr->var();
5613   switch (variable->location()) {
5614     case VariableLocation::GLOBAL:
5615     case VariableLocation::UNALLOCATED: {
5616       if (IsLexicalVariableMode(variable->mode())) {
5617         // TODO(rossberg): should this be an DCHECK?
5618         return Bailout(kReferenceToGlobalLexicalVariable);
5619       }
5620       // Handle known global constants like 'undefined' specially to avoid a
5621       // load from a global cell for them.
5622       Handle<Object> constant_value =
5623           isolate()->factory()->GlobalConstantFor(variable->name());
5624       if (!constant_value.is_null()) {
5625         HConstant* instr = New<HConstant>(constant_value);
5626         return ast_context()->ReturnInstruction(instr, expr->id());
5627       }
5628 
5629       Handle<JSGlobalObject> global(current_info()->global_object());
5630 
5631       // Lookup in script contexts.
5632       {
5633         Handle<ScriptContextTable> script_contexts(
5634             global->native_context()->script_context_table());
5635         ScriptContextTable::LookupResult lookup;
5636         if (ScriptContextTable::Lookup(script_contexts, variable->name(),
5637                                        &lookup)) {
5638           Handle<Context> script_context = ScriptContextTable::GetContext(
5639               script_contexts, lookup.context_index);
5640           Handle<Object> current_value =
5641               FixedArray::get(script_context, lookup.slot_index);
5642 
5643           // If the values is not the hole, it will stay initialized,
5644           // so no need to generate a check.
5645           if (*current_value == *isolate()->factory()->the_hole_value()) {
5646             return Bailout(kReferenceToUninitializedVariable);
5647           }
5648           HInstruction* result = New<HLoadNamedField>(
5649               Add<HConstant>(script_context), nullptr,
5650               HObjectAccess::ForContextSlot(lookup.slot_index));
5651           return ast_context()->ReturnInstruction(result, expr->id());
5652         }
5653       }
5654 
5655       LookupIterator it(global, variable->name(), LookupIterator::OWN);
5656       GlobalPropertyAccess type = LookupGlobalProperty(variable, &it, LOAD);
5657 
5658       if (type == kUseCell) {
5659         Handle<PropertyCell> cell = it.GetPropertyCell();
5660         top_info()->dependencies()->AssumePropertyCell(cell);
5661         auto cell_type = it.property_details().cell_type();
5662         if (cell_type == PropertyCellType::kConstant ||
5663             cell_type == PropertyCellType::kUndefined) {
5664           Handle<Object> constant_object(cell->value(), isolate());
5665           if (constant_object->IsConsString()) {
5666             constant_object =
5667                 String::Flatten(Handle<String>::cast(constant_object));
5668           }
5669           HConstant* constant = New<HConstant>(constant_object);
5670           return ast_context()->ReturnInstruction(constant, expr->id());
5671         } else {
5672           auto access = HObjectAccess::ForPropertyCellValue();
5673           UniqueSet<Map>* field_maps = nullptr;
5674           if (cell_type == PropertyCellType::kConstantType) {
5675             switch (cell->GetConstantType()) {
5676               case PropertyCellConstantType::kSmi:
5677                 access = access.WithRepresentation(Representation::Smi());
5678                 break;
5679               case PropertyCellConstantType::kStableMap: {
5680                 // Check that the map really is stable. The heap object could
5681                 // have mutated without the cell updating state. In that case,
5682                 // make no promises about the loaded value except that it's a
5683                 // heap object.
5684                 access =
5685                     access.WithRepresentation(Representation::HeapObject());
5686                 Handle<Map> map(HeapObject::cast(cell->value())->map());
5687                 if (map->is_stable()) {
5688                   field_maps = new (zone())
5689                       UniqueSet<Map>(Unique<Map>::CreateImmovable(map), zone());
5690                 }
5691                 break;
5692               }
5693             }
5694           }
5695           HConstant* cell_constant = Add<HConstant>(cell);
5696           HLoadNamedField* instr;
5697           if (field_maps == nullptr) {
5698             instr = New<HLoadNamedField>(cell_constant, nullptr, access);
5699           } else {
5700             instr = New<HLoadNamedField>(cell_constant, nullptr, access,
5701                                          field_maps, HType::HeapObject());
5702           }
5703           instr->ClearDependsOnFlag(kInobjectFields);
5704           instr->SetDependsOnFlag(kGlobalVars);
5705           return ast_context()->ReturnInstruction(instr, expr->id());
5706         }
5707       } else {
5708         HValue* global_object = Add<HLoadNamedField>(
5709             BuildGetNativeContext(), nullptr,
5710             HObjectAccess::ForContextSlot(Context::EXTENSION_INDEX));
5711         HLoadGlobalGeneric* instr = New<HLoadGlobalGeneric>(
5712             global_object, variable->name(), ast_context()->typeof_mode());
5713         instr->SetVectorAndSlot(handle(current_feedback_vector(), isolate()),
5714                                 expr->VariableFeedbackSlot());
5715         return ast_context()->ReturnInstruction(instr, expr->id());
5716       }
5717     }
5718 
5719     case VariableLocation::PARAMETER:
5720     case VariableLocation::LOCAL: {
5721       HValue* value = LookupAndMakeLive(variable);
5722       if (value == graph()->GetConstantHole()) {
5723         DCHECK(IsDeclaredVariableMode(variable->mode()) &&
5724                variable->mode() != VAR);
5725         return Bailout(kReferenceToUninitializedVariable);
5726       }
5727       return ast_context()->ReturnValue(value);
5728     }
5729 
5730     case VariableLocation::CONTEXT: {
5731       HValue* context = BuildContextChainWalk(variable);
5732       HLoadContextSlot::Mode mode;
5733       switch (variable->mode()) {
5734         case LET:
5735         case CONST:
5736           mode = HLoadContextSlot::kCheckDeoptimize;
5737           break;
5738         case CONST_LEGACY:
5739           mode = HLoadContextSlot::kCheckReturnUndefined;
5740           break;
5741         default:
5742           mode = HLoadContextSlot::kNoCheck;
5743           break;
5744       }
5745       HLoadContextSlot* instr =
5746           new(zone()) HLoadContextSlot(context, variable->index(), mode);
5747       return ast_context()->ReturnInstruction(instr, expr->id());
5748     }
5749 
5750     case VariableLocation::LOOKUP:
5751       return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
5752   }
5753 }
5754 
5755 
VisitLiteral(Literal * expr)5756 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
5757   DCHECK(!HasStackOverflow());
5758   DCHECK(current_block() != NULL);
5759   DCHECK(current_block()->HasPredecessor());
5760   HConstant* instr = New<HConstant>(expr->value());
5761   return ast_context()->ReturnInstruction(instr, expr->id());
5762 }
5763 
5764 
VisitRegExpLiteral(RegExpLiteral * expr)5765 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
5766   DCHECK(!HasStackOverflow());
5767   DCHECK(current_block() != NULL);
5768   DCHECK(current_block()->HasPredecessor());
5769   Callable callable = CodeFactory::FastCloneRegExp(isolate());
5770   HValue* values[] = {
5771       context(), AddThisFunction(), Add<HConstant>(expr->literal_index()),
5772       Add<HConstant>(expr->pattern()), Add<HConstant>(expr->flags())};
5773   HConstant* stub_value = Add<HConstant>(callable.code());
5774   HInstruction* instr = New<HCallWithDescriptor>(
5775       stub_value, 0, callable.descriptor(),
5776       Vector<HValue*>(values, arraysize(values)), NORMAL_CALL);
5777   return ast_context()->ReturnInstruction(instr, expr->id());
5778 }
5779 
5780 
CanInlinePropertyAccess(Handle<Map> map)5781 static bool CanInlinePropertyAccess(Handle<Map> map) {
5782   if (map->instance_type() == HEAP_NUMBER_TYPE) return true;
5783   if (map->instance_type() < FIRST_NONSTRING_TYPE) return true;
5784   return map->IsJSObjectMap() && !map->is_dictionary_map() &&
5785          !map->has_named_interceptor() &&
5786          // TODO(verwaest): Whitelist contexts to which we have access.
5787          !map->is_access_check_needed();
5788 }
5789 
5790 
5791 // Determines whether the given array or object literal boilerplate satisfies
5792 // all limits to be considered for fast deep-copying and computes the total
5793 // size of all objects that are part of the graph.
IsFastLiteral(Handle<JSObject> boilerplate,int max_depth,int * max_properties)5794 static bool IsFastLiteral(Handle<JSObject> boilerplate,
5795                           int max_depth,
5796                           int* max_properties) {
5797   if (boilerplate->map()->is_deprecated() &&
5798       !JSObject::TryMigrateInstance(boilerplate)) {
5799     return false;
5800   }
5801 
5802   DCHECK(max_depth >= 0 && *max_properties >= 0);
5803   if (max_depth == 0) return false;
5804 
5805   Isolate* isolate = boilerplate->GetIsolate();
5806   Handle<FixedArrayBase> elements(boilerplate->elements());
5807   if (elements->length() > 0 &&
5808       elements->map() != isolate->heap()->fixed_cow_array_map()) {
5809     if (boilerplate->HasFastSmiOrObjectElements()) {
5810       Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
5811       int length = elements->length();
5812       for (int i = 0; i < length; i++) {
5813         if ((*max_properties)-- == 0) return false;
5814         Handle<Object> value(fast_elements->get(i), isolate);
5815         if (value->IsJSObject()) {
5816           Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5817           if (!IsFastLiteral(value_object,
5818                              max_depth - 1,
5819                              max_properties)) {
5820             return false;
5821           }
5822         }
5823       }
5824     } else if (!boilerplate->HasFastDoubleElements()) {
5825       return false;
5826     }
5827   }
5828 
5829   Handle<FixedArray> properties(boilerplate->properties());
5830   if (properties->length() > 0) {
5831     return false;
5832   } else {
5833     Handle<DescriptorArray> descriptors(
5834         boilerplate->map()->instance_descriptors());
5835     int limit = boilerplate->map()->NumberOfOwnDescriptors();
5836     for (int i = 0; i < limit; i++) {
5837       PropertyDetails details = descriptors->GetDetails(i);
5838       if (details.type() != DATA) continue;
5839       if ((*max_properties)-- == 0) return false;
5840       FieldIndex field_index = FieldIndex::ForDescriptor(boilerplate->map(), i);
5841       if (boilerplate->IsUnboxedDoubleField(field_index)) continue;
5842       Handle<Object> value(boilerplate->RawFastPropertyAt(field_index),
5843                            isolate);
5844       if (value->IsJSObject()) {
5845         Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5846         if (!IsFastLiteral(value_object,
5847                            max_depth - 1,
5848                            max_properties)) {
5849           return false;
5850         }
5851       }
5852     }
5853   }
5854   return true;
5855 }
5856 
5857 
VisitObjectLiteral(ObjectLiteral * expr)5858 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
5859   DCHECK(!HasStackOverflow());
5860   DCHECK(current_block() != NULL);
5861   DCHECK(current_block()->HasPredecessor());
5862 
5863   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5864   HInstruction* literal;
5865 
5866   // Check whether to use fast or slow deep-copying for boilerplate.
5867   int max_properties = kMaxFastLiteralProperties;
5868   Handle<Object> literals_cell(
5869       closure->literals()->literal(expr->literal_index()), isolate());
5870   Handle<AllocationSite> site;
5871   Handle<JSObject> boilerplate;
5872   if (!literals_cell->IsUndefined()) {
5873     // Retrieve the boilerplate
5874     site = Handle<AllocationSite>::cast(literals_cell);
5875     boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
5876                                    isolate());
5877   }
5878 
5879   if (!boilerplate.is_null() &&
5880       IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
5881     AllocationSiteUsageContext site_context(isolate(), site, false);
5882     site_context.EnterNewScope();
5883     literal = BuildFastLiteral(boilerplate, &site_context);
5884     site_context.ExitScope(site, boilerplate);
5885   } else {
5886     NoObservableSideEffectsScope no_effects(this);
5887     Handle<FixedArray> constant_properties = expr->constant_properties();
5888     int literal_index = expr->literal_index();
5889     int flags = expr->ComputeFlags(true);
5890 
5891     Add<HPushArguments>(AddThisFunction(), Add<HConstant>(literal_index),
5892                         Add<HConstant>(constant_properties),
5893                         Add<HConstant>(flags));
5894 
5895     Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
5896     literal = Add<HCallRuntime>(Runtime::FunctionForId(function_id), 4);
5897   }
5898 
5899   // The object is expected in the bailout environment during computation
5900   // of the property values and is the value of the entire expression.
5901   Push(literal);
5902   for (int i = 0; i < expr->properties()->length(); i++) {
5903     ObjectLiteral::Property* property = expr->properties()->at(i);
5904     if (property->is_computed_name()) return Bailout(kComputedPropertyName);
5905     if (property->IsCompileTimeValue()) continue;
5906 
5907     Literal* key = property->key()->AsLiteral();
5908     Expression* value = property->value();
5909 
5910     switch (property->kind()) {
5911       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
5912         DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
5913         // Fall through.
5914       case ObjectLiteral::Property::COMPUTED:
5915         // It is safe to use [[Put]] here because the boilerplate already
5916         // contains computed properties with an uninitialized value.
5917         if (key->value()->IsInternalizedString()) {
5918           if (property->emit_store()) {
5919             CHECK_ALIVE(VisitForValue(value));
5920             HValue* value = Pop();
5921 
5922             Handle<Map> map = property->GetReceiverType();
5923             Handle<String> name = key->AsPropertyName();
5924             HValue* store;
5925             FeedbackVectorSlot slot = property->GetSlot();
5926             if (map.is_null()) {
5927               // If we don't know the monomorphic type, do a generic store.
5928               CHECK_ALIVE(store = BuildNamedGeneric(STORE, NULL, slot, literal,
5929                                                     name, value));
5930             } else {
5931               PropertyAccessInfo info(this, STORE, map, name);
5932               if (info.CanAccessMonomorphic()) {
5933                 HValue* checked_literal = Add<HCheckMaps>(literal, map);
5934                 DCHECK(!info.IsAccessorConstant());
5935                 store = BuildMonomorphicAccess(
5936                     &info, literal, checked_literal, value,
5937                     BailoutId::None(), BailoutId::None());
5938               } else {
5939                 CHECK_ALIVE(store = BuildNamedGeneric(STORE, NULL, slot,
5940                                                       literal, name, value));
5941               }
5942             }
5943             if (store->IsInstruction()) {
5944               AddInstruction(HInstruction::cast(store));
5945             }
5946             DCHECK(store->HasObservableSideEffects());
5947             Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
5948 
5949             // Add [[HomeObject]] to function literals.
5950             if (FunctionLiteral::NeedsHomeObject(property->value())) {
5951               Handle<Symbol> sym = isolate()->factory()->home_object_symbol();
5952               HInstruction* store_home = BuildNamedGeneric(
5953                   STORE, NULL, property->GetSlot(1), value, sym, literal);
5954               AddInstruction(store_home);
5955               DCHECK(store_home->HasObservableSideEffects());
5956               Add<HSimulate>(property->value()->id(), REMOVABLE_SIMULATE);
5957             }
5958           } else {
5959             CHECK_ALIVE(VisitForEffect(value));
5960           }
5961           break;
5962         }
5963         // Fall through.
5964       case ObjectLiteral::Property::PROTOTYPE:
5965       case ObjectLiteral::Property::SETTER:
5966       case ObjectLiteral::Property::GETTER:
5967         return Bailout(kObjectLiteralWithComplexProperty);
5968       default: UNREACHABLE();
5969     }
5970   }
5971 
5972   if (expr->has_function()) {
5973     // Return the result of the transformation to fast properties
5974     // instead of the original since this operation changes the map
5975     // of the object. This makes sure that the original object won't
5976     // be used by other optimized code before it is transformed
5977     // (e.g. because of code motion).
5978     HToFastProperties* result = Add<HToFastProperties>(Pop());
5979     return ast_context()->ReturnValue(result);
5980   } else {
5981     return ast_context()->ReturnValue(Pop());
5982   }
5983 }
5984 
5985 
VisitArrayLiteral(ArrayLiteral * expr)5986 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
5987   DCHECK(!HasStackOverflow());
5988   DCHECK(current_block() != NULL);
5989   DCHECK(current_block()->HasPredecessor());
5990   ZoneList<Expression*>* subexprs = expr->values();
5991   int length = subexprs->length();
5992   HInstruction* literal;
5993 
5994   Handle<AllocationSite> site;
5995   Handle<LiteralsArray> literals(environment()->closure()->literals(),
5996                                  isolate());
5997   bool uninitialized = false;
5998   Handle<Object> literals_cell(literals->literal(expr->literal_index()),
5999                                isolate());
6000   Handle<JSObject> boilerplate_object;
6001   if (literals_cell->IsUndefined()) {
6002     uninitialized = true;
6003     Handle<Object> raw_boilerplate;
6004     ASSIGN_RETURN_ON_EXCEPTION_VALUE(
6005         isolate(), raw_boilerplate,
6006         Runtime::CreateArrayLiteralBoilerplate(
6007             isolate(), literals, expr->constant_elements(),
6008             is_strong(function_language_mode())),
6009         Bailout(kArrayBoilerplateCreationFailed));
6010 
6011     boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
6012     AllocationSiteCreationContext creation_context(isolate());
6013     site = creation_context.EnterNewScope();
6014     if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
6015       return Bailout(kArrayBoilerplateCreationFailed);
6016     }
6017     creation_context.ExitScope(site, boilerplate_object);
6018     literals->set_literal(expr->literal_index(), *site);
6019 
6020     if (boilerplate_object->elements()->map() ==
6021         isolate()->heap()->fixed_cow_array_map()) {
6022       isolate()->counters()->cow_arrays_created_runtime()->Increment();
6023     }
6024   } else {
6025     DCHECK(literals_cell->IsAllocationSite());
6026     site = Handle<AllocationSite>::cast(literals_cell);
6027     boilerplate_object = Handle<JSObject>(
6028         JSObject::cast(site->transition_info()), isolate());
6029   }
6030 
6031   DCHECK(!boilerplate_object.is_null());
6032   DCHECK(site->SitePointsToLiteral());
6033 
6034   ElementsKind boilerplate_elements_kind =
6035       boilerplate_object->GetElementsKind();
6036 
6037   // Check whether to use fast or slow deep-copying for boilerplate.
6038   int max_properties = kMaxFastLiteralProperties;
6039   if (IsFastLiteral(boilerplate_object,
6040                     kMaxFastLiteralDepth,
6041                     &max_properties)) {
6042     AllocationSiteUsageContext site_context(isolate(), site, false);
6043     site_context.EnterNewScope();
6044     literal = BuildFastLiteral(boilerplate_object, &site_context);
6045     site_context.ExitScope(site, boilerplate_object);
6046   } else {
6047     NoObservableSideEffectsScope no_effects(this);
6048     // Boilerplate already exists and constant elements are never accessed,
6049     // pass an empty fixed array to the runtime function instead.
6050     Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
6051     int literal_index = expr->literal_index();
6052     int flags = expr->ComputeFlags(true);
6053 
6054     Add<HPushArguments>(AddThisFunction(), Add<HConstant>(literal_index),
6055                         Add<HConstant>(constants), Add<HConstant>(flags));
6056 
6057     Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
6058     literal = Add<HCallRuntime>(Runtime::FunctionForId(function_id), 4);
6059 
6060     // Register to deopt if the boilerplate ElementsKind changes.
6061     top_info()->dependencies()->AssumeTransitionStable(site);
6062   }
6063 
6064   // The array is expected in the bailout environment during computation
6065   // of the property values and is the value of the entire expression.
6066   Push(literal);
6067 
6068   HInstruction* elements = NULL;
6069 
6070   for (int i = 0; i < length; i++) {
6071     Expression* subexpr = subexprs->at(i);
6072     if (subexpr->IsSpread()) {
6073       return Bailout(kSpread);
6074     }
6075 
6076     // If the subexpression is a literal or a simple materialized literal it
6077     // is already set in the cloned array.
6078     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
6079 
6080     CHECK_ALIVE(VisitForValue(subexpr));
6081     HValue* value = Pop();
6082     if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
6083 
6084     elements = AddLoadElements(literal);
6085 
6086     HValue* key = Add<HConstant>(i);
6087 
6088     switch (boilerplate_elements_kind) {
6089       case FAST_SMI_ELEMENTS:
6090       case FAST_HOLEY_SMI_ELEMENTS:
6091       case FAST_ELEMENTS:
6092       case FAST_HOLEY_ELEMENTS:
6093       case FAST_DOUBLE_ELEMENTS:
6094       case FAST_HOLEY_DOUBLE_ELEMENTS: {
6095         HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value, nullptr,
6096                                               boilerplate_elements_kind);
6097         instr->SetUninitialized(uninitialized);
6098         break;
6099       }
6100       default:
6101         UNREACHABLE();
6102         break;
6103     }
6104 
6105     Add<HSimulate>(expr->GetIdForElement(i));
6106   }
6107 
6108   return ast_context()->ReturnValue(Pop());
6109 }
6110 
6111 
AddCheckMap(HValue * object,Handle<Map> map)6112 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
6113                                                 Handle<Map> map) {
6114   BuildCheckHeapObject(object);
6115   return Add<HCheckMaps>(object, map);
6116 }
6117 
6118 
BuildLoadNamedField(PropertyAccessInfo * info,HValue * checked_object)6119 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedField(
6120     PropertyAccessInfo* info,
6121     HValue* checked_object) {
6122   // See if this is a load for an immutable property
6123   if (checked_object->ActualValue()->IsConstant()) {
6124     Handle<Object> object(
6125         HConstant::cast(checked_object->ActualValue())->handle(isolate()));
6126 
6127     if (object->IsJSObject()) {
6128       LookupIterator it(object, info->name(),
6129                         LookupIterator::OWN_SKIP_INTERCEPTOR);
6130       Handle<Object> value = JSReceiver::GetDataProperty(&it);
6131       if (it.IsFound() && it.IsReadOnly() && !it.IsConfigurable()) {
6132         return New<HConstant>(value);
6133       }
6134     }
6135   }
6136 
6137   HObjectAccess access = info->access();
6138   if (access.representation().IsDouble() &&
6139       (!FLAG_unbox_double_fields || !access.IsInobject())) {
6140     // Load the heap number.
6141     checked_object = Add<HLoadNamedField>(
6142         checked_object, nullptr,
6143         access.WithRepresentation(Representation::Tagged()));
6144     // Load the double value from it.
6145     access = HObjectAccess::ForHeapNumberValue();
6146   }
6147 
6148   SmallMapList* map_list = info->field_maps();
6149   if (map_list->length() == 0) {
6150     return New<HLoadNamedField>(checked_object, checked_object, access);
6151   }
6152 
6153   UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(map_list->length(), zone());
6154   for (int i = 0; i < map_list->length(); ++i) {
6155     maps->Add(Unique<Map>::CreateImmovable(map_list->at(i)), zone());
6156   }
6157   return New<HLoadNamedField>(
6158       checked_object, checked_object, access, maps, info->field_type());
6159 }
6160 
6161 
BuildStoreNamedField(PropertyAccessInfo * info,HValue * checked_object,HValue * value)6162 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
6163     PropertyAccessInfo* info,
6164     HValue* checked_object,
6165     HValue* value) {
6166   bool transition_to_field = info->IsTransition();
6167   // TODO(verwaest): Move this logic into PropertyAccessInfo.
6168   HObjectAccess field_access = info->access();
6169 
6170   HStoreNamedField *instr;
6171   if (field_access.representation().IsDouble() &&
6172       (!FLAG_unbox_double_fields || !field_access.IsInobject())) {
6173     HObjectAccess heap_number_access =
6174         field_access.WithRepresentation(Representation::Tagged());
6175     if (transition_to_field) {
6176       // The store requires a mutable HeapNumber to be allocated.
6177       NoObservableSideEffectsScope no_side_effects(this);
6178       HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
6179 
6180       // TODO(hpayer): Allocation site pretenuring support.
6181       HInstruction* heap_number = Add<HAllocate>(heap_number_size,
6182           HType::HeapObject(),
6183           NOT_TENURED,
6184           MUTABLE_HEAP_NUMBER_TYPE);
6185       AddStoreMapConstant(
6186           heap_number, isolate()->factory()->mutable_heap_number_map());
6187       Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
6188                             value);
6189       instr = New<HStoreNamedField>(checked_object->ActualValue(),
6190                                     heap_number_access,
6191                                     heap_number);
6192     } else {
6193       // Already holds a HeapNumber; load the box and write its value field.
6194       HInstruction* heap_number =
6195           Add<HLoadNamedField>(checked_object, nullptr, heap_number_access);
6196       instr = New<HStoreNamedField>(heap_number,
6197                                     HObjectAccess::ForHeapNumberValue(),
6198                                     value, STORE_TO_INITIALIZED_ENTRY);
6199     }
6200   } else {
6201     if (field_access.representation().IsHeapObject()) {
6202       BuildCheckHeapObject(value);
6203     }
6204 
6205     if (!info->field_maps()->is_empty()) {
6206       DCHECK(field_access.representation().IsHeapObject());
6207       value = Add<HCheckMaps>(value, info->field_maps());
6208     }
6209 
6210     // This is a normal store.
6211     instr = New<HStoreNamedField>(
6212         checked_object->ActualValue(), field_access, value,
6213         transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
6214   }
6215 
6216   if (transition_to_field) {
6217     Handle<Map> transition(info->transition());
6218     DCHECK(!transition->is_deprecated());
6219     instr->SetTransition(Add<HConstant>(transition));
6220   }
6221   return instr;
6222 }
6223 
6224 
IsCompatible(PropertyAccessInfo * info)6225 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatible(
6226     PropertyAccessInfo* info) {
6227   if (!CanInlinePropertyAccess(map_)) return false;
6228 
6229   // Currently only handle Type::Number as a polymorphic case.
6230   // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6231   // instruction.
6232   if (IsNumberType()) return false;
6233 
6234   // Values are only compatible for monomorphic load if they all behave the same
6235   // regarding value wrappers.
6236   if (IsValueWrapped() != info->IsValueWrapped()) return false;
6237 
6238   if (!LookupDescriptor()) return false;
6239 
6240   if (!IsFound()) {
6241     return (!info->IsFound() || info->has_holder()) &&
6242            map()->prototype() == info->map()->prototype();
6243   }
6244 
6245   // Mismatch if the other access info found the property in the prototype
6246   // chain.
6247   if (info->has_holder()) return false;
6248 
6249   if (IsAccessorConstant()) {
6250     return accessor_.is_identical_to(info->accessor_) &&
6251         api_holder_.is_identical_to(info->api_holder_);
6252   }
6253 
6254   if (IsDataConstant()) {
6255     return constant_.is_identical_to(info->constant_);
6256   }
6257 
6258   DCHECK(IsData());
6259   if (!info->IsData()) return false;
6260 
6261   Representation r = access_.representation();
6262   if (IsLoad()) {
6263     if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
6264   } else {
6265     if (!info->access_.representation().IsCompatibleForStore(r)) return false;
6266   }
6267   if (info->access_.offset() != access_.offset()) return false;
6268   if (info->access_.IsInobject() != access_.IsInobject()) return false;
6269   if (IsLoad()) {
6270     if (field_maps_.is_empty()) {
6271       info->field_maps_.Clear();
6272     } else if (!info->field_maps_.is_empty()) {
6273       for (int i = 0; i < field_maps_.length(); ++i) {
6274         info->field_maps_.AddMapIfMissing(field_maps_.at(i), info->zone());
6275       }
6276       info->field_maps_.Sort();
6277     }
6278   } else {
6279     // We can only merge stores that agree on their field maps. The comparison
6280     // below is safe, since we keep the field maps sorted.
6281     if (field_maps_.length() != info->field_maps_.length()) return false;
6282     for (int i = 0; i < field_maps_.length(); ++i) {
6283       if (!field_maps_.at(i).is_identical_to(info->field_maps_.at(i))) {
6284         return false;
6285       }
6286     }
6287   }
6288   info->GeneralizeRepresentation(r);
6289   info->field_type_ = info->field_type_.Combine(field_type_);
6290   return true;
6291 }
6292 
6293 
LookupDescriptor()6294 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
6295   if (!map_->IsJSObjectMap()) return true;
6296   LookupDescriptor(*map_, *name_);
6297   return LoadResult(map_);
6298 }
6299 
6300 
LoadResult(Handle<Map> map)6301 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
6302   if (!IsLoad() && IsProperty() && IsReadOnly()) {
6303     return false;
6304   }
6305 
6306   if (IsData()) {
6307     // Construct the object field access.
6308     int index = GetLocalFieldIndexFromMap(map);
6309     access_ = HObjectAccess::ForField(map, index, representation(), name_);
6310 
6311     // Load field map for heap objects.
6312     return LoadFieldMaps(map);
6313   } else if (IsAccessorConstant()) {
6314     Handle<Object> accessors = GetAccessorsFromMap(map);
6315     if (!accessors->IsAccessorPair()) return false;
6316     Object* raw_accessor =
6317         IsLoad() ? Handle<AccessorPair>::cast(accessors)->getter()
6318                  : Handle<AccessorPair>::cast(accessors)->setter();
6319     if (!raw_accessor->IsJSFunction()) return false;
6320     Handle<JSFunction> accessor = handle(JSFunction::cast(raw_accessor));
6321     if (accessor->shared()->IsApiFunction()) {
6322       CallOptimization call_optimization(accessor);
6323       if (call_optimization.is_simple_api_call()) {
6324         CallOptimization::HolderLookup holder_lookup;
6325         api_holder_ =
6326             call_optimization.LookupHolderOfExpectedType(map_, &holder_lookup);
6327       }
6328     }
6329     accessor_ = accessor;
6330   } else if (IsDataConstant()) {
6331     constant_ = GetConstantFromMap(map);
6332   }
6333 
6334   return true;
6335 }
6336 
6337 
LoadFieldMaps(Handle<Map> map)6338 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadFieldMaps(
6339     Handle<Map> map) {
6340   // Clear any previously collected field maps/type.
6341   field_maps_.Clear();
6342   field_type_ = HType::Tagged();
6343 
6344   // Figure out the field type from the accessor map.
6345   Handle<HeapType> field_type = GetFieldTypeFromMap(map);
6346 
6347   // Collect the (stable) maps from the field type.
6348   int num_field_maps = field_type->NumClasses();
6349   if (num_field_maps > 0) {
6350     DCHECK(access_.representation().IsHeapObject());
6351     field_maps_.Reserve(num_field_maps, zone());
6352     HeapType::Iterator<Map> it = field_type->Classes();
6353     while (!it.Done()) {
6354       Handle<Map> field_map = it.Current();
6355       if (!field_map->is_stable()) {
6356         field_maps_.Clear();
6357         break;
6358       }
6359       field_maps_.Add(field_map, zone());
6360       it.Advance();
6361     }
6362   }
6363 
6364   if (field_maps_.is_empty()) {
6365     // Store is not safe if the field map was cleared.
6366     return IsLoad() || !field_type->Is(HeapType::None());
6367   }
6368 
6369   field_maps_.Sort();
6370   DCHECK_EQ(num_field_maps, field_maps_.length());
6371 
6372   // Determine field HType from field HeapType.
6373   field_type_ = HType::FromType<HeapType>(field_type);
6374   DCHECK(field_type_.IsHeapObject());
6375 
6376   // Add dependency on the map that introduced the field.
6377   top_info()->dependencies()->AssumeFieldType(GetFieldOwnerFromMap(map));
6378   return true;
6379 }
6380 
6381 
LookupInPrototypes()6382 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
6383   Handle<Map> map = this->map();
6384 
6385   while (map->prototype()->IsJSObject()) {
6386     holder_ = handle(JSObject::cast(map->prototype()));
6387     if (holder_->map()->is_deprecated()) {
6388       JSObject::TryMigrateInstance(holder_);
6389     }
6390     map = Handle<Map>(holder_->map());
6391     if (!CanInlinePropertyAccess(map)) {
6392       NotFound();
6393       return false;
6394     }
6395     LookupDescriptor(*map, *name_);
6396     if (IsFound()) return LoadResult(map);
6397   }
6398 
6399   NotFound();
6400   return !map->prototype()->IsJSReceiver();
6401 }
6402 
6403 
IsIntegerIndexedExotic()6404 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsIntegerIndexedExotic() {
6405   InstanceType instance_type = map_->instance_type();
6406   return instance_type == JS_TYPED_ARRAY_TYPE && name_->IsString() &&
6407          IsSpecialIndex(isolate()->unicode_cache(), String::cast(*name_));
6408 }
6409 
6410 
CanAccessMonomorphic()6411 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessMonomorphic() {
6412   if (!CanInlinePropertyAccess(map_)) return false;
6413   if (IsJSObjectFieldAccessor()) return IsLoad();
6414   if (IsJSArrayBufferViewFieldAccessor()) return IsLoad();
6415   if (map_->IsJSFunctionMap() && map_->is_constructor() &&
6416       !map_->has_non_instance_prototype() &&
6417       name_.is_identical_to(isolate()->factory()->prototype_string())) {
6418     return IsLoad();
6419   }
6420   if (!LookupDescriptor()) return false;
6421   if (IsFound()) return IsLoad() || !IsReadOnly();
6422   if (IsIntegerIndexedExotic()) return false;
6423   if (!LookupInPrototypes()) return false;
6424   if (IsLoad()) return true;
6425 
6426   if (IsAccessorConstant()) return true;
6427   LookupTransition(*map_, *name_, NONE);
6428   if (IsTransitionToData() && map_->unused_property_fields() > 0) {
6429     // Construct the object field access.
6430     int descriptor = transition()->LastAdded();
6431     int index =
6432         transition()->instance_descriptors()->GetFieldIndex(descriptor) -
6433         map_->GetInObjectProperties();
6434     PropertyDetails details =
6435         transition()->instance_descriptors()->GetDetails(descriptor);
6436     Representation representation = details.representation();
6437     access_ = HObjectAccess::ForField(map_, index, representation, name_);
6438 
6439     // Load field map for heap objects.
6440     return LoadFieldMaps(transition());
6441   }
6442   return false;
6443 }
6444 
6445 
CanAccessAsMonomorphic(SmallMapList * maps)6446 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessAsMonomorphic(
6447     SmallMapList* maps) {
6448   DCHECK(map_.is_identical_to(maps->first()));
6449   if (!CanAccessMonomorphic()) return false;
6450   STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6451   if (maps->length() > kMaxLoadPolymorphism) return false;
6452   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
6453   if (GetJSObjectFieldAccess(&access)) {
6454     for (int i = 1; i < maps->length(); ++i) {
6455       PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6456       HObjectAccess test_access = HObjectAccess::ForMap();  // bogus default
6457       if (!test_info.GetJSObjectFieldAccess(&test_access)) return false;
6458       if (!access.Equals(test_access)) return false;
6459     }
6460     return true;
6461   }
6462   if (GetJSArrayBufferViewFieldAccess(&access)) {
6463     for (int i = 1; i < maps->length(); ++i) {
6464       PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6465       HObjectAccess test_access = HObjectAccess::ForMap();  // bogus default
6466       if (!test_info.GetJSArrayBufferViewFieldAccess(&test_access)) {
6467         return false;
6468       }
6469       if (!access.Equals(test_access)) return false;
6470     }
6471     return true;
6472   }
6473 
6474   // Currently only handle numbers as a polymorphic case.
6475   // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6476   // instruction.
6477   if (IsNumberType()) return false;
6478 
6479   // Multiple maps cannot transition to the same target map.
6480   DCHECK(!IsLoad() || !IsTransition());
6481   if (IsTransition() && maps->length() > 1) return false;
6482 
6483   for (int i = 1; i < maps->length(); ++i) {
6484     PropertyAccessInfo test_info(builder_, access_type_, maps->at(i), name_);
6485     if (!test_info.IsCompatible(this)) return false;
6486   }
6487 
6488   return true;
6489 }
6490 
6491 
map()6492 Handle<Map> HOptimizedGraphBuilder::PropertyAccessInfo::map() {
6493   Handle<JSFunction> ctor;
6494   if (Map::GetConstructorFunction(
6495           map_, handle(current_info()->closure()->context()->native_context()))
6496           .ToHandle(&ctor)) {
6497     return handle(ctor->initial_map());
6498   }
6499   return map_;
6500 }
6501 
6502 
NeedsWrapping(Handle<Map> map,Handle<JSFunction> target)6503 static bool NeedsWrapping(Handle<Map> map, Handle<JSFunction> target) {
6504   return !map->IsJSObjectMap() &&
6505          is_sloppy(target->shared()->language_mode()) &&
6506          !target->shared()->native();
6507 }
6508 
6509 
NeedsWrappingFor(Handle<JSFunction> target) const6510 bool HOptimizedGraphBuilder::PropertyAccessInfo::NeedsWrappingFor(
6511     Handle<JSFunction> target) const {
6512   return NeedsWrapping(map_, target);
6513 }
6514 
6515 
BuildMonomorphicAccess(PropertyAccessInfo * info,HValue * object,HValue * checked_object,HValue * value,BailoutId ast_id,BailoutId return_id,bool can_inline_accessor)6516 HValue* HOptimizedGraphBuilder::BuildMonomorphicAccess(
6517     PropertyAccessInfo* info, HValue* object, HValue* checked_object,
6518     HValue* value, BailoutId ast_id, BailoutId return_id,
6519     bool can_inline_accessor) {
6520   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
6521   if (info->GetJSObjectFieldAccess(&access)) {
6522     DCHECK(info->IsLoad());
6523     return New<HLoadNamedField>(object, checked_object, access);
6524   }
6525 
6526   if (info->GetJSArrayBufferViewFieldAccess(&access)) {
6527     DCHECK(info->IsLoad());
6528     checked_object = Add<HCheckArrayBufferNotNeutered>(checked_object);
6529     return New<HLoadNamedField>(object, checked_object, access);
6530   }
6531 
6532   if (info->name().is_identical_to(isolate()->factory()->prototype_string()) &&
6533       info->map()->IsJSFunctionMap() && info->map()->is_constructor()) {
6534     DCHECK(!info->map()->has_non_instance_prototype());
6535     return New<HLoadFunctionPrototype>(checked_object);
6536   }
6537 
6538   HValue* checked_holder = checked_object;
6539   if (info->has_holder()) {
6540     Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
6541     checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
6542   }
6543 
6544   if (!info->IsFound()) {
6545     DCHECK(info->IsLoad());
6546     if (is_strong(function_language_mode())) {
6547       return New<HCallRuntime>(
6548           Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
6549           0);
6550     } else {
6551       return graph()->GetConstantUndefined();
6552     }
6553   }
6554 
6555   if (info->IsData()) {
6556     if (info->IsLoad()) {
6557       return BuildLoadNamedField(info, checked_holder);
6558     } else {
6559       return BuildStoreNamedField(info, checked_object, value);
6560     }
6561   }
6562 
6563   if (info->IsTransition()) {
6564     DCHECK(!info->IsLoad());
6565     return BuildStoreNamedField(info, checked_object, value);
6566   }
6567 
6568   if (info->IsAccessorConstant()) {
6569     Push(checked_object);
6570     int argument_count = 1;
6571     if (!info->IsLoad()) {
6572       argument_count = 2;
6573       Push(value);
6574     }
6575 
6576     if (info->NeedsWrappingFor(info->accessor())) {
6577       HValue* function = Add<HConstant>(info->accessor());
6578       PushArgumentsFromEnvironment(argument_count);
6579       return New<HCallFunction>(function, argument_count,
6580                                 ConvertReceiverMode::kNotNullOrUndefined);
6581     } else if (FLAG_inline_accessors && can_inline_accessor) {
6582       bool success = info->IsLoad()
6583           ? TryInlineGetter(info->accessor(), info->map(), ast_id, return_id)
6584           : TryInlineSetter(
6585               info->accessor(), info->map(), ast_id, return_id, value);
6586       if (success || HasStackOverflow()) return NULL;
6587     }
6588 
6589     PushArgumentsFromEnvironment(argument_count);
6590     return BuildCallConstantFunction(info->accessor(), argument_count);
6591   }
6592 
6593   DCHECK(info->IsDataConstant());
6594   if (info->IsLoad()) {
6595     return New<HConstant>(info->constant());
6596   } else {
6597     return New<HCheckValue>(value, Handle<JSFunction>::cast(info->constant()));
6598   }
6599 }
6600 
6601 
HandlePolymorphicNamedFieldAccess(PropertyAccessType access_type,Expression * expr,FeedbackVectorSlot slot,BailoutId ast_id,BailoutId return_id,HValue * object,HValue * value,SmallMapList * maps,Handle<Name> name)6602 void HOptimizedGraphBuilder::HandlePolymorphicNamedFieldAccess(
6603     PropertyAccessType access_type, Expression* expr, FeedbackVectorSlot slot,
6604     BailoutId ast_id, BailoutId return_id, HValue* object, HValue* value,
6605     SmallMapList* maps, Handle<Name> name) {
6606   // Something did not match; must use a polymorphic load.
