1 /*
2 **
3 ** Copyright 2007, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 #define LOG_TAG "AudioMixer"
19 //#define LOG_NDEBUG 0
20
21 #include "Configuration.h"
22 #include <stdint.h>
23 #include <string.h>
24 #include <stdlib.h>
25 #include <math.h>
26 #include <sys/types.h>
27
28 #include <utils/Errors.h>
29 #include <utils/Log.h>
30
31 #include <cutils/bitops.h>
32 #include <cutils/compiler.h>
33 #include <utils/Debug.h>
34
35 #include <system/audio.h>
36
37 #include <audio_utils/primitives.h>
38 #include <audio_utils/format.h>
39
40 #include "AudioMixerOps.h"
41 #include "AudioMixer.h"
42
43 // The FCC_2 macro refers to the Fixed Channel Count of 2 for the legacy integer mixer.
44 #ifndef FCC_2
45 #define FCC_2 2
46 #endif
47
48 // Look for MONO_HACK for any Mono hack involving legacy mono channel to
49 // stereo channel conversion.
50
51 /* VERY_VERY_VERBOSE_LOGGING will show exactly which process hook and track hook is
52 * being used. This is a considerable amount of log spam, so don't enable unless you
53 * are verifying the hook based code.
54 */
55 //#define VERY_VERY_VERBOSE_LOGGING
56 #ifdef VERY_VERY_VERBOSE_LOGGING
57 #define ALOGVV ALOGV
58 //define ALOGVV printf // for test-mixer.cpp
59 #else
60 #define ALOGVV(a...) do { } while (0)
61 #endif
62
63 #ifndef ARRAY_SIZE
64 #define ARRAY_SIZE(x) (sizeof(x)/sizeof((x)[0]))
65 #endif
66
67 // TODO: Move these macro/inlines to a header file.
68 template <typename T>
69 static inline
max(const T & x,const T & y)70 T max(const T& x, const T& y) {
71 return x > y ? x : y;
72 }
73
74 // Set kUseNewMixer to true to use the new mixer engine always. Otherwise the
75 // original code will be used for stereo sinks, the new mixer for multichannel.
76 static const bool kUseNewMixer = true;
77
78 // Set kUseFloat to true to allow floating input into the mixer engine.
79 // If kUseNewMixer is false, this is ignored or may be overridden internally
80 // because of downmix/upmix support.
81 static const bool kUseFloat = true;
82
83 // Set to default copy buffer size in frames for input processing.
84 static const size_t kCopyBufferFrameCount = 256;
85
86 namespace android {
87
88 // ----------------------------------------------------------------------------
89
90 template <typename T>
min(const T & a,const T & b)91 T min(const T& a, const T& b)
92 {
93 return a < b ? a : b;
94 }
95
96 // ----------------------------------------------------------------------------
97
98 // Ensure mConfiguredNames bitmask is initialized properly on all architectures.
99 // The value of 1 << x is undefined in C when x >= 32.
100
AudioMixer(size_t frameCount,uint32_t sampleRate,uint32_t maxNumTracks)101 AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate, uint32_t maxNumTracks)
102 : mTrackNames(0), mConfiguredNames((maxNumTracks >= 32 ? 0 : 1 << maxNumTracks) - 1),
103 mSampleRate(sampleRate)
104 {
105 ALOG_ASSERT(maxNumTracks <= MAX_NUM_TRACKS, "maxNumTracks %u > MAX_NUM_TRACKS %u",
106 maxNumTracks, MAX_NUM_TRACKS);
107
108 // AudioMixer is not yet capable of more than 32 active track inputs
109 ALOG_ASSERT(32 >= MAX_NUM_TRACKS, "bad MAX_NUM_TRACKS %d", MAX_NUM_TRACKS);
110
111 pthread_once(&sOnceControl, &sInitRoutine);
112
113 mState.enabledTracks= 0;
114 mState.needsChanged = 0;
115 mState.frameCount = frameCount;
116 mState.hook = process__nop;
117 mState.outputTemp = NULL;
118 mState.resampleTemp = NULL;
119 mState.mLog = &mDummyLog;
120 // mState.reserved
121
122 // FIXME Most of the following initialization is probably redundant since
123 // tracks[i] should only be referenced if (mTrackNames & (1 << i)) != 0
124 // and mTrackNames is initially 0. However, leave it here until that's verified.
125 track_t* t = mState.tracks;
126 for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
127 t->resampler = NULL;
128 t->downmixerBufferProvider = NULL;
129 t->mReformatBufferProvider = NULL;
130 t->mTimestretchBufferProvider = NULL;
131 t++;
132 }
133
134 }
135
~AudioMixer()136 AudioMixer::~AudioMixer()
137 {
138 track_t* t = mState.tracks;
139 for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
140 delete t->resampler;
141 delete t->downmixerBufferProvider;
142 delete t->mReformatBufferProvider;
143 delete t->mTimestretchBufferProvider;
144 t++;
145 }
146 delete [] mState.outputTemp;
147 delete [] mState.resampleTemp;
148 }
149
setLog(NBLog::Writer * log)150 void AudioMixer::setLog(NBLog::Writer *log)
151 {
152 mState.mLog = log;
153 }
154
selectMixerInFormat(audio_format_t inputFormat __unused)155 static inline audio_format_t selectMixerInFormat(audio_format_t inputFormat __unused) {
156 return kUseFloat && kUseNewMixer ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
157 }
158
getTrackName(audio_channel_mask_t channelMask,audio_format_t format,int sessionId)159 int AudioMixer::getTrackName(audio_channel_mask_t channelMask,
160 audio_format_t format, int sessionId)
161 {
162 if (!isValidPcmTrackFormat(format)) {
163 ALOGE("AudioMixer::getTrackName invalid format (%#x)", format);
164 return -1;
165 }
166 uint32_t names = (~mTrackNames) & mConfiguredNames;
167 if (names != 0) {
168 int n = __builtin_ctz(names);
169 ALOGV("add track (%d)", n);
170 // assume default parameters for the track, except where noted below
171 track_t* t = &mState.tracks[n];
172 t->needs = 0;
173
174 // Integer volume.
175 // Currently integer volume is kept for the legacy integer mixer.
176 // Will be removed when the legacy mixer path is removed.
177 t->volume[0] = UNITY_GAIN_INT;
178 t->volume[1] = UNITY_GAIN_INT;
179 t->prevVolume[0] = UNITY_GAIN_INT << 16;
180 t->prevVolume[1] = UNITY_GAIN_INT << 16;
181 t->volumeInc[0] = 0;
182 t->volumeInc[1] = 0;
183 t->auxLevel = 0;
184 t->auxInc = 0;
185 t->prevAuxLevel = 0;
186
187 // Floating point volume.
188 t->mVolume[0] = UNITY_GAIN_FLOAT;
189 t->mVolume[1] = UNITY_GAIN_FLOAT;
190 t->mPrevVolume[0] = UNITY_GAIN_FLOAT;
191 t->mPrevVolume[1] = UNITY_GAIN_FLOAT;
192 t->mVolumeInc[0] = 0.;
193 t->mVolumeInc[1] = 0.;
194 t->mAuxLevel = 0.;
195 t->mAuxInc = 0.;
196 t->mPrevAuxLevel = 0.;
197
198 // no initialization needed
199 // t->frameCount
200 t->channelCount = audio_channel_count_from_out_mask(channelMask);
201 t->enabled = false;
202 ALOGV_IF(audio_channel_mask_get_bits(channelMask) != AUDIO_CHANNEL_OUT_STEREO,
203 "Non-stereo channel mask: %d\n", channelMask);
204 t->channelMask = channelMask;
205 t->sessionId = sessionId;
206 // setBufferProvider(name, AudioBufferProvider *) is required before enable(name)
207 t->bufferProvider = NULL;
208 t->buffer.raw = NULL;
209 // no initialization needed
210 // t->buffer.frameCount
211 t->hook = NULL;
212 t->in = NULL;
213 t->resampler = NULL;
214 t->sampleRate = mSampleRate;
215 // setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name)
216 t->mainBuffer = NULL;
217 t->auxBuffer = NULL;
218 t->mInputBufferProvider = NULL;
219 t->mReformatBufferProvider = NULL;
220 t->downmixerBufferProvider = NULL;
221 t->mPostDownmixReformatBufferProvider = NULL;
222 t->mTimestretchBufferProvider = NULL;
223 t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
224 t->mFormat = format;
225 t->mMixerInFormat = selectMixerInFormat(format);
226 t->mDownmixRequiresFormat = AUDIO_FORMAT_INVALID; // no format required
227 t->mMixerChannelMask = audio_channel_mask_from_representation_and_bits(
228 AUDIO_CHANNEL_REPRESENTATION_POSITION, AUDIO_CHANNEL_OUT_STEREO);
229 t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask);
230 t->mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
231 // Check the downmixing (or upmixing) requirements.