6607   int count = 0;
6608   HBasicBlock* join = NULL;
6609   HBasicBlock* number_block = NULL;
6610   bool handled_string = false;
6611 
6612   bool handle_smi = false;
6613   STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6614   int i;
6615   for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6616     PropertyAccessInfo info(this, access_type, maps->at(i), name);
6617     if (info.IsStringType()) {
6618       if (handled_string) continue;
6619       handled_string = true;
6620     }
6621     if (info.CanAccessMonomorphic()) {
6622       count++;
6623       if (info.IsNumberType()) {
6624         handle_smi = true;
6625         break;
6626       }
6627     }
6628   }
6629 
6630   if (i < maps->length()) {
6631     count = -1;
6632     maps->Clear();
6633   } else {
6634     count = 0;
6635   }
6636   HControlInstruction* smi_check = NULL;
6637   handled_string = false;
6638 
6639   for (i = 0; i < maps->length() && count < kMaxLoadPolymorphism; ++i) {
6640     PropertyAccessInfo info(this, access_type, maps->at(i), name);
6641     if (info.IsStringType()) {
6642       if (handled_string) continue;
6643       handled_string = true;
6644     }
6645     if (!info.CanAccessMonomorphic()) continue;
6646 
6647     if (count == 0) {
6648       join = graph()->CreateBasicBlock();
6649       if (handle_smi) {
6650         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
6651         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
6652         number_block = graph()->CreateBasicBlock();
6653         smi_check = New<HIsSmiAndBranch>(
6654             object, empty_smi_block, not_smi_block);
6655         FinishCurrentBlock(smi_check);
6656         GotoNoSimulate(empty_smi_block, number_block);
6657         set_current_block(not_smi_block);
6658       } else {
6659         BuildCheckHeapObject(object);
6660       }
6661     }
6662     ++count;
6663     HBasicBlock* if_true = graph()->CreateBasicBlock();
6664     HBasicBlock* if_false = graph()->CreateBasicBlock();
6665     HUnaryControlInstruction* compare;
6666 
6667     HValue* dependency;
6668     if (info.IsNumberType()) {
6669       Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
6670       compare = New<HCompareMap>(object, heap_number_map, if_true, if_false);
6671       dependency = smi_check;
6672     } else if (info.IsStringType()) {
6673       compare = New<HIsStringAndBranch>(object, if_true, if_false);
6674       dependency = compare;
6675     } else {
6676       compare = New<HCompareMap>(object, info.map(), if_true, if_false);
6677       dependency = compare;
6678     }
6679     FinishCurrentBlock(compare);
6680 
6681     if (info.IsNumberType()) {
6682       GotoNoSimulate(if_true, number_block);
6683       if_true = number_block;
6684     }
6685 
6686     set_current_block(if_true);
6687 
6688     HValue* access =
6689         BuildMonomorphicAccess(&info, object, dependency, value, ast_id,
6690                                return_id, FLAG_polymorphic_inlining);
6691 
6692     HValue* result = NULL;
6693     switch (access_type) {
6694       case LOAD:
6695         result = access;
6696         break;
6697       case STORE:
6698         result = value;
6699         break;
6700     }
6701 
6702     if (access == NULL) {
6703       if (HasStackOverflow()) return;
6704     } else {
6705       if (access->IsInstruction()) {
6706         HInstruction* instr = HInstruction::cast(access);
6707         if (!instr->IsLinked()) AddInstruction(instr);
6708       }
6709       if (!ast_context()->IsEffect()) Push(result);
6710     }
6711 
6712     if (current_block() != NULL) Goto(join);
6713     set_current_block(if_false);
6714   }
6715 
6716   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
6717   // know about and do not want to handle ones we've never seen.  Otherwise
6718   // use a generic IC.
6719   if (count == maps->length() && FLAG_deoptimize_uncommon_cases) {
6720     FinishExitWithHardDeoptimization(
6721         Deoptimizer::kUnknownMapInPolymorphicAccess);
6722   } else {
6723     HInstruction* instr =
6724         BuildNamedGeneric(access_type, expr, slot, object, name, value);
6725     AddInstruction(instr);
6726     if (!ast_context()->IsEffect()) Push(access_type == LOAD ? instr : value);
6727 
6728     if (join != NULL) {
6729       Goto(join);
6730     } else {
6731       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6732       if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6733       return;
6734     }
6735   }
6736 
6737   DCHECK(join != NULL);
6738   if (join->HasPredecessor()) {
6739     join->SetJoinId(ast_id);
6740     set_current_block(join);
6741     if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6742   } else {
6743     set_current_block(NULL);
6744   }
6745 }
6746 
6747 
ComputeReceiverTypes(Expression * expr,HValue * receiver,SmallMapList ** t,Zone * zone)6748 static bool ComputeReceiverTypes(Expression* expr,
6749                                  HValue* receiver,
6750                                  SmallMapList** t,
6751                                  Zone* zone) {
6752   SmallMapList* maps = expr->GetReceiverTypes();
6753   *t = maps;
6754   bool monomorphic = expr->IsMonomorphic();
6755   if (maps != NULL && receiver->HasMonomorphicJSObjectType()) {
6756     Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
6757     maps->FilterForPossibleTransitions(root_map);
6758     monomorphic = maps->length() == 1;
6759   }
6760   return monomorphic && CanInlinePropertyAccess(maps->first());
6761 }
6762 
6763 
AreStringTypes(SmallMapList * maps)6764 static bool AreStringTypes(SmallMapList* maps) {
6765   for (int i = 0; i < maps->length(); i++) {
6766     if (maps->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
6767   }
6768   return true;
6769 }
6770 
6771 
BuildStore(Expression * expr,Property * prop,FeedbackVectorSlot slot,BailoutId ast_id,BailoutId return_id,bool is_uninitialized)6772 void HOptimizedGraphBuilder::BuildStore(Expression* expr, Property* prop,
6773                                         FeedbackVectorSlot slot,
6774                                         BailoutId ast_id, BailoutId return_id,
6775                                         bool is_uninitialized) {
6776   if (!prop->key()->IsPropertyName()) {
6777     // Keyed store.
6778     HValue* value = Pop();
6779     HValue* key = Pop();
6780     HValue* object = Pop();
6781     bool has_side_effects = false;
6782     HValue* result =
6783         HandleKeyedElementAccess(object, key, value, expr, slot, ast_id,
6784                                  return_id, STORE, &has_side_effects);
6785     if (has_side_effects) {
6786       if (!ast_context()->IsEffect()) Push(value);
6787       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6788       if (!ast_context()->IsEffect()) Drop(1);
6789     }
6790     if (result == NULL) return;
6791     return ast_context()->ReturnValue(value);
6792   }
6793 
6794   // Named store.
6795   HValue* value = Pop();
6796   HValue* object = Pop();
6797 
6798   Literal* key = prop->key()->AsLiteral();
6799   Handle<String> name = Handle<String>::cast(key->value());
6800   DCHECK(!name.is_null());
6801 
6802   HValue* access = BuildNamedAccess(STORE, ast_id, return_id, expr, slot,
6803                                     object, name, value, is_uninitialized);
6804   if (access == NULL) return;
6805 
6806   if (!ast_context()->IsEffect()) Push(value);
6807   if (access->IsInstruction()) AddInstruction(HInstruction::cast(access));
6808   if (access->HasObservableSideEffects()) {
6809     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6810   }
6811   if (!ast_context()->IsEffect()) Drop(1);
6812   return ast_context()->ReturnValue(value);
6813 }
6814 
6815 
HandlePropertyAssignment(Assignment * expr)6816 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
6817   Property* prop = expr->target()->AsProperty();
6818   DCHECK(prop != NULL);
6819   CHECK_ALIVE(VisitForValue(prop->obj()));
6820   if (!prop->key()->IsPropertyName()) {
6821     CHECK_ALIVE(VisitForValue(prop->key()));
6822   }
6823   CHECK_ALIVE(VisitForValue(expr->value()));
6824   BuildStore(expr, prop, expr->AssignmentSlot(), expr->id(),
6825              expr->AssignmentId(), expr->IsUninitialized());
6826 }
6827 
6828 
6829 // Because not every expression has a position and there is not common
6830 // superclass of Assignment and CountOperation, we cannot just pass the
6831 // owning expression instead of position and ast_id separately.
HandleGlobalVariableAssignment(Variable * var,HValue * value,FeedbackVectorSlot slot,BailoutId ast_id)6832 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
6833     Variable* var, HValue* value, FeedbackVectorSlot slot, BailoutId ast_id) {
6834   Handle<JSGlobalObject> global(current_info()->global_object());
6835 
6836   // Lookup in script contexts.
6837   {
6838     Handle<ScriptContextTable> script_contexts(
6839         global->native_context()->script_context_table());
6840     ScriptContextTable::LookupResult lookup;
6841     if (ScriptContextTable::Lookup(script_contexts, var->name(), &lookup)) {
6842       if (lookup.mode == CONST) {
6843         return Bailout(kNonInitializerAssignmentToConst);
6844       }
6845       Handle<Context> script_context =
6846           ScriptContextTable::GetContext(script_contexts, lookup.context_index);
6847 
6848       Handle<Object> current_value =
6849           FixedArray::get(script_context, lookup.slot_index);
6850 
6851       // If the values is not the hole, it will stay initialized,
6852       // so no need to generate a check.
6853       if (*current_value == *isolate()->factory()->the_hole_value()) {
6854         return Bailout(kReferenceToUninitializedVariable);
6855       }
6856 
6857       HStoreNamedField* instr = Add<HStoreNamedField>(
6858           Add<HConstant>(script_context),
6859           HObjectAccess::ForContextSlot(lookup.slot_index), value);
6860       USE(instr);
6861       DCHECK(instr->HasObservableSideEffects());
6862       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6863       return;
6864     }
6865   }
6866 
6867   LookupIterator it(global, var->name(), LookupIterator::OWN);
6868   GlobalPropertyAccess type = LookupGlobalProperty(var, &it, STORE);
6869   if (type == kUseCell) {
6870     Handle<PropertyCell> cell = it.GetPropertyCell();
6871     top_info()->dependencies()->AssumePropertyCell(cell);
6872     auto cell_type = it.property_details().cell_type();
6873     if (cell_type == PropertyCellType::kConstant ||
6874         cell_type == PropertyCellType::kUndefined) {
6875       Handle<Object> constant(cell->value(), isolate());
6876       if (value->IsConstant()) {
6877         HConstant* c_value = HConstant::cast(value);
6878         if (!constant.is_identical_to(c_value->handle(isolate()))) {
6879           Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6880                            Deoptimizer::EAGER);
6881         }
6882       } else {
6883         HValue* c_constant = Add<HConstant>(constant);
6884         IfBuilder builder(this);
6885         if (constant->IsNumber()) {
6886           builder.If<HCompareNumericAndBranch>(value, c_constant, Token::EQ);
6887         } else {
6888           builder.If<HCompareObjectEqAndBranch>(value, c_constant);
6889         }
6890         builder.Then();
6891         builder.Else();
6892         Add<HDeoptimize>(Deoptimizer::kConstantGlobalVariableAssignment,
6893                          Deoptimizer::EAGER);
6894         builder.End();
6895       }
6896     }
6897     HConstant* cell_constant = Add<HConstant>(cell);
6898     auto access = HObjectAccess::ForPropertyCellValue();
6899     if (cell_type == PropertyCellType::kConstantType) {
6900       switch (cell->GetConstantType()) {
6901         case PropertyCellConstantType::kSmi:
6902           access = access.WithRepresentation(Representation::Smi());
6903           break;
6904         case PropertyCellConstantType::kStableMap: {
6905           // The map may no longer be stable, deopt if it's ever different from
6906           // what is currently there, which will allow for restablization.
6907           Handle<Map> map(HeapObject::cast(cell->value())->map());
6908           Add<HCheckHeapObject>(value);
6909           value = Add<HCheckMaps>(value, map);
6910           access = access.WithRepresentation(Representation::HeapObject());
6911           break;
6912         }
6913       }
6914     }
6915     HInstruction* instr = Add<HStoreNamedField>(cell_constant, access, value);
6916     instr->ClearChangesFlag(kInobjectFields);
6917     instr->SetChangesFlag(kGlobalVars);
6918     if (instr->HasObservableSideEffects()) {
6919       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6920     }
6921   } else {
6922     HValue* global_object = Add<HLoadNamedField>(
6923         BuildGetNativeContext(), nullptr,
6924         HObjectAccess::ForContextSlot(Context::EXTENSION_INDEX));
6925     HStoreNamedGeneric* instr =
6926         Add<HStoreNamedGeneric>(global_object, var->name(), value,
6927                                 function_language_mode(), PREMONOMORPHIC);
6928     Handle<TypeFeedbackVector> vector =
6929         handle(current_feedback_vector(), isolate());
6930     instr->SetVectorAndSlot(vector, slot);
6931     USE(instr);
6932     DCHECK(instr->HasObservableSideEffects());
6933     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6934   }
6935 }
6936 
6937 
HandleCompoundAssignment(Assignment * expr)6938 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
6939   Expression* target = expr->target();
6940   VariableProxy* proxy = target->AsVariableProxy();
6941   Property* prop = target->AsProperty();
6942   DCHECK(proxy == NULL || prop == NULL);
6943 
6944   // We have a second position recorded in the FullCodeGenerator to have
6945   // type feedback for the binary operation.
6946   BinaryOperation* operation = expr->binary_operation();
6947 
6948   if (proxy != NULL) {
6949     Variable* var = proxy->var();
6950     if (var->mode() == LET)  {
6951       return Bailout(kUnsupportedLetCompoundAssignment);
6952     }
6953 
6954     CHECK_ALIVE(VisitForValue(operation));
6955 
6956     switch (var->location()) {
6957       case VariableLocation::GLOBAL:
6958       case VariableLocation::UNALLOCATED:
6959         HandleGlobalVariableAssignment(var, Top(), expr->AssignmentSlot(),
6960                                        expr->AssignmentId());
6961         break;
6962 
6963       case VariableLocation::PARAMETER:
6964       case VariableLocation::LOCAL:
6965         if (var->mode() == CONST_LEGACY)  {
6966           return Bailout(kUnsupportedConstCompoundAssignment);
6967         }
6968         if (var->mode() == CONST) {
6969           return Bailout(kNonInitializerAssignmentToConst);
6970         }
6971         BindIfLive(var, Top());
6972         break;
6973 
6974       case VariableLocation::CONTEXT: {
6975         // Bail out if we try to mutate a parameter value in a function
6976         // using the arguments object.  We do not (yet) correctly handle the
6977         // arguments property of the function.
6978         if (current_info()->scope()->arguments() != NULL) {
6979           // Parameters will be allocated to context slots.  We have no
6980           // direct way to detect that the variable is a parameter so we do
6981           // a linear search of the parameter variables.
6982           int count = current_info()->scope()->num_parameters();
6983           for (int i = 0; i < count; ++i) {
6984             if (var == current_info()->scope()->parameter(i)) {
6985               Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
6986             }
6987           }
6988         }
6989 
6990         HStoreContextSlot::Mode mode;
6991 
6992         switch (var->mode()) {
6993           case LET:
6994             mode = HStoreContextSlot::kCheckDeoptimize;
6995             break;
6996           case CONST:
6997             return Bailout(kNonInitializerAssignmentToConst);
6998           case CONST_LEGACY:
6999             return ast_context()->ReturnValue(Pop());
7000           default:
7001             mode = HStoreContextSlot::kNoCheck;
7002         }
7003 
7004         HValue* context = BuildContextChainWalk(var);
7005         HStoreContextSlot* instr = Add<HStoreContextSlot>(
7006             context, var->index(), mode, Top());
7007         if (instr->HasObservableSideEffects()) {
7008           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
7009         }
7010         break;
7011       }
7012 
7013       case VariableLocation::LOOKUP:
7014         return Bailout(kCompoundAssignmentToLookupSlot);
7015     }
7016     return ast_context()->ReturnValue(Pop());
7017 
7018   } else if (prop != NULL) {
7019     CHECK_ALIVE(VisitForValue(prop->obj()));
7020     HValue* object = Top();
7021     HValue* key = NULL;
7022     if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
7023       CHECK_ALIVE(VisitForValue(prop->key()));
7024       key = Top();
7025     }
7026 
7027     CHECK_ALIVE(PushLoad(prop, object, key));
7028 
7029     CHECK_ALIVE(VisitForValue(expr->value()));
7030     HValue* right = Pop();
7031     HValue* left = Pop();
7032 
7033     Push(BuildBinaryOperation(operation, left, right, PUSH_BEFORE_SIMULATE));
7034 
7035     BuildStore(expr, prop, expr->AssignmentSlot(), expr->id(),
7036                expr->AssignmentId(), expr->IsUninitialized());
7037   } else {
7038     return Bailout(kInvalidLhsInCompoundAssignment);
7039   }
7040 }
7041 
7042 
VisitAssignment(Assignment * expr)7043 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
7044   DCHECK(!HasStackOverflow());
7045   DCHECK(current_block() != NULL);
7046   DCHECK(current_block()->HasPredecessor());
7047 
7048   VariableProxy* proxy = expr->target()->AsVariableProxy();
7049   Property* prop = expr->target()->AsProperty();
7050   DCHECK(proxy == NULL || prop == NULL);
7051 
7052   if (expr->is_compound()) {
7053     HandleCompoundAssignment(expr);
7054     return;
7055   }
7056 
7057   if (prop != NULL) {
7058     HandlePropertyAssignment(expr);
7059   } else if (proxy != NULL) {
7060     Variable* var = proxy->var();
7061 
7062     if (var->mode() == CONST) {
7063       if (expr->op() != Token::INIT) {
7064         return Bailout(kNonInitializerAssignmentToConst);
7065       }
7066     } else if (var->mode() == CONST_LEGACY) {
7067       if (expr->op() != Token::INIT) {
7068         CHECK_ALIVE(VisitForValue(expr->value()));
7069         return ast_context()->ReturnValue(Pop());
7070       }
7071 
7072       if (var->IsStackAllocated()) {
7073         // We insert a use of the old value to detect unsupported uses of const
7074         // variables (e.g. initialization inside a loop).
7075         HValue* old_value = environment()->Lookup(var);
7076         Add<HUseConst>(old_value);
7077       }
7078     }
7079 
7080     if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
7081 
7082     // Handle the assignment.
7083     switch (var->location()) {
7084       case VariableLocation::GLOBAL:
7085       case VariableLocation::UNALLOCATED:
7086         CHECK_ALIVE(VisitForValue(expr->value()));
7087         HandleGlobalVariableAssignment(var, Top(), expr->AssignmentSlot(),
7088                                        expr->AssignmentId());
7089         return ast_context()->ReturnValue(Pop());
7090 
7091       case VariableLocation::PARAMETER:
7092       case VariableLocation::LOCAL: {
7093         // Perform an initialization check for let declared variables
7094         // or parameters.
7095         if (var->mode() == LET && expr->op() == Token::ASSIGN) {
7096           HValue* env_value = environment()->Lookup(var);
7097           if (env_value == graph()->GetConstantHole()) {
7098             return Bailout(kAssignmentToLetVariableBeforeInitialization);
7099           }
7100         }
7101         // We do not allow the arguments object to occur in a context where it
7102         // may escape, but assignments to stack-allocated locals are
7103         // permitted.
7104         CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
7105         HValue* value = Pop();
7106         BindIfLive(var, value);
7107         return ast_context()->ReturnValue(value);
7108       }
7109 
7110       case VariableLocation::CONTEXT: {
7111         // Bail out if we try to mutate a parameter value in a function using
7112         // the arguments object.  We do not (yet) correctly handle the
7113         // arguments property of the function.
7114         if (current_info()->scope()->arguments() != NULL) {
7115           // Parameters will rewrite to context slots.  We have no direct way
7116           // to detect that the variable is a parameter.
7117           int count = current_info()->scope()->num_parameters();
7118           for (int i = 0; i < count; ++i) {
7119             if (var == current_info()->scope()->parameter(i)) {
7120               return Bailout(kAssignmentToParameterInArgumentsObject);
7121             }
7122           }
7123         }
7124 
7125         CHECK_ALIVE(VisitForValue(expr->value()));
7126         HStoreContextSlot::Mode mode;
7127         if (expr->op() == Token::ASSIGN) {
7128           switch (var->mode()) {
7129             case LET:
7130               mode = HStoreContextSlot::kCheckDeoptimize;
7131               break;
7132             case CONST:
7133               // This case is checked statically so no need to
7134               // perform checks here
7135               UNREACHABLE();
7136             case CONST_LEGACY:
7137               return ast_context()->ReturnValue(Pop());
7138             default:
7139               mode = HStoreContextSlot::kNoCheck;
7140           }
7141         } else {
7142           DCHECK_EQ(Token::INIT, expr->op());
7143           if (var->mode() == CONST_LEGACY) {
7144             mode = HStoreContextSlot::kCheckIgnoreAssignment;
7145           } else {
7146             mode = HStoreContextSlot::kNoCheck;
7147           }
7148         }
7149 
7150         HValue* context = BuildContextChainWalk(var);
7151         HStoreContextSlot* instr = Add<HStoreContextSlot>(
7152             context, var->index(), mode, Top());
7153         if (instr->HasObservableSideEffects()) {
7154           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
7155         }
7156         return ast_context()->ReturnValue(Pop());
7157       }
7158 
7159       case VariableLocation::LOOKUP:
7160         return Bailout(kAssignmentToLOOKUPVariable);
7161     }
7162   } else {
7163     return Bailout(kInvalidLeftHandSideInAssignment);
7164   }
7165 }
7166 
7167 
VisitYield(Yield * expr)7168 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
7169   // Generators are not optimized, so we should never get here.
7170   UNREACHABLE();
7171 }
7172 
7173 
VisitThrow(Throw * expr)7174 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
7175   DCHECK(!HasStackOverflow());
7176   DCHECK(current_block() != NULL);
7177   DCHECK(current_block()->HasPredecessor());
7178   if (!ast_context()->IsEffect()) {
7179     // The parser turns invalid left-hand sides in assignments into throw
7180     // statements, which may not be in effect contexts. We might still try
7181     // to optimize such functions; bail out now if we do.
7182     return Bailout(kInvalidLeftHandSideInAssignment);
7183   }
7184   CHECK_ALIVE(VisitForValue(expr->exception()));
7185 
7186   HValue* value = environment()->Pop();
7187   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
7188   Add<HPushArguments>(value);
7189   Add<HCallRuntime>(Runtime::FunctionForId(Runtime::kThrow), 1);
7190   Add<HSimulate>(expr->id());
7191 
7192   // If the throw definitely exits the function, we can finish with a dummy
7193   // control flow at this point.  This is not the case if the throw is inside
7194   // an inlined function which may be replaced.
7195   if (call_context() == NULL) {
7196     FinishExitCurrentBlock(New<HAbnormalExit>());
7197   }
7198 }
7199 
7200 
AddLoadStringInstanceType(HValue * string)7201 HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
7202   if (string->IsConstant()) {
7203     HConstant* c_string = HConstant::cast(string);
7204     if (c_string->HasStringValue()) {
7205       return Add<HConstant>(c_string->StringValue()->map()->instance_type());
7206     }
7207   }
7208   return Add<HLoadNamedField>(
7209       Add<HLoadNamedField>(string, nullptr, HObjectAccess::ForMap()), nullptr,
7210       HObjectAccess::ForMapInstanceType());
7211 }
7212 
7213 
AddLoadStringLength(HValue * string)7214 HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
7215   return AddInstruction(BuildLoadStringLength(string));
7216 }
7217 
7218 
BuildLoadStringLength(HValue * string)7219 HInstruction* HGraphBuilder::BuildLoadStringLength(HValue* string) {
7220   if (string->IsConstant()) {
7221     HConstant* c_string = HConstant::cast(string);
7222     if (c_string->HasStringValue()) {
7223       return New<HConstant>(c_string->StringValue()->length());
7224     }
7225   }
7226   return New<HLoadNamedField>(string, nullptr,
7227                               HObjectAccess::ForStringLength());
7228 }
7229 
7230 
BuildNamedGeneric(PropertyAccessType access_type,Expression * expr,FeedbackVectorSlot slot,HValue * object,Handle<Name> name,HValue * value,bool is_uninitialized)7231 HInstruction* HOptimizedGraphBuilder::BuildNamedGeneric(
7232     PropertyAccessType access_type, Expression* expr, FeedbackVectorSlot slot,
7233     HValue* object, Handle<Name> name, HValue* value, bool is_uninitialized) {
7234   if (is_uninitialized) {
7235     Add<HDeoptimize>(
7236         Deoptimizer::kInsufficientTypeFeedbackForGenericNamedAccess,
7237         Deoptimizer::SOFT);
7238   }
7239   if (access_type == LOAD) {
7240     Handle<TypeFeedbackVector> vector =
7241         handle(current_feedback_vector(), isolate());
7242 
7243     if (!expr->AsProperty()->key()->IsPropertyName()) {
7244       // It's possible that a keyed load of a constant string was converted
7245       // to a named load. Here, at the last minute, we need to make sure to
7246       // use a generic Keyed Load if we are using the type vector, because
7247       // it has to share information with full code.
7248       HConstant* key = Add<HConstant>(name);
7249       HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7250           object, key, function_language_mode(), PREMONOMORPHIC);
7251       result->SetVectorAndSlot(vector, slot);
7252       return result;
7253     }
7254 
7255     HLoadNamedGeneric* result = New<HLoadNamedGeneric>(
7256         object, name, function_language_mode(), PREMONOMORPHIC);
7257     result->SetVectorAndSlot(vector, slot);
7258     return result;
7259   } else {
7260     if (current_feedback_vector()->GetKind(slot) ==
7261         FeedbackVectorSlotKind::KEYED_STORE_IC) {
7262       // It's possible that a keyed store of a constant string was converted
7263       // to a named store. Here, at the last minute, we need to make sure to
7264       // use a generic Keyed Store if we are using the type vector, because
7265       // it has to share information with full code.
7266       HConstant* key = Add<HConstant>(name);
7267       HStoreKeyedGeneric* result = New<HStoreKeyedGeneric>(
7268           object, key, value, function_language_mode(), PREMONOMORPHIC);
7269       Handle<TypeFeedbackVector> vector =
7270           handle(current_feedback_vector(), isolate());
7271       result->SetVectorAndSlot(vector, slot);
7272       return result;
7273     }
7274 
7275     HStoreNamedGeneric* result = New<HStoreNamedGeneric>(
7276         object, name, value, function_language_mode(), PREMONOMORPHIC);
7277     Handle<TypeFeedbackVector> vector =
7278         handle(current_feedback_vector(), isolate());
7279     result->SetVectorAndSlot(vector, slot);
7280     return result;
7281   }
7282 }
7283 
7284 
BuildKeyedGeneric(PropertyAccessType access_type,Expression * expr,FeedbackVectorSlot slot,HValue * object,HValue * key,HValue * value)7285 HInstruction* HOptimizedGraphBuilder::BuildKeyedGeneric(
7286     PropertyAccessType access_type, Expression* expr, FeedbackVectorSlot slot,
7287     HValue* object, HValue* key, HValue* value) {
7288   if (access_type == LOAD) {
7289     InlineCacheState initial_state = expr->AsProperty()->GetInlineCacheState();
7290     HLoadKeyedGeneric* result = New<HLoadKeyedGeneric>(
7291         object, key, function_language_mode(), initial_state);
7292     // HLoadKeyedGeneric with vector ics benefits from being encoded as
7293     // MEGAMORPHIC because the vector/slot combo becomes unnecessary.
7294     if (initial_state != MEGAMORPHIC) {
7295       // We need to pass vector information.
7296       Handle<TypeFeedbackVector> vector =
7297           handle(current_feedback_vector(), isolate());
7298       result->SetVectorAndSlot(vector, slot);
7299     }
7300     return result;
7301   } else {
7302     HStoreKeyedGeneric* result = New<HStoreKeyedGeneric>(
7303         object, key, value, function_language_mode(), PREMONOMORPHIC);
7304     Handle<TypeFeedbackVector> vector =
7305         handle(current_feedback_vector(), isolate());
7306     result->SetVectorAndSlot(vector, slot);
7307     return result;
7308   }
7309 }
7310 
7311 
BuildKeyedHoleMode(Handle<Map> map)7312 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
7313   // Loads from a "stock" fast holey double arrays can elide the hole check.
7314   // Loads from a "stock" fast holey array can convert the hole to undefined
7315   // with impunity.
7316   LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
7317   bool holey_double_elements =
7318       *map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS);
7319   bool holey_elements =
7320       *map == isolate()->get_initial_js_array_map(FAST_HOLEY_ELEMENTS);
7321   if ((holey_double_elements || holey_elements) &&
7322       isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
7323     load_mode =
7324         holey_double_elements ? ALLOW_RETURN_HOLE : CONVERT_HOLE_TO_UNDEFINED;
7325 
7326     Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
7327     Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
7328     BuildCheckPrototypeMaps(prototype, object_prototype);
7329     graph()->MarkDependsOnEmptyArrayProtoElements();
7330   }
7331   return load_mode;
7332 }
7333 
7334 
BuildMonomorphicElementAccess(HValue * object,HValue * key,HValue * val,HValue * dependency,Handle<Map> map,PropertyAccessType access_type,KeyedAccessStoreMode store_mode)7335 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
7336     HValue* object,
7337     HValue* key,
7338     HValue* val,
7339     HValue* dependency,
7340     Handle<Map> map,
7341     PropertyAccessType access_type,
7342     KeyedAccessStoreMode store_mode) {
7343   HCheckMaps* checked_object = Add<HCheckMaps>(object, map, dependency);
7344 
7345   if (access_type == STORE && map->prototype()->IsJSObject()) {
7346     // monomorphic stores need a prototype chain check because shape
7347     // changes could allow callbacks on elements in the chain that
7348     // aren't compatible with monomorphic keyed stores.
7349     PrototypeIterator iter(map);
7350     JSObject* holder = NULL;
7351     while (!iter.IsAtEnd()) {
7352       // JSProxies can't occur here because we wouldn't have installed a
7353       // non-generic IC if there were any.
7354       holder = *PrototypeIterator::GetCurrent<JSObject>(iter);
7355       iter.Advance();
7356     }
7357     DCHECK(holder && holder->IsJSObject());
7358 
7359     BuildCheckPrototypeMaps(handle(JSObject::cast(map->prototype())),
7360                             Handle<JSObject>(holder));
7361   }
7362 
7363   LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7364   return BuildUncheckedMonomorphicElementAccess(
7365       checked_object, key, val,
7366       map->instance_type() == JS_ARRAY_TYPE,
7367       map->elements_kind(), access_type,
7368       load_mode, store_mode);
7369 }
7370 
7371 
CanInlineElementAccess(Handle<Map> map)7372 static bool CanInlineElementAccess(Handle<Map> map) {
7373   return map->IsJSObjectMap() && !map->has_dictionary_elements() &&
7374          !map->has_sloppy_arguments_elements() &&
7375          !map->has_indexed_interceptor() && !map->is_access_check_needed();
7376 }
7377 
7378 
TryBuildConsolidatedElementLoad(HValue * object,HValue * key,HValue * val,SmallMapList * maps)7379 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
7380     HValue* object,
7381     HValue* key,
7382     HValue* val,
7383     SmallMapList* maps) {
7384   // For polymorphic loads of similar elements kinds (i.e. all tagged or all
7385   // double), always use the "worst case" code without a transition.  This is
7386   // much faster than transitioning the elements to the worst case, trading a
7387   // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
7388   bool has_double_maps = false;
7389   bool has_smi_or_object_maps = false;
7390   bool has_js_array_access = false;
7391   bool has_non_js_array_access = false;
7392   bool has_seen_holey_elements = false;
7393   Handle<Map> most_general_consolidated_map;
7394   for (int i = 0; i < maps->length(); ++i) {
7395     Handle<Map> map = maps->at(i);
7396     if (!CanInlineElementAccess(map)) return NULL;
7397     // Don't allow mixing of JSArrays with JSObjects.
7398     if (map->instance_type() == JS_ARRAY_TYPE) {
7399       if (has_non_js_array_access) return NULL;
7400       has_js_array_access = true;
7401     } else if (has_js_array_access) {
7402       return NULL;
7403     } else {
7404       has_non_js_array_access = true;
7405     }
7406     // Don't allow mixed, incompatible elements kinds.
7407     if (map->has_fast_double_elements()) {
7408       if (has_smi_or_object_maps) return NULL;
7409       has_double_maps = true;
7410     } else if (map->has_fast_smi_or_object_elements()) {
7411       if (has_double_maps) return NULL;
7412       has_smi_or_object_maps = true;
7413     } else {
7414       return NULL;
7415     }
7416     // Remember if we've ever seen holey elements.
7417     if (IsHoleyElementsKind(map->elements_kind())) {
7418       has_seen_holey_elements = true;
7419     }
7420     // Remember the most general elements kind, the code for its load will
7421     // properly handle all of the more specific cases.
7422     if ((i == 0) || IsMoreGeneralElementsKindTransition(
7423             most_general_consolidated_map->elements_kind(),
7424             map->elements_kind())) {
7425       most_general_consolidated_map = map;
7426     }
7427   }
7428   if (!has_double_maps && !has_smi_or_object_maps) return NULL;
7429 
7430   HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
7431   // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
7432   // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
7433   ElementsKind consolidated_elements_kind = has_seen_holey_elements
7434       ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
7435       : most_general_consolidated_map->elements_kind();
7436   LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
7437   if (has_seen_holey_elements) {
7438     // Make sure that all of the maps we are handling have the initial array
7439     // prototype.
7440     bool saw_non_array_prototype = false;
7441     for (int i = 0; i < maps->length(); ++i) {
7442       Handle<Map> map = maps->at(i);
7443       if (map->prototype() != *isolate()->initial_array_prototype()) {
7444         // We can't guarantee that loading the hole is safe. The prototype may
7445         // have an element at this position.
7446         saw_non_array_prototype = true;
7447         break;
7448       }
7449     }
7450 
7451     if (!saw_non_array_prototype) {
7452       Handle<Map> holey_map = handle(
7453           isolate()->get_initial_js_array_map(consolidated_elements_kind));
7454       load_mode = BuildKeyedHoleMode(holey_map);
7455       if (load_mode != NEVER_RETURN_HOLE) {
7456         for (int i = 0; i < maps->length(); ++i) {
7457           Handle<Map> map = maps->at(i);
7458           // The prototype check was already done for the holey map in
7459           // BuildKeyedHoleMode.
7460           if (!map.is_identical_to(holey_map)) {
7461             Handle<JSObject> prototype(JSObject::cast(map->prototype()),
7462                                        isolate());
7463             Handle<JSObject> object_prototype =
7464                 isolate()->initial_object_prototype();
7465             BuildCheckPrototypeMaps(prototype, object_prototype);
7466           }
7467         }
7468       }
7469     }
7470   }
7471   HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
7472       checked_object, key, val,
7473       most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
7474       consolidated_elements_kind, LOAD, load_mode, STANDARD_STORE);
7475   return instr;
7476 }
7477 
7478 
HandlePolymorphicElementAccess(Expression * expr,FeedbackVectorSlot slot,HValue * object,HValue * key,HValue * val,SmallMapList * maps,PropertyAccessType access_type,KeyedAccessStoreMode store_mode,bool * has_side_effects)7479 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
7480     Expression* expr, FeedbackVectorSlot slot, HValue* object, HValue* key,
7481     HValue* val, SmallMapList* maps, PropertyAccessType access_type,
7482     KeyedAccessStoreMode store_mode, bool* has_side_effects) {
7483   *has_side_effects = false;
7484   BuildCheckHeapObject(object);
7485 
7486   if (access_type == LOAD) {
7487     HInstruction* consolidated_load =
7488         TryBuildConsolidatedElementLoad(object, key, val, maps);
7489     if (consolidated_load != NULL) {
7490       *has_side_effects |= consolidated_load->HasObservableSideEffects();
7491       return consolidated_load;
7492     }
7493   }
7494 
7495   // Elements_kind transition support.
7496   MapHandleList transition_target(maps->length());
7497   // Collect possible transition targets.
7498   MapHandleList possible_transitioned_maps(maps->length());
7499   for (int i = 0; i < maps->length(); ++i) {
7500     Handle<Map> map = maps->at(i);
7501     // Loads from strings or loads with a mix of string and non-string maps
7502     // shouldn't be handled polymorphically.
7503     DCHECK(access_type != LOAD || !map->IsStringMap());
7504     ElementsKind elements_kind = map->elements_kind();
7505     if (CanInlineElementAccess(map) && IsFastElementsKind(elements_kind) &&
7506         elements_kind != GetInitialFastElementsKind()) {
7507       possible_transitioned_maps.Add(map);
7508     }
7509     if (IsSloppyArgumentsElements(elements_kind)) {
7510       HInstruction* result =
7511           BuildKeyedGeneric(access_type, expr, slot, object, key, val);
7512       *has_side_effects = result->HasObservableSideEffects();
7513       return AddInstruction(result);
7514     }
7515   }
7516   // Get transition target for each map (NULL == no transition).
7517   for (int i = 0; i < maps->length(); ++i) {
7518     Handle<Map> map = maps->at(i);
7519     Handle<Map> transitioned_map =
7520         Map::FindTransitionedMap(map, &possible_transitioned_maps);
7521     transition_target.Add(transitioned_map);
7522   }
7523 
7524   MapHandleList untransitionable_maps(maps->length());
7525   HTransitionElementsKind* transition = NULL;
7526   for (int i = 0; i < maps->length(); ++i) {
7527     Handle<Map> map = maps->at(i);
7528     DCHECK(map->IsMap());
7529     if (!transition_target.at(i).is_null()) {
7530       DCHECK(Map::IsValidElementsTransition(
7531           map->elements_kind(),
7532           transition_target.at(i)->elements_kind()));
7533       transition = Add<HTransitionElementsKind>(object, map,
7534                                                 transition_target.at(i));
7535     } else {
7536       untransitionable_maps.Add(map);
7537     }
7538   }
7539 
7540   // If only one map is left after transitioning, handle this case
7541   // monomorphically.
7542   DCHECK(untransitionable_maps.length() >= 1);
7543   if (untransitionable_maps.length() == 1) {
7544     Handle<Map> untransitionable_map = untransitionable_maps[0];
7545     HInstruction* instr = NULL;
7546     if (!CanInlineElementAccess(untransitionable_map)) {
7547       instr = AddInstruction(
7548           BuildKeyedGeneric(access_type, expr, slot, object, key, val));
7549     } else {
7550       instr = BuildMonomorphicElementAccess(
7551           object, key, val, transition, untransitionable_map, access_type,
7552           store_mode);
7553     }
7554     *has_side_effects |= instr->HasObservableSideEffects();
7555     return access_type == STORE ? val : instr;
7556   }
7557 
7558   HBasicBlock* join = graph()->CreateBasicBlock();
7559 
7560   for (int i = 0; i < untransitionable_maps.length(); ++i) {
7561     Handle<Map> map = untransitionable_maps[i];
7562     ElementsKind elements_kind = map->elements_kind();
7563     HBasicBlock* this_map = graph()->CreateBasicBlock();
7564     HBasicBlock* other_map = graph()->CreateBasicBlock();
7565     HCompareMap* mapcompare =
7566         New<HCompareMap>(object, map, this_map, other_map);
7567     FinishCurrentBlock(mapcompare);
7568 
7569     set_current_block(this_map);
7570     HInstruction* access = NULL;
7571     if (!CanInlineElementAccess(map)) {
7572       access = AddInstruction(
7573           BuildKeyedGeneric(access_type, expr, slot, object, key, val));
7574     } else {
7575       DCHECK(IsFastElementsKind(elements_kind) ||
7576              IsFixedTypedArrayElementsKind(elements_kind));
7577       LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
7578       // Happily, mapcompare is a checked object.
7579       access = BuildUncheckedMonomorphicElementAccess(
7580           mapcompare, key, val,
7581           map->instance_type() == JS_ARRAY_TYPE,
7582           elements_kind, access_type,
7583           load_mode,
7584           store_mode);
7585     }
7586     *has_side_effects |= access->HasObservableSideEffects();
7587     // The caller will use has_side_effects and add a correct Simulate.
7588     access->SetFlag(HValue::kHasNoObservableSideEffects);
7589     if (access_type == LOAD) {
7590       Push(access);
7591     }
7592     NoObservableSideEffectsScope scope(this);
7593     GotoNoSimulate(join);
7594     set_current_block(other_map);
7595   }
7596 
7597   // Ensure that we visited at least one map above that goes to join. This is
7598   // necessary because FinishExitWithHardDeoptimization does an AbnormalExit
7599   // rather than joining the join block. If this becomes an issue, insert a
7600   // generic access in the case length() == 0.
7601   DCHECK(join->predecessors()->length() > 0);
7602   // Deopt if none of the cases matched.
7603   NoObservableSideEffectsScope scope(this);
7604   FinishExitWithHardDeoptimization(
7605       Deoptimizer::kUnknownMapInPolymorphicElementAccess);
7606   set_current_block(join);
7607   return access_type == STORE ? val : Pop();
7608 }
7609 
7610 
HandleKeyedElementAccess(HValue * obj,HValue * key,HValue * val,Expression * expr,FeedbackVectorSlot slot,BailoutId ast_id,BailoutId return_id,PropertyAccessType access_type,bool * has_side_effects)7611 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
7612     HValue* obj, HValue* key, HValue* val, Expression* expr,
7613     FeedbackVectorSlot slot, BailoutId ast_id, BailoutId return_id,
7614     PropertyAccessType access_type, bool* has_side_effects) {
7615   // A keyed name access with type feedback may contain the name.
7616   Handle<TypeFeedbackVector> vector =
7617       handle(current_feedback_vector(), isolate());
7618   HValue* expected_key = key;
7619   if (!key->ActualValue()->IsConstant()) {
7620     Name* name = nullptr;
7621     if (access_type == LOAD) {
7622       KeyedLoadICNexus nexus(vector, slot);
7623       name = nexus.FindFirstName();
7624     } else {
7625       KeyedStoreICNexus nexus(vector, slot);
7626       name = nexus.FindFirstName();
7627     }
7628     if (name != nullptr) {
7629       Handle<Name> handle_name(name);
7630       expected_key = Add<HConstant>(handle_name);
7631       // We need a check against the key.
7632       bool in_new_space = isolate()->heap()->InNewSpace(*handle_name);
7633       Unique<Name> unique_name = Unique<Name>::CreateUninitialized(handle_name);
7634       Add<HCheckValue>(key, unique_name, in_new_space);
7635     }
7636   }
7637   if (expected_key->ActualValue()->IsConstant()) {
7638     Handle<Object> constant =
7639         HConstant::cast(expected_key->ActualValue())->handle(isolate());
7640     uint32_t array_index;
7641     if ((constant->IsString() &&
7642          !Handle<String>::cast(constant)->AsArrayIndex(&array_index)) ||
7643         constant->IsSymbol()) {
7644       if (!constant->IsUniqueName()) {
7645         constant = isolate()->factory()->InternalizeString(
7646             Handle<String>::cast(constant));
7647       }
7648       HValue* access =
7649           BuildNamedAccess(access_type, ast_id, return_id, expr, slot, obj,
7650                            Handle<Name>::cast(constant), val, false);
7651       if (access == NULL || access->IsPhi() ||
7652           HInstruction::cast(access)->IsLinked()) {
7653         *has_side_effects = false;
7654       } else {
7655         HInstruction* instr = HInstruction::cast(access);
7656         AddInstruction(instr);
7657         *has_side_effects = instr->HasObservableSideEffects();
7658       }
7659       return access;
7660     }
7661   }
7662 
7663   DCHECK(!expr->IsPropertyName());
7664   HInstruction* instr = NULL;
7665 
7666   SmallMapList* maps;
7667   bool monomorphic = ComputeReceiverTypes(expr, obj, &maps, zone());
7668 
7669   bool force_generic = false;
7670   if (expr->GetKeyType() == PROPERTY) {
7671     // Non-Generic accesses assume that elements are being accessed, and will
7672     // deopt for non-index keys, which the IC knows will occur.
7673     // TODO(jkummerow): Consider adding proper support for property accesses.
7674     force_generic = true;
7675     monomorphic = false;
7676   } else if (access_type == STORE &&
7677              (monomorphic || (maps != NULL && !maps->is_empty()))) {
7678     // Stores can't be mono/polymorphic if their prototype chain has dictionary
7679     // elements. However a receiver map that has dictionary elements itself
7680     // should be left to normal mono/poly behavior (the other maps may benefit
7681     // from highly optimized stores).
7682     for (int i = 0; i < maps->length(); i++) {
7683       Handle<Map> current_map = maps->at(i);
7684       if (current_map->DictionaryElementsInPrototypeChainOnly()) {
7685         force_generic = true;
7686         monomorphic = false;
7687         break;
7688       }
7689     }
7690   } else if (access_type == LOAD && !monomorphic &&
7691              (maps != NULL && !maps->is_empty())) {
7692     // Polymorphic loads have to go generic if any of the maps are strings.
7693     // If some, but not all of the maps are strings, we should go generic
7694     // because polymorphic access wants to key on ElementsKind and isn't
7695     // compatible with strings.
7696     for (int i = 0; i < maps->length(); i++) {
7697       Handle<Map> current_map = maps->at(i);
7698       if (current_map->IsStringMap()) {
7699         force_generic = true;
7700         break;
7701       }
7702     }
7703   }
7704 
7705   if (monomorphic) {
7706     Handle<Map> map = maps->first();
7707     if (!CanInlineElementAccess(map)) {
7708       instr = AddInstruction(
7709           BuildKeyedGeneric(access_type, expr, slot, obj, key, val));
7710     } else {
7711       BuildCheckHeapObject(obj);
7712       instr = BuildMonomorphicElementAccess(
7713           obj, key, val, NULL, map, access_type, expr->GetStoreMode());
7714     }
7715   } else if (!force_generic && (maps != NULL && !maps->is_empty())) {
7716     return HandlePolymorphicElementAccess(expr, slot, obj, key, val, maps,
7717                                           access_type, expr->GetStoreMode(),
7718                                           has_side_effects);
7719   } else {
7720     if (access_type == STORE) {
7721       if (expr->IsAssignment() &&
7722           expr->AsAssignment()->HasNoTypeInformation()) {
7723         Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedStore,
7724                          Deoptimizer::SOFT);
7725       }
7726     } else {
7727       if (expr->AsProperty()->HasNoTypeInformation()) {
7728         Add<HDeoptimize>(Deoptimizer::kInsufficientTypeFeedbackForKeyedLoad,
7729                          Deoptimizer::SOFT);
7730       }
7731     }
7732     instr = AddInstruction(
7733         BuildKeyedGeneric(access_type, expr, slot, obj, key, val));
7734   }
7735   *has_side_effects = instr->HasObservableSideEffects();
7736   return instr;
7737 }
7738 
7739 
EnsureArgumentsArePushedForAccess()7740 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
7741   // Outermost function already has arguments on the stack.
7742   if (function_state()->outer() == NULL) return;
7743 
7744   if (function_state()->arguments_pushed()) return;
7745 
7746   // Push arguments when entering inlined function.
7747   HEnterInlined* entry = function_state()->entry();
7748   entry->set_arguments_pushed();
7749 
7750   HArgumentsObject* arguments = entry->arguments_object();
7751   const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
7752 
7753   HInstruction* insert_after = entry;
7754   for (int i = 0; i < arguments_values->length(); i++) {
7755     HValue* argument = arguments_values->at(i);
7756     HInstruction* push_argument = New<HPushArguments>(argument);
7757     push_argument->InsertAfter(insert_after);
7758     insert_after = push_argument;
7759   }
7760 
7761   HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
7762   arguments_elements->ClearFlag(HValue::kUseGVN);
7763   arguments_elements->InsertAfter(insert_after);
7764   function_state()->set_arguments_elements(arguments_elements);
7765 }
7766 
7767 
TryArgumentsAccess(Property * expr)7768 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
7769   VariableProxy* proxy = expr->obj()->AsVariableProxy();
7770   if (proxy == NULL) return false;
7771   if (!proxy->var()->IsStackAllocated()) return false;
7772   if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
7773     return false;
7774   }
7775 
7776   HInstruction* result = NULL;
7777   if (expr->key()->IsPropertyName()) {
7778     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7779     if (!String::Equals(name, isolate()->factory()->length_string())) {
7780       return false;
7781     }
7782 
7783     if (function_state()->outer() == NULL) {
7784       HInstruction* elements = Add<HArgumentsElements>(false);
7785       result = New<HArgumentsLength>(elements);
7786     } else {
7787       // Number of arguments without receiver.
7788       int argument_count = environment()->
7789           arguments_environment()->parameter_count() - 1;
7790       result = New<HConstant>(argument_count);
7791     }
7792   } else {
7793     Push(graph()->GetArgumentsObject());
7794     CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
7795     HValue* key = Pop();
7796     Drop(1);  // Arguments object.
7797     if (function_state()->outer() == NULL) {
7798       HInstruction* elements = Add<HArgumentsElements>(false);
7799       HInstruction* length = Add<HArgumentsLength>(elements);
7800       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7801       result = New<HAccessArgumentsAt>(elements, length, checked_key);
7802     } else {
7803       EnsureArgumentsArePushedForAccess();
7804 
7805       // Number of arguments without receiver.
7806       HInstruction* elements = function_state()->arguments_elements();
7807       int argument_count = environment()->
7808           arguments_environment()->parameter_count() - 1;
7809       HInstruction* length = Add<HConstant>(argument_count);
7810       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7811       result = New<HAccessArgumentsAt>(elements, length, checked_key);
7812     }
7813   }
7814   ast_context()->ReturnInstruction(result, expr->id());
7815   return true;
7816 }
7817 
7818 
BuildNamedAccess(PropertyAccessType access,BailoutId ast_id,BailoutId return_id,Expression * expr,FeedbackVectorSlot slot,HValue * object,Handle<Name> name,HValue * value,bool is_uninitialized)7819 HValue* HOptimizedGraphBuilder::BuildNamedAccess(
7820     PropertyAccessType access, BailoutId ast_id, BailoutId return_id,
7821     Expression* expr, FeedbackVectorSlot slot, HValue* object,
7822     Handle<Name> name, HValue* value, bool is_uninitialized) {
7823   SmallMapList* maps;
7824   ComputeReceiverTypes(expr, object, &maps, zone());
7825   DCHECK(maps != NULL);
7826 
7827   if (maps->length() > 0) {
7828     PropertyAccessInfo info(this, access, maps->first(), name);
7829     if (!info.CanAccessAsMonomorphic(maps)) {
7830       HandlePolymorphicNamedFieldAccess(access, expr, slot, ast_id, return_id,
7831                                         object, value, maps, name);
7832       return NULL;
7833     }
7834 
7835     HValue* checked_object;
7836     // Type::Number() is only supported by polymorphic load/call handling.
7837     DCHECK(!info.IsNumberType());
7838     BuildCheckHeapObject(object);
7839     if (AreStringTypes(maps)) {
7840       checked_object =
7841           Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
7842     } else {
7843       checked_object = Add<HCheckMaps>(object, maps);
7844     }
7845     return BuildMonomorphicAccess(
7846         &info, object, checked_object, value, ast_id, return_id);
7847   }
7848 
7849   return BuildNamedGeneric(access, expr, slot, object, name, value,
7850                            is_uninitialized);
7851 }
7852 
7853 
PushLoad(Property * expr,HValue * object,HValue * key)7854 void HOptimizedGraphBuilder::PushLoad(Property* expr,
7855                                       HValue* object,
7856                                       HValue* key) {
7857   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
7858   Push(object);
7859   if (key != NULL) Push(key);
7860   BuildLoad(expr, expr->LoadId());
7861 }
7862 
7863 
BuildLoad(Property * expr,BailoutId ast_id)7864 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
7865                                        BailoutId ast_id) {
7866   HInstruction* instr = NULL;
7867   if (expr->IsStringAccess() && expr->GetKeyType() == ELEMENT) {
7868     HValue* index = Pop();
7869     HValue* string = Pop();
7870     HInstruction* char_code = BuildStringCharCodeAt(string, index);
7871     AddInstruction(char_code);
7872     instr = NewUncasted<HStringCharFromCode>(char_code);
7873 
7874   } else if (expr->key()->IsPropertyName()) {
7875     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7876     HValue* object = Pop();
7877 
7878     HValue* value = BuildNamedAccess(LOAD, ast_id, expr->LoadId(), expr,
7879                                      expr->PropertyFeedbackSlot(), object, name,
7880                                      NULL, expr->IsUninitialized());
7881     if (value == NULL) return;
7882     if (value->IsPhi()) return ast_context()->ReturnValue(value);
7883     instr = HInstruction::cast(value);
7884     if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
7885 
7886   } else {
7887     HValue* key = Pop();
7888     HValue* obj = Pop();
7889 
7890     bool has_side_effects = false;
7891     HValue* load = HandleKeyedElementAccess(
7892         obj, key, NULL, expr, expr->PropertyFeedbackSlot(), ast_id,
7893         expr->LoadId(), LOAD, &has_side_effects);
7894     if (has_side_effects) {
7895       if (ast_context()->IsEffect()) {
7896         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7897       } else {
7898         Push(load);
7899         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7900         Drop(1);
7901       }
7902     }
7903     if (load == NULL) return;
7904     return ast_context()->ReturnValue(load);
7905   }
7906   return ast_context()->ReturnInstruction(instr, ast_id);
7907 }
7908 
7909 
VisitProperty(Property * expr)7910 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
7911   DCHECK(!HasStackOverflow());
7912   DCHECK(current_block() != NULL);
7913   DCHECK(current_block()->HasPredecessor());
7914 
7915   if (TryArgumentsAccess(expr)) return;
7916 
7917   CHECK_ALIVE(VisitForValue(expr->obj()));
7918   if (!expr->key()->IsPropertyName() || expr->IsStringAccess()) {
7919     CHECK_ALIVE(VisitForValue(expr->key()));
7920   }
7921 
7922   BuildLoad(expr, expr->id());
7923 }
7924 
7925 
BuildConstantMapCheck(Handle<JSObject> constant)7926 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant) {
7927   HCheckMaps* check = Add<HCheckMaps>(
7928       Add<HConstant>(constant), handle(constant->map()));
7929   check->ClearDependsOnFlag(kElementsKind);
7930   return check;
7931 }
7932 
7933 
BuildCheckPrototypeMaps(Handle<JSObject> prototype,Handle<JSObject> holder)7934 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
7935                                                      Handle<JSObject> holder) {
7936   PrototypeIterator iter(isolate(), prototype,
7937                          PrototypeIterator::START_AT_RECEIVER);
7938   while (holder.is_null() ||
7939          !PrototypeIterator::GetCurrent(iter).is_identical_to(holder)) {
7940     BuildConstantMapCheck(PrototypeIterator::GetCurrent<JSObject>(iter));
7941     iter.Advance();
7942     if (iter.IsAtEnd()) {
7943       return NULL;
7944     }
7945   }
7946   return BuildConstantMapCheck(PrototypeIterator::GetCurrent<JSObject>(iter));
7947 }
7948 
7949 
AddCheckPrototypeMaps(Handle<JSObject> holder,Handle<Map> receiver_map)7950 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
7951                                                    Handle<Map> receiver_map) {
7952   if (!holder.is_null()) {
7953     Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
7954     BuildCheckPrototypeMaps(prototype, holder);
7955   }
7956 }
7957 
7958 
NewPlainFunctionCall(HValue * fun,int argument_count)7959 HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(HValue* fun,
7960                                                            int argument_count) {
7961   return New<HCallJSFunction>(fun, argument_count);
7962 }
7963 
7964 
NewArgumentAdaptorCall(HValue * fun,HValue * context,int argument_count,HValue * expected_param_count)7965 HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
7966     HValue* fun, HValue* context,
7967     int argument_count, HValue* expected_param_count) {
7968   HValue* new_target = graph()->GetConstantUndefined();
7969   HValue* arity = Add<HConstant>(argument_count - 1);
7970 
7971   HValue* op_vals[] = {context, fun, new_target, arity, expected_param_count};
7972 
7973   Callable callable = CodeFactory::ArgumentAdaptor(isolate());
7974   HConstant* stub = Add<HConstant>(callable.code());
7975 
7976   return New<HCallWithDescriptor>(stub, argument_count, callable.descriptor(),
7977                                   Vector<HValue*>(op_vals, arraysize(op_vals)));
7978 }
7979 
7980 
BuildCallConstantFunction(Handle<JSFunction> jsfun,int argument_count)7981 HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
7982     Handle<JSFunction> jsfun, int argument_count) {
7983   HValue* target = Add<HConstant>(jsfun);
7984   // For constant functions, we try to avoid calling the
7985   // argument adaptor and instead call the function directly
7986   int formal_parameter_count =
7987       jsfun->shared()->internal_formal_parameter_count();
7988   bool dont_adapt_arguments =
7989       (formal_parameter_count ==
7990        SharedFunctionInfo::kDontAdaptArgumentsSentinel);
7991   int arity = argument_count - 1;
7992   bool can_invoke_directly =
7993       dont_adapt_arguments || formal_parameter_count == arity;
7994   if (can_invoke_directly) {
7995     if (jsfun.is_identical_to(current_info()->closure())) {
7996       graph()->MarkRecursive();
7997     }
7998     return NewPlainFunctionCall(target, argument_count);
7999   } else {
8000     HValue* param_count_value = Add<HConstant>(formal_parameter_count);
8001     HValue* context = Add<HLoadNamedField>(
8002         target, nullptr, HObjectAccess::ForFunctionContextPointer());
8003     return NewArgumentAdaptorCall(target, context,
8004         argument_count, param_count_value);
8005   }
8006   UNREACHABLE();
8007   return NULL;
8008 }
8009 
8010 
8011 class FunctionSorter {
8012  public:
FunctionSorter(int index=0,int ticks=0,int size=0)8013   explicit FunctionSorter(int index = 0, int ticks = 0, int size = 0)
8014       : index_(index), ticks_(ticks), size_(size) {}
8015 
index() const8016   int index() const { return index_; }
ticks() const8017   int ticks() const { return ticks_; }
size() const8018   int size() const { return size_; }
8019 
8020  private:
8021   int index_;
8022   int ticks_;
8023   int size_;
8024 };
8025 
8026 
operator <(const FunctionSorter & lhs,const FunctionSorter & rhs)8027 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
8028   int diff = lhs.ticks() - rhs.ticks();
8029   if (diff != 0) return diff > 0;
8030   return lhs.size() < rhs.size();
8031 }
8032 
8033 
HandlePolymorphicCallNamed(Call * expr,HValue * receiver,SmallMapList * maps,Handle<String> name)8034 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
8035                                                         HValue* receiver,
8036                                                         SmallMapList* maps,
8037                                                         Handle<String> name) {
8038   int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
8039   FunctionSorter order[kMaxCallPolymorphism];
8040 
8041   bool handle_smi = false;
8042   bool handled_string = false;
8043   int ordered_functions = 0;
8044 
8045   int i;
8046   for (i = 0; i < maps->length() && ordered_functions < kMaxCallPolymorphism;
8047        ++i) {
8048     PropertyAccessInfo info(this, LOAD, maps->at(i), name);
8049     if (info.CanAccessMonomorphic() && info.IsDataConstant() &&
8050         info.constant()->IsJSFunction()) {
8051       if (info.IsStringType()) {
8052         if (handled_string) continue;
8053         handled_string = true;
8054       }
8055       Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
8056       if (info.IsNumberType()) {
8057         handle_smi = true;
8058       }
8059       expr->set_target(target);
8060       order[ordered_functions++] = FunctionSorter(
8061           i, target->shared()->profiler_ticks(), InliningAstSize(target));
8062     }
8063   }
8064 
8065   std::sort(order, order + ordered_functions);
8066 
8067   if (i < maps->length()) {
8068     maps->Clear();
8069     ordered_functions = -1;
8070   }
8071 
8072   HBasicBlock* number_block = NULL;
8073   HBasicBlock* join = NULL;
8074   handled_string = false;
8075   int count = 0;
8076 
8077   for (int fn = 0; fn < ordered_functions; ++fn) {
8078     int i = order[fn].index();
8079     PropertyAccessInfo info(this, LOAD, maps->at(i), name);
8080     if (info.IsStringType()) {
8081       if (handled_string) continue;
8082       handled_string = true;
8083     }
8084     // Reloads the target.
8085     info.CanAccessMonomorphic();
8086     Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
8087 
8088     expr->set_target(target);
8089     if (count == 0) {
8090       // Only needed once.
8091       join = graph()->CreateBasicBlock();
8092       if (handle_smi) {
8093         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
8094         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
8095         number_block = graph()->CreateBasicBlock();
8096         FinishCurrentBlock(New<HIsSmiAndBranch>(
8097                 receiver, empty_smi_block, not_smi_block));
8098         GotoNoSimulate(empty_smi_block, number_block);
8099         set_current_block(not_smi_block);
8100       } else {
8101         BuildCheckHeapObject(receiver);
8102       }
8103     }
8104     ++count;
8105     HBasicBlock* if_true = graph()->CreateBasicBlock();
8106     HBasicBlock* if_false = graph()->CreateBasicBlock();
8107     HUnaryControlInstruction* compare;
8108 
8109     Handle<Map> map = info.map();
8110     if (info.IsNumberType()) {
8111       Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
8112       compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
8113     } else if (info.IsStringType()) {
8114       compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
8115     } else {
8116       compare = New<HCompareMap>(receiver, map, if_true, if_false);
8117     }
8118     FinishCurrentBlock(compare);
8119 
8120     if (info.IsNumberType()) {
8121       GotoNoSimulate(if_true, number_block);
8122       if_true = number_block;
8123     }
8124 
8125     set_current_block(if_true);
8126 
8127     AddCheckPrototypeMaps(info.holder(), map);
8128 
8129     HValue* function = Add<HConstant>(expr->target());
8130     environment()->SetExpressionStackAt(0, function);
8131     Push(receiver);
8132     CHECK_ALIVE(VisitExpressions(expr->arguments()));
8133     bool needs_wrapping = info.NeedsWrappingFor(target);
8134     bool try_inline = FLAG_polymorphic_inlining && !needs_wrapping;
8135     if (FLAG_trace_inlining && try_inline) {
8136       Handle<JSFunction> caller = current_info()->closure();
8137       base::SmartArrayPointer<char> caller_name =
8138           caller->shared()->DebugName()->ToCString();
8139       PrintF("Trying to inline the polymorphic call to %s from %s\n",
8140              name->ToCString().get(),
8141              caller_name.get());
8142     }
8143     if (try_inline && TryInlineCall(expr)) {
8144       // Trying to inline will signal that we should bailout from the
8145       // entire compilation by setting stack overflow on the visitor.
8146       if (HasStackOverflow()) return;
8147     } else {
8148       // Since HWrapReceiver currently cannot actually wrap numbers and strings,
8149       // use the regular CallFunctionStub for method calls to wrap the receiver.
8150       // TODO(verwaest): Support creation of value wrappers directly in
8151       // HWrapReceiver.
8152       HInstruction* call =
8153           needs_wrapping ? NewUncasted<HCallFunction>(
8154                                function, argument_count,
8155                                ConvertReceiverMode::kNotNullOrUndefined)
8156                          : BuildCallConstantFunction(target, argument_count);
8157       PushArgumentsFromEnvironment(argument_count);
8158       AddInstruction(call);
8159       Drop(1);  // Drop the function.
8160       if (!ast_context()->IsEffect()) Push(call);
8161     }
8162 
8163     if (current_block() != NULL) Goto(join);
8164     set_current_block(if_false);
8165   }
8166 
8167   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
8168   // know about and do not want to handle ones we've never seen.  Otherwise
8169   // use a generic IC.
8170   if (ordered_functions == maps->length() && FLAG_deoptimize_uncommon_cases) {
8171     FinishExitWithHardDeoptimization(Deoptimizer::kUnknownMapInPolymorphicCall);
8172   } else {
8173     Property* prop = expr->expression()->AsProperty();
8174     HInstruction* function =
8175         BuildNamedGeneric(LOAD, prop, prop->PropertyFeedbackSlot(), receiver,
8176                           name, NULL, prop->IsUninitialized());
8177     AddInstruction(function);
8178     Push(function);
8179     AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
8180 
8181     environment()->SetExpressionStackAt(1, function);
8182     environment()->SetExpressionStackAt(0, receiver);
8183     CHECK_ALIVE(VisitExpressions(expr->arguments()));
8184 
8185     HInstruction* call = New<HCallFunction>(
8186         function, argument_count, ConvertReceiverMode::kNotNullOrUndefined);
8187 
8188     PushArgumentsFromEnvironment(argument_count);
8189 
8190     Drop(1);  // Function.
8191 
8192     if (join != NULL) {
8193       AddInstruction(call);
8194       if (!ast_context()->IsEffect()) Push(call);
8195       Goto(join);
8196     } else {
8197       return ast_context()->ReturnInstruction(call, expr->id());
8198     }
8199   }
8200 
8201   // We assume that control flow is always live after an expression.  So
8202   // even without predecessors to the join block, we set it as the exit
8203   // block and continue by adding instructions there.
8204   DCHECK(join != NULL);
8205   if (join->HasPredecessor()) {
8206     set_current_block(join);
8207     join->SetJoinId(expr->id());
8208     if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
8209   } else {
8210     set_current_block(NULL);
8211   }
8212 }
8213 
8214 
TraceInline(Handle<JSFunction> target,Handle<JSFunction> caller,const char * reason)8215 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
8216                                          Handle<JSFunction> caller,
8217                                          const char* reason) {
8218   if (FLAG_trace_inlining) {
8219     base::SmartArrayPointer<char> target_name =
8220         target->shared()->DebugName()->ToCString();
8221     base::SmartArrayPointer<char> caller_name =
8222         caller->shared()->DebugName()->ToCString();
8223     if (reason == NULL) {
8224       PrintF("Inlined %s called from %s.\n", target_name.get(),
8225              caller_name.get());
8226     } else {
8227       PrintF("Did not inline %s called from %s (%s).\n",
8228              target_name.get(), caller_name.get(), reason);
8229     }
8230   }
8231 }
8232 
8233 
8234 static const int kNotInlinable = 1000000000;
8235 
8236 
InliningAstSize(Handle<JSFunction> target)8237 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
8238   if (!FLAG_use_inlining) return kNotInlinable;
8239 
8240   // Precondition: call is monomorphic and we have found a target with the
8241   // appropriate arity.
8242   Handle<JSFunction> caller = current_info()->closure();
8243   Handle<SharedFunctionInfo> target_shared(target->shared());
8244 
8245   // Always inline functions that force inlining.
8246   if (target_shared->force_inline()) {
8247     return 0;
8248   }
8249   if (target->shared()->IsBuiltin()) {
8250     return kNotInlinable;
8251   }
8252 
8253   if (target_shared->IsApiFunction()) {
8254     TraceInline(target, caller, "target is api function");
8255     return kNotInlinable;
8256   }
8257 
8258   // Do a quick check on source code length to avoid parsing large
8259   // inlining candidates.
8260   if (target_shared->SourceSize() >
8261       Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
8262     TraceInline(target, caller, "target text too big");
8263     return kNotInlinable;
8264   }
8265 
8266   // Target must be inlineable.
8267   BailoutReason noopt_reason = target_shared->disable_optimization_reason();
8268   if (!target_shared->IsInlineable() && noopt_reason != kHydrogenFilter) {
8269     TraceInline(target, caller, "target not inlineable");
8270     return kNotInlinable;
8271   }
8272   if (noopt_reason != kNoReason && noopt_reason != kHydrogenFilter) {
8273     TraceInline(target, caller, "target contains unsupported syntax [early]");
8274     return kNotInlinable;
8275   }
8276 
8277   int nodes_added = target_shared->ast_node_count();
8278   return nodes_added;
8279 }
8280 
8281 
TryInline(Handle<JSFunction> target,int arguments_count,HValue * implicit_return_value,BailoutId ast_id,BailoutId return_id,InliningKind inlining_kind)8282 bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
8283                                        int arguments_count,
8284                                        HValue* implicit_return_value,
8285                                        BailoutId ast_id, BailoutId return_id,
8286                                        InliningKind inlining_kind) {
8287   if (target->context()->native_context() !=
8288       top_info()->closure()->context()->native_context()) {
8289     return false;
8290   }
8291   int nodes_added = InliningAstSize(target);
8292   if (nodes_added == kNotInlinable) return false;
8293 
8294   Handle<JSFunction> caller = current_info()->closure();
8295 
8296   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8297     TraceInline(target, caller, "target AST is too large [early]");
8298     return false;
8299   }
8300 
8301   // Don't inline deeper than the maximum number of inlining levels.
8302   HEnvironment* env = environment();
8303   int current_level = 1;
8304   while (env->outer() != NULL) {
8305     if (current_level == FLAG_max_inlining_levels) {
8306       TraceInline(target, caller, "inline depth limit reached");
8307       return false;
8308     }
8309     if (env->outer()->frame_type() == JS_FUNCTION) {
8310       current_level++;
8311     }
8312     env = env->outer();
8313   }
8314 
8315   // Don't inline recursive functions.
8316   for (FunctionState* state = function_state();
8317        state != NULL;
8318        state = state->outer()) {
8319     if (*state->compilation_info()->closure() == *target) {
8320       TraceInline(target, caller, "target is recursive");
8321       return false;
8322     }
8323   }
8324 
8325   // We don't want to add more than a certain number of nodes from inlining.
8326   // Always inline small methods (<= 10 nodes).
8327   if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
8328                            kUnlimitedMaxInlinedNodesCumulative)) {
8329     TraceInline(target, caller, "cumulative AST node limit reached");
8330     return false;
8331   }
8332 
8333   // Parse and allocate variables.
8334   // Use the same AstValueFactory for creating strings in the sub-compilation
8335   // step, but don't transfer ownership to target_info.
8336   ParseInfo parse_info(zone(), target);
8337   parse_info.set_ast_value_factory(
8338       top_info()->parse_info()->ast_value_factory());
8339   parse_info.set_ast_value_factory_owned(false);
8340 
8341   CompilationInfo target_info(&parse_info);
8342   Handle<SharedFunctionInfo> target_shared(target->shared());
8343 
8344   if (IsClassConstructor(target_shared->kind())) {
8345     TraceInline(target, caller, "target is classConstructor");
8346     return false;
8347   }
8348   if (target_shared->HasDebugInfo()) {
8349     TraceInline(target, caller, "target is being debugged");
8350     return false;
8351   }
8352   if (!Compiler::ParseAndAnalyze(target_info.parse_info())) {
8353     if (target_info.isolate()->has_pending_exception()) {
8354       // Parse or scope error, never optimize this function.
8355       SetStackOverflow();
8356       target_shared->DisableOptimization(kParseScopeError);
8357     }
8358     TraceInline(target, caller, "parse failure");
8359     return false;
8360   }
8361 
8362   if (target_info.scope()->num_heap_slots() > 0) {
8363     TraceInline(target, caller, "target has context-allocated variables");
8364     return false;
8365   }
8366 
8367   int rest_index;
8368   Variable* rest = target_info.scope()->rest_parameter(&rest_index);
8369   if (rest) {
8370     TraceInline(target, caller, "target uses rest parameters");
8371     return false;
8372   }
8373 
8374   FunctionLiteral* function = target_info.literal();
8375 
8376   // The following conditions must be checked again after re-parsing, because
8377   // earlier the information might not have been complete due to lazy parsing.
8378   nodes_added = function->ast_node_count();
8379   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
8380     TraceInline(target, caller, "target AST is too large [late]");
8381     return false;
8382   }
8383   if (function->dont_optimize()) {
8384     TraceInline(target, caller, "target contains unsupported syntax [late]");
8385     return false;
8386   }
8387 
8388   // If the function uses the arguments object check that inlining of functions
8389   // with arguments object is enabled and the arguments-variable is
8390   // stack allocated.
8391   if (function->scope()->arguments() != NULL) {
8392     if (!FLAG_inline_arguments) {
8393       TraceInline(target, caller, "target uses arguments object");
8394       return false;
8395     }
8396   }
8397 
8398   // Unsupported variable references present.
8399   if (function->scope()->this_function_var() != nullptr ||
8400       function->scope()->new_target_var() != nullptr) {
8401     TraceInline(target, caller, "target uses new target or this function");
8402     return false;
8403   }
8404 
8405   // All declarations must be inlineable.
8406   ZoneList<Declaration*>* decls = target_info.scope()->declarations();
8407   int decl_count = decls->length();
8408   for (int i = 0; i < decl_count; ++i) {
8409     if (!decls->at(i)->IsInlineable()) {
8410       TraceInline(target, caller, "target has non-trivial declaration");
8411       return false;
8412     }
8413   }
8414 
8415   // In strong mode it is an error to call a function with too few arguments.
8416   // In that case do not inline because then the arity check would be skipped.
8417   if (is_strong(function->language_mode()) &&
8418       arguments_count < function->parameter_count()) {
8419     TraceInline(target, caller,
8420                 "too few arguments passed to a strong function");
8421     return false;
8422   }
8423 
8424   // Generate the deoptimization data for the unoptimized version of
8425   // the target function if we don't already have it.
8426   if (!Compiler::EnsureDeoptimizationSupport(&target_info)) {
8427     TraceInline(target, caller, "could not generate deoptimization info");
8428     return false;
8429   }
8430   // Remember that we inlined this function. This needs to be called right
8431   // after the EnsureDeoptimizationSupport call so that the code flusher
8432   // does not remove the code with the deoptimization support.
8433   top_info()->AddInlinedFunction(target_info.shared_info());
8434 
8435   // ----------------------------------------------------------------
8436   // After this point, we've made a decision to inline this function (so
8437   // TryInline should always return true).
8438 
8439   // Type-check the inlined function.
8440   DCHECK(target_shared->has_deoptimization_support());
8441   AstTyper(target_info.isolate(), target_info.zone(), target_info.closure(),
8442            target_info.scope(), target_info.osr_ast_id(), target_info.literal())
8443       .Run();
8444 
8445   int inlining_id = 0;
8446   if (top_info()->is_tracking_positions()) {
8447     inlining_id = top_info()->TraceInlinedFunction(
8448         target_shared, source_position(), function_state()->inlining_id());
8449   }
8450 
8451   // Save the pending call context. Set up new one for the inlined function.
8452   // The function state is new-allocated because we need to delete it
8453   // in two different places.
8454   FunctionState* target_state =
8455       new FunctionState(this, &target_info, inlining_kind, inlining_id);
8456 
8457   HConstant* undefined = graph()->GetConstantUndefined();
8458 
8459   HEnvironment* inner_env =
8460       environment()->CopyForInlining(target,
8461                                      arguments_count,
8462                                      function,
8463                                      undefined,
8464                                      function_state()->inlining_kind());
8465 
8466   HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
8467   inner_env->BindContext(context);
8468 
8469   // Create a dematerialized arguments object for the function, also copy the
8470   // current arguments values to use them for materialization.
8471   HEnvironment* arguments_env = inner_env->arguments_environment();
8472   int parameter_count = arguments_env->parameter_count();
8473   HArgumentsObject* arguments_object = Add<HArgumentsObject>(parameter_count);
8474   for (int i = 0; i < parameter_count; i++) {
8475     arguments_object->AddArgument(arguments_env->Lookup(i), zone());
8476   }
8477 
8478   // If the function uses arguments object then bind bind one.
8479   if (function->scope()->arguments() != NULL) {
8480     DCHECK(function->scope()->arguments()->IsStackAllocated());
8481     inner_env->Bind(function->scope()->arguments(), arguments_object);
8482   }
8483 
8484   // Capture the state before invoking the inlined function for deopt in the
8485   // inlined function. This simulate has no bailout-id since it's not directly
8486   // reachable for deopt, and is only used to capture the state. If the simulate
8487   // becomes reachable by merging, the ast id of the simulate merged into it is
8488   // adopted.
8489   Add<HSimulate>(BailoutId::None());
8490 
8491   current_block()->UpdateEnvironment(inner_env);
8492   Scope* saved_scope = scope();
8493   set_scope(target_info.scope());
8494   HEnterInlined* enter_inlined =
8495       Add<HEnterInlined>(return_id, target, context, arguments_count, function,
8496                          function_state()->inlining_kind(),
8497                          function->scope()->arguments(), arguments_object);
8498   if (top_info()->is_tracking_positions()) {
8499     enter_inlined->set_inlining_id(inlining_id);
8500   }
8501   function_state()->set_entry(enter_inlined);
8502 
8503   VisitDeclarations(target_info.scope()->declarations());
8504   VisitStatements(function->body());
8505   set_scope(saved_scope);
8506   if (HasStackOverflow()) {
8507     // Bail out if the inline function did, as we cannot residualize a call
8508     // instead, but do not disable optimization for the outer function.
8509     TraceInline(target, caller, "inline graph construction failed");
8510     target_shared->DisableOptimization(kInliningBailedOut);
8511     current_info()->RetryOptimization(kInliningBailedOut);
8512     delete target_state;
8513     return true;
8514   }
8515 
8516   // Update inlined nodes count.
8517   inlined_count_ += nodes_added;
8518 
8519   Handle<Code> unoptimized_code(target_shared->code());
8520   DCHECK(unoptimized_code->kind() == Code::FUNCTION);
8521   Handle<TypeFeedbackInfo> type_info(
8522       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
8523   graph()->update_type_change_checksum(type_info->own_type_change_checksum());
8524 
8525   TraceInline(target, caller, NULL);
8526 
8527   if (current_block() != NULL) {
8528     FunctionState* state = function_state();
8529     if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
8530       // Falling off the end of an inlined construct call. In a test context the
8531       // return value will always evaluate to true, in a value context the
8532       // return value is the newly allocated receiver.
8533       if (call_context()->IsTest()) {
8534         Goto(inlined_test_context()->if_true(), state);
8535       } else if (call_context()->IsEffect()) {
8536         Goto(function_return(), state);
8537       } else {
8538         DCHECK(call_context()->IsValue());
8539         AddLeaveInlined(implicit_return_value, state);
8540       }
8541     } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
8542       // Falling off the end of an inlined setter call. The returned value is
8543       // never used, the value of an assignment is always the value of the RHS
8544       // of the assignment.
8545       if (call_context()->IsTest()) {
8546         inlined_test_context()->ReturnValue(implicit_return_value);
8547       } else if (call_context()->IsEffect()) {
8548         Goto(function_return(), state);
8549       } else {
8550         DCHECK(call_context()->IsValue());
8551         AddLeaveInlined(implicit_return_value, state);
8552       }
8553     } else {
8554       // Falling off the end of a normal inlined function. This basically means
8555       // returning undefined.
8556       if (call_context()->IsTest()) {
8557         Goto(inlined_test_context()->if_false(), state);
8558       } else if (call_context()->IsEffect()) {
8559         Goto(function_return(), state);
8560       } else {
8561         DCHECK(call_context()->IsValue());
8562         AddLeaveInlined(undefined, state);
8563       }
8564     }
8565   }
8566 
8567   // Fix up the function exits.
8568   if (inlined_test_context() != NULL) {
8569     HBasicBlock* if_true = inlined_test_context()->if_true();
8570     HBasicBlock* if_false = inlined_test_context()->if_false();
8571 
8572     HEnterInlined* entry = function_state()->entry();
8573 
8574     // Pop the return test context from the expression context stack.
8575     DCHECK(ast_context() == inlined_test_context());
8576     ClearInlinedTestContext();
8577     delete target_state;
8578 
8579     // Forward to the real test context.
8580     if (if_true->HasPredecessor()) {
8581       entry->RegisterReturnTarget(if_true, zone());
8582       if_true->SetJoinId(ast_id);
8583       HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
8584       Goto(if_true, true_target, function_state());
8585     }
8586     if (if_false->HasPredecessor()) {
8587       entry->RegisterReturnTarget(if_false, zone());
8588       if_false->SetJoinId(ast_id);
8589       HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
8590       Goto(if_false, false_target, function_state());
8591     }
8592     set_current_block(NULL);
8593     return true;
8594 
8595   } else if (function_return()->HasPredecessor()) {
8596     function_state()->entry()->RegisterReturnTarget(function_return(), zone());
8597     function_return()->SetJoinId(ast_id);
8598     set_current_block(function_return());
8599   } else {
8600     set_current_block(NULL);
8601   }
8602   delete target_state;
8603   return true;
8604 }
8605 
8606 
TryInlineCall(Call * expr)8607 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr) {
8608   return TryInline(expr->target(), expr->arguments()->length(), NULL,
8609                    expr->id(), expr->ReturnId(), NORMAL_RETURN);
8610 }
8611 
8612 
TryInlineConstruct(CallNew * expr,HValue * implicit_return_value)8613 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
8614                                                 HValue* implicit_return_value) {
8615   return TryInline(expr->target(), expr->arguments()->length(),
8616                    implicit_return_value, expr->id(), expr->ReturnId(),
8617                    CONSTRUCT_CALL_RETURN);
8618 }
8619 
8620 
TryInlineGetter(Handle<JSFunction> getter,Handle<Map> receiver_map,BailoutId ast_id,BailoutId return_id)8621 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
8622                                              Handle<Map> receiver_map,
8623                                              BailoutId ast_id,
8624                                              BailoutId return_id) {
8625   if (TryInlineApiGetter(getter, receiver_map, ast_id)) return true;
8626   return TryInline(getter, 0, NULL, ast_id, return_id, GETTER_CALL_RETURN);
8627 }
8628 
8629 
TryInlineSetter(Handle<JSFunction> setter,Handle<Map> receiver_map,BailoutId id,BailoutId assignment_id,HValue * implicit_return_value)8630 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
8631                                              Handle<Map> receiver_map,
8632                                              BailoutId id,
8633                                              BailoutId assignment_id,
8634                                              HValue* implicit_return_value) {
8635   if (TryInlineApiSetter(setter, receiver_map, id)) return true;
8636   return TryInline(setter, 1, implicit_return_value, id, assignment_id,
8637                    SETTER_CALL_RETURN);
8638 }
8639 
8640 
TryInlineIndirectCall(Handle<JSFunction> function,Call * expr,int arguments_count)8641 bool HOptimizedGraphBuilder::TryInlineIndirectCall(Handle<JSFunction> function,
8642                                                    Call* expr,
8643                                                    int arguments_count) {
8644   return TryInline(function, arguments_count, NULL, expr->id(),
8645                    expr->ReturnId(), NORMAL_RETURN);
8646 }
8647 
8648 
TryInlineBuiltinFunctionCall(Call * expr)8649 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr) {
8650   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
8651   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
8652   switch (id) {
8653     case kMathExp:
8654       if (!FLAG_fast_math) break;
8655       // Fall through if FLAG_fast_math.