232 status_t status = t->prepareForDownmix();
233 if (status != OK) {
234 ALOGE("AudioMixer::getTrackName invalid channelMask (%#x)", channelMask);
235 return -1;
236 }
237 // prepareForDownmix() may change mDownmixRequiresFormat
238 ALOGVV("mMixerFormat:%#x mMixerInFormat:%#x\n", t->mMixerFormat, t->mMixerInFormat);
239 t->prepareForReformat();
240 mTrackNames |= 1 << n;
241 return TRACK0 + n;
242 }
243 ALOGE("AudioMixer::getTrackName out of available tracks");
244 return -1;
245 }
246
invalidateState(uint32_t mask)247 void AudioMixer::invalidateState(uint32_t mask)
248 {
249 if (mask != 0) {
250 mState.needsChanged |= mask;
251 mState.hook = process__validate;
252 }
253 }
254
255 // Called when channel masks have changed for a track name
256 // TODO: Fix DownmixerBufferProvider not to (possibly) change mixer input format,
257 // which will simplify this logic.
setChannelMasks(int name,audio_channel_mask_t trackChannelMask,audio_channel_mask_t mixerChannelMask)258 bool AudioMixer::setChannelMasks(int name,
259 audio_channel_mask_t trackChannelMask, audio_channel_mask_t mixerChannelMask) {
260 track_t &track = mState.tracks[name];
261
262 if (trackChannelMask == track.channelMask
263 && mixerChannelMask == track.mMixerChannelMask) {
264 return false; // no need to change
265 }
266 // always recompute for both channel masks even if only one has changed.
267 const uint32_t trackChannelCount = audio_channel_count_from_out_mask(trackChannelMask);
268 const uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mixerChannelMask);
269 const bool mixerChannelCountChanged = track.mMixerChannelCount != mixerChannelCount;
270
271 ALOG_ASSERT((trackChannelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX)
272 && trackChannelCount
273 && mixerChannelCount);
274 track.channelMask = trackChannelMask;
275 track.channelCount = trackChannelCount;
276 track.mMixerChannelMask = mixerChannelMask;
277 track.mMixerChannelCount = mixerChannelCount;
278
279 // channel masks have changed, does this track need a downmixer?
280 // update to try using our desired format (if we aren't already using it)
281 const audio_format_t prevDownmixerFormat = track.mDownmixRequiresFormat;
282 const status_t status = mState.tracks[name].prepareForDownmix();
283 ALOGE_IF(status != OK,
284 "prepareForDownmix error %d, track channel mask %#x, mixer channel mask %#x",
285 status, track.channelMask, track.mMixerChannelMask);
286
287 if (prevDownmixerFormat != track.mDownmixRequiresFormat) {
288 track.prepareForReformat(); // because of downmixer, track format may change!
289 }
290
291 if (track.resampler && mixerChannelCountChanged) {
292 // resampler channels may have changed.
293 const uint32_t resetToSampleRate = track.sampleRate;
294 delete track.resampler;
295 track.resampler = NULL;
296 track.sampleRate = mSampleRate; // without resampler, track rate is device sample rate.
297 // recreate the resampler with updated format, channels, saved sampleRate.