8656     case kMathRound:
8657     case kMathFround:
8658     case kMathFloor:
8659     case kMathAbs:
8660     case kMathSqrt:
8661     case kMathLog:
8662     case kMathClz32:
8663       if (expr->arguments()->length() == 1) {
8664         HValue* argument = Pop();
8665         Drop(2);  // Receiver and function.
8666         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8667         ast_context()->ReturnInstruction(op, expr->id());
8668         return true;
8669       }
8670       break;
8671     case kMathImul:
8672       if (expr->arguments()->length() == 2) {
8673         HValue* right = Pop();
8674         HValue* left = Pop();
8675         Drop(2);  // Receiver and function.
8676         HInstruction* op =
8677             HMul::NewImul(isolate(), zone(), context(), left, right);
8678         ast_context()->ReturnInstruction(op, expr->id());
8679         return true;
8680       }
8681       break;
8682     default:
8683       // Not supported for inlining yet.
8684       break;
8685   }
8686   return false;
8687 }
8688 
8689 
8690 // static
IsReadOnlyLengthDescriptor(Handle<Map> jsarray_map)8691 bool HOptimizedGraphBuilder::IsReadOnlyLengthDescriptor(
8692     Handle<Map> jsarray_map) {
8693   DCHECK(!jsarray_map->is_dictionary_map());
8694   Isolate* isolate = jsarray_map->GetIsolate();
8695   Handle<Name> length_string = isolate->factory()->length_string();
8696   DescriptorArray* descriptors = jsarray_map->instance_descriptors();
8697   int number = descriptors->SearchWithCache(*length_string, *jsarray_map);
8698   DCHECK_NE(DescriptorArray::kNotFound, number);
8699   return descriptors->GetDetails(number).IsReadOnly();
8700 }
8701 
8702 
8703 // static
CanInlineArrayResizeOperation(Handle<Map> receiver_map)8704 bool HOptimizedGraphBuilder::CanInlineArrayResizeOperation(
8705     Handle<Map> receiver_map) {
8706   return !receiver_map.is_null() && receiver_map->prototype()->IsJSObject() &&
8707          receiver_map->instance_type() == JS_ARRAY_TYPE &&
8708          IsFastElementsKind(receiver_map->elements_kind()) &&
8709          !receiver_map->is_dictionary_map() && !receiver_map->is_observed() &&
8710          receiver_map->is_extensible() &&
8711          (!receiver_map->is_prototype_map() || receiver_map->is_stable()) &&
8712          !IsReadOnlyLengthDescriptor(receiver_map);
8713 }
8714 
8715 
TryInlineBuiltinMethodCall(Call * expr,Handle<JSFunction> function,Handle<Map> receiver_map,int args_count_no_receiver)8716 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
8717     Call* expr, Handle<JSFunction> function, Handle<Map> receiver_map,
8718     int args_count_no_receiver) {
8719   if (!function->shared()->HasBuiltinFunctionId()) return false;
8720   BuiltinFunctionId id = function->shared()->builtin_function_id();
8721   int argument_count = args_count_no_receiver + 1;  // Plus receiver.
8722 
8723   if (receiver_map.is_null()) {
8724     HValue* receiver = environment()->ExpressionStackAt(args_count_no_receiver);
8725     if (receiver->IsConstant() &&
8726         HConstant::cast(receiver)->handle(isolate())->IsHeapObject()) {
8727       receiver_map =
8728           handle(Handle<HeapObject>::cast(
8729                      HConstant::cast(receiver)->handle(isolate()))->map());
8730     }
8731   }
8732   // Try to inline calls like Math.* as operations in the calling function.
8733   switch (id) {
8734     case kStringCharCodeAt:
8735     case kStringCharAt:
8736       if (argument_count == 2) {
8737         HValue* index = Pop();
8738         HValue* string = Pop();
8739         Drop(1);  // Function.
8740         HInstruction* char_code =
8741             BuildStringCharCodeAt(string, index);
8742         if (id == kStringCharCodeAt) {
8743           ast_context()->ReturnInstruction(char_code, expr->id());
8744           return true;
8745         }
8746         AddInstruction(char_code);
8747         HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
8748         ast_context()->ReturnInstruction(result, expr->id());
8749         return true;
8750       }
8751       break;
8752     case kStringFromCharCode:
8753       if (argument_count == 2) {
8754         HValue* argument = Pop();
8755         Drop(2);  // Receiver and function.
8756         HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
8757         ast_context()->ReturnInstruction(result, expr->id());
8758         return true;
8759       }
8760       break;
8761     case kMathExp:
8762       if (!FLAG_fast_math) break;
8763       // Fall through if FLAG_fast_math.
8764     case kMathRound:
8765     case kMathFround:
8766     case kMathFloor:
8767     case kMathAbs:
8768     case kMathSqrt:
8769     case kMathLog:
8770     case kMathClz32:
8771       if (argument_count == 2) {
8772         HValue* argument = Pop();
8773         Drop(2);  // Receiver and function.
8774         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8775         ast_context()->ReturnInstruction(op, expr->id());
8776         return true;
8777       }
8778       break;
8779     case kMathPow:
8780       if (argument_count == 3) {
8781         HValue* right = Pop();
8782         HValue* left = Pop();
8783         Drop(2);  // Receiver and function.
8784         HInstruction* result = NULL;
8785         // Use sqrt() if exponent is 0.5 or -0.5.
8786         if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
8787           double exponent = HConstant::cast(right)->DoubleValue();
8788           if (exponent == 0.5) {
8789             result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
8790           } else if (exponent == -0.5) {
8791             HValue* one = graph()->GetConstant1();
8792             HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
8793                 left, kMathPowHalf);
8794             // MathPowHalf doesn't have side effects so there's no need for
8795             // an environment simulation here.
8796             DCHECK(!sqrt->HasObservableSideEffects());
8797             result = NewUncasted<HDiv>(one, sqrt);
8798           } else if (exponent == 2.0) {
8799             result = NewUncasted<HMul>(left, left);
8800           }
8801         }
8802 
8803         if (result == NULL) {
8804           result = NewUncasted<HPower>(left, right);
8805         }
8806         ast_context()->ReturnInstruction(result, expr->id());
8807         return true;
8808       }
8809       break;
8810     case kMathMax:
8811     case kMathMin:
8812       if (argument_count == 3) {
8813         HValue* right = Pop();
8814         HValue* left = Pop();
8815         Drop(2);  // Receiver and function.
8816         HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
8817                                                      : HMathMinMax::kMathMax;
8818         HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
8819         ast_context()->ReturnInstruction(result, expr->id());
8820         return true;
8821       }
8822       break;
8823     case kMathImul:
8824       if (argument_count == 3) {
8825         HValue* right = Pop();
8826         HValue* left = Pop();
8827         Drop(2);  // Receiver and function.
8828         HInstruction* result =
8829             HMul::NewImul(isolate(), zone(), context(), left, right);
8830         ast_context()->ReturnInstruction(result, expr->id());
8831         return true;
8832       }
8833       break;
8834     case kArrayPop: {
8835       if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8836       ElementsKind elements_kind = receiver_map->elements_kind();
8837 
8838       Drop(args_count_no_receiver);
8839       HValue* result;
8840       HValue* reduced_length;
8841       HValue* receiver = Pop();
8842 
8843       HValue* checked_object = AddCheckMap(receiver, receiver_map);
8844       HValue* length =
8845           Add<HLoadNamedField>(checked_object, nullptr,
8846                                HObjectAccess::ForArrayLength(elements_kind));
8847 
8848       Drop(1);  // Function.
8849 
8850       { NoObservableSideEffectsScope scope(this);
8851         IfBuilder length_checker(this);
8852 
8853         HValue* bounds_check = length_checker.If<HCompareNumericAndBranch>(
8854             length, graph()->GetConstant0(), Token::EQ);
8855         length_checker.Then();
8856 
8857         if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8858 
8859         length_checker.Else();
8860         HValue* elements = AddLoadElements(checked_object);
8861         // Ensure that we aren't popping from a copy-on-write array.
8862         if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8863           elements = BuildCopyElementsOnWrite(checked_object, elements,
8864                                               elements_kind, length);
8865         }
8866         reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
8867         result = AddElementAccess(elements, reduced_length, nullptr,
8868                                   bounds_check, nullptr, elements_kind, LOAD);
8869         HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
8870                            ? graph()->GetConstantHole()
8871                            : Add<HConstant>(HConstant::kHoleNaN);
8872         if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8873           elements_kind = FAST_HOLEY_ELEMENTS;
8874         }
8875         AddElementAccess(elements, reduced_length, hole, bounds_check, nullptr,
8876                          elements_kind, STORE);
8877         Add<HStoreNamedField>(
8878             checked_object, HObjectAccess::ForArrayLength(elements_kind),
8879             reduced_length, STORE_TO_INITIALIZED_ENTRY);
8880 
8881         if (!ast_context()->IsEffect()) Push(result);
8882 
8883         length_checker.End();
8884       }
8885       result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8886       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8887       if (!ast_context()->IsEffect()) Drop(1);
8888 
8889       ast_context()->ReturnValue(result);
8890       return true;
8891     }
8892     case kArrayPush: {
8893       if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8894       ElementsKind elements_kind = receiver_map->elements_kind();
8895 
8896       // If there may be elements accessors in the prototype chain, the fast
8897       // inlined version can't be used.
8898       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8899       // If there currently can be no elements accessors on the prototype chain,
8900       // it doesn't mean that there won't be any later. Install a full prototype
8901       // chain check to trap element accessors being installed on the prototype
8902       // chain, which would cause elements to go to dictionary mode and result
8903       // in a map change.
8904       Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
8905       BuildCheckPrototypeMaps(prototype, Handle<JSObject>());
8906 
8907       // Protect against adding elements to the Array prototype, which needs to
8908       // route through appropriate bottlenecks.
8909       if (isolate()->IsFastArrayConstructorPrototypeChainIntact() &&
8910           !prototype->IsJSArray()) {
8911         return false;
8912       }
8913 
8914       const int argc = args_count_no_receiver;
8915       if (argc != 1) return false;
8916 
8917       HValue* value_to_push = Pop();
8918       HValue* array = Pop();
8919       Drop(1);  // Drop function.
8920 
8921       HInstruction* new_size = NULL;
8922       HValue* length = NULL;
8923 
8924       {
8925         NoObservableSideEffectsScope scope(this);
8926 
8927         length = Add<HLoadNamedField>(
8928             array, nullptr, HObjectAccess::ForArrayLength(elements_kind));
8929 
8930         new_size = AddUncasted<HAdd>(length, graph()->GetConstant1());
8931 
8932         bool is_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
8933         HValue* checked_array = Add<HCheckMaps>(array, receiver_map);
8934         BuildUncheckedMonomorphicElementAccess(
8935             checked_array, length, value_to_push, is_array, elements_kind,
8936             STORE, NEVER_RETURN_HOLE, STORE_AND_GROW_NO_TRANSITION);
8937 
8938         if (!ast_context()->IsEffect()) Push(new_size);
8939         Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8940         if (!ast_context()->IsEffect()) Drop(1);
8941       }
8942 
8943       ast_context()->ReturnValue(new_size);
8944       return true;
8945     }
8946     case kArrayShift: {
8947       if (!CanInlineArrayResizeOperation(receiver_map)) return false;
8948       ElementsKind kind = receiver_map->elements_kind();
8949 
8950       // If there may be elements accessors in the prototype chain, the fast
8951       // inlined version can't be used.
8952       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8953 
8954       // If there currently can be no elements accessors on the prototype chain,
8955       // it doesn't mean that there won't be any later. Install a full prototype
8956       // chain check to trap element accessors being installed on the prototype
8957       // chain, which would cause elements to go to dictionary mode and result
8958       // in a map change.
8959       BuildCheckPrototypeMaps(
8960           handle(JSObject::cast(receiver_map->prototype()), isolate()),
8961           Handle<JSObject>::null());
8962 
8963       // Threshold for fast inlined Array.shift().
8964       HConstant* inline_threshold = Add<HConstant>(static_cast<int32_t>(16));
8965 
8966       Drop(args_count_no_receiver);
8967       HValue* receiver = Pop();
8968       HValue* function = Pop();
8969       HValue* result;
8970 
8971       {
8972         NoObservableSideEffectsScope scope(this);
8973 
8974         HValue* length = Add<HLoadNamedField>(
8975             receiver, nullptr, HObjectAccess::ForArrayLength(kind));
8976 
8977         IfBuilder if_lengthiszero(this);
8978         HValue* lengthiszero = if_lengthiszero.If<HCompareNumericAndBranch>(
8979             length, graph()->GetConstant0(), Token::EQ);
8980         if_lengthiszero.Then();
8981         {
8982           if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8983         }
8984         if_lengthiszero.Else();
8985         {
8986           HValue* elements = AddLoadElements(receiver);
8987 
8988           // Check if we can use the fast inlined Array.shift().
8989           IfBuilder if_inline(this);
8990           if_inline.If<HCompareNumericAndBranch>(
8991               length, inline_threshold, Token::LTE);
8992           if (IsFastSmiOrObjectElementsKind(kind)) {
8993             // We cannot handle copy-on-write backing stores here.
8994             if_inline.AndIf<HCompareMap>(
8995                 elements, isolate()->factory()->fixed_array_map());
8996           }
8997           if_inline.Then();
8998           {
8999             // Remember the result.
9000             if (!ast_context()->IsEffect()) {
9001               Push(AddElementAccess(elements, graph()->GetConstant0(), nullptr,
9002                                     lengthiszero, nullptr, kind, LOAD));
9003             }
9004 
9005             // Compute the new length.
9006             HValue* new_length = AddUncasted<HSub>(
9007                 length, graph()->GetConstant1());
9008             new_length->ClearFlag(HValue::kCanOverflow);
9009 
9010             // Copy the remaining elements.
9011             LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
9012             {
9013               HValue* new_key = loop.BeginBody(
9014                   graph()->GetConstant0(), new_length, Token::LT);
9015               HValue* key = AddUncasted<HAdd>(new_key, graph()->GetConstant1());
9016               key->ClearFlag(HValue::kCanOverflow);
9017               ElementsKind copy_kind =
9018                   kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
9019               HValue* element =
9020                   AddUncasted<HLoadKeyed>(elements, key, lengthiszero, nullptr,
9021                                           copy_kind, ALLOW_RETURN_HOLE);
9022               HStoreKeyed* store = Add<HStoreKeyed>(elements, new_key, element,
9023                                                     nullptr, copy_kind);
9024               store->SetFlag(HValue::kAllowUndefinedAsNaN);
9025             }
9026             loop.EndBody();
9027 
9028             // Put a hole at the end.
9029             HValue* hole = IsFastSmiOrObjectElementsKind(kind)
9030                                ? graph()->GetConstantHole()
9031                                : Add<HConstant>(HConstant::kHoleNaN);
9032             if (IsFastSmiOrObjectElementsKind(kind)) kind = FAST_HOLEY_ELEMENTS;
9033             Add<HStoreKeyed>(elements, new_length, hole, nullptr, kind,
9034                              INITIALIZING_STORE);
9035 
9036             // Remember new length.
9037             Add<HStoreNamedField>(
9038                 receiver, HObjectAccess::ForArrayLength(kind),
9039                 new_length, STORE_TO_INITIALIZED_ENTRY);
9040           }
9041           if_inline.Else();
9042           {
9043             Add<HPushArguments>(receiver);
9044             result = Add<HCallJSFunction>(function, 1);
9045             if (!ast_context()->IsEffect()) Push(result);
9046           }
9047           if_inline.End();
9048         }
9049         if_lengthiszero.End();
9050       }
9051       result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
9052       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
9053       if (!ast_context()->IsEffect()) Drop(1);
9054       ast_context()->ReturnValue(result);
9055       return true;
9056     }
9057     case kArrayIndexOf:
9058     case kArrayLastIndexOf: {
9059       if (receiver_map.is_null()) return false;
9060       if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
9061       ElementsKind kind = receiver_map->elements_kind();
9062       if (!IsFastElementsKind(kind)) return false;
9063       if (receiver_map->is_observed()) return false;
9064       if (argument_count != 2) return false;
9065       if (!receiver_map->is_extensible()) return false;
9066 
9067       // If there may be elements accessors in the prototype chain, the fast
9068       // inlined version can't be used.
9069       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
9070 
9071       // If there currently can be no elements accessors on the prototype chain,
9072       // it doesn't mean that there won't be any later. Install a full prototype
9073       // chain check to trap element accessors being installed on the prototype
9074       // chain, which would cause elements to go to dictionary mode and result
9075       // in a map change.
9076       BuildCheckPrototypeMaps(
9077           handle(JSObject::cast(receiver_map->prototype()), isolate()),
9078           Handle<JSObject>::null());
9079 
9080       HValue* search_element = Pop();
9081       HValue* receiver = Pop();
9082       Drop(1);  // Drop function.
9083 
9084       ArrayIndexOfMode mode = (id == kArrayIndexOf)
9085           ? kFirstIndexOf : kLastIndexOf;
9086       HValue* index = BuildArrayIndexOf(receiver, search_element, kind, mode);
9087 
9088       if (!ast_context()->IsEffect()) Push(index);
9089       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
9090       if (!ast_context()->IsEffect()) Drop(1);
9091       ast_context()->ReturnValue(index);
9092       return true;
9093     }
9094     default:
9095       // Not yet supported for inlining.
9096       break;
9097   }
9098   return false;
9099 }
9100 
9101 
TryInlineApiFunctionCall(Call * expr,HValue * receiver)9102 bool HOptimizedGraphBuilder::TryInlineApiFunctionCall(Call* expr,
9103                                                       HValue* receiver) {
9104   Handle<JSFunction> function = expr->target();
9105   int argc = expr->arguments()->length();
9106   SmallMapList receiver_maps;
9107   return TryInlineApiCall(function,
9108                           receiver,
9109                           &receiver_maps,
9110                           argc,
9111                           expr->id(),
9112                           kCallApiFunction);
9113 }
9114 
9115 
TryInlineApiMethodCall(Call * expr,HValue * receiver,SmallMapList * receiver_maps)9116 bool HOptimizedGraphBuilder::TryInlineApiMethodCall(
9117     Call* expr,
9118     HValue* receiver,
9119     SmallMapList* receiver_maps) {
9120   Handle<JSFunction> function = expr->target();
9121   int argc = expr->arguments()->length();
9122   return TryInlineApiCall(function,
9123                           receiver,
9124                           receiver_maps,
9125                           argc,
9126                           expr->id(),
9127                           kCallApiMethod);
9128 }
9129 
9130 
TryInlineApiGetter(Handle<JSFunction> function,Handle<Map> receiver_map,BailoutId ast_id)9131 bool HOptimizedGraphBuilder::TryInlineApiGetter(Handle<JSFunction> function,
9132                                                 Handle<Map> receiver_map,
9133                                                 BailoutId ast_id) {
9134   SmallMapList receiver_maps(1, zone());
9135   receiver_maps.Add(receiver_map, zone());
9136   return TryInlineApiCall(function,
9137                           NULL,  // Receiver is on expression stack.
9138                           &receiver_maps,
9139                           0,
9140                           ast_id,
9141                           kCallApiGetter);
9142 }
9143 
9144 
TryInlineApiSetter(Handle<JSFunction> function,Handle<Map> receiver_map,BailoutId ast_id)9145 bool HOptimizedGraphBuilder::TryInlineApiSetter(Handle<JSFunction> function,
9146                                                 Handle<Map> receiver_map,
9147                                                 BailoutId ast_id) {
9148   SmallMapList receiver_maps(1, zone());
9149   receiver_maps.Add(receiver_map, zone());
9150   return TryInlineApiCall(function,
9151                           NULL,  // Receiver is on expression stack.
9152                           &receiver_maps,
9153                           1,
9154                           ast_id,
9155                           kCallApiSetter);
9156 }
9157 
9158 
TryInlineApiCall(Handle<JSFunction> function,HValue * receiver,SmallMapList * receiver_maps,int argc,BailoutId ast_id,ApiCallType call_type)9159 bool HOptimizedGraphBuilder::TryInlineApiCall(Handle<JSFunction> function,
9160                                                HValue* receiver,
9161                                                SmallMapList* receiver_maps,
9162                                                int argc,
9163                                                BailoutId ast_id,
9164                                                ApiCallType call_type) {
9165   if (function->context()->native_context() !=
9166       top_info()->closure()->context()->native_context()) {
9167     return false;
9168   }
9169   CallOptimization optimization(function);
9170   if (!optimization.is_simple_api_call()) return false;
9171   Handle<Map> holder_map;
9172   for (int i = 0; i < receiver_maps->length(); ++i) {
9173     auto map = receiver_maps->at(i);
9174     // Don't inline calls to receivers requiring accesschecks.
9175     if (map->is_access_check_needed()) return false;
9176   }
9177   if (call_type == kCallApiFunction) {
9178     // Cannot embed a direct reference to the global proxy map
9179     // as it maybe dropped on deserialization.
9180     CHECK(!isolate()->serializer_enabled());
9181     DCHECK_EQ(0, receiver_maps->length());
9182     receiver_maps->Add(handle(function->global_proxy()->map()), zone());
9183   }
9184   CallOptimization::HolderLookup holder_lookup =
9185       CallOptimization::kHolderNotFound;
9186   Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
9187       receiver_maps->first(), &holder_lookup);
9188   if (holder_lookup == CallOptimization::kHolderNotFound) return false;
9189 
9190   if (FLAG_trace_inlining) {
9191     PrintF("Inlining api function ");
9192     function->ShortPrint();
9193     PrintF("\n");
9194   }
9195 
9196   bool is_function = false;
9197   bool is_store = false;
9198   switch (call_type) {
9199     case kCallApiFunction:
9200     case kCallApiMethod:
9201       // Need to check that none of the receiver maps could have changed.
9202       Add<HCheckMaps>(receiver, receiver_maps);
9203       // Need to ensure the chain between receiver and api_holder is intact.
9204       if (holder_lookup == CallOptimization::kHolderFound) {
9205         AddCheckPrototypeMaps(api_holder, receiver_maps->first());
9206       } else {
9207         DCHECK_EQ(holder_lookup, CallOptimization::kHolderIsReceiver);
9208       }
9209       // Includes receiver.
9210       PushArgumentsFromEnvironment(argc + 1);
9211       is_function = true;
9212       break;
9213     case kCallApiGetter:
9214       // Receiver and prototype chain cannot have changed.
9215       DCHECK_EQ(0, argc);
9216       DCHECK_NULL(receiver);
9217       // Receiver is on expression stack.
9218       receiver = Pop();
9219       Add<HPushArguments>(receiver);
9220       break;
9221     case kCallApiSetter:
9222       {
9223         is_store = true;
9224         // Receiver and prototype chain cannot have changed.
9225         DCHECK_EQ(1, argc);
9226         DCHECK_NULL(receiver);
9227         // Receiver and value are on expression stack.
9228         HValue* value = Pop();
9229         receiver = Pop();
9230         Add<HPushArguments>(receiver, value);
9231         break;
9232      }
9233   }
9234 
9235   HValue* holder = NULL;
9236   switch (holder_lookup) {
9237     case CallOptimization::kHolderFound:
9238       holder = Add<HConstant>(api_holder);
9239       break;
9240     case CallOptimization::kHolderIsReceiver:
9241       holder = receiver;
9242       break;
9243     case CallOptimization::kHolderNotFound:
9244       UNREACHABLE();
9245       break;
9246   }
9247   Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
9248   Handle<Object> call_data_obj(api_call_info->data(), isolate());
9249   bool call_data_undefined = call_data_obj->IsUndefined();
9250   HValue* call_data = Add<HConstant>(call_data_obj);
9251   ApiFunction fun(v8::ToCData<Address>(api_call_info->callback()));
9252   ExternalReference ref = ExternalReference(&fun,
9253                                             ExternalReference::DIRECT_API_CALL,
9254                                             isolate());
9255   HValue* api_function_address = Add<HConstant>(ExternalReference(ref));
9256 
9257   HValue* op_vals[] = {context(), Add<HConstant>(function), call_data, holder,
9258                        api_function_address, nullptr};
9259 
9260   HInstruction* call = nullptr;
9261   if (!is_function) {
9262     CallApiAccessorStub stub(isolate(), is_store, call_data_undefined);
9263     Handle<Code> code = stub.GetCode();
9264     HConstant* code_value = Add<HConstant>(code);
9265     ApiAccessorDescriptor descriptor(isolate());
9266     call = New<HCallWithDescriptor>(
9267         code_value, argc + 1, descriptor,
9268         Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9269   } else if (argc <= CallApiFunctionWithFixedArgsStub::kMaxFixedArgs) {
9270     CallApiFunctionWithFixedArgsStub stub(isolate(), argc, call_data_undefined);
9271     Handle<Code> code = stub.GetCode();
9272     HConstant* code_value = Add<HConstant>(code);
9273     ApiFunctionWithFixedArgsDescriptor descriptor(isolate());
9274     call = New<HCallWithDescriptor>(
9275         code_value, argc + 1, descriptor,
9276         Vector<HValue*>(op_vals, arraysize(op_vals) - 1));
9277     Drop(1);  // Drop function.
9278   } else {
9279     op_vals[arraysize(op_vals) - 1] = Add<HConstant>(argc);
9280     CallApiFunctionStub stub(isolate(), call_data_undefined);
9281     Handle<Code> code = stub.GetCode();
9282     HConstant* code_value = Add<HConstant>(code);
9283     ApiFunctionDescriptor descriptor(isolate());
9284     call =
9285         New<HCallWithDescriptor>(code_value, argc + 1, descriptor,
9286                                  Vector<HValue*>(op_vals, arraysize(op_vals)));
9287     Drop(1);  // Drop function.
9288   }
9289 
9290   ast_context()->ReturnInstruction(call, ast_id);
9291   return true;
9292 }
9293 
9294 
HandleIndirectCall(Call * expr,HValue * function,int arguments_count)9295 void HOptimizedGraphBuilder::HandleIndirectCall(Call* expr, HValue* function,
9296                                                 int arguments_count) {
9297   Handle<JSFunction> known_function;
9298   int args_count_no_receiver = arguments_count - 1;
9299   if (function->IsConstant() &&
9300       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9301     known_function =
9302         Handle<JSFunction>::cast(HConstant::cast(function)->handle(isolate()));
9303     if (TryInlineBuiltinMethodCall(expr, known_function, Handle<Map>(),
9304                                    args_count_no_receiver)) {
9305       if (FLAG_trace_inlining) {
9306         PrintF("Inlining builtin ");
9307         known_function->ShortPrint();
9308         PrintF("\n");
9309       }
9310       return;
9311     }
9312 
9313     if (TryInlineIndirectCall(known_function, expr, args_count_no_receiver)) {
9314       return;
9315     }
9316   }
9317 
9318   PushArgumentsFromEnvironment(arguments_count);
9319   HInvokeFunction* call =
9320       New<HInvokeFunction>(function, known_function, arguments_count);
9321   Drop(1);  // Function
9322   ast_context()->ReturnInstruction(call, expr->id());
9323 }
9324 
9325 
TryIndirectCall(Call * expr)9326 bool HOptimizedGraphBuilder::TryIndirectCall(Call* expr) {
9327   DCHECK(expr->expression()->IsProperty());
9328 
9329   if (!expr->IsMonomorphic()) {
9330     return false;
9331   }
9332   Handle<Map> function_map = expr->GetReceiverTypes()->first();
9333   if (function_map->instance_type() != JS_FUNCTION_TYPE ||
9334       !expr->target()->shared()->HasBuiltinFunctionId()) {
9335     return false;
9336   }
9337 
9338   switch (expr->target()->shared()->builtin_function_id()) {
9339     case kFunctionCall: {
9340       if (expr->arguments()->length() == 0) return false;
9341       BuildFunctionCall(expr);
9342       return true;
9343     }
9344     case kFunctionApply: {
9345       // For .apply, only the pattern f.apply(receiver, arguments)
9346       // is supported.
9347       if (current_info()->scope()->arguments() == NULL) return false;
9348 
9349       if (!CanBeFunctionApplyArguments(expr)) return false;
9350 
9351       BuildFunctionApply(expr);
9352       return true;
9353     }
9354     default: { return false; }
9355   }
9356   UNREACHABLE();
9357 }
9358 
9359 
9360 // f.apply(...)
BuildFunctionApply(Call * expr)9361 void HOptimizedGraphBuilder::BuildFunctionApply(Call* expr) {
9362   ZoneList<Expression*>* args = expr->arguments();
9363   CHECK_ALIVE(VisitForValue(args->at(0)));
9364   HValue* receiver = Pop();  // receiver
9365   HValue* function = Pop();  // f
9366   Drop(1);  // apply
9367 
9368   Handle<Map> function_map = expr->GetReceiverTypes()->first();
9369   HValue* checked_function = AddCheckMap(function, function_map);
9370 
9371   if (function_state()->outer() == NULL) {
9372     HInstruction* elements = Add<HArgumentsElements>(false);
9373     HInstruction* length = Add<HArgumentsLength>(elements);
9374     HValue* wrapped_receiver = BuildWrapReceiver(receiver, checked_function);
9375     HInstruction* result = New<HApplyArguments>(function,
9376                                                 wrapped_receiver,
9377                                                 length,
9378                                                 elements);
9379     ast_context()->ReturnInstruction(result, expr->id());
9380   } else {
9381     // We are inside inlined function and we know exactly what is inside
9382     // arguments object. But we need to be able to materialize at deopt.
9383     DCHECK_EQ(environment()->arguments_environment()->parameter_count(),
9384               function_state()->entry()->arguments_object()->arguments_count());
9385     HArgumentsObject* args = function_state()->entry()->arguments_object();
9386     const ZoneList<HValue*>* arguments_values = args->arguments_values();
9387     int arguments_count = arguments_values->length();
9388     Push(function);
9389     Push(BuildWrapReceiver(receiver, checked_function));
9390     for (int i = 1; i < arguments_count; i++) {
9391       Push(arguments_values->at(i));
9392     }
9393     HandleIndirectCall(expr, function, arguments_count);
9394   }
9395 }
9396 
9397 
9398 // f.call(...)
BuildFunctionCall(Call * expr)9399 void HOptimizedGraphBuilder::BuildFunctionCall(Call* expr) {
9400   HValue* function = Top();  // f
9401   Handle<Map> function_map = expr->GetReceiverTypes()->first();
9402   HValue* checked_function = AddCheckMap(function, function_map);
9403 
9404   // f and call are on the stack in the unoptimized code
9405   // during evaluation of the arguments.
9406   CHECK_ALIVE(VisitExpressions(expr->arguments()));
9407 
9408   int args_length = expr->arguments()->length();
9409   int receiver_index = args_length - 1;
9410   // Patch the receiver.
9411   HValue* receiver = BuildWrapReceiver(
9412       environment()->ExpressionStackAt(receiver_index), checked_function);
9413   environment()->SetExpressionStackAt(receiver_index, receiver);
9414 
9415   // Call must not be on the stack from now on.
9416   int call_index = args_length + 1;
9417   environment()->RemoveExpressionStackAt(call_index);
9418 
9419   HandleIndirectCall(expr, function, args_length);
9420 }
9421 
9422 
ImplicitReceiverFor(HValue * function,Handle<JSFunction> target)9423 HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
9424                                                     Handle<JSFunction> target) {
9425   SharedFunctionInfo* shared = target->shared();
9426   if (is_sloppy(shared->language_mode()) && !shared->native()) {
9427     // Cannot embed a direct reference to the global proxy
9428     // as is it dropped on deserialization.
9429     CHECK(!isolate()->serializer_enabled());
9430     Handle<JSObject> global_proxy(target->context()->global_proxy());
9431     return Add<HConstant>(global_proxy);
9432   }
9433   return graph()->GetConstantUndefined();
9434 }
9435 
9436 
BuildArrayCall(Expression * expression,int arguments_count,HValue * function,Handle<AllocationSite> site)9437 void HOptimizedGraphBuilder::BuildArrayCall(Expression* expression,
9438                                             int arguments_count,
9439                                             HValue* function,
9440                                             Handle<AllocationSite> site) {
9441   Add<HCheckValue>(function, array_function());
9442 
9443   if (IsCallArrayInlineable(arguments_count, site)) {
9444     BuildInlinedCallArray(expression, arguments_count, site);
9445     return;
9446   }
9447 
9448   HInstruction* call = PreProcessCall(New<HCallNewArray>(
9449       function, arguments_count + 1, site->GetElementsKind(), site));
9450   if (expression->IsCall()) {
9451     Drop(1);
9452   }
9453   ast_context()->ReturnInstruction(call, expression->id());
9454 }
9455 
9456 
BuildArrayIndexOf(HValue * receiver,HValue * search_element,ElementsKind kind,ArrayIndexOfMode mode)9457 HValue* HOptimizedGraphBuilder::BuildArrayIndexOf(HValue* receiver,
9458                                                   HValue* search_element,
9459                                                   ElementsKind kind,
9460                                                   ArrayIndexOfMode mode) {
9461   DCHECK(IsFastElementsKind(kind));
9462 
9463   NoObservableSideEffectsScope no_effects(this);
9464 
9465   HValue* elements = AddLoadElements(receiver);
9466   HValue* length = AddLoadArrayLength(receiver, kind);
9467 
9468   HValue* initial;
9469   HValue* terminating;
9470   Token::Value token;
9471   LoopBuilder::Direction direction;
9472   if (mode == kFirstIndexOf) {
9473     initial = graph()->GetConstant0();
9474     terminating = length;
9475     token = Token::LT;
9476     direction = LoopBuilder::kPostIncrement;
9477   } else {
9478     DCHECK_EQ(kLastIndexOf, mode);
9479     initial = length;
9480     terminating = graph()->GetConstant0();
9481     token = Token::GT;
9482     direction = LoopBuilder::kPreDecrement;
9483   }
9484 
9485   Push(graph()->GetConstantMinus1());
9486   if (IsFastDoubleElementsKind(kind) || IsFastSmiElementsKind(kind)) {
9487     // Make sure that we can actually compare numbers correctly below, see
9488     // https://code.google.com/p/chromium/issues/detail?id=407946 for details.
9489     search_element = AddUncasted<HForceRepresentation>(
9490         search_element, IsFastSmiElementsKind(kind) ? Representation::Smi()
9491                                                     : Representation::Double());
9492 
9493     LoopBuilder loop(this, context(), direction);
9494     {
9495       HValue* index = loop.BeginBody(initial, terminating, token);
9496       HValue* element = AddUncasted<HLoadKeyed>(
9497           elements, index, nullptr, nullptr, kind, ALLOW_RETURN_HOLE);
9498       IfBuilder if_issame(this);
9499       if_issame.If<HCompareNumericAndBranch>(element, search_element,
9500                                              Token::EQ_STRICT);
9501       if_issame.Then();
9502       {
9503         Drop(1);
9504         Push(index);
9505         loop.Break();
9506       }
9507       if_issame.End();
9508     }
9509     loop.EndBody();
9510   } else {
9511     IfBuilder if_isstring(this);
9512     if_isstring.If<HIsStringAndBranch>(search_element);
9513     if_isstring.Then();
9514     {
9515       LoopBuilder loop(this, context(), direction);
9516       {
9517         HValue* index = loop.BeginBody(initial, terminating, token);
9518         HValue* element = AddUncasted<HLoadKeyed>(
9519             elements, index, nullptr, nullptr, kind, ALLOW_RETURN_HOLE);
9520         IfBuilder if_issame(this);
9521         if_issame.If<HIsStringAndBranch>(element);
9522         if_issame.AndIf<HStringCompareAndBranch>(
9523             element, search_element, Token::EQ_STRICT);
9524         if_issame.Then();
9525         {
9526           Drop(1);
9527           Push(index);
9528           loop.Break();
9529         }
9530         if_issame.End();
9531       }
9532       loop.EndBody();
9533     }
9534     if_isstring.Else();
9535     {
9536       IfBuilder if_isnumber(this);
9537       if_isnumber.If<HIsSmiAndBranch>(search_element);
9538       if_isnumber.OrIf<HCompareMap>(
9539           search_element, isolate()->factory()->heap_number_map());
9540       if_isnumber.Then();
9541       {
9542         HValue* search_number =
9543             AddUncasted<HForceRepresentation>(search_element,
9544                                               Representation::Double());
9545         LoopBuilder loop(this, context(), direction);
9546         {
9547           HValue* index = loop.BeginBody(initial, terminating, token);
9548           HValue* element = AddUncasted<HLoadKeyed>(
9549               elements, index, nullptr, nullptr, kind, ALLOW_RETURN_HOLE);
9550 
9551           IfBuilder if_element_isnumber(this);
9552           if_element_isnumber.If<HIsSmiAndBranch>(element);
9553           if_element_isnumber.OrIf<HCompareMap>(
9554               element, isolate()->factory()->heap_number_map());
9555           if_element_isnumber.Then();
9556           {
9557             HValue* number =
9558                 AddUncasted<HForceRepresentation>(element,
9559                                                   Representation::Double());
9560             IfBuilder if_issame(this);
9561             if_issame.If<HCompareNumericAndBranch>(
9562                 number, search_number, Token::EQ_STRICT);
9563             if_issame.Then();
9564             {
9565               Drop(1);
9566               Push(index);
9567               loop.Break();
9568             }
9569             if_issame.End();
9570           }
9571           if_element_isnumber.End();
9572         }
9573         loop.EndBody();
9574       }
9575       if_isnumber.Else();
9576       {
9577         LoopBuilder loop(this, context(), direction);
9578         {
9579           HValue* index = loop.BeginBody(initial, terminating, token);
9580           HValue* element = AddUncasted<HLoadKeyed>(
9581               elements, index, nullptr, nullptr, kind, ALLOW_RETURN_HOLE);
9582           IfBuilder if_issame(this);
9583           if_issame.If<HCompareObjectEqAndBranch>(
9584               element, search_element);
9585           if_issame.Then();
9586           {
9587             Drop(1);
9588             Push(index);
9589             loop.Break();
9590           }
9591           if_issame.End();
9592         }
9593         loop.EndBody();
9594       }
9595       if_isnumber.End();
9596     }
9597     if_isstring.End();
9598   }
9599 
9600   return Pop();
9601 }
9602 
9603 
TryHandleArrayCall(Call * expr,HValue * function)9604 bool HOptimizedGraphBuilder::TryHandleArrayCall(Call* expr, HValue* function) {
9605   if (!array_function().is_identical_to(expr->target())) {
9606     return false;
9607   }
9608 
9609   Handle<AllocationSite> site = expr->allocation_site();
9610   if (site.is_null()) return false;
9611 
9612   BuildArrayCall(expr,
9613                  expr->arguments()->length(),
9614                  function,
9615                  site);
9616   return true;
9617 }
9618 
9619 
TryHandleArrayCallNew(CallNew * expr,HValue * function)9620 bool HOptimizedGraphBuilder::TryHandleArrayCallNew(CallNew* expr,
9621                                                    HValue* function) {
9622   if (!array_function().is_identical_to(expr->target())) {
9623     return false;
9624   }
9625 
9626   Handle<AllocationSite> site = expr->allocation_site();
9627   if (site.is_null()) return false;
9628 
9629   BuildArrayCall(expr, expr->arguments()->length(), function, site);
9630   return true;
9631 }
9632 
9633 
CanBeFunctionApplyArguments(Call * expr)9634 bool HOptimizedGraphBuilder::CanBeFunctionApplyArguments(Call* expr) {
9635   ZoneList<Expression*>* args = expr->arguments();
9636   if (args->length() != 2) return false;
9637   VariableProxy* arg_two = args->at(1)->AsVariableProxy();
9638   if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
9639   HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
9640   if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
9641   return true;
9642 }
9643 
9644 
VisitCall(Call * expr)9645 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
9646   DCHECK(!HasStackOverflow());
9647   DCHECK(current_block() != NULL);
9648   DCHECK(current_block()->HasPredecessor());
9649   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9650   Expression* callee = expr->expression();
9651   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
9652   HInstruction* call = NULL;
9653 
9654   Property* prop = callee->AsProperty();
9655   if (prop != NULL) {
9656     CHECK_ALIVE(VisitForValue(prop->obj()));
9657     HValue* receiver = Top();
9658 
9659     SmallMapList* maps;
9660     ComputeReceiverTypes(expr, receiver, &maps, zone());
9661 
9662     if (prop->key()->IsPropertyName() && maps->length() > 0) {
9663       Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
9664       PropertyAccessInfo info(this, LOAD, maps->first(), name);
9665       if (!info.CanAccessAsMonomorphic(maps)) {
9666         HandlePolymorphicCallNamed(expr, receiver, maps, name);
9667         return;
9668       }
9669     }
9670     HValue* key = NULL;
9671     if (!prop->key()->IsPropertyName()) {
9672       CHECK_ALIVE(VisitForValue(prop->key()));
9673       key = Pop();
9674     }
9675 
9676     CHECK_ALIVE(PushLoad(prop, receiver, key));
9677     HValue* function = Pop();
9678 
9679     if (function->IsConstant() &&
9680         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9681       // Push the function under the receiver.