298 track.setResampler(resetToSampleRate /*trackSampleRate*/, mSampleRate /*devSampleRate*/);
299 }
300 return true;
301 }
302
unprepareForDownmix()303 void AudioMixer::track_t::unprepareForDownmix() {
304 ALOGV("AudioMixer::unprepareForDownmix(%p)", this);
305
306 mDownmixRequiresFormat = AUDIO_FORMAT_INVALID;
307 if (downmixerBufferProvider != NULL) {
308 // this track had previously been configured with a downmixer, delete it
309 ALOGV(" deleting old downmixer");
310 delete downmixerBufferProvider;
311 downmixerBufferProvider = NULL;
312 reconfigureBufferProviders();
313 } else {
314 ALOGV(" nothing to do, no downmixer to delete");
315 }
316 }
317
prepareForDownmix()318 status_t AudioMixer::track_t::prepareForDownmix()
319 {
320 ALOGV("AudioMixer::prepareForDownmix(%p) with mask 0x%x",
321 this, channelMask);
322
323 // discard the previous downmixer if there was one
324 unprepareForDownmix();
325 // MONO_HACK Only remix (upmix or downmix) if the track and mixer/device channel masks
326 // are not the same and not handled internally, as mono -> stereo currently is.
327 if (channelMask == mMixerChannelMask
328 || (channelMask == AUDIO_CHANNEL_OUT_MONO
329 && mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO)) {
330 return NO_ERROR;
331 }
332 // DownmixerBufferProvider is only used for position masks.
333 if (audio_channel_mask_get_representation(channelMask)
334 == AUDIO_CHANNEL_REPRESENTATION_POSITION
335 && DownmixerBufferProvider::isMultichannelCapable()) {
336 DownmixerBufferProvider* pDbp = new DownmixerBufferProvider(channelMask,
337 mMixerChannelMask,
338 AUDIO_FORMAT_PCM_16_BIT /* TODO: use mMixerInFormat, now only PCM 16 */,
339 sampleRate, sessionId, kCopyBufferFrameCount);
340
341 if (pDbp->isValid()) { // if constructor completed properly
342 mDownmixRequiresFormat = AUDIO_FORMAT_PCM_16_BIT; // PCM 16 bit required for downmix
343 downmixerBufferProvider = pDbp;
344 reconfigureBufferProviders();
345 return NO_ERROR;
346 }
347 delete pDbp;
348 }
349
350 // Effect downmixer does not accept the channel conversion. Let's use our remixer.
351 RemixBufferProvider* pRbp = new RemixBufferProvider(channelMask,
352 mMixerChannelMask, mMixerInFormat, kCopyBufferFrameCount);
353 // Remix always finds a conversion whereas Downmixer effect above may fail.
354 downmixerBufferProvider = pRbp;
355 reconfigureBufferProviders();
356 return NO_ERROR;
357 }
358
unprepareForReformat()359 void AudioMixer::track_t::unprepareForReformat() {
360 ALOGV("AudioMixer::unprepareForReformat(%p)", this);
361 bool requiresReconfigure = false;
362 if (mReformatBufferProvider != NULL) {
363 delete mReformatBufferProvider;
364 mReformatBufferProvider = NULL;
365 requiresReconfigure = true;
366 }
367 if (mPostDownmixReformatBufferProvider != NULL) {
368 delete mPostDownmixReformatBufferProvider;
369 mPostDownmixReformatBufferProvider = NULL;
370 requiresReconfigure = true;
371 }
372 if (requiresReconfigure) {
373 reconfigureBufferProviders();
374 }
375 }
376
prepareForReformat()377 status_t AudioMixer::track_t::prepareForReformat()
378 {
379 ALOGV("AudioMixer::prepareForReformat(%p) with format %#x", this, mFormat);
380 // discard previous reformatters
381 unprepareForReformat();
382 // only configure reformatters as needed
383 const audio_format_t targetFormat = mDownmixRequiresFormat != AUDIO_FORMAT_INVALID
384 ? mDownmixRequiresFormat : mMixerInFormat;
385 bool requiresReconfigure = false;
386 if (mFormat != targetFormat) {
387 mReformatBufferProvider = new ReformatBufferProvider(
388 audio_channel_count_from_out_mask(channelMask),
389 mFormat,
390 targetFormat,
391 kCopyBufferFrameCount);
392 requiresReconfigure = true;
393 }
394 if (targetFormat != mMixerInFormat) {