9682       environment()->SetExpressionStackAt(0, function);
9683       Push(receiver);
9684 
9685       Handle<JSFunction> known_function = Handle<JSFunction>::cast(
9686           HConstant::cast(function)->handle(isolate()));
9687       expr->set_target(known_function);
9688 
9689       if (TryIndirectCall(expr)) return;
9690       CHECK_ALIVE(VisitExpressions(expr->arguments()));
9691 
9692       Handle<Map> map = maps->length() == 1 ? maps->first() : Handle<Map>();
9693       if (TryInlineBuiltinMethodCall(expr, known_function, map,
9694                                      expr->arguments()->length())) {
9695         if (FLAG_trace_inlining) {
9696           PrintF("Inlining builtin ");
9697           known_function->ShortPrint();
9698           PrintF("\n");
9699         }
9700         return;
9701       }
9702       if (TryInlineApiMethodCall(expr, receiver, maps)) return;
9703 
9704       // Wrap the receiver if necessary.
9705       if (NeedsWrapping(maps->first(), known_function)) {
9706         // Since HWrapReceiver currently cannot actually wrap numbers and
9707         // strings, use the regular CallFunctionStub for method calls to wrap
9708         // the receiver.
9709         // TODO(verwaest): Support creation of value wrappers directly in
9710         // HWrapReceiver.
9711         call = New<HCallFunction>(function, argument_count,
9712                                   ConvertReceiverMode::kNotNullOrUndefined);
9713       } else if (TryInlineCall(expr)) {
9714         return;
9715       } else {
9716         call = BuildCallConstantFunction(known_function, argument_count);
9717       }
9718 
9719     } else {
9720       ArgumentsAllowedFlag arguments_flag = ARGUMENTS_NOT_ALLOWED;
9721       if (CanBeFunctionApplyArguments(expr) && expr->is_uninitialized()) {
9722         // We have to use EAGER deoptimization here because Deoptimizer::SOFT
9723         // gets ignored by the always-opt flag, which leads to incorrect code.
9724         Add<HDeoptimize>(
9725             Deoptimizer::kInsufficientTypeFeedbackForCallWithArguments,
9726             Deoptimizer::EAGER);
9727         arguments_flag = ARGUMENTS_FAKED;
9728       }
9729 
9730       // Push the function under the receiver.
9731       environment()->SetExpressionStackAt(0, function);
9732       Push(receiver);
9733 
9734       CHECK_ALIVE(VisitExpressions(expr->arguments(), arguments_flag));
9735       call = New<HCallFunction>(function, argument_count,
9736                                 ConvertReceiverMode::kNotNullOrUndefined);
9737     }
9738     PushArgumentsFromEnvironment(argument_count);
9739 
9740   } else {
9741     VariableProxy* proxy = expr->expression()->AsVariableProxy();
9742     if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
9743       return Bailout(kPossibleDirectCallToEval);
9744     }
9745 
9746     // The function is on the stack in the unoptimized code during
9747     // evaluation of the arguments.
9748     CHECK_ALIVE(VisitForValue(expr->expression()));
9749     HValue* function = Top();
9750     if (function->IsConstant() &&
9751         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9752       Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9753       Handle<JSFunction> target = Handle<JSFunction>::cast(constant);
9754       expr->SetKnownGlobalTarget(target);
9755     }
9756 
9757     // Placeholder for the receiver.
9758     Push(graph()->GetConstantUndefined());
9759     CHECK_ALIVE(VisitExpressions(expr->arguments()));
9760 
9761     if (expr->IsMonomorphic() &&
9762         !IsClassConstructor(expr->target()->shared()->kind())) {
9763       Add<HCheckValue>(function, expr->target());
9764 
9765       // Patch the global object on the stack by the expected receiver.
9766       HValue* receiver = ImplicitReceiverFor(function, expr->target());
9767       const int receiver_index = argument_count - 1;
9768       environment()->SetExpressionStackAt(receiver_index, receiver);
9769 
9770       if (TryInlineBuiltinFunctionCall(expr)) {
9771         if (FLAG_trace_inlining) {
9772           PrintF("Inlining builtin ");
9773           expr->target()->ShortPrint();
9774           PrintF("\n");
9775         }
9776         return;
9777       }
9778       if (TryInlineApiFunctionCall(expr, receiver)) return;
9779       if (TryHandleArrayCall(expr, function)) return;
9780       if (TryInlineCall(expr)) return;
9781 
9782       PushArgumentsFromEnvironment(argument_count);
9783       call = BuildCallConstantFunction(expr->target(), argument_count);
9784     } else {
9785       PushArgumentsFromEnvironment(argument_count);
9786       HCallFunction* call_function = New<HCallFunction>(
9787           function, argument_count, ConvertReceiverMode::kNullOrUndefined);
9788       call = call_function;
9789       if (expr->is_uninitialized() &&
9790           expr->IsUsingCallFeedbackICSlot(isolate())) {
9791         // We've never seen this call before, so let's have Crankshaft learn
9792         // through the type vector.
9793         Handle<TypeFeedbackVector> vector =
9794             handle(current_feedback_vector(), isolate());
9795         FeedbackVectorSlot slot = expr->CallFeedbackICSlot();
9796         call_function->SetVectorAndSlot(vector, slot);
9797       }
9798     }
9799   }
9800 
9801   Drop(1);  // Drop the function.
9802   return ast_context()->ReturnInstruction(call, expr->id());
9803 }
9804 
9805 
BuildInlinedCallArray(Expression * expression,int argument_count,Handle<AllocationSite> site)9806 void HOptimizedGraphBuilder::BuildInlinedCallArray(
9807     Expression* expression,
9808     int argument_count,
9809     Handle<AllocationSite> site) {
9810   DCHECK(!site.is_null());
9811   DCHECK(argument_count >= 0 && argument_count <= 1);
9812   NoObservableSideEffectsScope no_effects(this);
9813 
9814   // We should at least have the constructor on the expression stack.
9815   HValue* constructor = environment()->ExpressionStackAt(argument_count);
9816 
9817   // Register on the site for deoptimization if the transition feedback changes.
9818   top_info()->dependencies()->AssumeTransitionStable(site);
9819   ElementsKind kind = site->GetElementsKind();
9820   HInstruction* site_instruction = Add<HConstant>(site);
9821 
9822   // In the single constant argument case, we may have to adjust elements kind
9823   // to avoid creating a packed non-empty array.
9824   if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
9825     HValue* argument = environment()->Top();
9826     if (argument->IsConstant()) {
9827       HConstant* constant_argument = HConstant::cast(argument);
9828       DCHECK(constant_argument->HasSmiValue());
9829       int constant_array_size = constant_argument->Integer32Value();
9830       if (constant_array_size != 0) {
9831         kind = GetHoleyElementsKind(kind);
9832       }
9833     }
9834   }
9835 
9836   // Build the array.
9837   JSArrayBuilder array_builder(this,
9838                                kind,
9839                                site_instruction,
9840                                constructor,
9841                                DISABLE_ALLOCATION_SITES);
9842   HValue* new_object = argument_count == 0
9843       ? array_builder.AllocateEmptyArray()
9844       : BuildAllocateArrayFromLength(&array_builder, Top());
9845 
9846   int args_to_drop = argument_count + (expression->IsCall() ? 2 : 1);
9847   Drop(args_to_drop);
9848   ast_context()->ReturnValue(new_object);
9849 }
9850 
9851 
9852 // Checks whether allocation using the given constructor can be inlined.
IsAllocationInlineable(Handle<JSFunction> constructor)9853 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
9854   return constructor->has_initial_map() &&
9855          !IsClassConstructor(constructor->shared()->kind()) &&
9856          constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
9857          constructor->initial_map()->instance_size() <
9858              HAllocate::kMaxInlineSize;
9859 }
9860 
9861 
IsCallArrayInlineable(int argument_count,Handle<AllocationSite> site)9862 bool HOptimizedGraphBuilder::IsCallArrayInlineable(
9863     int argument_count,
9864     Handle<AllocationSite> site) {
9865   Handle<JSFunction> caller = current_info()->closure();
9866   Handle<JSFunction> target = array_function();
9867   // We should have the function plus array arguments on the environment stack.
9868   DCHECK(environment()->length() >= (argument_count + 1));
9869   DCHECK(!site.is_null());
9870 
9871   bool inline_ok = false;
9872   if (site->CanInlineCall()) {
9873     // We also want to avoid inlining in certain 1 argument scenarios.
9874     if (argument_count == 1) {
9875       HValue* argument = Top();
9876       if (argument->IsConstant()) {
9877         // Do not inline if the constant length argument is not a smi or
9878         // outside the valid range for unrolled loop initialization.
9879         HConstant* constant_argument = HConstant::cast(argument);
9880         if (constant_argument->HasSmiValue()) {
9881           int value = constant_argument->Integer32Value();
9882           inline_ok = value >= 0 && value <= kElementLoopUnrollThreshold;
9883           if (!inline_ok) {
9884             TraceInline(target, caller,
9885                         "Constant length outside of valid inlining range.");
9886           }
9887         }
9888       } else {
9889         TraceInline(target, caller,
9890                     "Dont inline [new] Array(n) where n isn't constant.");
9891       }
9892     } else if (argument_count == 0) {
9893       inline_ok = true;
9894     } else {
9895       TraceInline(target, caller, "Too many arguments to inline.");
9896     }
9897   } else {
9898     TraceInline(target, caller, "AllocationSite requested no inlining.");
9899   }
9900 
9901   if (inline_ok) {
9902     TraceInline(target, caller, NULL);
9903   }
9904   return inline_ok;
9905 }
9906 
9907 
VisitCallNew(CallNew * expr)9908 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
9909   DCHECK(!HasStackOverflow());
9910   DCHECK(current_block() != NULL);
9911   DCHECK(current_block()->HasPredecessor());
9912   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
9913   int argument_count = expr->arguments()->length() + 1;  // Plus constructor.
9914   Factory* factory = isolate()->factory();
9915 
9916   // The constructor function is on the stack in the unoptimized code
9917   // during evaluation of the arguments.
9918   CHECK_ALIVE(VisitForValue(expr->expression()));
9919   HValue* function = Top();
9920   CHECK_ALIVE(VisitExpressions(expr->arguments()));
9921 
9922   if (function->IsConstant() &&
9923       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
9924     Handle<Object> constant = HConstant::cast(function)->handle(isolate());
9925     expr->SetKnownGlobalTarget(Handle<JSFunction>::cast(constant));
9926   }
9927 
9928   if (FLAG_inline_construct &&
9929       expr->IsMonomorphic() &&
9930       IsAllocationInlineable(expr->target())) {
9931     Handle<JSFunction> constructor = expr->target();
9932     DCHECK(
9933         constructor->shared()->construct_stub() ==
9934             isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric) ||
9935         constructor->shared()->construct_stub() ==
9936             isolate()->builtins()->builtin(Builtins::kJSConstructStubApi));
9937     HValue* check = Add<HCheckValue>(function, constructor);
9938 
9939     // Force completion of inobject slack tracking before generating
9940     // allocation code to finalize instance size.
9941     constructor->CompleteInobjectSlackTrackingIfActive();
9942 
9943     // Calculate instance size from initial map of constructor.
9944     DCHECK(constructor->has_initial_map());
9945     Handle<Map> initial_map(constructor->initial_map());
9946     int instance_size = initial_map->instance_size();
9947 
9948     // Allocate an instance of the implicit receiver object.
9949     HValue* size_in_bytes = Add<HConstant>(instance_size);
9950     HAllocationMode allocation_mode;
9951     HAllocate* receiver = BuildAllocate(
9952         size_in_bytes, HType::JSObject(), JS_OBJECT_TYPE, allocation_mode);
9953     receiver->set_known_initial_map(initial_map);
9954 
9955     // Initialize map and fields of the newly allocated object.
9956     { NoObservableSideEffectsScope no_effects(this);
9957       DCHECK(initial_map->instance_type() == JS_OBJECT_TYPE);
9958       Add<HStoreNamedField>(receiver,
9959           HObjectAccess::ForMapAndOffset(initial_map, JSObject::kMapOffset),
9960           Add<HConstant>(initial_map));
9961       HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
9962       Add<HStoreNamedField>(receiver,
9963           HObjectAccess::ForMapAndOffset(initial_map,
9964                                          JSObject::kPropertiesOffset),
9965           empty_fixed_array);
9966       Add<HStoreNamedField>(receiver,
9967           HObjectAccess::ForMapAndOffset(initial_map,
9968                                          JSObject::kElementsOffset),
9969           empty_fixed_array);
9970       BuildInitializeInobjectProperties(receiver, initial_map);
9971     }
9972 
9973     // Replace the constructor function with a newly allocated receiver using
9974     // the index of the receiver from the top of the expression stack.
9975     const int receiver_index = argument_count - 1;
9976     DCHECK(environment()->ExpressionStackAt(receiver_index) == function);
9977     environment()->SetExpressionStackAt(receiver_index, receiver);
9978 
9979     if (TryInlineConstruct(expr, receiver)) {
9980       // Inlining worked, add a dependency on the initial map to make sure that
9981       // this code is deoptimized whenever the initial map of the constructor
9982       // changes.
9983       top_info()->dependencies()->AssumeInitialMapCantChange(initial_map);
9984       return;
9985     }
9986 
9987     // TODO(mstarzinger): For now we remove the previous HAllocate and all
9988     // corresponding instructions and instead add HPushArguments for the
9989     // arguments in case inlining failed.  What we actually should do is for
9990     // inlining to try to build a subgraph without mutating the parent graph.
9991     HInstruction* instr = current_block()->last();
9992     do {
9993       HInstruction* prev_instr = instr->previous();
9994       instr->DeleteAndReplaceWith(NULL);
9995       instr = prev_instr;
9996     } while (instr != check);
9997     environment()->SetExpressionStackAt(receiver_index, function);
9998   } else {
9999     // The constructor function is both an operand to the instruction and an
10000     // argument to the construct call.
10001     if (TryHandleArrayCallNew(expr, function)) return;
10002   }
10003 
10004   HValue* arity = Add<HConstant>(argument_count - 1);
10005   HValue* op_vals[] = {context(), function, function, arity};
10006   Callable callable = CodeFactory::Construct(isolate());
10007   HConstant* stub = Add<HConstant>(callable.code());
10008   PushArgumentsFromEnvironment(argument_count);
10009   HInstruction* construct =
10010       New<HCallWithDescriptor>(stub, argument_count, callable.descriptor(),
10011                                Vector<HValue*>(op_vals, arraysize(op_vals)));
10012   return ast_context()->ReturnInstruction(construct, expr->id());
10013 }
10014 
10015 
BuildInitializeInobjectProperties(HValue * receiver,Handle<Map> initial_map)10016 void HOptimizedGraphBuilder::BuildInitializeInobjectProperties(
10017     HValue* receiver, Handle<Map> initial_map) {
10018   if (initial_map->GetInObjectProperties() != 0) {
10019     HConstant* undefined = graph()->GetConstantUndefined();
10020     for (int i = 0; i < initial_map->GetInObjectProperties(); i++) {
10021       int property_offset = initial_map->GetInObjectPropertyOffset(i);
10022       Add<HStoreNamedField>(receiver, HObjectAccess::ForMapAndOffset(
10023                                           initial_map, property_offset),
10024                             undefined);
10025     }
10026   }
10027 }
10028 
10029 
BuildAllocateEmptyArrayBuffer(HValue * byte_length)10030 HValue* HGraphBuilder::BuildAllocateEmptyArrayBuffer(HValue* byte_length) {
10031   // We HForceRepresentation here to avoid allocations during an *-to-tagged
10032   // HChange that could cause GC while the array buffer object is not fully
10033   // initialized.
10034   HObjectAccess byte_length_access(HObjectAccess::ForJSArrayBufferByteLength());
10035   byte_length = AddUncasted<HForceRepresentation>(
10036       byte_length, byte_length_access.representation());
10037   HAllocate* result =
10038       BuildAllocate(Add<HConstant>(JSArrayBuffer::kSizeWithInternalFields),
10039                     HType::JSObject(), JS_ARRAY_BUFFER_TYPE, HAllocationMode());
10040 
10041   HValue* native_context = BuildGetNativeContext();
10042   Add<HStoreNamedField>(
10043       result, HObjectAccess::ForMap(),
10044       Add<HLoadNamedField>(
10045           native_context, nullptr,
10046           HObjectAccess::ForContextSlot(Context::ARRAY_BUFFER_MAP_INDEX)));
10047 
10048   HConstant* empty_fixed_array =
10049       Add<HConstant>(isolate()->factory()->empty_fixed_array());
10050   Add<HStoreNamedField>(
10051       result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
10052       empty_fixed_array);
10053   Add<HStoreNamedField>(
10054       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
10055       empty_fixed_array);
10056   Add<HStoreNamedField>(
10057       result, HObjectAccess::ForJSArrayBufferBackingStore().WithRepresentation(
10058                   Representation::Smi()),
10059       graph()->GetConstant0());
10060   Add<HStoreNamedField>(result, byte_length_access, byte_length);
10061   Add<HStoreNamedField>(result, HObjectAccess::ForJSArrayBufferBitFieldSlot(),
10062                         graph()->GetConstant0());
10063   Add<HStoreNamedField>(
10064       result, HObjectAccess::ForJSArrayBufferBitField(),
10065       Add<HConstant>((1 << JSArrayBuffer::IsExternal::kShift) |
10066                      (1 << JSArrayBuffer::IsNeuterable::kShift)));
10067 
10068   for (int field = 0; field < v8::ArrayBuffer::kInternalFieldCount; ++field) {
10069     Add<HStoreNamedField>(
10070         result,
10071         HObjectAccess::ForObservableJSObjectOffset(
10072             JSArrayBuffer::kSize + field * kPointerSize, Representation::Smi()),
10073         graph()->GetConstant0());
10074   }
10075 
10076   return result;
10077 }
10078 
10079 
10080 template <class ViewClass>
BuildArrayBufferViewInitialization(HValue * obj,HValue * buffer,HValue * byte_offset,HValue * byte_length)10081 void HGraphBuilder::BuildArrayBufferViewInitialization(
10082     HValue* obj,
10083     HValue* buffer,
10084     HValue* byte_offset,
10085     HValue* byte_length) {
10086 
10087   for (int offset = ViewClass::kSize;
10088        offset < ViewClass::kSizeWithInternalFields;
10089        offset += kPointerSize) {
10090     Add<HStoreNamedField>(obj,
10091         HObjectAccess::ForObservableJSObjectOffset(offset),
10092         graph()->GetConstant0());
10093   }
10094 
10095   Add<HStoreNamedField>(
10096       obj,
10097       HObjectAccess::ForJSArrayBufferViewByteOffset(),
10098       byte_offset);
10099   Add<HStoreNamedField>(
10100       obj,
10101       HObjectAccess::ForJSArrayBufferViewByteLength(),
10102       byte_length);
10103   Add<HStoreNamedField>(obj, HObjectAccess::ForJSArrayBufferViewBuffer(),
10104                         buffer);
10105 }
10106 
10107 
GenerateDataViewInitialize(CallRuntime * expr)10108 void HOptimizedGraphBuilder::GenerateDataViewInitialize(
10109     CallRuntime* expr) {
10110   ZoneList<Expression*>* arguments = expr->arguments();
10111 
10112   DCHECK(arguments->length()== 4);
10113   CHECK_ALIVE(VisitForValue(arguments->at(0)));
10114   HValue* obj = Pop();
10115 
10116   CHECK_ALIVE(VisitForValue(arguments->at(1)));
10117   HValue* buffer = Pop();
10118 
10119   CHECK_ALIVE(VisitForValue(arguments->at(2)));
10120   HValue* byte_offset = Pop();
10121 
10122   CHECK_ALIVE(VisitForValue(arguments->at(3)));
10123   HValue* byte_length = Pop();
10124 
10125   {
10126     NoObservableSideEffectsScope scope(this);
10127     BuildArrayBufferViewInitialization<JSDataView>(
10128         obj, buffer, byte_offset, byte_length);
10129   }
10130 }
10131 
10132 
BuildAllocateExternalElements(ExternalArrayType array_type,bool is_zero_byte_offset,HValue * buffer,HValue * byte_offset,HValue * length)10133 HValue* HOptimizedGraphBuilder::BuildAllocateExternalElements(
10134     ExternalArrayType array_type,
10135     bool is_zero_byte_offset,
10136     HValue* buffer, HValue* byte_offset, HValue* length) {
10137   Handle<Map> external_array_map(
10138       isolate()->heap()->MapForFixedTypedArray(array_type));
10139 
10140   // The HForceRepresentation is to prevent possible deopt on int-smi
10141   // conversion after allocation but before the new object fields are set.
10142   length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
10143   HValue* elements = Add<HAllocate>(
10144       Add<HConstant>(FixedTypedArrayBase::kHeaderSize), HType::HeapObject(),
10145       NOT_TENURED, external_array_map->instance_type());
10146 
10147   AddStoreMapConstant(elements, external_array_map);
10148   Add<HStoreNamedField>(elements,
10149       HObjectAccess::ForFixedArrayLength(), length);
10150 
10151   HValue* backing_store = Add<HLoadNamedField>(
10152       buffer, nullptr, HObjectAccess::ForJSArrayBufferBackingStore());
10153 
10154   HValue* typed_array_start;
10155   if (is_zero_byte_offset) {
10156     typed_array_start = backing_store;
10157   } else {
10158     HInstruction* external_pointer =
10159         AddUncasted<HAdd>(backing_store, byte_offset);
10160     // Arguments are checked prior to call to TypedArrayInitialize,
10161     // including byte_offset.
10162     external_pointer->ClearFlag(HValue::kCanOverflow);
10163     typed_array_start = external_pointer;
10164   }
10165 
10166   Add<HStoreNamedField>(elements,
10167                         HObjectAccess::ForFixedTypedArrayBaseBasePointer(),
10168                         graph()->GetConstant0());
10169   Add<HStoreNamedField>(elements,
10170                         HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10171                         typed_array_start);
10172 
10173   return elements;
10174 }
10175 
10176 
BuildAllocateFixedTypedArray(ExternalArrayType array_type,size_t element_size,ElementsKind fixed_elements_kind,HValue * byte_length,HValue * length,bool initialize)10177 HValue* HOptimizedGraphBuilder::BuildAllocateFixedTypedArray(
10178     ExternalArrayType array_type, size_t element_size,
10179     ElementsKind fixed_elements_kind, HValue* byte_length, HValue* length,
10180     bool initialize) {
10181   STATIC_ASSERT(
10182       (FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask) == 0);
10183   HValue* total_size;
10184 
10185   // if fixed array's elements are not aligned to object's alignment,
10186   // we need to align the whole array to object alignment.
10187   if (element_size % kObjectAlignment != 0) {
10188     total_size = BuildObjectSizeAlignment(
10189         byte_length, FixedTypedArrayBase::kHeaderSize);
10190   } else {
10191     total_size = AddUncasted<HAdd>(byte_length,
10192         Add<HConstant>(FixedTypedArrayBase::kHeaderSize));
10193     total_size->ClearFlag(HValue::kCanOverflow);
10194   }
10195 
10196   // The HForceRepresentation is to prevent possible deopt on int-smi
10197   // conversion after allocation but before the new object fields are set.
10198   length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
10199   Handle<Map> fixed_typed_array_map(
10200       isolate()->heap()->MapForFixedTypedArray(array_type));
10201   HAllocate* elements =
10202       Add<HAllocate>(total_size, HType::HeapObject(), NOT_TENURED,
10203                      fixed_typed_array_map->instance_type());
10204 
10205 #ifndef V8_HOST_ARCH_64_BIT
10206   if (array_type == kExternalFloat64Array) {
10207     elements->MakeDoubleAligned();
10208   }
10209 #endif
10210 
10211   AddStoreMapConstant(elements, fixed_typed_array_map);
10212 
10213   Add<HStoreNamedField>(elements,
10214       HObjectAccess::ForFixedArrayLength(),
10215       length);
10216   Add<HStoreNamedField>(
10217       elements, HObjectAccess::ForFixedTypedArrayBaseBasePointer(), elements);
10218 
10219   Add<HStoreNamedField>(
10220       elements, HObjectAccess::ForFixedTypedArrayBaseExternalPointer(),
10221       Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()));
10222 
10223   HValue* filler = Add<HConstant>(static_cast<int32_t>(0));
10224 
10225   if (initialize) {
10226     LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
10227 
10228     HValue* backing_store = AddUncasted<HAdd>(
10229         Add<HConstant>(ExternalReference::fixed_typed_array_base_data_offset()),
10230         elements, Strength::WEAK, AddOfExternalAndTagged);
10231 
10232     HValue* key = builder.BeginBody(
10233         Add<HConstant>(static_cast<int32_t>(0)),
10234         length, Token::LT);
10235     Add<HStoreKeyed>(backing_store, key, filler, elements, fixed_elements_kind);
10236 
10237     builder.EndBody();
10238   }
10239   return elements;
10240 }
10241 
10242 
GenerateTypedArrayInitialize(CallRuntime * expr)10243 void HOptimizedGraphBuilder::GenerateTypedArrayInitialize(
10244     CallRuntime* expr) {
10245   ZoneList<Expression*>* arguments = expr->arguments();
10246 
10247   static const int kObjectArg = 0;
10248   static const int kArrayIdArg = 1;
10249   static const int kBufferArg = 2;
10250   static const int kByteOffsetArg = 3;
10251   static const int kByteLengthArg = 4;
10252   static const int kInitializeArg = 5;
10253   static const int kArgsLength = 6;
10254   DCHECK(arguments->length() == kArgsLength);
10255 
10256 
10257   CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
10258   HValue* obj = Pop();
10259 
10260   if (!arguments->at(kArrayIdArg)->IsLiteral()) {
10261     // This should never happen in real use, but can happen when fuzzing.
10262     // Just bail out.
10263     Bailout(kNeedSmiLiteral);
10264     return;
10265   }
10266   Handle<Object> value =
10267       static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
10268   if (!value->IsSmi()) {
10269     // This should never happen in real use, but can happen when fuzzing.
10270     // Just bail out.
10271     Bailout(kNeedSmiLiteral);
10272     return;
10273   }
10274   int array_id = Smi::cast(*value)->value();
10275 
10276   HValue* buffer;
10277   if (!arguments->at(kBufferArg)->IsNullLiteral()) {
10278     CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
10279     buffer = Pop();
10280   } else {
10281     buffer = NULL;
10282   }
10283 
10284   HValue* byte_offset;
10285   bool is_zero_byte_offset;
10286 
10287   if (arguments->at(kByteOffsetArg)->IsLiteral()
10288       && Smi::FromInt(0) ==
10289       *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
10290     byte_offset = Add<HConstant>(static_cast<int32_t>(0));
10291     is_zero_byte_offset = true;
10292   } else {
10293     CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
10294     byte_offset = Pop();
10295     is_zero_byte_offset = false;
10296     DCHECK(buffer != NULL);
10297   }
10298 
10299   CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
10300   HValue* byte_length = Pop();
10301 
10302   CHECK(arguments->at(kInitializeArg)->IsLiteral());
10303   bool initialize = static_cast<Literal*>(arguments->at(kInitializeArg))
10304                         ->value()
10305                         ->BooleanValue();
10306 
10307   NoObservableSideEffectsScope scope(this);
10308   IfBuilder byte_offset_smi(this);
10309 
10310   if (!is_zero_byte_offset) {
10311     byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
10312     byte_offset_smi.Then();
10313   }
10314 
10315   ExternalArrayType array_type =
10316       kExternalInt8Array;  // Bogus initialization.
10317   size_t element_size = 1;  // Bogus initialization.
10318   ElementsKind fixed_elements_kind =  // Bogus initialization.
10319       INT8_ELEMENTS;
10320   Runtime::ArrayIdToTypeAndSize(array_id,
10321       &array_type,
10322       &fixed_elements_kind,
10323       &element_size);
10324 
10325 
10326   { //  byte_offset is Smi.
10327     HValue* allocated_buffer = buffer;
10328     if (buffer == NULL) {
10329       allocated_buffer = BuildAllocateEmptyArrayBuffer(byte_length);
10330     }
10331     BuildArrayBufferViewInitialization<JSTypedArray>(obj, allocated_buffer,
10332                                                      byte_offset, byte_length);
10333 
10334 
10335     HInstruction* length = AddUncasted<HDiv>(byte_length,
10336         Add<HConstant>(static_cast<int32_t>(element_size)));
10337 
10338     Add<HStoreNamedField>(obj,
10339         HObjectAccess::ForJSTypedArrayLength(),
10340         length);
10341 
10342     HValue* elements;
10343     if (buffer != NULL) {
10344       elements = BuildAllocateExternalElements(
10345           array_type, is_zero_byte_offset, buffer, byte_offset, length);
10346     } else {
10347       DCHECK(is_zero_byte_offset);
10348       elements = BuildAllocateFixedTypedArray(array_type, element_size,
10349                                               fixed_elements_kind, byte_length,
10350                                               length, initialize);
10351     }
10352     Add<HStoreNamedField>(
10353         obj, HObjectAccess::ForElementsPointer(), elements);
10354   }
10355 
10356   if (!is_zero_byte_offset) {
10357     byte_offset_smi.Else();
10358     { //  byte_offset is not Smi.
10359       Push(obj);
10360       CHECK_ALIVE(VisitForValue(arguments->at(kArrayIdArg)));
10361       Push(buffer);
10362       Push(byte_offset);
10363       Push(byte_length);
10364       CHECK_ALIVE(VisitForValue(arguments->at(kInitializeArg)));
10365       PushArgumentsFromEnvironment(kArgsLength);
10366       Add<HCallRuntime>(expr->function(), kArgsLength);
10367     }
10368   }
10369   byte_offset_smi.End();
10370 }
10371 
10372 
GenerateMaxSmi(CallRuntime * expr)10373 void HOptimizedGraphBuilder::GenerateMaxSmi(CallRuntime* expr) {
10374   DCHECK(expr->arguments()->length() == 0);
10375   HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
10376   return ast_context()->ReturnInstruction(max_smi, expr->id());
10377 }
10378 
10379 
GenerateTypedArrayMaxSizeInHeap(CallRuntime * expr)10380 void HOptimizedGraphBuilder::GenerateTypedArrayMaxSizeInHeap(
10381     CallRuntime* expr) {
10382   DCHECK(expr->arguments()->length() == 0);
10383   HConstant* result = New<HConstant>(static_cast<int32_t>(
10384         FLAG_typed_array_max_size_in_heap));
10385   return ast_context()->ReturnInstruction(result, expr->id());
10386 }
10387 
10388 
GenerateArrayBufferGetByteLength(CallRuntime * expr)10389 void HOptimizedGraphBuilder::GenerateArrayBufferGetByteLength(
10390     CallRuntime* expr) {
10391   DCHECK(expr->arguments()->length() == 1);
10392   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10393   HValue* buffer = Pop();
10394   HInstruction* result = New<HLoadNamedField>(
10395       buffer, nullptr, HObjectAccess::ForJSArrayBufferByteLength());
10396   return ast_context()->ReturnInstruction(result, expr->id());
10397 }
10398 
10399 
GenerateArrayBufferViewGetByteLength(CallRuntime * expr)10400 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteLength(
10401     CallRuntime* expr) {
10402   NoObservableSideEffectsScope scope(this);
10403   DCHECK(expr->arguments()->length() == 1);
10404   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10405   HValue* view = Pop();
10406 
10407   return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10408       view, nullptr,
10409       FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteLengthOffset)));
10410 }
10411 
10412 
GenerateArrayBufferViewGetByteOffset(CallRuntime * expr)10413 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteOffset(
10414     CallRuntime* expr) {
10415   NoObservableSideEffectsScope scope(this);
10416   DCHECK(expr->arguments()->length() == 1);
10417   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10418   HValue* view = Pop();
10419 
10420   return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10421       view, nullptr,
10422       FieldIndex::ForInObjectOffset(JSArrayBufferView::kByteOffsetOffset)));
10423 }
10424 
10425 
GenerateTypedArrayGetLength(CallRuntime * expr)10426 void HOptimizedGraphBuilder::GenerateTypedArrayGetLength(
10427     CallRuntime* expr) {
10428   NoObservableSideEffectsScope scope(this);
10429   DCHECK(expr->arguments()->length() == 1);
10430   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
10431   HValue* view = Pop();
10432 
10433   return ast_context()->ReturnValue(BuildArrayBufferViewFieldAccessor(
10434       view, nullptr,
10435       FieldIndex::ForInObjectOffset(JSTypedArray::kLengthOffset)));
10436 }
10437 
10438 
VisitCallRuntime(CallRuntime * expr)10439 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
10440   DCHECK(!HasStackOverflow());
10441   DCHECK(current_block() != NULL);
10442   DCHECK(current_block()->HasPredecessor());
10443   if (expr->is_jsruntime()) {
10444     return Bailout(kCallToAJavaScriptRuntimeFunction);
10445   }
10446 
10447   const Runtime::Function* function = expr->function();
10448   DCHECK(function != NULL);
10449   switch (function->function_id) {
10450 #define CALL_INTRINSIC_GENERATOR(Name) \
10451   case Runtime::kInline##Name:         \
10452     return Generate##Name(expr);
10453 
10454     FOR_EACH_HYDROGEN_INTRINSIC(CALL_INTRINSIC_GENERATOR)
10455 #undef CALL_INTRINSIC_GENERATOR
10456     default: {
10457       int argument_count = expr->arguments()->length();
10458       CHECK_ALIVE(VisitExpressions(expr->arguments()));
10459       PushArgumentsFromEnvironment(argument_count);
10460       HCallRuntime* call = New<HCallRuntime>(function, argument_count);
10461       return ast_context()->ReturnInstruction(call, expr->id());
10462     }
10463   }
10464 }
10465 
10466 
VisitUnaryOperation(UnaryOperation * expr)10467 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
10468   DCHECK(!HasStackOverflow());
10469   DCHECK(current_block() != NULL);
10470   DCHECK(current_block()->HasPredecessor());
10471   switch (expr->op()) {
10472     case Token::DELETE: return VisitDelete(expr);
10473     case Token::VOID: return VisitVoid(expr);
10474     case Token::TYPEOF: return VisitTypeof(expr);
10475     case Token::NOT: return VisitNot(expr);
10476     default: UNREACHABLE();
10477   }
10478 }
10479 
10480 
VisitDelete(UnaryOperation * expr)10481 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
10482   Property* prop = expr->expression()->AsProperty();
10483   VariableProxy* proxy = expr->expression()->AsVariableProxy();
10484   if (prop != NULL) {
10485     CHECK_ALIVE(VisitForValue(prop->obj()));
10486     CHECK_ALIVE(VisitForValue(prop->key()));
10487     HValue* key = Pop();
10488     HValue* obj = Pop();
10489     Add<HPushArguments>(obj, key);
10490     HInstruction* instr = New<HCallRuntime>(
10491         Runtime::FunctionForId(is_strict(function_language_mode())
10492                                    ? Runtime::kDeleteProperty_Strict
10493                                    : Runtime::kDeleteProperty_Sloppy),
10494         2);
10495     return ast_context()->ReturnInstruction(instr, expr->id());
10496   } else if (proxy != NULL) {
10497     Variable* var = proxy->var();
10498     if (var->IsUnallocatedOrGlobalSlot()) {
10499       Bailout(kDeleteWithGlobalVariable);
10500     } else if (var->IsStackAllocated() || var->IsContextSlot()) {
10501       // Result of deleting non-global variables is false.  'this' is not really
10502       // a variable, though we implement it as one.  The subexpression does not
10503       // have side effects.
10504       HValue* value = var->HasThisName(isolate()) ? graph()->GetConstantTrue()
10505                                                   : graph()->GetConstantFalse();
10506       return ast_context()->ReturnValue(value);
10507     } else {
10508       Bailout(kDeleteWithNonGlobalVariable);
10509     }
10510   } else {
10511     // Result of deleting non-property, non-variable reference is true.
10512     // Evaluate the subexpression for side effects.
10513     CHECK_ALIVE(VisitForEffect(expr->expression()));
10514     return ast_context()->ReturnValue(graph()->GetConstantTrue());
10515   }
10516 }
10517 
10518 
VisitVoid(UnaryOperation * expr)10519 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
10520   CHECK_ALIVE(VisitForEffect(expr->expression()));
10521   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
10522 }
10523 
10524 
VisitTypeof(UnaryOperation * expr)10525 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
10526   CHECK_ALIVE(VisitForTypeOf(expr->expression()));
10527   HValue* value = Pop();
10528   HInstruction* instr = New<HTypeof>(value);
10529   return ast_context()->ReturnInstruction(instr, expr->id());
10530 }
10531 
10532 
VisitNot(UnaryOperation * expr)10533 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
10534   if (ast_context()->IsTest()) {
10535     TestContext* context = TestContext::cast(ast_context());
10536     VisitForControl(expr->expression(),
10537                     context->if_false(),
10538                     context->if_true());
10539     return;
10540   }
10541 
10542   if (ast_context()->IsEffect()) {
10543     VisitForEffect(expr->expression());
10544     return;
10545   }
10546 
10547   DCHECK(ast_context()->IsValue());
10548   HBasicBlock* materialize_false = graph()->CreateBasicBlock();
10549   HBasicBlock* materialize_true = graph()->CreateBasicBlock();
10550   CHECK_BAILOUT(VisitForControl(expr->expression(),
10551                                 materialize_false,
10552                                 materialize_true));
10553 
10554   if (materialize_false->HasPredecessor()) {
10555     materialize_false->SetJoinId(expr->MaterializeFalseId());
10556     set_current_block(materialize_false);
10557     Push(graph()->GetConstantFalse());
10558   } else {
10559     materialize_false = NULL;
10560   }
10561 
10562   if (materialize_true->HasPredecessor()) {
10563     materialize_true->SetJoinId(expr->MaterializeTrueId());
10564     set_current_block(materialize_true);
10565     Push(graph()->GetConstantTrue());
10566   } else {
10567     materialize_true = NULL;
10568   }
10569 
10570   HBasicBlock* join =
10571     CreateJoin(materialize_false, materialize_true, expr->id());
10572   set_current_block(join);
10573   if (join != NULL) return ast_context()->ReturnValue(Pop());
10574 }
10575 
10576 
RepresentationFor(Type * type)10577 static Representation RepresentationFor(Type* type) {
10578   DisallowHeapAllocation no_allocation;
10579   if (type->Is(Type::None())) return Representation::None();
10580   if (type->Is(Type::SignedSmall())) return Representation::Smi();
10581   if (type->Is(Type::Signed32())) return Representation::Integer32();
10582   if (type->Is(Type::Number())) return Representation::Double();
10583   return Representation::Tagged();
10584 }
10585 
10586 
BuildIncrement(bool returns_original_input,CountOperation * expr)10587 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
10588     bool returns_original_input,
10589     CountOperation* expr) {
10590   // The input to the count operation is on top of the expression stack.
10591   Representation rep = RepresentationFor(expr->type());
10592   if (rep.IsNone() || rep.IsTagged()) {
10593     rep = Representation::Smi();
10594   }
10595 
10596   if (returns_original_input && !is_strong(function_language_mode())) {
10597     // We need an explicit HValue representing ToNumber(input).  The
10598     // actual HChange instruction we need is (sometimes) added in a later
10599     // phase, so it is not available now to be used as an input to HAdd and
10600     // as the return value.
10601     HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
10602     if (!rep.IsDouble()) {
10603       number_input->SetFlag(HInstruction::kFlexibleRepresentation);
10604       number_input->SetFlag(HInstruction::kCannotBeTagged);
10605     }
10606     Push(number_input);
10607   }
10608 
10609   // The addition has no side effects, so we do not need
10610   // to simulate the expression stack after this instruction.
10611   // Any later failures deopt to the load of the input or earlier.
10612   HConstant* delta = (expr->op() == Token::INC)
10613       ? graph()->GetConstant1()
10614       : graph()->GetConstantMinus1();
10615   HInstruction* instr =
10616       AddUncasted<HAdd>(Top(), delta, strength(function_language_mode()));
10617   if (instr->IsAdd()) {
10618     HAdd* add = HAdd::cast(instr);
10619     add->set_observed_input_representation(1, rep);
10620     add->set_observed_input_representation(2, Representation::Smi());
10621   }
10622   if (!is_strong(function_language_mode())) {
10623     instr->ClearAllSideEffects();
10624   } else {
10625     Add<HSimulate>(expr->ToNumberId(), REMOVABLE_SIMULATE);
10626   }
10627   instr->SetFlag(HInstruction::kCannotBeTagged);
10628   return instr;
10629 }
10630 
10631 
BuildStoreForEffect(Expression * expr,Property * prop,FeedbackVectorSlot slot,BailoutId ast_id,BailoutId return_id,HValue * object,HValue * key,HValue * value)10632 void HOptimizedGraphBuilder::BuildStoreForEffect(
10633     Expression* expr, Property* prop, FeedbackVectorSlot slot, BailoutId ast_id,
10634     BailoutId return_id, HValue* object, HValue* key, HValue* value) {
10635   EffectContext for_effect(this);
10636   Push(object);
10637   if (key != NULL) Push(key);
10638   Push(value);
10639   BuildStore(expr, prop, slot, ast_id, return_id);
10640 }
10641 
10642 
VisitCountOperation(CountOperation * expr)10643 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
10644   DCHECK(!HasStackOverflow());
10645   DCHECK(current_block() != NULL);
10646   DCHECK(current_block()->HasPredecessor());
10647   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
10648   Expression* target = expr->expression();
10649   VariableProxy* proxy = target->AsVariableProxy();
10650   Property* prop = target->AsProperty();
10651   if (proxy == NULL && prop == NULL) {
10652     return Bailout(kInvalidLhsInCountOperation);
10653   }
10654 
10655   // Match the full code generator stack by simulating an extra stack
10656   // element for postfix operations in a non-effect context.  The return
10657   // value is ToNumber(input).
10658   bool returns_original_input =
10659       expr->is_postfix() && !ast_context()->IsEffect();
10660   HValue* input = NULL;  // ToNumber(original_input).
10661   HValue* after = NULL;  // The result after incrementing or decrementing.
10662 
10663   if (proxy != NULL) {
10664     Variable* var = proxy->var();
10665     if (var->mode() == CONST_LEGACY)  {
10666       return Bailout(kUnsupportedCountOperationWithConst);
10667     }
10668     if (var->mode() == CONST) {
10669       return Bailout(kNonInitializerAssignmentToConst);
10670     }
10671     // Argument of the count operation is a variable, not a property.
10672     DCHECK(prop == NULL);
10673     CHECK_ALIVE(VisitForValue(target));
10674 
10675     after = BuildIncrement(returns_original_input, expr);
10676     input = returns_original_input ? Top() : Pop();
10677     Push(after);
10678 
10679     switch (var->location()) {
10680       case VariableLocation::GLOBAL:
10681       case VariableLocation::UNALLOCATED:
10682         HandleGlobalVariableAssignment(var, after, expr->CountSlot(),
10683                                        expr->AssignmentId());
10684         break;
10685 
10686       case VariableLocation::PARAMETER:
10687       case VariableLocation::LOCAL:
10688         BindIfLive(var, after);
10689         break;
10690 
10691       case VariableLocation::CONTEXT: {
10692         // Bail out if we try to mutate a parameter value in a function
10693         // using the arguments object.  We do not (yet) correctly handle the
10694         // arguments property of the function.
10695         if (current_info()->scope()->arguments() != NULL) {
10696           // Parameters will rewrite to context slots.  We have no direct
10697           // way to detect that the variable is a parameter so we use a
10698           // linear search of the parameter list.
10699           int count = current_info()->scope()->num_parameters();
10700           for (int i = 0; i < count; ++i) {
10701             if (var == current_info()->scope()->parameter(i)) {
10702               return Bailout(kAssignmentToParameterInArgumentsObject);
10703             }
10704           }
10705         }
10706 
10707         HValue* context = BuildContextChainWalk(var);
10708         HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
10709             ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
10710         HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
10711                                                           mode, after);
10712         if (instr->HasObservableSideEffects()) {
10713           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
10714         }
10715         break;
10716       }
10717 
10718       case VariableLocation::LOOKUP:
10719         return Bailout(kLookupVariableInCountOperation);
10720     }
10721 
10722     Drop(returns_original_input ? 2 : 1);
10723     return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
10724   }
10725 
10726   // Argument of the count operation is a property.
10727   DCHECK(prop != NULL);
10728   if (returns_original_input) Push(graph()->GetConstantUndefined());
10729 
10730   CHECK_ALIVE(VisitForValue(prop->obj()));
10731   HValue* object = Top();
10732 
10733   HValue* key = NULL;
10734   if (!prop->key()->IsPropertyName() || prop->IsStringAccess()) {
10735     CHECK_ALIVE(VisitForValue(prop->key()));
10736     key = Top();
10737   }
10738 
10739   CHECK_ALIVE(PushLoad(prop, object, key));
10740 
10741   after = BuildIncrement(returns_original_input, expr);
10742 
10743   if (returns_original_input) {
10744     input = Pop();
10745     // Drop object and key to push it again in the effect context below.
10746     Drop(key == NULL ? 1 : 2);
10747     environment()->SetExpressionStackAt(0, input);
10748     CHECK_ALIVE(BuildStoreForEffect(expr, prop, expr->CountSlot(), expr->id(),
10749                                     expr->AssignmentId(), object, key, after));
10750     return ast_context()->ReturnValue(Pop());
10751   }
10752 
10753   environment()->SetExpressionStackAt(0, after);
10754   return BuildStore(expr, prop, expr->CountSlot(), expr->id(),
10755                     expr->AssignmentId());
10756 }
10757 
10758 
BuildStringCharCodeAt(HValue * string,HValue * index)10759 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
10760     HValue* string,
10761     HValue* index) {
10762   if (string->IsConstant() && index->IsConstant()) {
10763     HConstant* c_string = HConstant::cast(string);
10764     HConstant* c_index = HConstant::cast(index);
10765     if (c_string->HasStringValue() && c_index->HasNumberValue()) {
10766       int32_t i = c_index->NumberValueAsInteger32();
10767       Handle<String> s = c_string->StringValue();
10768       if (i < 0 || i >= s->length()) {
10769         return New<HConstant>(std::numeric_limits<double>::quiet_NaN());
10770       }
10771       return New<HConstant>(s->Get(i));
10772     }
10773   }
10774   string = BuildCheckString(string);
10775   index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
10776   return New<HStringCharCodeAt>(string, index);
10777 }
10778 
10779 
10780 // Checks if the given shift amounts have following forms:
10781 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
ShiftAmountsAllowReplaceByRotate(HValue * sa,HValue * const32_minus_sa)10782 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
10783                                              HValue* const32_minus_sa) {
10784   if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
10785     const HConstant* c1 = HConstant::cast(sa);
10786     const HConstant* c2 = HConstant::cast(const32_minus_sa);
10787     return c1->HasInteger32Value() && c2->HasInteger32Value() &&
10788         (c1->Integer32Value() + c2->Integer32Value() == 32);
10789   }
10790   if (!const32_minus_sa->IsSub()) return false;
10791   HSub* sub = HSub::cast(const32_minus_sa);
10792   return sub->left()->EqualsInteger32Constant(32) && sub->right() == sa;
10793 }
10794 
10795 
10796 // Checks if the left and the right are shift instructions with the oposite
10797 // directions that can be replaced by one rotate right instruction or not.
10798 // Returns the operand and the shift amount for the rotate instruction in the
10799 // former case.
MatchRotateRight(HValue * left,HValue * right,HValue ** operand,HValue ** shift_amount)10800 bool HGraphBuilder::MatchRotateRight(HValue* left,
10801                                      HValue* right,
10802                                      HValue** operand,
10803                                      HValue** shift_amount) {
10804   HShl* shl;
10805   HShr* shr;
10806   if (left->IsShl() && right->IsShr()) {
10807     shl = HShl::cast(left);
10808     shr = HShr::cast(right);
10809   } else if (left->IsShr() && right->IsShl()) {
10810     shl = HShl::cast(right);
10811     shr = HShr::cast(left);
10812   } else {
10813     return false;
10814   }
10815   if (shl->left() != shr->left()) return false;
10816 
10817   if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
10818       !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
10819     return false;
10820   }
10821   *operand = shr->left();
10822   *shift_amount = shr->right();
10823   return true;
10824 }
10825 
10826 
CanBeZero(HValue * right)10827 bool CanBeZero(HValue* right) {
10828   if (right->IsConstant()) {
10829     HConstant* right_const = HConstant::cast(right);
10830     if (right_const->HasInteger32Value() &&
10831        (right_const->Integer32Value() & 0x1f) != 0) {
10832       return false;
10833     }
10834   }
10835   return true;
10836 }
10837 
10838 
EnforceNumberType(HValue * number,Type * expected)10839 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
10840                                          Type* expected) {
10841   if (expected->Is(Type::SignedSmall())) {
10842     return AddUncasted<HForceRepresentation>(number, Representation::Smi());
10843   }
10844   if (expected->Is(Type::Signed32())) {
10845     return AddUncasted<HForceRepresentation>(number,
10846                                              Representation::Integer32());
10847   }
10848   return number;
10849 }
10850 
10851 
TruncateToNumber(HValue * value,Type ** expected)10852 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Type** expected) {
10853   if (value->IsConstant()) {
10854     HConstant* constant = HConstant::cast(value);
10855     Maybe<HConstant*> number =
10856         constant->CopyToTruncatedNumber(isolate(), zone());
10857     if (number.IsJust()) {
10858       *expected = Type::Number(zone());
10859       return AddInstruction(number.FromJust());
10860     }
10861   }
10862 
10863   // We put temporary values on the stack, which don't correspond to anything
10864   // in baseline code. Since nothing is observable we avoid recording those
10865   // pushes with a NoObservableSideEffectsScope.
10866   NoObservableSideEffectsScope no_effects(this);
10867 
10868   Type* expected_type = *expected;
10869 
10870   // Separate the number type from the rest.
10871   Type* expected_obj =
10872       Type::Intersect(expected_type, Type::NonNumber(zone()), zone());
10873   Type* expected_number =
10874       Type::Intersect(expected_type, Type::Number(zone()), zone());
10875 
10876   // We expect to get a number.
10877   // (We need to check first, since Type::None->Is(Type::Any()) == true.
10878   if (expected_obj->Is(Type::None())) {
10879     DCHECK(!expected_number->Is(Type::None(zone())));
10880     return value;
10881   }
10882 
10883   if (expected_obj->Is(Type::Undefined(zone()))) {
10884     // This is already done by HChange.
10885     *expected = Type::Union(expected_number, Type::Number(zone()), zone());
10886     return value;
10887   }
10888 
10889   return value;
10890 }
10891 
10892 
BuildBinaryOperation(BinaryOperation * expr,HValue * left,HValue * right,PushBeforeSimulateBehavior push_sim_result)10893 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
10894     BinaryOperation* expr,
10895     HValue* left,
10896     HValue* right,
10897     PushBeforeSimulateBehavior push_sim_result) {
10898   Type* left_type = expr->left()->bounds().lower;
10899   Type* right_type = expr->right()->bounds().lower;
10900   Type* result_type = expr->bounds().lower;
10901   Maybe<int> fixed_right_arg = expr->fixed_right_arg();
10902   Handle<AllocationSite> allocation_site = expr->allocation_site();
10903 
10904   HAllocationMode allocation_mode;
10905   if (FLAG_allocation_site_pretenuring && !allocation_site.is_null()) {
10906     allocation_mode = HAllocationMode(allocation_site);
10907   }
10908   HValue* result = HGraphBuilder::BuildBinaryOperation(
10909       expr->op(), left, right, left_type, right_type, result_type,
10910       fixed_right_arg, allocation_mode, strength(function_language_mode()),
10911       expr->id());
10912   // Add a simulate after instructions with observable side effects, and
10913   // after phis, which are the result of BuildBinaryOperation when we
10914   // inlined some complex subgraph.
10915   if (result->HasObservableSideEffects() || result->IsPhi()) {
10916     if (push_sim_result == PUSH_BEFORE_SIMULATE) {
10917       Push(result);
10918       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10919       Drop(1);
10920     } else {
10921       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10922     }
10923   }
10924   return result;
10925 }
10926 
10927 
BuildBinaryOperation(Token::Value op,HValue * left,HValue * right,Type * left_type,Type * right_type,Type * result_type,Maybe<int> fixed_right_arg,HAllocationMode allocation_mode,Strength strength,BailoutId opt_id)10928 HValue* HGraphBuilder::BuildBinaryOperation(
10929     Token::Value op, HValue* left, HValue* right, Type* left_type,
10930     Type* right_type, Type* result_type, Maybe<int> fixed_right_arg,
10931     HAllocationMode allocation_mode, Strength strength, BailoutId opt_id) {
10932   bool maybe_string_add = false;
10933   if (op == Token::ADD) {
10934     // If we are adding constant string with something for which we don't have
10935     // a feedback yet, assume that it's also going to be a string and don't
10936     // generate deopt instructions.
10937     if (!left_type->IsInhabited() && right->IsConstant() &&
10938         HConstant::cast(right)->HasStringValue()) {
10939       left_type = Type::String();
10940     }
10941 
10942     if (!right_type->IsInhabited() && left->IsConstant() &&
10943         HConstant::cast(left)->HasStringValue()) {
10944       right_type = Type::String();
10945     }
10946 
10947     maybe_string_add = (left_type->Maybe(Type::String()) ||
10948                         left_type->Maybe(Type::Receiver()) ||
10949                         right_type->Maybe(Type::String()) ||
10950                         right_type->Maybe(Type::Receiver()));
10951   }
10952 
10953   Representation left_rep = RepresentationFor(left_type);
10954   Representation right_rep = RepresentationFor(right_type);
10955 
10956   if (!left_type->IsInhabited()) {
10957     Add<HDeoptimize>(
10958         Deoptimizer::kInsufficientTypeFeedbackForLHSOfBinaryOperation,
10959         Deoptimizer::SOFT);
10960     left_type = Type::Any(zone());
10961     left_rep = RepresentationFor(left_type);
10962     maybe_string_add = op == Token::ADD;
10963   }
10964 
10965   if (!right_type->IsInhabited()) {
10966     Add<HDeoptimize>(
10967         Deoptimizer::kInsufficientTypeFeedbackForRHSOfBinaryOperation,
10968         Deoptimizer::SOFT);
10969     right_type = Type::Any(zone());
10970     right_rep = RepresentationFor(right_type);
10971     maybe_string_add = op == Token::ADD;
10972   }
10973 
10974   if (!maybe_string_add && !is_strong(strength)) {
10975     left = TruncateToNumber(left, &left_type);
10976     right = TruncateToNumber(right, &right_type);
10977   }
10978 
10979   // Special case for string addition here.
10980   if (op == Token::ADD &&
10981       (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
10982     if (is_strong(strength)) {
10983       // In strong mode, if the one side of an addition is a string,
10984       // the other side must be a string too.
10985       left = BuildCheckString(left);
10986       right = BuildCheckString(right);
10987     } else {
10988       // Validate type feedback for left argument.
10989       if (left_type->Is(Type::String())) {
10990         left = BuildCheckString(left);
10991       }
10992 
10993       // Validate type feedback for right argument.
10994       if (right_type->Is(Type::String())) {
10995         right = BuildCheckString(right);
10996       }
10997 
10998       // Convert left argument as necessary.
10999       if (left_type->Is(Type::Number())) {
11000         DCHECK(right_type->Is(Type::String()));
11001         left = BuildNumberToString(left, left_type);
11002       } else if (!left_type->Is(Type::String())) {
11003         DCHECK(right_type->Is(Type::String()));
11004         return AddUncasted<HStringAdd>(
11005             left, right, allocation_mode.GetPretenureMode(),
11006             STRING_ADD_CONVERT_LEFT, allocation_mode.feedback_site());
11007       }
11008 
11009       // Convert right argument as necessary.
11010       if (right_type->Is(Type::Number())) {
11011         DCHECK(left_type->Is(Type::String()));
11012         right = BuildNumberToString(right, right_type);
11013       } else if (!right_type->Is(Type::String())) {
11014         DCHECK(left_type->Is(Type::String()));
11015         return AddUncasted<HStringAdd>(
11016             left, right, allocation_mode.GetPretenureMode(),
11017             STRING_ADD_CONVERT_RIGHT, allocation_mode.feedback_site());
11018       }
11019     }
11020 
11021     // Fast paths for empty constant strings.
11022     Handle<String> left_string =
11023         left->IsConstant() && HConstant::cast(left)->HasStringValue()
11024             ? HConstant::cast(left)->StringValue()
11025             : Handle<String>();
11026     Handle<String> right_string =
11027         right->IsConstant() && HConstant::cast(right)->HasStringValue()
11028             ? HConstant::cast(right)->StringValue()
11029             : Handle<String>();
11030     if (!left_string.is_null() && left_string->length() == 0) return right;
11031     if (!right_string.is_null() && right_string->length() == 0) return left;
11032     if (!left_string.is_null() && !right_string.is_null()) {
11033       return AddUncasted<HStringAdd>(
11034           left, right, allocation_mode.GetPretenureMode(),
11035           STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
11036     }
11037 
11038     // Register the dependent code with the allocation site.
11039     if (!allocation_mode.feedback_site().is_null()) {
11040       DCHECK(!graph()->info()->IsStub());
11041       Handle<AllocationSite> site(allocation_mode.feedback_site());
11042       top_info()->dependencies()->AssumeTenuringDecision(site);
11043     }
11044 
11045     // Inline the string addition into the stub when creating allocation
11046     // mementos to gather allocation site feedback, or if we can statically
11047     // infer that we're going to create a cons string.
11048     if ((graph()->info()->IsStub() &&
11049          allocation_mode.CreateAllocationMementos()) ||
11050         (left->IsConstant() &&
11051          HConstant::cast(left)->HasStringValue() &&
11052          HConstant::cast(left)->StringValue()->length() + 1 >=
11053            ConsString::kMinLength) ||
11054         (right->IsConstant() &&
11055          HConstant::cast(right)->HasStringValue() &&
11056          HConstant::cast(right)->StringValue()->length() + 1 >=
11057            ConsString::kMinLength)) {
11058       return BuildStringAdd(left, right, allocation_mode);
11059     }
11060 
11061     // Fallback to using the string add stub.
11062     return AddUncasted<HStringAdd>(
11063         left, right, allocation_mode.GetPretenureMode(), STRING_ADD_CHECK_NONE,
11064         allocation_mode.feedback_site());
11065   }
11066 
11067   if (graph()->info()->IsStub()) {
11068     left = EnforceNumberType(left, left_type);
11069     right = EnforceNumberType(right, right_type);
11070   }
11071 
11072   Representation result_rep = RepresentationFor(result_type);
11073 
11074   bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
11075                           (right_rep.IsTagged() && !right_rep.IsSmi());
11076 
11077   HInstruction* instr = NULL;
11078   // Only the stub is allowed to call into the runtime, since otherwise we would
11079   // inline several instructions (including the two pushes) for every tagged
11080   // operation in optimized code, which is more expensive, than a stub call.
11081   if (graph()->info()->IsStub() && is_non_primitive) {
11082     Runtime::FunctionId function_id;
11083     switch (op) {
11084       default:
11085         UNREACHABLE();
11086       case Token::ADD:
11087         function_id =
11088             is_strong(strength) ? Runtime::kAdd_Strong : Runtime::kAdd;
11089         break;
11090       case Token::SUB:
11091         function_id = is_strong(strength) ? Runtime::kSubtract_Strong
11092                                           : Runtime::kSubtract;
11093         break;
11094       case Token::MUL:
11095         function_id = is_strong(strength) ? Runtime::kMultiply_Strong
11096                                           : Runtime::kMultiply;
11097         break;
11098       case Token::DIV:
11099         function_id =
11100             is_strong(strength) ? Runtime::kDivide_Strong : Runtime::kDivide;
11101         break;
11102       case Token::MOD:
11103         function_id =
11104             is_strong(strength) ? Runtime::kModulus_Strong : Runtime::kModulus;
11105         break;
11106       case Token::BIT_OR:
11107         function_id = is_strong(strength) ? Runtime::kBitwiseOr_Strong
11108                                           : Runtime::kBitwiseOr;
11109         break;
11110       case Token::BIT_AND:
11111         function_id = is_strong(strength) ? Runtime::kBitwiseAnd_Strong
11112                                           : Runtime::kBitwiseAnd;
11113         break;
11114       case Token::BIT_XOR:
11115         function_id = is_strong(strength) ? Runtime::kBitwiseXor_Strong
11116                                           : Runtime::kBitwiseXor;
11117         break;
11118       case Token::SAR:
11119         function_id = is_strong(strength) ? Runtime::kShiftRight_Strong
11120                                           : Runtime::kShiftRight;
11121         break;
11122       case Token::SHR:
11123         function_id = is_strong(strength) ? Runtime::kShiftRightLogical_Strong
11124                                           : Runtime::kShiftRightLogical;
11125         break;
11126       case Token::SHL:
11127         function_id = is_strong(strength) ? Runtime::kShiftLeft_Strong
11128                                           : Runtime::kShiftLeft;
11129         break;
11130     }
11131     Add<HPushArguments>(left, right);
11132     instr = AddUncasted<HCallRuntime>(Runtime::FunctionForId(function_id), 2);
11133   } else {
11134     if (is_strong(strength) && Token::IsBitOp(op)) {
11135       // TODO(conradw): This is not efficient, but is necessary to prevent
11136       // conversion of oddball values to numbers in strong mode. It would be
11137       // better to prevent the conversion rather than adding a runtime check.
11138       IfBuilder if_builder(this);
11139       if_builder.If<HHasInstanceTypeAndBranch>(left, ODDBALL_TYPE);
11140       if_builder.OrIf<HHasInstanceTypeAndBranch>(right, ODDBALL_TYPE);
11141       if_builder.Then();
11142       Add<HCallRuntime>(
11143           Runtime::FunctionForId(Runtime::kThrowStrongModeImplicitConversion),
11144           0);
11145       if (!graph()->info()->IsStub()) {
11146         Add<HSimulate>(opt_id, REMOVABLE_SIMULATE);
11147       }
11148       if_builder.End();
11149     }
11150     switch (op) {
11151       case Token::ADD:
11152         instr = AddUncasted<HAdd>(left, right, strength);
11153         break;
11154       case Token::SUB:
11155         instr = AddUncasted<HSub>(left, right, strength);
11156         break;
11157       case Token::MUL:
11158         instr = AddUncasted<HMul>(left, right, strength);
11159         break;
11160       case Token::MOD: {
11161         if (fixed_right_arg.IsJust() &&
11162             !right->EqualsInteger32Constant(fixed_right_arg.FromJust())) {
11163           HConstant* fixed_right =
11164               Add<HConstant>(static_cast<int>(fixed_right_arg.FromJust()));
11165           IfBuilder if_same(this);
11166           if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
11167           if_same.Then();
11168           if_same.ElseDeopt(Deoptimizer::kUnexpectedRHSOfBinaryOperation);
11169           right = fixed_right;
11170         }
11171         instr = AddUncasted<HMod>(left, right, strength);
11172         break;
11173       }
11174       case Token::DIV:
11175         instr = AddUncasted<HDiv>(left, right, strength);
11176         break;
11177       case Token::BIT_XOR:
11178       case Token::BIT_AND:
11179         instr = AddUncasted<HBitwise>(op, left, right, strength);
11180         break;
11181       case Token::BIT_OR: {
11182         HValue *operand, *shift_amount;
11183         if (left_type->Is(Type::Signed32()) &&
11184             right_type->Is(Type::Signed32()) &&
11185             MatchRotateRight(left, right, &operand, &shift_amount)) {
11186           instr = AddUncasted<HRor>(operand, shift_amount, strength);
11187         } else {
11188           instr = AddUncasted<HBitwise>(op, left, right, strength);
11189         }
11190         break;
11191       }
11192       case Token::SAR:
11193         instr = AddUncasted<HSar>(left, right, strength);
11194         break;
11195       case Token::SHR:
11196         instr = AddUncasted<HShr>(left, right, strength);
11197         if (instr->IsShr() && CanBeZero(right)) {
11198           graph()->RecordUint32Instruction(instr);
11199         }
11200         break;
11201       case Token::SHL:
11202         instr = AddUncasted<HShl>(left, right, strength);
11203         break;
11204       default:
11205         UNREACHABLE();
11206     }
11207   }
11208 
11209   if (instr->IsBinaryOperation()) {
11210     HBinaryOperation* binop = HBinaryOperation::cast(instr);
11211     binop->set_observed_input_representation(1, left_rep);
11212     binop->set_observed_input_representation(2, right_rep);
11213     binop->initialize_output_representation(result_rep);
11214     if (graph()->info()->IsStub()) {
11215       // Stub should not call into stub.
11216       instr->SetFlag(HValue::kCannotBeTagged);
11217       // And should truncate on HForceRepresentation already.
11218       if (left->IsForceRepresentation()) {
11219         left->CopyFlag(HValue::kTruncatingToSmi, instr);
11220         left->CopyFlag(HValue::kTruncatingToInt32, instr);
11221       }
11222       if (right->IsForceRepresentation()) {
11223         right->CopyFlag(HValue::kTruncatingToSmi, instr);
11224         right->CopyFlag(HValue::kTruncatingToInt32, instr);
11225       }
11226     }
11227   }
11228   return instr;
11229 }
11230 
11231 
11232 // Check for the form (%_ClassOf(foo) === 'BarClass').
IsClassOfTest(CompareOperation * expr)11233 static bool IsClassOfTest(CompareOperation* expr) {
11234   if (expr->op() != Token::EQ_STRICT) return false;
11235   CallRuntime* call = expr->left()->AsCallRuntime();
11236   if (call == NULL) return false;
11237   Literal* literal = expr->right()->AsLiteral();
11238   if (literal == NULL) return false;
11239   if (!literal->value()->IsString()) return false;
11240   if (!call->is_jsruntime() &&
11241       call->function()->function_id != Runtime::kInlineClassOf) {
11242     return false;
11243   }
11244   DCHECK(call->arguments()->length() == 1);
11245   return true;
11246 }
11247 
11248 
VisitBinaryOperation(BinaryOperation * expr)11249 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
11250   DCHECK(!HasStackOverflow());
11251   DCHECK(current_block() != NULL);
11252   DCHECK(current_block()->HasPredecessor());
11253   switch (expr->op()) {
11254     case Token::COMMA:
11255       return VisitComma(expr);
11256     case Token::OR:
11257     case Token::AND:
11258       return VisitLogicalExpression(expr);
11259     default:
11260       return VisitArithmeticExpression(expr);
11261   }
11262 }
11263 
11264 
VisitComma(BinaryOperation * expr)11265 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
11266   CHECK_ALIVE(VisitForEffect(expr->left()));
11267   // Visit the right subexpression in the same AST context as the entire
11268   // expression.
11269   Visit(expr->right());
11270 }
11271 
11272 
VisitLogicalExpression(BinaryOperation * expr)11273 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
11274   bool is_logical_and = expr->op() == Token::AND;
11275   if (ast_context()->IsTest()) {
11276     TestContext* context = TestContext::cast(ast_context());
11277     // Translate left subexpression.
11278     HBasicBlock* eval_right = graph()->CreateBasicBlock();
11279     if (is_logical_and) {
11280       CHECK_BAILOUT(VisitForControl(expr->left(),
11281                                     eval_right,
11282                                     context->if_false()));
11283     } else {
11284       CHECK_BAILOUT(VisitForControl(expr->left(),
11285                                     context->if_true(),
11286                                     eval_right));
11287     }
11288 
11289     // Translate right subexpression by visiting it in the same AST
11290     // context as the entire expression.
11291     if (eval_right->HasPredecessor()) {
11292       eval_right->SetJoinId(expr->RightId());
11293       set_current_block(eval_right);
11294       Visit(expr->right());
11295     }
11296 
11297   } else if (ast_context()->IsValue()) {
11298     CHECK_ALIVE(VisitForValue(expr->left()));
11299     DCHECK(current_block() != NULL);
11300     HValue* left_value = Top();
11301 
11302     // Short-circuit left values that always evaluate to the same boolean value.
11303     if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
11304       // l (evals true)  && r -> r
11305       // l (evals true)  || r -> l
11306       // l (evals false) && r -> l
11307       // l (evals false) || r -> r
11308       if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
11309         Drop(1);
11310         CHECK_ALIVE(VisitForValue(expr->right()));
11311       }
11312       return ast_context()->ReturnValue(Pop());
11313     }
11314 
11315     // We need an extra block to maintain edge-split form.
11316     HBasicBlock* empty_block = graph()->CreateBasicBlock();
11317     HBasicBlock* eval_right = graph()->CreateBasicBlock();
11318     ToBooleanStub::Types expected(expr->left()->to_boolean_types());
11319     HBranch* test = is_logical_and
11320         ? New<HBranch>(left_value, expected, eval_right, empty_block)
11321         : New<HBranch>(left_value, expected, empty_block, eval_right);
11322     FinishCurrentBlock(test);
11323 
11324     set_current_block(eval_right);
11325     Drop(1);  // Value of the left subexpression.
11326     CHECK_BAILOUT(VisitForValue(expr->right()));
11327 
11328     HBasicBlock* join_block =
11329       CreateJoin(empty_block, current_block(), expr->id());
11330     set_current_block(join_block);
11331     return ast_context()->ReturnValue(Pop());
11332 
11333   } else {
11334     DCHECK(ast_context()->IsEffect());
11335     // In an effect context, we don't need the value of the left subexpression,
11336     // only its control flow and side effects.  We need an extra block to
11337     // maintain edge-split form.
11338     HBasicBlock* empty_block = graph()->CreateBasicBlock();
11339     HBasicBlock* right_block = graph()->CreateBasicBlock();
11340     if (is_logical_and) {
11341       CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
11342     } else {
11343       CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
11344     }
11345 
11346     // TODO(kmillikin): Find a way to fix this.  It's ugly that there are
11347     // actually two empty blocks (one here and one inserted by
11348     // TestContext::BuildBranch, and that they both have an HSimulate though the
11349     // second one is not a merge node, and that we really have no good AST ID to
11350     // put on that first HSimulate.
11351 
11352     if (empty_block->HasPredecessor()) {
11353       empty_block->SetJoinId(expr->id());
11354     } else {
11355       empty_block = NULL;
11356     }
11357 
11358     if (right_block->HasPredecessor()) {
11359       right_block->SetJoinId(expr->RightId());
11360       set_current_block(right_block);
11361       CHECK_BAILOUT(VisitForEffect(expr->right()));
11362       right_block = current_block();
11363     } else {
11364       right_block = NULL;
11365     }
11366 
11367     HBasicBlock* join_block =
11368       CreateJoin(empty_block, right_block, expr->id());
11369     set_current_block(join_block);
11370     // We did not materialize any value in the predecessor environments,
11371     // so there is no need to handle it here.
11372   }
11373 }
11374 
11375 
VisitArithmeticExpression(BinaryOperation * expr)11376 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
11377   CHECK_ALIVE(VisitForValue(expr->left()));
11378   CHECK_ALIVE(VisitForValue(expr->right()));
11379   SetSourcePosition(expr->position());
11380   HValue* right = Pop();
11381   HValue* left = Pop();
11382   HValue* result =
11383       BuildBinaryOperation(expr, left, right,
11384           ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11385                                     : PUSH_BEFORE_SIMULATE);
11386   if (top_info()->is_tracking_positions() && result->IsBinaryOperation()) {
11387     HBinaryOperation::cast(result)->SetOperandPositions(
11388         zone(),
11389         ScriptPositionToSourcePosition(expr->left()->position()),
11390         ScriptPositionToSourcePosition(expr->right()->position()));
11391   }
11392   return ast_context()->ReturnValue(result);
11393 }
11394 
11395 
HandleLiteralCompareTypeof(CompareOperation * expr,Expression * sub_expr,Handle<String> check)11396 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
11397                                                         Expression* sub_expr,
11398                                                         Handle<String> check) {
11399   CHECK_ALIVE(VisitForTypeOf(sub_expr));
11400   SetSourcePosition(expr->position());
11401   HValue* value = Pop();
11402   HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
11403   return ast_context()->ReturnControl(instr, expr->id());
11404 }
11405 
11406 
IsLiteralCompareBool(Isolate * isolate,HValue * left,Token::Value op,HValue * right)11407 static bool IsLiteralCompareBool(Isolate* isolate,
11408                                  HValue* left,
11409                                  Token::Value op,
11410                                  HValue* right) {
11411   return op == Token::EQ_STRICT &&
11412       ((left->IsConstant() &&
11413           HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
11414        (right->IsConstant() &&
11415            HConstant::cast(right)->handle(isolate)->IsBoolean()));
11416 }
11417 
11418 
VisitCompareOperation(CompareOperation * expr)11419 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
11420   DCHECK(!HasStackOverflow());
11421   DCHECK(current_block() != NULL);
11422   DCHECK(current_block()->HasPredecessor());
11423 
11424   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11425 
11426   // Check for a few fast cases. The AST visiting behavior must be in sync
11427   // with the full codegen: We don't push both left and right values onto
11428   // the expression stack when one side is a special-case literal.
11429   Expression* sub_expr = NULL;
11430   Handle<String> check;
11431   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
11432     return HandleLiteralCompareTypeof(expr, sub_expr, check);
11433   }
11434   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
11435     return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
11436   }
11437   if (expr->IsLiteralCompareNull(&sub_expr)) {
11438     return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
11439   }
11440 
11441   if (IsClassOfTest(expr)) {
11442     CallRuntime* call = expr->left()->AsCallRuntime();
11443     DCHECK(call->arguments()->length() == 1);
11444     CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11445     HValue* value = Pop();
11446     Literal* literal = expr->right()->AsLiteral();
11447     Handle<String> rhs = Handle<String>::cast(literal->value());
11448     HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
11449     return ast_context()->ReturnControl(instr, expr->id());
11450   }
11451 
11452   Type* left_type = expr->left()->bounds().lower;
11453   Type* right_type = expr->right()->bounds().lower;
11454   Type* combined_type = expr->combined_type();
11455 
11456   CHECK_ALIVE(VisitForValue(expr->left()));
11457   CHECK_ALIVE(VisitForValue(expr->right()));
11458 
11459   HValue* right = Pop();
11460   HValue* left = Pop();
11461   Token::Value op = expr->op();
11462 
11463   if (IsLiteralCompareBool(isolate(), left, op, right)) {
11464     HCompareObjectEqAndBranch* result =
11465         New<HCompareObjectEqAndBranch>(left, right);
11466     return ast_context()->ReturnControl(result, expr->id());
11467   }
11468 
11469   if (op == Token::INSTANCEOF) {
11470     // Check to see if the rhs of the instanceof is a known function.
11471     if (right->IsConstant() &&
11472         HConstant::cast(right)->handle(isolate())->IsJSFunction()) {
11473       Handle<JSFunction> constructor =
11474           Handle<JSFunction>::cast(HConstant::cast(right)->handle(isolate()));
11475       if (constructor->IsConstructor() &&
11476           !constructor->map()->has_non_instance_prototype()) {
11477         JSFunction::EnsureHasInitialMap(constructor);
11478         DCHECK(constructor->has_initial_map());
11479         Handle<Map> initial_map(constructor->initial_map(), isolate());
11480         top_info()->dependencies()->AssumeInitialMapCantChange(initial_map);
11481         HInstruction* prototype =
11482             Add<HConstant>(handle(initial_map->prototype(), isolate()));
11483         HHasInPrototypeChainAndBranch* result =
11484             New<HHasInPrototypeChainAndBranch>(left, prototype);
11485         return ast_context()->ReturnControl(result, expr->id());
11486       }
11487     }
11488 
11489     HInstanceOf* result = New<HInstanceOf>(left, right);
11490     return ast_context()->ReturnInstruction(result, expr->id());
11491 
11492   } else if (op == Token::IN) {
11493     Add<HPushArguments>(left, right);
11494     HInstruction* result =
11495         New<HCallRuntime>(Runtime::FunctionForId(Runtime::kHasProperty), 2);
11496     return ast_context()->ReturnInstruction(result, expr->id());
11497   }
11498 
11499   PushBeforeSimulateBehavior push_behavior =
11500     ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
11501                               : PUSH_BEFORE_SIMULATE;
11502   HControlInstruction* compare = BuildCompareInstruction(
11503       op, left, right, left_type, right_type, combined_type,
11504       ScriptPositionToSourcePosition(expr->left()->position()),
11505       ScriptPositionToSourcePosition(expr->right()->position()),
11506       push_behavior, expr->id());
11507   if (compare == NULL) return;  // Bailed out.
11508   return ast_context()->ReturnControl(compare, expr->id());
11509 }
11510 
11511 
BuildCompareInstruction(Token::Value op,HValue * left,HValue * right,Type * left_type,Type * right_type,Type * combined_type,SourcePosition left_position,SourcePosition right_position,PushBeforeSimulateBehavior push_sim_result,BailoutId bailout_id)11512 HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
11513     Token::Value op, HValue* left, HValue* right, Type* left_type,
11514     Type* right_type, Type* combined_type, SourcePosition left_position,
11515     SourcePosition right_position, PushBeforeSimulateBehavior push_sim_result,
11516     BailoutId bailout_id) {
11517   // Cases handled below depend on collected type feedback. They should
11518   // soft deoptimize when there is no type feedback.
11519   if (!combined_type->IsInhabited()) {
11520     Add<HDeoptimize>(
11521         Deoptimizer::kInsufficientTypeFeedbackForCombinedTypeOfBinaryOperation,
11522         Deoptimizer::SOFT);
11523     combined_type = left_type = right_type = Type::Any(zone());
11524   }
11525 
11526   Representation left_rep = RepresentationFor(left_type);
11527   Representation right_rep = RepresentationFor(right_type);
11528   Representation combined_rep = RepresentationFor(combined_type);
11529 
11530   if (combined_type->Is(Type::Receiver())) {
11531     if (Token::IsEqualityOp(op)) {
11532       // HCompareObjectEqAndBranch can only deal with object, so
11533       // exclude numbers.
11534       if ((left->IsConstant() &&
11535            HConstant::cast(left)->HasNumberValue()) ||
11536           (right->IsConstant() &&
11537            HConstant::cast(right)->HasNumberValue())) {
11538         Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11539                          Deoptimizer::SOFT);
11540         // The caller expects a branch instruction, so make it happy.
11541         return New<HBranch>(graph()->GetConstantTrue());
11542       }
11543       // Can we get away with map check and not instance type check?
11544       HValue* operand_to_check =
11545           left->block()->block_id() < right->block()->block_id() ? left : right;
11546       if (combined_type->IsClass()) {
11547         Handle<Map> map = combined_type->AsClass()->Map();
11548         AddCheckMap(operand_to_check, map);
11549         HCompareObjectEqAndBranch* result =
11550             New<HCompareObjectEqAndBranch>(left, right);
11551         if (top_info()->is_tracking_positions()) {
11552           result->set_operand_position(zone(), 0, left_position);
11553           result->set_operand_position(zone(), 1, right_position);
11554         }
11555         return result;
11556       } else {
11557         BuildCheckHeapObject(operand_to_check);
11558         Add<HCheckInstanceType>(operand_to_check,
11559                                 HCheckInstanceType::IS_JS_RECEIVER);
11560         HCompareObjectEqAndBranch* result =
11561             New<HCompareObjectEqAndBranch>(left, right);
11562         return result;
11563       }
11564     } else {
11565       if (combined_type->IsClass()) {
11566         // TODO(bmeurer): This is an optimized version of an x < y, x > y,
11567         // x <= y or x >= y, where both x and y are spec objects with the
11568         // same map. The CompareIC collects this map for us. So if we know
11569         // that there's no @@toPrimitive on the map (including the prototype
11570         // chain), and both valueOf and toString are the default initial
11571         // implementations (on the %ObjectPrototype%), then we can reduce
11572         // the comparison to map checks on x and y, because the comparison
11573         // will turn into a comparison of "[object CLASS]" to itself (the
11574         // default outcome of toString, since valueOf returns a spec object).
11575         // This is pretty much adhoc, so in TurboFan we could do a lot better
11576         // and inline the interesting parts of ToPrimitive (actually we could
11577         // even do that in Crankshaft but we don't want to waste too much
11578         // time on this now).
11579         DCHECK(Token::IsOrderedRelationalCompareOp(op));
11580         Handle<Map> map = combined_type->AsClass()->Map();
11581         PropertyAccessInfo value_of(this, LOAD, map,
11582                                     isolate()->factory()->valueOf_string());
11583         PropertyAccessInfo to_primitive(
11584             this, LOAD, map, isolate()->factory()->to_primitive_symbol());
11585         PropertyAccessInfo to_string(this, LOAD, map,
11586                                      isolate()->factory()->toString_string());
11587         PropertyAccessInfo to_string_tag(
11588             this, LOAD, map, isolate()->factory()->to_string_tag_symbol());
11589         if (to_primitive.CanAccessMonomorphic() && !to_primitive.IsFound() &&
11590             to_string_tag.CanAccessMonomorphic() &&
11591             (!to_string_tag.IsFound() || to_string_tag.IsData() ||
11592              to_string_tag.IsDataConstant()) &&
11593             value_of.CanAccessMonomorphic() && value_of.IsDataConstant() &&
11594             value_of.constant().is_identical_to(isolate()->object_value_of()) &&
11595             to_string.CanAccessMonomorphic() && to_string.IsDataConstant() &&
11596             to_string.constant().is_identical_to(
11597                 isolate()->object_to_string())) {
11598           // We depend on the prototype chain to stay the same, because we
11599           // also need to deoptimize when someone installs @@toPrimitive
11600           // or @@toStringTag somewhere in the prototype chain.