395 mPostDownmixReformatBufferProvider = new ReformatBufferProvider(
396 audio_channel_count_from_out_mask(mMixerChannelMask),
397 targetFormat,
398 mMixerInFormat,
399 kCopyBufferFrameCount);
400 requiresReconfigure = true;
401 }
402 if (requiresReconfigure) {
403 reconfigureBufferProviders();
404 }
405 return NO_ERROR;
406 }
407
reconfigureBufferProviders()408 void AudioMixer::track_t::reconfigureBufferProviders()
409 {
410 bufferProvider = mInputBufferProvider;
411 if (mReformatBufferProvider) {
412 mReformatBufferProvider->setBufferProvider(bufferProvider);
413 bufferProvider = mReformatBufferProvider;
414 }
415 if (downmixerBufferProvider) {
416 downmixerBufferProvider->setBufferProvider(bufferProvider);
417 bufferProvider = downmixerBufferProvider;
418 }
419 if (mPostDownmixReformatBufferProvider) {
420 mPostDownmixReformatBufferProvider->setBufferProvider(bufferProvider);
421 bufferProvider = mPostDownmixReformatBufferProvider;
422 }
423 if (mTimestretchBufferProvider) {
424 mTimestretchBufferProvider->setBufferProvider(bufferProvider);
425 bufferProvider = mTimestretchBufferProvider;
426 }
427 }
428
deleteTrackName(int name)429 void AudioMixer::deleteTrackName(int name)
430 {
431 ALOGV("AudioMixer::deleteTrackName(%d)", name);
432 name -= TRACK0;
433 ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
434 ALOGV("deleteTrackName(%d)", name);
435 track_t& track(mState.tracks[ name ]);
436 if (track.enabled) {
437 track.enabled = false;
438 invalidateState(1<<name);
439 }
440 // delete the resampler
441 delete track.resampler;
442 track.resampler = NULL;
443 // delete the downmixer
444 mState.tracks[name].unprepareForDownmix();
445 // delete the reformatter
446 mState.tracks[name].unprepareForReformat();
447 // delete the timestretch provider
448 delete track.mTimestretchBufferProvider;
449 track.mTimestretchBufferProvider = NULL;
450 mTrackNames &= ~(1<<name);
451 }
452
enable(int name)453 void AudioMixer::enable(int name)
454 {
455 name -= TRACK0;
456 ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
457 track_t& track = mState.tracks[name];
458
459 if (!track.enabled) {
460 track.enabled = true;
461 ALOGV("enable(%d)", name);
462 invalidateState(1 << name);
463 }
464 }
465
disable(int name)466 void AudioMixer::disable(int name)
467 {
468 name -= TRACK0;
469 ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
470 track_t& track = mState.tracks[name];
471
472 if (track.enabled) {
473 track.enabled = false;
474 ALOGV("disable(%d)", name);
475 invalidateState(1 << name);
476 }
477 }
478
479 /* Sets the volume ramp variables for the AudioMixer.
480 *
481 * The volume ramp variables are used to transition from the previous
482 * volume to the set volume. ramp controls the duration of the transition.
483 * Its value is typically one state framecount period, but may also be 0,
484 * meaning "immediate."
485 *
486 * FIXME: 1) Volume ramp is enabled only if there is a nonzero integer increment
487 * even if there is a nonzero floating point increment (in that case, the volume
488 * change is immediate). This restriction should be changed when the legacy mixer
489 * is removed (see #2).
490 * FIXME: 2) Integer volume variables are used for Legacy mixing and should be removed
491 * when no longer needed.
492 *
493 * @param newVolume set volume target in floating point [0.0, 1.0].
494 * @param ramp number of frames to increment over. if ramp is 0, the volume
495 * should be set immediately. Currently ramp should not exceed 65535 (frames).
496 * @param pIntSetVolume pointer to the U4.12 integer target volume, set on return.
497 * @param pIntPrevVolume pointer to the U4.28 integer previous volume, set on return.