11601           BuildCheckPrototypeMaps(handle(JSObject::cast(map->prototype())),
11602                                   Handle<JSObject>::null());
11603           AddCheckMap(left, map);
11604           AddCheckMap(right, map);
11605           // The caller expects a branch instruction, so make it happy.
11606           return New<HBranch>(
11607               graph()->GetConstantBool(op == Token::LTE || op == Token::GTE));
11608         }
11609       }
11610       Bailout(kUnsupportedNonPrimitiveCompare);
11611       return NULL;
11612     }
11613   } else if (combined_type->Is(Type::InternalizedString()) &&
11614              Token::IsEqualityOp(op)) {
11615     // If we have a constant argument, it should be consistent with the type
11616     // feedback (otherwise we fail assertions in HCompareObjectEqAndBranch).
11617     if ((left->IsConstant() &&
11618          !HConstant::cast(left)->HasInternalizedStringValue()) ||
11619         (right->IsConstant() &&
11620          !HConstant::cast(right)->HasInternalizedStringValue())) {
11621       Add<HDeoptimize>(Deoptimizer::kTypeMismatchBetweenFeedbackAndConstant,
11622                        Deoptimizer::SOFT);
11623       // The caller expects a branch instruction, so make it happy.
11624       return New<HBranch>(graph()->GetConstantTrue());
11625     }
11626     BuildCheckHeapObject(left);
11627     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
11628     BuildCheckHeapObject(right);
11629     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
11630     HCompareObjectEqAndBranch* result =
11631         New<HCompareObjectEqAndBranch>(left, right);
11632     return result;
11633   } else if (combined_type->Is(Type::String())) {
11634     BuildCheckHeapObject(left);
11635     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
11636     BuildCheckHeapObject(right);
11637     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
11638     HStringCompareAndBranch* result =
11639         New<HStringCompareAndBranch>(left, right, op);
11640     return result;
11641   } else if (combined_type->Is(Type::Boolean())) {
11642     AddCheckMap(left, isolate()->factory()->boolean_map());
11643     AddCheckMap(right, isolate()->factory()->boolean_map());
11644     if (Token::IsEqualityOp(op)) {
11645       HCompareObjectEqAndBranch* result =
11646           New<HCompareObjectEqAndBranch>(left, right);
11647       return result;
11648     }
11649     left = Add<HLoadNamedField>(
11650         left, nullptr,
11651         HObjectAccess::ForOddballToNumber(Representation::Smi()));
11652     right = Add<HLoadNamedField>(
11653         right, nullptr,
11654         HObjectAccess::ForOddballToNumber(Representation::Smi()));
11655     HCompareNumericAndBranch* result =
11656         New<HCompareNumericAndBranch>(left, right, op);
11657     return result;
11658   } else {
11659     if (combined_rep.IsTagged() || combined_rep.IsNone()) {
11660       HCompareGeneric* result = Add<HCompareGeneric>(
11661           left, right, op, strength(function_language_mode()));
11662       result->set_observed_input_representation(1, left_rep);
11663       result->set_observed_input_representation(2, right_rep);
11664       if (result->HasObservableSideEffects()) {
11665         if (push_sim_result == PUSH_BEFORE_SIMULATE) {
11666           Push(result);
11667           AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11668           Drop(1);
11669         } else {
11670           AddSimulate(bailout_id, REMOVABLE_SIMULATE);
11671         }
11672       }
11673       // TODO(jkummerow): Can we make this more efficient?
11674       HBranch* branch = New<HBranch>(result);
11675       return branch;
11676     } else {
11677       HCompareNumericAndBranch* result = New<HCompareNumericAndBranch>(
11678           left, right, op, strength(function_language_mode()));
11679       result->set_observed_input_representation(left_rep, right_rep);
11680       if (top_info()->is_tracking_positions()) {
11681         result->SetOperandPositions(zone(), left_position, right_position);
11682       }
11683       return result;
11684     }
11685   }
11686 }
11687 
11688 
HandleLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)11689 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
11690                                                      Expression* sub_expr,
11691                                                      NilValue nil) {
11692   DCHECK(!HasStackOverflow());
11693   DCHECK(current_block() != NULL);
11694   DCHECK(current_block()->HasPredecessor());
11695   DCHECK(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
11696   if (!top_info()->is_tracking_positions()) SetSourcePosition(expr->position());
11697   CHECK_ALIVE(VisitForValue(sub_expr));
11698   HValue* value = Pop();
11699   if (expr->op() == Token::EQ_STRICT) {
11700     HConstant* nil_constant = nil == kNullValue
11701         ? graph()->GetConstantNull()
11702         : graph()->GetConstantUndefined();
11703     HCompareObjectEqAndBranch* instr =
11704         New<HCompareObjectEqAndBranch>(value, nil_constant);
11705     return ast_context()->ReturnControl(instr, expr->id());
11706   } else {
11707     DCHECK_EQ(Token::EQ, expr->op());
11708     Type* type = expr->combined_type()->Is(Type::None())
11709         ? Type::Any(zone()) : expr->combined_type();
11710     HIfContinuation continuation;
11711     BuildCompareNil(value, type, &continuation);
11712     return ast_context()->ReturnContinuation(&continuation, expr->id());
11713   }
11714 }
11715 
11716 
VisitSpread(Spread * expr)11717 void HOptimizedGraphBuilder::VisitSpread(Spread* expr) { UNREACHABLE(); }
11718 
11719 
VisitEmptyParentheses(EmptyParentheses * expr)11720 void HOptimizedGraphBuilder::VisitEmptyParentheses(EmptyParentheses* expr) {
11721   UNREACHABLE();
11722 }
11723 
11724 
AddThisFunction()11725 HValue* HOptimizedGraphBuilder::AddThisFunction() {
11726   return AddInstruction(BuildThisFunction());
11727 }
11728 
11729 
BuildThisFunction()11730 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
11731   // If we share optimized code between different closures, the
11732   // this-function is not a constant, except inside an inlined body.
11733   if (function_state()->outer() != NULL) {
11734       return New<HConstant>(
11735           function_state()->compilation_info()->closure());
11736   } else {
11737       return New<HThisFunction>();
11738   }
11739 }
11740 
11741 
BuildFastLiteral(Handle<JSObject> boilerplate_object,AllocationSiteUsageContext * site_context)11742 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
11743     Handle<JSObject> boilerplate_object,
11744     AllocationSiteUsageContext* site_context) {
11745   NoObservableSideEffectsScope no_effects(this);
11746   Handle<Map> initial_map(boilerplate_object->map());
11747   InstanceType instance_type = initial_map->instance_type();
11748   DCHECK(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
11749 
11750   HType type = instance_type == JS_ARRAY_TYPE
11751       ? HType::JSArray() : HType::JSObject();
11752   HValue* object_size_constant = Add<HConstant>(initial_map->instance_size());
11753 
11754   PretenureFlag pretenure_flag = NOT_TENURED;
11755   Handle<AllocationSite> top_site(*site_context->top(), isolate());
11756   if (FLAG_allocation_site_pretenuring) {
11757     pretenure_flag = top_site->GetPretenureMode();
11758   }
11759 
11760   Handle<AllocationSite> current_site(*site_context->current(), isolate());
11761   if (*top_site == *current_site) {
11762     // We install a dependency for pretenuring only on the outermost literal.
11763     top_info()->dependencies()->AssumeTenuringDecision(top_site);
11764   }
11765   top_info()->dependencies()->AssumeTransitionStable(current_site);
11766 
11767   HInstruction* object = Add<HAllocate>(
11768       object_size_constant, type, pretenure_flag, instance_type, top_site);
11769 
11770   // If allocation folding reaches Page::kMaxRegularHeapObjectSize the
11771   // elements array may not get folded into the object. Hence, we set the
11772   // elements pointer to empty fixed array and let store elimination remove
11773   // this store in the folding case.
11774   HConstant* empty_fixed_array = Add<HConstant>(
11775       isolate()->factory()->empty_fixed_array());
11776   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11777       empty_fixed_array);
11778 
11779   BuildEmitObjectHeader(boilerplate_object, object);
11780 
11781   // Similarly to the elements pointer, there is no guarantee that all
11782   // property allocations can get folded, so pre-initialize all in-object
11783   // properties to a safe value.
11784   BuildInitializeInobjectProperties(object, initial_map);
11785 
11786   Handle<FixedArrayBase> elements(boilerplate_object->elements());
11787   int elements_size = (elements->length() > 0 &&
11788       elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
11789           elements->Size() : 0;
11790 
11791   if (pretenure_flag == TENURED &&
11792       elements->map() == isolate()->heap()->fixed_cow_array_map() &&
11793       isolate()->heap()->InNewSpace(*elements)) {
11794     // If we would like to pretenure a fixed cow array, we must ensure that the
11795     // array is already in old space, otherwise we'll create too many old-to-
11796     // new-space pointers (overflowing the store buffer).
11797     elements = Handle<FixedArrayBase>(
11798         isolate()->factory()->CopyAndTenureFixedCOWArray(
11799             Handle<FixedArray>::cast(elements)));
11800     boilerplate_object->set_elements(*elements);
11801   }
11802 
11803   HInstruction* object_elements = NULL;
11804   if (elements_size > 0) {
11805     HValue* object_elements_size = Add<HConstant>(elements_size);
11806     InstanceType instance_type = boilerplate_object->HasFastDoubleElements()
11807         ? FIXED_DOUBLE_ARRAY_TYPE : FIXED_ARRAY_TYPE;
11808     object_elements = Add<HAllocate>(object_elements_size, HType::HeapObject(),
11809                                      pretenure_flag, instance_type, top_site);
11810     BuildEmitElements(boilerplate_object, elements, object_elements,
11811                       site_context);
11812     Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11813                           object_elements);
11814   } else {
11815     Handle<Object> elements_field =
11816         Handle<Object>(boilerplate_object->elements(), isolate());
11817     HInstruction* object_elements_cow = Add<HConstant>(elements_field);
11818     Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
11819                           object_elements_cow);
11820   }
11821 
11822   // Copy in-object properties.
11823   if (initial_map->NumberOfFields() != 0 ||
11824       initial_map->unused_property_fields() > 0) {
11825     BuildEmitInObjectProperties(boilerplate_object, object, site_context,
11826                                 pretenure_flag);
11827   }
11828   return object;
11829 }
11830 
11831 
BuildEmitObjectHeader(Handle<JSObject> boilerplate_object,HInstruction * object)11832 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
11833     Handle<JSObject> boilerplate_object,
11834     HInstruction* object) {
11835   DCHECK(boilerplate_object->properties()->length() == 0);
11836 
11837   Handle<Map> boilerplate_object_map(boilerplate_object->map());
11838   AddStoreMapConstant(object, boilerplate_object_map);
11839 
11840   Handle<Object> properties_field =
11841       Handle<Object>(boilerplate_object->properties(), isolate());
11842   DCHECK(*properties_field == isolate()->heap()->empty_fixed_array());
11843   HInstruction* properties = Add<HConstant>(properties_field);
11844   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
11845   Add<HStoreNamedField>(object, access, properties);
11846 
11847   if (boilerplate_object->IsJSArray()) {
11848     Handle<JSArray> boilerplate_array =
11849         Handle<JSArray>::cast(boilerplate_object);
11850     Handle<Object> length_field =
11851         Handle<Object>(boilerplate_array->length(), isolate());
11852     HInstruction* length = Add<HConstant>(length_field);
11853 
11854     DCHECK(boilerplate_array->length()->IsSmi());
11855     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
11856         boilerplate_array->GetElementsKind()), length);
11857   }
11858 }
11859 
11860 
BuildEmitInObjectProperties(Handle<JSObject> boilerplate_object,HInstruction * object,AllocationSiteUsageContext * site_context,PretenureFlag pretenure_flag)11861 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
11862     Handle<JSObject> boilerplate_object,
11863     HInstruction* object,
11864     AllocationSiteUsageContext* site_context,
11865     PretenureFlag pretenure_flag) {
11866   Handle<Map> boilerplate_map(boilerplate_object->map());
11867   Handle<DescriptorArray> descriptors(boilerplate_map->instance_descriptors());
11868   int limit = boilerplate_map->NumberOfOwnDescriptors();
11869 
11870   int copied_fields = 0;
11871   for (int i = 0; i < limit; i++) {
11872     PropertyDetails details = descriptors->GetDetails(i);
11873     if (details.type() != DATA) continue;
11874     copied_fields++;
11875     FieldIndex field_index = FieldIndex::ForDescriptor(*boilerplate_map, i);
11876 
11877 
11878     int property_offset = field_index.offset();
11879     Handle<Name> name(descriptors->GetKey(i));
11880 
11881     // The access for the store depends on the type of the boilerplate.
11882     HObjectAccess access = boilerplate_object->IsJSArray() ?
11883         HObjectAccess::ForJSArrayOffset(property_offset) :
11884         HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11885 
11886     if (boilerplate_object->IsUnboxedDoubleField(field_index)) {
11887       CHECK(!boilerplate_object->IsJSArray());
11888       double value = boilerplate_object->RawFastDoublePropertyAt(field_index);
11889       access = access.WithRepresentation(Representation::Double());
11890       Add<HStoreNamedField>(object, access, Add<HConstant>(value));
11891       continue;
11892     }
11893     Handle<Object> value(boilerplate_object->RawFastPropertyAt(field_index),
11894                          isolate());
11895 
11896     if (value->IsJSObject()) {
11897       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11898       Handle<AllocationSite> current_site = site_context->EnterNewScope();
11899       HInstruction* result =
11900           BuildFastLiteral(value_object, site_context);
11901       site_context->ExitScope(current_site, value_object);
11902       Add<HStoreNamedField>(object, access, result);
11903     } else {
11904       Representation representation = details.representation();
11905       HInstruction* value_instruction;
11906 
11907       if (representation.IsDouble()) {
11908         // Allocate a HeapNumber box and store the value into it.
11909         HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
11910         HInstruction* double_box =
11911             Add<HAllocate>(heap_number_constant, HType::HeapObject(),
11912                 pretenure_flag, MUTABLE_HEAP_NUMBER_TYPE);
11913         AddStoreMapConstant(double_box,
11914             isolate()->factory()->mutable_heap_number_map());
11915         // Unwrap the mutable heap number from the boilerplate.
11916         HValue* double_value =
11917             Add<HConstant>(Handle<HeapNumber>::cast(value)->value());
11918         Add<HStoreNamedField>(
11919             double_box, HObjectAccess::ForHeapNumberValue(), double_value);
11920         value_instruction = double_box;
11921       } else if (representation.IsSmi()) {
11922         value_instruction = value->IsUninitialized()
11923             ? graph()->GetConstant0()
11924             : Add<HConstant>(value);
11925         // Ensure that value is stored as smi.
11926         access = access.WithRepresentation(representation);
11927       } else {
11928         value_instruction = Add<HConstant>(value);
11929       }
11930 
11931       Add<HStoreNamedField>(object, access, value_instruction);
11932     }
11933   }
11934 
11935   int inobject_properties = boilerplate_object->map()->GetInObjectProperties();
11936   HInstruction* value_instruction =
11937       Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
11938   for (int i = copied_fields; i < inobject_properties; i++) {
11939     DCHECK(boilerplate_object->IsJSObject());
11940     int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
11941     HObjectAccess access =
11942         HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
11943     Add<HStoreNamedField>(object, access, value_instruction);
11944   }
11945 }
11946 
11947 
BuildEmitElements(Handle<JSObject> boilerplate_object,Handle<FixedArrayBase> elements,HValue * object_elements,AllocationSiteUsageContext * site_context)11948 void HOptimizedGraphBuilder::BuildEmitElements(
11949     Handle<JSObject> boilerplate_object,
11950     Handle<FixedArrayBase> elements,
11951     HValue* object_elements,
11952     AllocationSiteUsageContext* site_context) {
11953   ElementsKind kind = boilerplate_object->map()->elements_kind();
11954   int elements_length = elements->length();
11955   HValue* object_elements_length = Add<HConstant>(elements_length);
11956   BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
11957 
11958   // Copy elements backing store content.
11959   if (elements->IsFixedDoubleArray()) {
11960     BuildEmitFixedDoubleArray(elements, kind, object_elements);
11961   } else if (elements->IsFixedArray()) {
11962     BuildEmitFixedArray(elements, kind, object_elements,
11963                         site_context);
11964   } else {
11965     UNREACHABLE();
11966   }
11967 }
11968 
11969 
BuildEmitFixedDoubleArray(Handle<FixedArrayBase> elements,ElementsKind kind,HValue * object_elements)11970 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
11971     Handle<FixedArrayBase> elements,
11972     ElementsKind kind,
11973     HValue* object_elements) {
11974   HInstruction* boilerplate_elements = Add<HConstant>(elements);
11975   int elements_length = elements->length();
11976   for (int i = 0; i < elements_length; i++) {
11977     HValue* key_constant = Add<HConstant>(i);
11978     HInstruction* value_instruction =
11979         Add<HLoadKeyed>(boilerplate_elements, key_constant, nullptr, nullptr,
11980                         kind, ALLOW_RETURN_HOLE);
11981     HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
11982                                            value_instruction, nullptr, kind);
11983     store->SetFlag(HValue::kAllowUndefinedAsNaN);
11984   }
11985 }
11986 
11987 
BuildEmitFixedArray(Handle<FixedArrayBase> elements,ElementsKind kind,HValue * object_elements,AllocationSiteUsageContext * site_context)11988 void HOptimizedGraphBuilder::BuildEmitFixedArray(
11989     Handle<FixedArrayBase> elements,
11990     ElementsKind kind,
11991     HValue* object_elements,
11992     AllocationSiteUsageContext* site_context) {
11993   HInstruction* boilerplate_elements = Add<HConstant>(elements);
11994   int elements_length = elements->length();
11995   Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
11996   for (int i = 0; i < elements_length; i++) {
11997     Handle<Object> value(fast_elements->get(i), isolate());
11998     HValue* key_constant = Add<HConstant>(i);
11999     if (value->IsJSObject()) {
12000       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
12001       Handle<AllocationSite> current_site = site_context->EnterNewScope();
12002       HInstruction* result =
12003           BuildFastLiteral(value_object, site_context);
12004       site_context->ExitScope(current_site, value_object);
12005       Add<HStoreKeyed>(object_elements, key_constant, result, nullptr, kind);
12006     } else {
12007       ElementsKind copy_kind =
12008           kind == FAST_HOLEY_SMI_ELEMENTS ? FAST_HOLEY_ELEMENTS : kind;
12009       HInstruction* value_instruction =
12010           Add<HLoadKeyed>(boilerplate_elements, key_constant, nullptr, nullptr,
12011                           copy_kind, ALLOW_RETURN_HOLE);
12012       Add<HStoreKeyed>(object_elements, key_constant, value_instruction,
12013                        nullptr, copy_kind);
12014     }
12015   }
12016 }
12017 
12018 
VisitThisFunction(ThisFunction * expr)12019 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
12020   DCHECK(!HasStackOverflow());
12021   DCHECK(current_block() != NULL);
12022   DCHECK(current_block()->HasPredecessor());
12023   HInstruction* instr = BuildThisFunction();
12024   return ast_context()->ReturnInstruction(instr, expr->id());
12025 }
12026 
12027 
VisitSuperPropertyReference(SuperPropertyReference * expr)12028 void HOptimizedGraphBuilder::VisitSuperPropertyReference(
12029     SuperPropertyReference* expr) {
12030   DCHECK(!HasStackOverflow());
12031   DCHECK(current_block() != NULL);
12032   DCHECK(current_block()->HasPredecessor());
12033   return Bailout(kSuperReference);
12034 }
12035 
12036 
VisitSuperCallReference(SuperCallReference * expr)12037 void HOptimizedGraphBuilder::VisitSuperCallReference(SuperCallReference* expr) {
12038   DCHECK(!HasStackOverflow());
12039   DCHECK(current_block() != NULL);
12040   DCHECK(current_block()->HasPredecessor());
12041   return Bailout(kSuperReference);
12042 }
12043 
12044 
VisitDeclarations(ZoneList<Declaration * > * declarations)12045 void HOptimizedGraphBuilder::VisitDeclarations(
12046     ZoneList<Declaration*>* declarations) {
12047   DCHECK(globals_.is_empty());
12048   AstVisitor::VisitDeclarations(declarations);
12049   if (!globals_.is_empty()) {
12050     Handle<FixedArray> array =
12051        isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
12052     for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
12053     int flags =
12054         DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
12055         DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
12056         DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
12057     Add<HDeclareGlobals>(array, flags);
12058     globals_.Rewind(0);
12059   }
12060 }
12061 
12062 
VisitVariableDeclaration(VariableDeclaration * declaration)12063 void HOptimizedGraphBuilder::VisitVariableDeclaration(
12064     VariableDeclaration* declaration) {
12065   VariableProxy* proxy = declaration->proxy();
12066   VariableMode mode = declaration->mode();
12067   Variable* variable = proxy->var();
12068   bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
12069   switch (variable->location()) {
12070     case VariableLocation::GLOBAL:
12071     case VariableLocation::UNALLOCATED:
12072       globals_.Add(variable->name(), zone());
12073       globals_.Add(variable->binding_needs_init()
12074                        ? isolate()->factory()->the_hole_value()
12075                        : isolate()->factory()->undefined_value(), zone());
12076       return;
12077     case VariableLocation::PARAMETER:
12078     case VariableLocation::LOCAL:
12079       if (hole_init) {
12080         HValue* value = graph()->GetConstantHole();
12081         environment()->Bind(variable, value);
12082       }
12083       break;
12084     case VariableLocation::CONTEXT:
12085       if (hole_init) {
12086         HValue* value = graph()->GetConstantHole();
12087         HValue* context = environment()->context();
12088         HStoreContextSlot* store = Add<HStoreContextSlot>(
12089             context, variable->index(), HStoreContextSlot::kNoCheck, value);
12090         if (store->HasObservableSideEffects()) {
12091           Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
12092         }
12093       }
12094       break;
12095     case VariableLocation::LOOKUP:
12096       return Bailout(kUnsupportedLookupSlotInDeclaration);
12097   }
12098 }
12099 
12100 
VisitFunctionDeclaration(FunctionDeclaration * declaration)12101 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
12102     FunctionDeclaration* declaration) {
12103   VariableProxy* proxy = declaration->proxy();
12104   Variable* variable = proxy->var();
12105   switch (variable->location()) {
12106     case VariableLocation::GLOBAL:
12107     case VariableLocation::UNALLOCATED: {
12108       globals_.Add(variable->name(), zone());
12109       Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(
12110           declaration->fun(), current_info()->script(), top_info());
12111       // Check for stack-overflow exception.
12112       if (function.is_null()) return SetStackOverflow();
12113       globals_.Add(function, zone());
12114       return;
12115     }
12116     case VariableLocation::PARAMETER:
12117     case VariableLocation::LOCAL: {
12118       CHECK_ALIVE(VisitForValue(declaration->fun()));
12119       HValue* value = Pop();
12120       BindIfLive(variable, value);
12121       break;
12122     }
12123     case VariableLocation::CONTEXT: {
12124       CHECK_ALIVE(VisitForValue(declaration->fun()));
12125       HValue* value = Pop();
12126       HValue* context = environment()->context();
12127       HStoreContextSlot* store = Add<HStoreContextSlot>(
12128           context, variable->index(), HStoreContextSlot::kNoCheck, value);
12129       if (store->HasObservableSideEffects()) {
12130         Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
12131       }
12132       break;
12133     }
12134     case VariableLocation::LOOKUP:
12135       return Bailout(kUnsupportedLookupSlotInDeclaration);
12136   }
12137 }
12138 
12139 
VisitImportDeclaration(ImportDeclaration * declaration)12140 void HOptimizedGraphBuilder::VisitImportDeclaration(
12141     ImportDeclaration* declaration) {
12142   UNREACHABLE();
12143 }
12144 
12145 
VisitExportDeclaration(ExportDeclaration * declaration)12146 void HOptimizedGraphBuilder::VisitExportDeclaration(
12147     ExportDeclaration* declaration) {
12148   UNREACHABLE();
12149 }
12150 
12151 
VisitRewritableAssignmentExpression(RewritableAssignmentExpression * node)12152 void HOptimizedGraphBuilder::VisitRewritableAssignmentExpression(
12153     RewritableAssignmentExpression* node) {
12154   CHECK_ALIVE(Visit(node->expression()));
12155 }
12156 
12157 
12158 // Generators for inline runtime functions.
12159 // Support for types.
GenerateIsSmi(CallRuntime * call)12160 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
12161   DCHECK(call->arguments()->length() == 1);
12162   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12163   HValue* value = Pop();
12164   HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
12165   return ast_context()->ReturnControl(result, call->id());
12166 }
12167 
12168 
GenerateIsJSReceiver(CallRuntime * call)12169 void HOptimizedGraphBuilder::GenerateIsJSReceiver(CallRuntime* call) {
12170   DCHECK(call->arguments()->length() == 1);
12171   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12172   HValue* value = Pop();
12173   HHasInstanceTypeAndBranch* result =
12174       New<HHasInstanceTypeAndBranch>(value,
12175                                      FIRST_JS_RECEIVER_TYPE,
12176                                      LAST_JS_RECEIVER_TYPE);
12177   return ast_context()->ReturnControl(result, call->id());
12178 }
12179 
12180 
GenerateIsFunction(CallRuntime * call)12181 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
12182   DCHECK(call->arguments()->length() == 1);
12183   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12184   HValue* value = Pop();
12185   HHasInstanceTypeAndBranch* result = New<HHasInstanceTypeAndBranch>(
12186       value, FIRST_FUNCTION_TYPE, LAST_FUNCTION_TYPE);
12187   return ast_context()->ReturnControl(result, call->id());
12188 }
12189 
12190 
GenerateIsMinusZero(CallRuntime * call)12191 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
12192   DCHECK(call->arguments()->length() == 1);
12193   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12194   HValue* value = Pop();
12195   HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
12196   return ast_context()->ReturnControl(result, call->id());
12197 }
12198 
12199 
GenerateHasCachedArrayIndex(CallRuntime * call)12200 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
12201   DCHECK(call->arguments()->length() == 1);
12202   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12203   HValue* value = Pop();
12204   HHasCachedArrayIndexAndBranch* result =
12205       New<HHasCachedArrayIndexAndBranch>(value);
12206   return ast_context()->ReturnControl(result, call->id());
12207 }
12208 
12209 
GenerateIsArray(CallRuntime * call)12210 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
12211   DCHECK(call->arguments()->length() == 1);
12212   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12213   HValue* value = Pop();
12214   HHasInstanceTypeAndBranch* result =
12215       New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
12216   return ast_context()->ReturnControl(result, call->id());
12217 }
12218 
12219 
GenerateIsTypedArray(CallRuntime * call)12220 void HOptimizedGraphBuilder::GenerateIsTypedArray(CallRuntime* call) {
12221   DCHECK(call->arguments()->length() == 1);
12222   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12223   HValue* value = Pop();
12224   HHasInstanceTypeAndBranch* result =
12225       New<HHasInstanceTypeAndBranch>(value, JS_TYPED_ARRAY_TYPE);
12226   return ast_context()->ReturnControl(result, call->id());
12227 }
12228 
12229 
GenerateIsRegExp(CallRuntime * call)12230 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
12231   DCHECK(call->arguments()->length() == 1);
12232   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12233   HValue* value = Pop();
12234   HHasInstanceTypeAndBranch* result =
12235       New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
12236   return ast_context()->ReturnControl(result, call->id());
12237 }
12238 
12239 
GenerateToInteger(CallRuntime * call)12240 void HOptimizedGraphBuilder::GenerateToInteger(CallRuntime* call) {
12241   DCHECK_EQ(1, call->arguments()->length());
12242   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12243   HValue* input = Pop();
12244   if (input->type().IsSmi()) {
12245     return ast_context()->ReturnValue(input);
12246   } else {
12247     IfBuilder if_inputissmi(this);
12248     if_inputissmi.If<HIsSmiAndBranch>(input);
12249     if_inputissmi.Then();
12250     {
12251       // Return the input value.
12252       Push(input);
12253       Add<HSimulate>(call->id(), FIXED_SIMULATE);
12254     }
12255     if_inputissmi.Else();
12256     {
12257       Add<HPushArguments>(input);
12258       Push(Add<HCallRuntime>(Runtime::FunctionForId(Runtime::kToInteger), 1));
12259       Add<HSimulate>(call->id(), FIXED_SIMULATE);
12260     }
12261     if_inputissmi.End();
12262     return ast_context()->ReturnValue(Pop());
12263   }
12264 }
12265 
12266 
GenerateToObject(CallRuntime * call)12267 void HOptimizedGraphBuilder::GenerateToObject(CallRuntime* call) {
12268   DCHECK_EQ(1, call->arguments()->length());
12269   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12270   HValue* value = Pop();
12271   HValue* result = BuildToObject(value);
12272   return ast_context()->ReturnValue(result);
12273 }
12274 
12275 
GenerateToString(CallRuntime * call)12276 void HOptimizedGraphBuilder::GenerateToString(CallRuntime* call) {
12277   DCHECK_EQ(1, call->arguments()->length());
12278   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12279   Callable callable = CodeFactory::ToString(isolate());
12280   HValue* input = Pop();
12281   if (input->type().IsString()) {
12282     return ast_context()->ReturnValue(input);
12283   } else {
12284     HValue* stub = Add<HConstant>(callable.code());
12285     HValue* values[] = {context(), input};
12286     HInstruction* result =
12287         New<HCallWithDescriptor>(stub, 0, callable.descriptor(),
12288                                  Vector<HValue*>(values, arraysize(values)));
12289     return ast_context()->ReturnInstruction(result, call->id());
12290   }
12291 }
12292 
12293 
GenerateToLength(CallRuntime * call)12294 void HOptimizedGraphBuilder::GenerateToLength(CallRuntime* call) {
12295   DCHECK_EQ(1, call->arguments()->length());
12296   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12297   Callable callable = CodeFactory::ToLength(isolate());
12298   HValue* input = Pop();
12299   HValue* stub = Add<HConstant>(callable.code());
12300   HValue* values[] = {context(), input};
12301   HInstruction* result =
12302       New<HCallWithDescriptor>(stub, 0, callable.descriptor(),
12303                                Vector<HValue*>(values, arraysize(values)));
12304   return ast_context()->ReturnInstruction(result, call->id());
12305 }
12306 
12307 
GenerateToNumber(CallRuntime * call)12308 void HOptimizedGraphBuilder::GenerateToNumber(CallRuntime* call) {
12309   DCHECK_EQ(1, call->arguments()->length());
12310   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12311   Callable callable = CodeFactory::ToNumber(isolate());
12312   HValue* input = Pop();
12313   if (input->type().IsTaggedNumber()) {
12314     return ast_context()->ReturnValue(input);
12315   } else {
12316     HValue* stub = Add<HConstant>(callable.code());
12317     HValue* values[] = {context(), input};
12318     HInstruction* result =
12319         New<HCallWithDescriptor>(stub, 0, callable.descriptor(),
12320                                  Vector<HValue*>(values, arraysize(values)));
12321     return ast_context()->ReturnInstruction(result, call->id());
12322   }
12323 }
12324 
12325 
GenerateIsJSProxy(CallRuntime * call)12326 void HOptimizedGraphBuilder::GenerateIsJSProxy(CallRuntime* call) {
12327   DCHECK(call->arguments()->length() == 1);
12328   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12329   HValue* value = Pop();
12330   HIfContinuation continuation;
12331   IfBuilder if_proxy(this);
12332 
12333   HValue* smicheck = if_proxy.IfNot<HIsSmiAndBranch>(value);
12334   if_proxy.And();
12335   HValue* map = Add<HLoadNamedField>(value, smicheck, HObjectAccess::ForMap());
12336   HValue* instance_type =
12337       Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
12338   if_proxy.If<HCompareNumericAndBranch>(
12339       instance_type, Add<HConstant>(JS_PROXY_TYPE), Token::EQ);
12340 
12341   if_proxy.CaptureContinuation(&continuation);
12342   return ast_context()->ReturnContinuation(&continuation, call->id());
12343 }
12344 
12345 
GenerateHasFastPackedElements(CallRuntime * call)12346 void HOptimizedGraphBuilder::GenerateHasFastPackedElements(CallRuntime* call) {
12347   DCHECK(call->arguments()->length() == 1);
12348   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12349   HValue* object = Pop();
12350   HIfContinuation continuation(graph()->CreateBasicBlock(),
12351                                graph()->CreateBasicBlock());
12352   IfBuilder if_not_smi(this);
12353   if_not_smi.IfNot<HIsSmiAndBranch>(object);
12354   if_not_smi.Then();
12355   {
12356     NoObservableSideEffectsScope no_effects(this);
12357 
12358     IfBuilder if_fast_packed(this);
12359     HValue* elements_kind = BuildGetElementsKind(object);
12360     if_fast_packed.If<HCompareNumericAndBranch>(
12361         elements_kind, Add<HConstant>(FAST_SMI_ELEMENTS), Token::EQ);
12362     if_fast_packed.Or();
12363     if_fast_packed.If<HCompareNumericAndBranch>(
12364         elements_kind, Add<HConstant>(FAST_ELEMENTS), Token::EQ);
12365     if_fast_packed.Or();
12366     if_fast_packed.If<HCompareNumericAndBranch>(
12367         elements_kind, Add<HConstant>(FAST_DOUBLE_ELEMENTS), Token::EQ);
12368     if_fast_packed.JoinContinuation(&continuation);
12369   }
12370   if_not_smi.JoinContinuation(&continuation);
12371   return ast_context()->ReturnContinuation(&continuation, call->id());
12372 }
12373 
12374 
12375 // Support for arguments.length and arguments[?].
GenerateArgumentsLength(CallRuntime * call)12376 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
12377   DCHECK(call->arguments()->length() == 0);
12378   HInstruction* result = NULL;
12379   if (function_state()->outer() == NULL) {
12380     HInstruction* elements = Add<HArgumentsElements>(false);
12381     result = New<HArgumentsLength>(elements);
12382   } else {
12383     // Number of arguments without receiver.
12384     int argument_count = environment()->
12385         arguments_environment()->parameter_count() - 1;
12386     result = New<HConstant>(argument_count);
12387   }
12388   return ast_context()->ReturnInstruction(result, call->id());
12389 }
12390 
12391 
GenerateArguments(CallRuntime * call)12392 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
12393   DCHECK(call->arguments()->length() == 1);
12394   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12395   HValue* index = Pop();
12396   HInstruction* result = NULL;
12397   if (function_state()->outer() == NULL) {
12398     HInstruction* elements = Add<HArgumentsElements>(false);
12399     HInstruction* length = Add<HArgumentsLength>(elements);
12400     HInstruction* checked_index = Add<HBoundsCheck>(index, length);
12401     result = New<HAccessArgumentsAt>(elements, length, checked_index);
12402   } else {
12403     EnsureArgumentsArePushedForAccess();
12404 
12405     // Number of arguments without receiver.
12406     HInstruction* elements = function_state()->arguments_elements();
12407     int argument_count = environment()->
12408         arguments_environment()->parameter_count() - 1;
12409     HInstruction* length = Add<HConstant>(argument_count);
12410     HInstruction* checked_key = Add<HBoundsCheck>(index, length);
12411     result = New<HAccessArgumentsAt>(elements, length, checked_key);
12412   }
12413   return ast_context()->ReturnInstruction(result, call->id());
12414 }
12415 
12416 
GenerateValueOf(CallRuntime * call)12417 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
12418   DCHECK(call->arguments()->length() == 1);
12419   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12420   HValue* object = Pop();
12421 
12422   IfBuilder if_objectisvalue(this);
12423   HValue* objectisvalue = if_objectisvalue.If<HHasInstanceTypeAndBranch>(
12424       object, JS_VALUE_TYPE);
12425   if_objectisvalue.Then();
12426   {
12427     // Return the actual value.
12428     Push(Add<HLoadNamedField>(
12429             object, objectisvalue,
12430             HObjectAccess::ForObservableJSObjectOffset(
12431                 JSValue::kValueOffset)));
12432     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12433   }
12434   if_objectisvalue.Else();
12435   {
12436     // If the object is not a value return the object.
12437     Push(object);
12438     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12439   }
12440   if_objectisvalue.End();
12441   return ast_context()->ReturnValue(Pop());
12442 }
12443 
12444 
GenerateJSValueGetValue(CallRuntime * call)12445 void HOptimizedGraphBuilder::GenerateJSValueGetValue(CallRuntime* call) {
12446   DCHECK(call->arguments()->length() == 1);
12447   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12448   HValue* value = Pop();
12449   HInstruction* result = Add<HLoadNamedField>(
12450       value, nullptr,
12451       HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset));
12452   return ast_context()->ReturnInstruction(result, call->id());
12453 }
12454 
12455 
GenerateIsDate(CallRuntime * call)12456 void HOptimizedGraphBuilder::GenerateIsDate(CallRuntime* call) {
12457   DCHECK_EQ(1, call->arguments()->length());
12458   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12459   HValue* value = Pop();
12460   HHasInstanceTypeAndBranch* result =
12461       New<HHasInstanceTypeAndBranch>(value, JS_DATE_TYPE);
12462   return ast_context()->ReturnControl(result, call->id());
12463 }
12464 
12465 
GenerateOneByteSeqStringSetChar(CallRuntime * call)12466 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
12467     CallRuntime* call) {
12468   DCHECK(call->arguments()->length() == 3);
12469   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12470   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12471   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12472   HValue* string = Pop();
12473   HValue* value = Pop();
12474   HValue* index = Pop();
12475   Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
12476                          index, value);
12477   Add<HSimulate>(call->id(), FIXED_SIMULATE);
12478   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12479 }
12480 
12481 
GenerateTwoByteSeqStringSetChar(CallRuntime * call)12482 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
12483     CallRuntime* call) {
12484   DCHECK(call->arguments()->length() == 3);
12485   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12486   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12487   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12488   HValue* string = Pop();
12489   HValue* value = Pop();
12490   HValue* index = Pop();
12491   Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
12492                          index, value);
12493   Add<HSimulate>(call->id(), FIXED_SIMULATE);
12494   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12495 }
12496 
12497 
GenerateSetValueOf(CallRuntime * call)12498 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
12499   DCHECK(call->arguments()->length() == 2);
12500   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12501   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12502   HValue* value = Pop();
12503   HValue* object = Pop();
12504 
12505   // Check if object is a JSValue.
12506   IfBuilder if_objectisvalue(this);
12507   if_objectisvalue.If<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
12508   if_objectisvalue.Then();
12509   {
12510     // Create in-object property store to kValueOffset.
12511     Add<HStoreNamedField>(object,
12512         HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset),
12513         value);
12514     if (!ast_context()->IsEffect()) {
12515       Push(value);
12516     }
12517     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12518   }
12519   if_objectisvalue.Else();
12520   {
12521     // Nothing to do in this case.
12522     if (!ast_context()->IsEffect()) {
12523       Push(value);
12524     }
12525     Add<HSimulate>(call->id(), FIXED_SIMULATE);
12526   }
12527   if_objectisvalue.End();
12528   if (!ast_context()->IsEffect()) {
12529     Drop(1);
12530   }
12531   return ast_context()->ReturnValue(value);
12532 }
12533 
12534 
12535 // Fast support for charCodeAt(n).
GenerateStringCharCodeAt(CallRuntime * call)12536 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
12537   DCHECK(call->arguments()->length() == 2);
12538   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12539   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12540   HValue* index = Pop();
12541   HValue* string = Pop();
12542   HInstruction* result = BuildStringCharCodeAt(string, index);
12543   return ast_context()->ReturnInstruction(result, call->id());
12544 }
12545 
12546 
12547 // Fast support for string.charAt(n) and string[n].
GenerateStringCharFromCode(CallRuntime * call)12548 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
12549   DCHECK(call->arguments()->length() == 1);
12550   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12551   HValue* char_code = Pop();
12552   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12553   return ast_context()->ReturnInstruction(result, call->id());
12554 }
12555 
12556 
12557 // Fast support for string.charAt(n) and string[n].
GenerateStringCharAt(CallRuntime * call)12558 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
12559   DCHECK(call->arguments()->length() == 2);
12560   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12561   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12562   HValue* index = Pop();
12563   HValue* string = Pop();
12564   HInstruction* char_code = BuildStringCharCodeAt(string, index);
12565   AddInstruction(char_code);
12566   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
12567   return ast_context()->ReturnInstruction(result, call->id());
12568 }
12569 
12570 
12571 // Fast support for object equality testing.