498 * @param pIntVolumeInc pointer to the U4.28 increment per output audio frame, set on return.
499 * @param pSetVolume pointer to the float target volume, set on return.
500 * @param pPrevVolume pointer to the float previous volume, set on return.
501 * @param pVolumeInc pointer to the float increment per output audio frame, set on return.
502 * @return true if the volume has changed, false if volume is same.
503 */
setVolumeRampVariables(float newVolume,int32_t ramp,int16_t * pIntSetVolume,int32_t * pIntPrevVolume,int32_t * pIntVolumeInc,float * pSetVolume,float * pPrevVolume,float * pVolumeInc)504 static inline bool setVolumeRampVariables(float newVolume, int32_t ramp,
505 int16_t *pIntSetVolume, int32_t *pIntPrevVolume, int32_t *pIntVolumeInc,
506 float *pSetVolume, float *pPrevVolume, float *pVolumeInc) {
507 // check floating point volume to see if it is identical to the previously
508 // set volume.
509 // We do not use a tolerance here (and reject changes too small)
510 // as it may be confusing to use a different value than the one set.
511 // If the resulting volume is too small to ramp, it is a direct set of the volume.
512 if (newVolume == *pSetVolume) {
513 return false;
514 }
515 if (newVolume < 0) {
516 newVolume = 0; // should not have negative volumes
517 } else {
518 switch (fpclassify(newVolume)) {
519 case FP_SUBNORMAL:
520 case FP_NAN:
521 newVolume = 0;
522 break;
523 case FP_ZERO:
524 break; // zero volume is fine
525 case FP_INFINITE:
526 // Infinite volume could be handled consistently since
527 // floating point math saturates at infinities,
528 // but we limit volume to unity gain float.
529 // ramp = 0; break;
530 //
531 newVolume = AudioMixer::UNITY_GAIN_FLOAT;
532 break;
533 case FP_NORMAL:
534 default:
535 // Floating point does not have problems with overflow wrap
536 // that integer has. However, we limit the volume to
537 // unity gain here.
538 // TODO: Revisit the volume limitation and perhaps parameterize.
539 if (newVolume > AudioMixer::UNITY_GAIN_FLOAT) {
540 newVolume = AudioMixer::UNITY_GAIN_FLOAT;
541 }
542 break;
543 }
544 }
545
546 // set floating point volume ramp
547 if (ramp != 0) {
548 // when the ramp completes, *pPrevVolume is set to *pSetVolume, so there
549 // is no computational mismatch; hence equality is checked here.
550 ALOGD_IF(*pPrevVolume != *pSetVolume, "previous float ramp hasn't finished,"
551 " prev:%f set_to:%f", *pPrevVolume, *pSetVolume);
552 const float inc = (newVolume - *pPrevVolume) / ramp; // could be inf, nan, subnormal
553 const float maxv = max(newVolume, *pPrevVolume); // could be inf, cannot be nan, subnormal
554
555 if (isnormal(inc) // inc must be a normal number (no subnormals, infinite, nan)
556 && maxv + inc != maxv) { // inc must make forward progress
557 *pVolumeInc = inc;
558 // ramp is set now.
559 // Note: if newVolume is 0, then near the end of the ramp,
560 // it may be possible that the ramped volume may be subnormal or
561 // temporarily negative by a small amount or subnormal due to floating
562 // point inaccuracies.
563 } else {
564 ramp = 0; // ramp not allowed
565 }
566 }
567
568 // compute and check integer volume, no need to check negative values
569 // The integer volume is limited to "unity_gain" to avoid wrapping and other
570 // audio artifacts, so it never reaches the range limit of U4.28.
571 // We safely use signed 16 and 32 bit integers here.
572 const float scaledVolume = newVolume * AudioMixer::UNITY_GAIN_INT; // not neg, subnormal, nan
573 const int32_t intVolume = (scaledVolume >= (float)AudioMixer::UNITY_GAIN_INT) ?
574 AudioMixer::UNITY_GAIN_INT : (int32_t)scaledVolume;
575
576 // set integer volume ramp
577 if (ramp != 0) {
578 // integer volume is U4.12 (to use 16 bit multiplies), but ramping uses U4.28.