GenerateObjectEquals(CallRuntime * call)12572 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
12573   DCHECK(call->arguments()->length() == 2);
12574   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12575   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12576   HValue* right = Pop();
12577   HValue* left = Pop();
12578   HCompareObjectEqAndBranch* result =
12579       New<HCompareObjectEqAndBranch>(left, right);
12580   return ast_context()->ReturnControl(result, call->id());
12581 }
12582 
12583 
12584 // Fast support for SubString.
GenerateSubString(CallRuntime * call)12585 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
12586   DCHECK_EQ(3, call->arguments()->length());
12587   CHECK_ALIVE(VisitExpressions(call->arguments()));
12588   PushArgumentsFromEnvironment(call->arguments()->length());
12589   HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
12590   return ast_context()->ReturnInstruction(result, call->id());
12591 }
12592 
12593 
12594 // Support for direct calls from JavaScript to native RegExp code.
GenerateRegExpExec(CallRuntime * call)12595 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
12596   DCHECK_EQ(4, call->arguments()->length());
12597   CHECK_ALIVE(VisitExpressions(call->arguments()));
12598   PushArgumentsFromEnvironment(call->arguments()->length());
12599   HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
12600   return ast_context()->ReturnInstruction(result, call->id());
12601 }
12602 
12603 
GenerateRegExpFlags(CallRuntime * call)12604 void HOptimizedGraphBuilder::GenerateRegExpFlags(CallRuntime* call) {
12605   DCHECK_EQ(1, call->arguments()->length());
12606   CHECK_ALIVE(VisitExpressions(call->arguments()));
12607   HValue* regexp = Pop();
12608   HInstruction* result =
12609       New<HLoadNamedField>(regexp, nullptr, HObjectAccess::ForJSRegExpFlags());
12610   return ast_context()->ReturnInstruction(result, call->id());
12611 }
12612 
12613 
GenerateRegExpSource(CallRuntime * call)12614 void HOptimizedGraphBuilder::GenerateRegExpSource(CallRuntime* call) {
12615   DCHECK_EQ(1, call->arguments()->length());
12616   CHECK_ALIVE(VisitExpressions(call->arguments()));
12617   HValue* regexp = Pop();
12618   HInstruction* result =
12619       New<HLoadNamedField>(regexp, nullptr, HObjectAccess::ForJSRegExpSource());
12620   return ast_context()->ReturnInstruction(result, call->id());
12621 }
12622 
12623 
GenerateDoubleLo(CallRuntime * call)12624 void HOptimizedGraphBuilder::GenerateDoubleLo(CallRuntime* call) {
12625   DCHECK_EQ(1, call->arguments()->length());
12626   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12627   HValue* value = Pop();
12628   HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::LOW);
12629   return ast_context()->ReturnInstruction(result, call->id());
12630 }
12631 
12632 
GenerateDoubleHi(CallRuntime * call)12633 void HOptimizedGraphBuilder::GenerateDoubleHi(CallRuntime* call) {
12634   DCHECK_EQ(1, call->arguments()->length());
12635   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12636   HValue* value = Pop();
12637   HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::HIGH);
12638   return ast_context()->ReturnInstruction(result, call->id());
12639 }
12640 
12641 
GenerateConstructDouble(CallRuntime * call)12642 void HOptimizedGraphBuilder::GenerateConstructDouble(CallRuntime* call) {
12643   DCHECK_EQ(2, call->arguments()->length());
12644   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12645   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12646   HValue* lo = Pop();
12647   HValue* hi = Pop();
12648   HInstruction* result = NewUncasted<HConstructDouble>(hi, lo);
12649   return ast_context()->ReturnInstruction(result, call->id());
12650 }
12651 
12652 
12653 // Construct a RegExp exec result with two in-object properties.
GenerateRegExpConstructResult(CallRuntime * call)12654 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
12655   DCHECK_EQ(3, call->arguments()->length());
12656   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12657   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12658   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12659   HValue* input = Pop();
12660   HValue* index = Pop();
12661   HValue* length = Pop();
12662   HValue* result = BuildRegExpConstructResult(length, index, input);
12663   return ast_context()->ReturnValue(result);
12664 }
12665 
12666 
12667 // Fast support for number to string.
GenerateNumberToString(CallRuntime * call)12668 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
12669   DCHECK_EQ(1, call->arguments()->length());
12670   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12671   HValue* number = Pop();
12672   HValue* result = BuildNumberToString(number, Type::Any(zone()));
12673   return ast_context()->ReturnValue(result);
12674 }
12675 
12676 
12677 // Fast support for calls.
GenerateCall(CallRuntime * call)12678 void HOptimizedGraphBuilder::GenerateCall(CallRuntime* call) {
12679   DCHECK_LE(2, call->arguments()->length());
12680   CHECK_ALIVE(VisitExpressions(call->arguments()));
12681   CallTrampolineDescriptor descriptor(isolate());
12682   PushArgumentsFromEnvironment(call->arguments()->length() - 1);
12683   HValue* trampoline = Add<HConstant>(isolate()->builtins()->Call());
12684   HValue* target = Pop();
12685   HValue* values[] = {context(), target,
12686                       Add<HConstant>(call->arguments()->length() - 2)};
12687   HInstruction* result = New<HCallWithDescriptor>(
12688       trampoline, call->arguments()->length() - 1, descriptor,
12689       Vector<HValue*>(values, arraysize(values)));
12690   return ast_context()->ReturnInstruction(result, call->id());
12691 }
12692 
12693 
12694 // Fast call to math functions.
GenerateMathPow(CallRuntime * call)12695 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
12696   DCHECK_EQ(2, call->arguments()->length());
12697   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12698   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12699   HValue* right = Pop();
12700   HValue* left = Pop();
12701   HInstruction* result = NewUncasted<HPower>(left, right);
12702   return ast_context()->ReturnInstruction(result, call->id());
12703 }
12704 
12705 
GenerateMathClz32(CallRuntime * call)12706 void HOptimizedGraphBuilder::GenerateMathClz32(CallRuntime* call) {
12707   DCHECK(call->arguments()->length() == 1);
12708   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12709   HValue* value = Pop();
12710   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathClz32);
12711   return ast_context()->ReturnInstruction(result, call->id());
12712 }
12713 
12714 
GenerateMathFloor(CallRuntime * call)12715 void HOptimizedGraphBuilder::GenerateMathFloor(CallRuntime* call) {
12716   DCHECK(call->arguments()->length() == 1);
12717   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12718   HValue* value = Pop();
12719   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathFloor);
12720   return ast_context()->ReturnInstruction(result, call->id());
12721 }
12722 
12723 
GenerateMathLogRT(CallRuntime * call)12724 void HOptimizedGraphBuilder::GenerateMathLogRT(CallRuntime* call) {
12725   DCHECK(call->arguments()->length() == 1);
12726   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12727   HValue* value = Pop();
12728   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
12729   return ast_context()->ReturnInstruction(result, call->id());
12730 }
12731 
12732 
GenerateMathSqrt(CallRuntime * call)12733 void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
12734   DCHECK(call->arguments()->length() == 1);
12735   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12736   HValue* value = Pop();
12737   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
12738   return ast_context()->ReturnInstruction(result, call->id());
12739 }
12740 
12741 
GenerateFixedArrayGet(CallRuntime * call)12742 void HOptimizedGraphBuilder::GenerateFixedArrayGet(CallRuntime* call) {
12743   DCHECK(call->arguments()->length() == 2);
12744   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12745   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12746   HValue* index = Pop();
12747   HValue* object = Pop();
12748   HInstruction* result = New<HLoadKeyed>(
12749       object, index, nullptr, nullptr, FAST_HOLEY_ELEMENTS, ALLOW_RETURN_HOLE);
12750   return ast_context()->ReturnInstruction(result, call->id());
12751 }
12752 
12753 
GenerateFixedArraySet(CallRuntime * call)12754 void HOptimizedGraphBuilder::GenerateFixedArraySet(CallRuntime* call) {
12755   DCHECK(call->arguments()->length() == 3);
12756   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12757   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12758   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
12759   HValue* value = Pop();
12760   HValue* index = Pop();
12761   HValue* object = Pop();
12762   NoObservableSideEffectsScope no_effects(this);
12763   Add<HStoreKeyed>(object, index, value, nullptr, FAST_HOLEY_ELEMENTS);
12764   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12765 }
12766 
12767 
GenerateTheHole(CallRuntime * call)12768 void HOptimizedGraphBuilder::GenerateTheHole(CallRuntime* call) {
12769   DCHECK(call->arguments()->length() == 0);
12770   return ast_context()->ReturnValue(graph()->GetConstantHole());
12771 }
12772 
12773 
GenerateCreateIterResultObject(CallRuntime * call)12774 void HOptimizedGraphBuilder::GenerateCreateIterResultObject(CallRuntime* call) {
12775   DCHECK_EQ(2, call->arguments()->length());
12776   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12777   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
12778   HValue* done = Pop();
12779   HValue* value = Pop();
12780   HValue* result = BuildCreateIterResultObject(value, done);
12781   return ast_context()->ReturnValue(result);
12782 }
12783 
12784 
GenerateJSCollectionGetTable(CallRuntime * call)12785 void HOptimizedGraphBuilder::GenerateJSCollectionGetTable(CallRuntime* call) {
12786   DCHECK(call->arguments()->length() == 1);
12787   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12788   HValue* receiver = Pop();
12789   HInstruction* result = New<HLoadNamedField>(
12790       receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12791   return ast_context()->ReturnInstruction(result, call->id());
12792 }
12793 
12794 
GenerateStringGetRawHashField(CallRuntime * call)12795 void HOptimizedGraphBuilder::GenerateStringGetRawHashField(CallRuntime* call) {
12796   DCHECK(call->arguments()->length() == 1);
12797   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12798   HValue* object = Pop();
12799   HInstruction* result = New<HLoadNamedField>(
12800       object, nullptr, HObjectAccess::ForStringHashField());
12801   return ast_context()->ReturnInstruction(result, call->id());
12802 }
12803 
12804 
12805 template <typename CollectionType>
BuildAllocateOrderedHashTable()12806 HValue* HOptimizedGraphBuilder::BuildAllocateOrderedHashTable() {
12807   static const int kCapacity = CollectionType::kMinCapacity;
12808   static const int kBucketCount = kCapacity / CollectionType::kLoadFactor;
12809   static const int kFixedArrayLength = CollectionType::kHashTableStartIndex +
12810                                        kBucketCount +
12811                                        (kCapacity * CollectionType::kEntrySize);
12812   static const int kSizeInBytes =
12813       FixedArray::kHeaderSize + (kFixedArrayLength * kPointerSize);
12814 
12815   // Allocate the table and add the proper map.
12816   HValue* table =
12817       Add<HAllocate>(Add<HConstant>(kSizeInBytes), HType::HeapObject(),
12818                      NOT_TENURED, FIXED_ARRAY_TYPE);
12819   AddStoreMapConstant(table, isolate()->factory()->ordered_hash_table_map());
12820 
12821   // Initialize the FixedArray...
12822   HValue* length = Add<HConstant>(kFixedArrayLength);
12823   Add<HStoreNamedField>(table, HObjectAccess::ForFixedArrayLength(), length);
12824 
12825   // ...and the OrderedHashTable fields.
12826   Add<HStoreNamedField>(
12827       table,
12828       HObjectAccess::ForOrderedHashTableNumberOfBuckets<CollectionType>(),
12829       Add<HConstant>(kBucketCount));
12830   Add<HStoreNamedField>(
12831       table,
12832       HObjectAccess::ForOrderedHashTableNumberOfElements<CollectionType>(),
12833       graph()->GetConstant0());
12834   Add<HStoreNamedField>(
12835       table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12836                  CollectionType>(),
12837       graph()->GetConstant0());
12838 
12839   // Fill the buckets with kNotFound.
12840   HValue* not_found = Add<HConstant>(CollectionType::kNotFound);
12841   for (int i = 0; i < kBucketCount; ++i) {
12842     Add<HStoreNamedField>(
12843         table, HObjectAccess::ForOrderedHashTableBucket<CollectionType>(i),
12844         not_found);
12845   }
12846 
12847   // Fill the data table with undefined.
12848   HValue* undefined = graph()->GetConstantUndefined();
12849   for (int i = 0; i < (kCapacity * CollectionType::kEntrySize); ++i) {
12850     Add<HStoreNamedField>(table,
12851                           HObjectAccess::ForOrderedHashTableDataTableIndex<
12852                               CollectionType, kBucketCount>(i),
12853                           undefined);
12854   }
12855 
12856   return table;
12857 }
12858 
12859 
GenerateSetInitialize(CallRuntime * call)12860 void HOptimizedGraphBuilder::GenerateSetInitialize(CallRuntime* call) {
12861   DCHECK(call->arguments()->length() == 1);
12862   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12863   HValue* receiver = Pop();
12864 
12865   NoObservableSideEffectsScope no_effects(this);
12866   HValue* table = BuildAllocateOrderedHashTable<OrderedHashSet>();
12867   Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12868   return ast_context()->ReturnValue(receiver);
12869 }
12870 
12871 
GenerateMapInitialize(CallRuntime * call)12872 void HOptimizedGraphBuilder::GenerateMapInitialize(CallRuntime* call) {
12873   DCHECK(call->arguments()->length() == 1);
12874   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12875   HValue* receiver = Pop();
12876 
12877   NoObservableSideEffectsScope no_effects(this);
12878   HValue* table = BuildAllocateOrderedHashTable<OrderedHashMap>();
12879   Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(), table);
12880   return ast_context()->ReturnValue(receiver);
12881 }
12882 
12883 
12884 template <typename CollectionType>
BuildOrderedHashTableClear(HValue * receiver)12885 void HOptimizedGraphBuilder::BuildOrderedHashTableClear(HValue* receiver) {
12886   HValue* old_table = Add<HLoadNamedField>(
12887       receiver, nullptr, HObjectAccess::ForJSCollectionTable());
12888   HValue* new_table = BuildAllocateOrderedHashTable<CollectionType>();
12889   Add<HStoreNamedField>(
12890       old_table, HObjectAccess::ForOrderedHashTableNextTable<CollectionType>(),
12891       new_table);
12892   Add<HStoreNamedField>(
12893       old_table, HObjectAccess::ForOrderedHashTableNumberOfDeletedElements<
12894                      CollectionType>(),
12895       Add<HConstant>(CollectionType::kClearedTableSentinel));
12896   Add<HStoreNamedField>(receiver, HObjectAccess::ForJSCollectionTable(),
12897                         new_table);
12898 }
12899 
12900 
GenerateSetClear(CallRuntime * call)12901 void HOptimizedGraphBuilder::GenerateSetClear(CallRuntime* call) {
12902   DCHECK(call->arguments()->length() == 1);
12903   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12904   HValue* receiver = Pop();
12905 
12906   NoObservableSideEffectsScope no_effects(this);
12907   BuildOrderedHashTableClear<OrderedHashSet>(receiver);
12908   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12909 }
12910 
12911 
GenerateMapClear(CallRuntime * call)12912 void HOptimizedGraphBuilder::GenerateMapClear(CallRuntime* call) {
12913   DCHECK(call->arguments()->length() == 1);
12914   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12915   HValue* receiver = Pop();
12916 
12917   NoObservableSideEffectsScope no_effects(this);
12918   BuildOrderedHashTableClear<OrderedHashMap>(receiver);
12919   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
12920 }
12921 
12922 
GenerateGetCachedArrayIndex(CallRuntime * call)12923 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
12924   DCHECK(call->arguments()->length() == 1);
12925   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
12926   HValue* value = Pop();
12927   HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
12928   return ast_context()->ReturnInstruction(result, call->id());
12929 }
12930 
12931 
GenerateFastOneByteArrayJoin(CallRuntime * call)12932 void HOptimizedGraphBuilder::GenerateFastOneByteArrayJoin(CallRuntime* call) {
12933   // Simply returning undefined here would be semantically correct and even
12934   // avoid the bailout. Nevertheless, some ancient benchmarks like SunSpider's
12935   // string-fasta would tank, because fullcode contains an optimized version.
12936   // Obviously the fullcode => Crankshaft => bailout => fullcode dance is
12937   // faster... *sigh*
12938   return Bailout(kInlinedRuntimeFunctionFastOneByteArrayJoin);
12939 }
12940 
12941 
GenerateDebugBreakInOptimizedCode(CallRuntime * call)12942 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
12943     CallRuntime* call) {
12944   Add<HDebugBreak>();
12945   return ast_context()->ReturnValue(graph()->GetConstant0());
12946 }
12947 
12948 
GenerateDebugIsActive(CallRuntime * call)12949 void HOptimizedGraphBuilder::GenerateDebugIsActive(CallRuntime* call) {
12950   DCHECK(call->arguments()->length() == 0);
12951   HValue* ref =
12952       Add<HConstant>(ExternalReference::debug_is_active_address(isolate()));
12953   HValue* value =
12954       Add<HLoadNamedField>(ref, nullptr, HObjectAccess::ForExternalUInteger8());
12955   return ast_context()->ReturnValue(value);
12956 }
12957 
12958 
12959 #undef CHECK_BAILOUT
12960 #undef CHECK_ALIVE
12961 
12962 
HEnvironment(HEnvironment * outer,Scope * scope,Handle<JSFunction> closure,Zone * zone)12963 HEnvironment::HEnvironment(HEnvironment* outer,
12964                            Scope* scope,
12965                            Handle<JSFunction> closure,
12966                            Zone* zone)
12967     : closure_(closure),
12968       values_(0, zone),
12969       frame_type_(JS_FUNCTION),
12970       parameter_count_(0),
12971       specials_count_(1),
12972       local_count_(0),
12973       outer_(outer),
12974       entry_(NULL),
12975       pop_count_(0),
12976       push_count_(0),
12977       ast_id_(BailoutId::None()),
12978       zone_(zone) {
12979   Scope* declaration_scope = scope->DeclarationScope();
12980   Initialize(declaration_scope->num_parameters() + 1,
12981              declaration_scope->num_stack_slots(), 0);
12982 }
12983 
12984 
HEnvironment(Zone * zone,int parameter_count)12985 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
12986     : values_(0, zone),
12987       frame_type_(STUB),
12988       parameter_count_(parameter_count),
12989       specials_count_(1),
12990       local_count_(0),
12991       outer_(NULL),
12992       entry_(NULL),
12993       pop_count_(0),
12994       push_count_(0),
12995       ast_id_(BailoutId::None()),
12996       zone_(zone) {
12997   Initialize(parameter_count, 0, 0);
12998 }
12999 
13000 
HEnvironment(const HEnvironment * other,Zone * zone)13001 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
13002     : values_(0, zone),
13003       frame_type_(JS_FUNCTION),
13004       parameter_count_(0),
13005       specials_count_(0),
13006       local_count_(0),
13007       outer_(NULL),
13008       entry_(NULL),
13009       pop_count_(0),
13010       push_count_(0),
13011       ast_id_(other->ast_id()),
13012       zone_(zone) {
13013   Initialize(other);
13014 }
13015 
13016 
HEnvironment(HEnvironment * outer,Handle<JSFunction> closure,FrameType frame_type,int arguments,Zone * zone)13017 HEnvironment::HEnvironment(HEnvironment* outer,
13018                            Handle<JSFunction> closure,
13019                            FrameType frame_type,
13020                            int arguments,
13021                            Zone* zone)
13022     : closure_(closure),
13023       values_(arguments, zone),
13024       frame_type_(frame_type),
13025       parameter_count_(arguments),
13026       specials_count_(0),
13027       local_count_(0),
13028       outer_(outer),
13029       entry_(NULL),
13030       pop_count_(0),
13031       push_count_(0),
13032       ast_id_(BailoutId::None()),
13033       zone_(zone) {
13034 }
13035 
13036 
Initialize(int parameter_count,int local_count,int stack_height)13037 void HEnvironment::Initialize(int parameter_count,
13038                               int local_count,
13039                               int stack_height) {
13040   parameter_count_ = parameter_count;
13041   local_count_ = local_count;
13042 
13043   // Avoid reallocating the temporaries' backing store on the first Push.
13044   int total = parameter_count + specials_count_ + local_count + stack_height;
13045   values_.Initialize(total + 4, zone());
13046   for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
13047 }
13048 
13049 
Initialize(const HEnvironment * other)13050 void HEnvironment::Initialize(const HEnvironment* other) {
13051   closure_ = other->closure();
13052   values_.AddAll(other->values_, zone());
13053   assigned_variables_.Union(other->assigned_variables_, zone());
13054   frame_type_ = other->frame_type_;
13055   parameter_count_ = other->parameter_count_;
13056   local_count_ = other->local_count_;
13057   if (other->outer_ != NULL) outer_ = other->outer_->Copy();  // Deep copy.
13058   entry_ = other->entry_;
13059   pop_count_ = other->pop_count_;
13060   push_count_ = other->push_count_;
13061   specials_count_ = other->specials_count_;
13062   ast_id_ = other->ast_id_;
13063 }
13064 
13065 
AddIncomingEdge(HBasicBlock * block,HEnvironment * other)13066 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
13067   DCHECK(!block->IsLoopHeader());
13068   DCHECK(values_.length() == other->values_.length());
13069 
13070   int length = values_.length();
13071   for (int i = 0; i < length; ++i) {
13072     HValue* value = values_[i];
13073     if (value != NULL && value->IsPhi() && value->block() == block) {
13074       // There is already a phi for the i'th value.
13075       HPhi* phi = HPhi::cast(value);
13076       // Assert index is correct and that we haven't missed an incoming edge.
13077       DCHECK(phi->merged_index() == i || !phi->HasMergedIndex());
13078       DCHECK(phi->OperandCount() == block->predecessors()->length());
13079       phi->AddInput(other->values_[i]);
13080     } else if (values_[i] != other->values_[i]) {
13081       // There is a fresh value on the incoming edge, a phi is needed.
13082       DCHECK(values_[i] != NULL && other->values_[i] != NULL);
13083       HPhi* phi = block->AddNewPhi(i);
13084       HValue* old_value = values_[i];
13085       for (int j = 0; j < block->predecessors()->length(); j++) {
13086         phi->AddInput(old_value);
13087       }
13088       phi->AddInput(other->values_[i]);
13089       this->values_[i] = phi;
13090     }
13091   }
13092 }
13093 
13094 
Bind(int index,HValue * value)13095 void HEnvironment::Bind(int index, HValue* value) {
13096   DCHECK(value != NULL);
13097   assigned_variables_.Add(index, zone());
13098   values_[index] = value;
13099 }
13100 
13101 
HasExpressionAt(int index) const13102 bool HEnvironment::HasExpressionAt(int index) const {
13103   return index >= parameter_count_ + specials_count_ + local_count_;
13104 }
13105 
13106 
ExpressionStackIsEmpty() const13107 bool HEnvironment::ExpressionStackIsEmpty() const {
13108   DCHECK(length() >= first_expression_index());
13109   return length() == first_expression_index();
13110 }
13111 
13112 
SetExpressionStackAt(int index_from_top,HValue * value)13113 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
13114   int count = index_from_top + 1;
13115   int index = values_.length() - count;
13116   DCHECK(HasExpressionAt(index));
13117   // The push count must include at least the element in question or else
13118   // the new value will not be included in this environment's history.
13119   if (push_count_ < count) {
13120     // This is the same effect as popping then re-pushing 'count' elements.
13121     pop_count_ += (count - push_count_);
13122     push_count_ = count;
13123   }
13124   values_[index] = value;
13125 }
13126 
13127 
RemoveExpressionStackAt(int index_from_top)13128 HValue* HEnvironment::RemoveExpressionStackAt(int index_from_top) {
13129   int count = index_from_top + 1;
13130   int index = values_.length() - count;
13131   DCHECK(HasExpressionAt(index));
13132   // Simulate popping 'count' elements and then
13133   // pushing 'count - 1' elements back.
13134   pop_count_ += Max(count - push_count_, 0);
13135   push_count_ = Max(push_count_ - count, 0) + (count - 1);
13136   return values_.Remove(index);
13137 }
13138 
13139 
Drop(int count)13140 void HEnvironment::Drop(int count) {
13141   for (int i = 0; i < count; ++i) {
13142     Pop();
13143   }
13144 }
13145 
13146 
Print() const13147 void HEnvironment::Print() const {
13148   OFStream os(stdout);
13149   os << *this << "\n";
13150 }
13151 
13152 
Copy() const13153 HEnvironment* HEnvironment::Copy() const {
13154   return new(zone()) HEnvironment(this, zone());
13155 }
13156 
13157 
CopyWithoutHistory() const13158 HEnvironment* HEnvironment::CopyWithoutHistory() const {
13159   HEnvironment* result = Copy();
13160   result->ClearHistory();
13161   return result;
13162 }
13163 
13164 
CopyAsLoopHeader(HBasicBlock * loop_header) const13165 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
13166   HEnvironment* new_env = Copy();
13167   for (int i = 0; i < values_.length(); ++i) {
13168     HPhi* phi = loop_header->AddNewPhi(i);
13169     phi->AddInput(values_[i]);
13170     new_env->values_[i] = phi;
13171   }
13172   new_env->ClearHistory();
13173   return new_env;
13174 }
13175 
13176 
CreateStubEnvironment(HEnvironment * outer,Handle<JSFunction> target,FrameType frame_type,int arguments) const13177 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
13178                                                   Handle<JSFunction> target,
13179                                                   FrameType frame_type,
13180                                                   int arguments) const {
13181   HEnvironment* new_env =
13182       new(zone()) HEnvironment(outer, target, frame_type,
13183                                arguments + 1, zone());
13184   for (int i = 0; i <= arguments; ++i) {  // Include receiver.
13185     new_env->Push(ExpressionStackAt(arguments - i));
13186   }
13187   new_env->ClearHistory();
13188   return new_env;
13189 }
13190 
13191 
CopyForInlining(Handle<JSFunction> target,int arguments,FunctionLiteral * function,HConstant * undefined,InliningKind inlining_kind) const13192 HEnvironment* HEnvironment::CopyForInlining(
13193     Handle<JSFunction> target,
13194     int arguments,
13195     FunctionLiteral* function,
13196     HConstant* undefined,
13197     InliningKind inlining_kind) const {
13198   DCHECK(frame_type() == JS_FUNCTION);
13199 
13200   // Outer environment is a copy of this one without the arguments.
13201   int arity = function->scope()->num_parameters();
13202 
13203   HEnvironment* outer = Copy();
13204   outer->Drop(arguments + 1);  // Including receiver.
13205   outer->ClearHistory();
13206 
13207   if (inlining_kind == CONSTRUCT_CALL_RETURN) {
13208     // Create artificial constructor stub environment.  The receiver should
13209     // actually be the constructor function, but we pass the newly allocated
13210     // object instead, DoComputeConstructStubFrame() relies on that.
13211     outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
13212   } else if (inlining_kind == GETTER_CALL_RETURN) {
13213     // We need an additional StackFrame::INTERNAL frame for restoring the
13214     // correct context.
13215     outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
13216   } else if (inlining_kind == SETTER_CALL_RETURN) {
13217     // We need an additional StackFrame::INTERNAL frame for temporarily saving
13218     // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
13219     outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
13220   }
13221 
13222   if (arity != arguments) {
13223     // Create artificial arguments adaptation environment.
13224     outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
13225   }
13226 
13227   HEnvironment* inner =
13228       new(zone()) HEnvironment(outer, function->scope(), target, zone());
13229   // Get the argument values from the original environment.
13230   for (int i = 0; i <= arity; ++i) {  // Include receiver.
13231     HValue* push = (i <= arguments) ?
13232         ExpressionStackAt(arguments - i) : undefined;
13233     inner->SetValueAt(i, push);
13234   }
13235   inner->SetValueAt(arity + 1, context());
13236   for (int i = arity + 2; i < inner->length(); ++i) {
13237     inner->SetValueAt(i, undefined);
13238   }
13239 
13240   inner->set_ast_id(BailoutId::FunctionEntry());
13241   return inner;
13242 }
13243 
13244 
operator <<(std::ostream & os,const HEnvironment & env)13245 std::ostream& operator<<(std::ostream& os, const HEnvironment& env) {
13246   for (int i = 0; i < env.length(); i++) {
13247     if (i == 0) os << "parameters\n";
13248     if (i == env.parameter_count()) os << "specials\n";
13249     if (i == env.parameter_count() + env.specials_count()) os << "locals\n";
13250     if (i == env.parameter_count() + env.specials_count() + env.local_count()) {
13251       os << "expressions\n";
13252     }
13253     HValue* val = env.values()->at(i);
13254     os << i << ": ";
13255     if (val != NULL) {
13256       os << val;
13257     } else {
13258       os << "NULL";
13259     }
13260     os << "\n";
13261   }
13262   return os << "\n";
13263 }
13264 
13265 
TraceCompilation(CompilationInfo * info)13266 void HTracer::TraceCompilation(CompilationInfo* info) {
13267   Tag tag(this, "compilation");
13268   base::SmartArrayPointer<char> name = info->GetDebugName();
13269   if (info->IsOptimizing()) {
13270     PrintStringProperty("name", name.get());
13271     PrintIndent();
13272     trace_.Add("method \"%s:%d\"\n", name.get(), info->optimization_id());
13273   } else {
13274     PrintStringProperty("name", name.get());
13275     PrintStringProperty("method", "stub");
13276   }
13277   PrintLongProperty("date",
13278                     static_cast<int64_t>(base::OS::TimeCurrentMillis()));
13279 }
13280 
13281 
TraceLithium(const char * name,LChunk * chunk)13282 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
13283   DCHECK(!chunk->isolate()->concurrent_recompilation_enabled());
13284   AllowHandleDereference allow_deref;
13285   AllowDeferredHandleDereference allow_deferred_deref;
13286   Trace(name, chunk->graph(), chunk);
13287 }
13288 
13289 
TraceHydrogen(const char * name,HGraph * graph)13290 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
13291   DCHECK(!graph->isolate()->concurrent_recompilation_enabled());
13292   AllowHandleDereference allow_deref;
13293   AllowDeferredHandleDereference allow_deferred_deref;
13294   Trace(name, graph, NULL);
13295 }
13296 
13297 
Trace(const char * name,HGraph * graph,LChunk * chunk)13298 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
13299   Tag tag(this, "cfg");
13300   PrintStringProperty("name", name);
13301   const ZoneList<HBasicBlock*>* blocks = graph->blocks();
13302   for (int i = 0; i < blocks->length(); i++) {
13303     HBasicBlock* current = blocks->at(i);
13304     Tag block_tag(this, "block");
13305     PrintBlockProperty("name", current->block_id());
13306     PrintIntProperty("from_bci", -1);
13307     PrintIntProperty("to_bci", -1);
13308 
13309     if (!current->predecessors()->is_empty()) {
13310       PrintIndent();
13311       trace_.Add("predecessors");
13312       for (int j = 0; j < current->predecessors()->length(); ++j) {
13313         trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
13314       }
13315       trace_.Add("\n");
13316     } else {
13317       PrintEmptyProperty("predecessors");
13318     }
13319 
13320     if (current->end()->SuccessorCount() == 0) {
13321       PrintEmptyProperty("successors");
13322     } else  {
13323       PrintIndent();
13324       trace_.Add("successors");
13325       for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
13326         trace_.Add(" \"B%d\"", it.Current()->block_id());
13327       }
13328       trace_.Add("\n");
13329     }
13330 
13331     PrintEmptyProperty("xhandlers");
13332 
13333     {
13334       PrintIndent();
13335       trace_.Add("flags");
13336       if (current->IsLoopSuccessorDominator()) {
13337         trace_.Add(" \"dom-loop-succ\"");
13338       }
13339       if (current->IsUnreachable()) {
13340         trace_.Add(" \"dead\"");
13341       }
13342       if (current->is_osr_entry()) {
13343         trace_.Add(" \"osr\"");
13344       }
13345       trace_.Add("\n");
13346     }
13347 
13348     if (current->dominator() != NULL) {
13349       PrintBlockProperty("dominator", current->dominator()->block_id());
13350     }
13351 
13352     PrintIntProperty("loop_depth", current->LoopNestingDepth());
13353 
13354     if (chunk != NULL) {
13355       int first_index = current->first_instruction_index();
13356       int last_index = current->last_instruction_index();
13357       PrintIntProperty(
13358           "first_lir_id",
13359           LifetimePosition::FromInstructionIndex(first_index).Value());
13360       PrintIntProperty(
13361           "last_lir_id",
13362           LifetimePosition::FromInstructionIndex(last_index).Value());
13363     }
13364 
13365     {
13366       Tag states_tag(this, "states");
13367       Tag locals_tag(this, "locals");
13368       int total = current->phis()->length();
13369       PrintIntProperty("size", current->phis()->length());
13370       PrintStringProperty("method", "None");
13371       for (int j = 0; j < total; ++j) {
13372         HPhi* phi = current->phis()->at(j);
13373         PrintIndent();
13374         std::ostringstream os;
13375         os << phi->merged_index() << " " << NameOf(phi) << " " << *phi << "\n";
13376         trace_.Add(os.str().c_str());
13377       }
13378     }
13379 
13380     {
13381       Tag HIR_tag(this, "HIR");
13382       for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
13383         HInstruction* instruction = it.Current();
13384         int uses = instruction->UseCount();
13385         PrintIndent();
13386         std::ostringstream os;
13387         os << "0 " << uses << " " << NameOf(instruction) << " " << *instruction;
13388         if (graph->info()->is_tracking_positions() &&
13389             instruction->has_position() && instruction->position().raw() != 0) {
13390           const SourcePosition pos = instruction->position();
13391           os << " pos:";
13392           if (pos.inlining_id() != 0) os << pos.inlining_id() << "_";
13393           os << pos.position();
13394         }
13395         os << " <|@\n";
13396         trace_.Add(os.str().c_str());
13397       }
13398     }
13399 
13400 
13401     if (chunk != NULL) {
13402       Tag LIR_tag(this, "LIR");
13403       int first_index = current->first_instruction_index();
13404       int last_index = current->last_instruction_index();
13405       if (first_index != -1 && last_index != -1) {
13406         const ZoneList<LInstruction*>* instructions = chunk->instructions();
13407         for (int i = first_index; i <= last_index; ++i) {
13408           LInstruction* linstr = instructions->at(i);
13409           if (linstr != NULL) {
13410             PrintIndent();
13411             trace_.Add("%d ",
13412                        LifetimePosition::FromInstructionIndex(i).Value());
13413             linstr->PrintTo(&trace_);
13414             std::ostringstream os;
13415             os << " [hir:" << NameOf(linstr->hydrogen_value()) << "] <|@\n";
13416             trace_.Add(os.str().c_str());
13417           }
13418         }
13419       }
13420     }
13421   }
13422 }
13423 
13424 
TraceLiveRanges(const char * name,LAllocator * allocator)13425 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
13426   Tag tag(this, "intervals");
13427   PrintStringProperty("name", name);
13428 
13429   const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
13430   for (int i = 0; i < fixed_d->length(); ++i) {
13431     TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
13432   }
13433 
13434   const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
13435   for (int i = 0; i < fixed->length(); ++i) {
13436     TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
13437   }
13438 
13439   const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
13440   for (int i = 0; i < live_ranges->length(); ++i) {
13441     TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
13442   }
13443 }
13444 
13445 
TraceLiveRange(LiveRange * range,const char * type,Zone * zone)13446 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
13447                              Zone* zone) {
13448   if (range != NULL && !range->IsEmpty()) {
13449     PrintIndent();
13450     trace_.Add("%d %s", range->id(), type);
13451     if (range->HasRegisterAssigned()) {
13452       LOperand* op = range->CreateAssignedOperand(zone);
13453       int assigned_reg = op->index();
13454       if (op->IsDoubleRegister()) {
13455         trace_.Add(" \"%s\"",
13456                    DoubleRegister::from_code(assigned_reg).ToString());
13457       } else {
13458         DCHECK(op->IsRegister());
13459         trace_.Add(" \"%s\"", Register::from_code(assigned_reg).ToString());
13460       }
13461     } else if (range->IsSpilled()) {
13462       LOperand* op = range->TopLevel()->GetSpillOperand();
13463       if (op->IsDoubleStackSlot()) {
13464         trace_.Add(" \"double_stack:%d\"", op->index());
13465       } else {
13466         DCHECK(op->IsStackSlot());
13467         trace_.Add(" \"stack:%d\"", op->index());
13468       }
13469     }
13470     int parent_index = -1;
13471     if (range->IsChild()) {
13472       parent_index = range->parent()->id();
13473     } else {
13474       parent_index = range->id();
13475     }
13476     LOperand* op = range->FirstHint();
13477     int hint_index = -1;
13478     if (op != NULL && op->IsUnallocated()) {
13479       hint_index = LUnallocated::cast(op)->virtual_register();
13480     }
13481     trace_.Add(" %d %d", parent_index, hint_index);
13482     UseInterval* cur_interval = range->first_interval();
13483     while (cur_interval != NULL && range->Covers(cur_interval->start())) {
13484       trace_.Add(" [%d, %d[",
13485                  cur_interval->start().Value(),
13486                  cur_interval->end().Value());
13487       cur_interval = cur_interval->next();
13488     }
13489 
13490     UsePosition* current_pos = range->first_pos();
13491     while (current_pos != NULL) {
13492       if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
13493         trace_.Add(" %d M", current_pos->pos().Value());
13494       }
13495       current_pos = current_pos->next();
13496     }
13497 
13498     trace_.Add(" \"\"\n");
13499   }
13500 }
13501 
13502 
FlushToFile()13503 void HTracer::FlushToFile() {
13504   AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
13505               false);
13506   trace_.Reset();
13507 }
13508 
13509 
Initialize(CompilationInfo * info)13510 void HStatistics::Initialize(CompilationInfo* info) {
13511   if (!info->has_shared_info()) return;
13512   source_size_ += info->shared_info()->SourceSize();
13513 }
13514 
13515 
Print()13516 void HStatistics::Print() {
13517   PrintF(
13518       "\n"
13519       "----------------------------------------"
13520       "----------------------------------------\n"
13521       "--- Hydrogen timing results:\n"
13522       "----------------------------------------"
13523       "----------------------------------------\n");
13524   base::TimeDelta sum;
13525   for (int i = 0; i < times_.length(); ++i) {
13526     sum += times_[i];
13527   }
13528 
13529   for (int i = 0; i < names_.length(); ++i) {
13530     PrintF("%33s", names_[i]);
13531     double ms = times_[i].InMillisecondsF();
13532     double percent = times_[i].PercentOf(sum);
13533     PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
13534 
13535     size_t size = sizes_[i];
13536     double size_percent = static_cast<double>(size) * 100 / total_size_;
13537     PrintF(" %9zu bytes / %4.1f %%\n", size, size_percent);
13538   }
13539 
13540   PrintF(
13541       "----------------------------------------"
13542       "----------------------------------------\n");
13543   base::TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
13544   PrintF("%33s %8.3f ms / %4.1f %% \n", "Create graph",
13545          create_graph_.InMillisecondsF(), create_graph_.PercentOf(total));
13546   PrintF("%33s %8.3f ms / %4.1f %% \n", "Optimize graph",
13547          optimize_graph_.InMillisecondsF(), optimize_graph_.PercentOf(total));
13548   PrintF("%33s %8.3f ms / %4.1f %% \n", "Generate and install code",
13549          generate_code_.InMillisecondsF(), generate_code_.PercentOf(total));
13550   PrintF(
13551       "----------------------------------------"
13552       "----------------------------------------\n");
13553   PrintF("%33s %8.3f ms           %9zu bytes\n", "Total",
13554          total.InMillisecondsF(), total_size_);
13555   PrintF("%33s     (%.1f times slower than full code gen)\n", "",
13556          total.TimesOf(full_code_gen_));
13557 
13558   double source_size_in_kb = static_cast<double>(source_size_) / 1024;
13559   double normalized_time =  source_size_in_kb > 0
13560       ? total.InMillisecondsF() / source_size_in_kb
13561       : 0;
13562   double normalized_size_in_kb =
13563       source_size_in_kb > 0
13564           ? static_cast<double>(total_size_) / 1024 / source_size_in_kb
13565           : 0;
13566   PrintF("%33s %8.3f ms           %7.3f kB allocated\n",
13567          "Average per kB source", normalized_time, normalized_size_in_kb);
13568 }
13569 
13570 
SaveTiming(const char * name,base::TimeDelta time,size_t size)13571 void HStatistics::SaveTiming(const char* name, base::TimeDelta time,
13572                              size_t size) {
13573   total_size_ += size;
13574   for (int i = 0; i < names_.length(); ++i) {
13575     if (strcmp(names_[i], name) == 0) {
13576       times_[i] += time;
13577       sizes_[i] += size;
13578       return;
13579     }
13580   }
13581   names_.Add(name);
13582   times_.Add(time);
13583   sizes_.Add(size);
13584 }
13585 
13586 
~HPhase()13587 HPhase::~HPhase() {
13588   if (ShouldProduceTraceOutput()) {
13589     isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
13590   }
13591 
13592 #ifdef DEBUG
13593   graph_->Verify(false);  // No full verify.
13594 #endif
13595 }
13596 
13597 }  // namespace internal
13598 }  // namespace v8
13599