579 // when the ramp completes, *pIntPrevVolume is set to *pIntSetVolume << 16, so there
580 // is no computational mismatch; hence equality is checked here.
581 ALOGD_IF(*pIntPrevVolume != *pIntSetVolume << 16, "previous int ramp hasn't finished,"
582 " prev:%d set_to:%d", *pIntPrevVolume, *pIntSetVolume << 16);
583 const int32_t inc = ((intVolume << 16) - *pIntPrevVolume) / ramp;
584
585 if (inc != 0) { // inc must make forward progress
586 *pIntVolumeInc = inc;
587 } else {
588 ramp = 0; // ramp not allowed
589 }
590 }
591
592 // if no ramp, or ramp not allowed, then clear float and integer increments
593 if (ramp == 0) {
594 *pVolumeInc = 0;
595 *pPrevVolume = newVolume;
596 *pIntVolumeInc = 0;
597 *pIntPrevVolume = intVolume << 16;
598 }
599 *pSetVolume = newVolume;
600 *pIntSetVolume = intVolume;
601 return true;
602 }
603
setParameter(int name,int target,int param,void * value)604 void AudioMixer::setParameter(int name, int target, int param, void *value)
605 {
606 name -= TRACK0;
607 ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
608 track_t& track = mState.tracks[name];
609
610 int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value));
611 int32_t *valueBuf = reinterpret_cast<int32_t*>(value);
612
613 switch (target) {
614
615 case TRACK:
616 switch (param) {
617 case CHANNEL_MASK: {
618 const audio_channel_mask_t trackChannelMask =
619 static_cast<audio_channel_mask_t>(valueInt);
620 if (setChannelMasks(name, trackChannelMask, track.mMixerChannelMask)) {
621 ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask);
622 invalidateState(1 << name);
623 }
624 } break;
625 case MAIN_BUFFER:
626 if (track.mainBuffer != valueBuf) {
627 track.mainBuffer = valueBuf;
628 ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf);
629 invalidateState(1 << name);
630 }
631 break;
632 case AUX_BUFFER:
633 if (track.auxBuffer != valueBuf) {
634 track.auxBuffer = valueBuf;
635 ALOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf);
636 invalidateState(1 << name);
637 }
638 break;
639 case FORMAT: {
640 audio_format_t format = static_cast<audio_format_t>(valueInt);
641 if (track.mFormat != format) {
642 ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format);
643 track.mFormat = format;
644 ALOGV("setParameter(TRACK, FORMAT, %#x)", format);
645 track.prepareForReformat();
646 invalidateState(1 << name);
647 }
648 } break;
649 // FIXME do we want to support setting the downmix type from AudioFlinger?
650 // for a specific track? or per mixer?
651 /* case DOWNMIX_TYPE:
652 break */
653 case MIXER_FORMAT: {
654 audio_format_t format = static_cast<audio_format_t>(valueInt);
655 if (track.mMixerFormat != format) {
656 track.mMixerFormat = format;
657 ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format);
658 }
659 } break;
660 case MIXER_CHANNEL_MASK: {
661 const audio_channel_mask_t mixerChannelMask =
662 static_cast<audio_channel_mask_t>(valueInt);
663 if (setChannelMasks(name, track.channelMask, mixerChannelMask)) {
664 ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask);
665 invalidateState(1 << name);
666 }
667 } break;
668 default:
669 LOG_ALWAYS_FATAL("setParameter track: bad param %d", param);
670 }
671 break;
672
673 case RESAMPLE:
674 switch (param) {
675 case SAMPLE_RATE:
676 ALOG_ASSERT(valueInt > 0, "bad sample rate %d", valueInt);
677 if (track.setResampler(uint32_t(valueInt), mSampleRate)) {
678 ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)",
679 uint32_t(valueInt));
680 invalidateState(1 << name);
681 }
682 break;
683 case RESET:
684 track.resetResampler();
685 invalidateState(1 << name);
686 break;
687 case REMOVE:
688 delete track.resampler;
689 track.resampler = NULL;
690 track.sampleRate = mSampleRate;
691 invalidateState(1 << name);
692 break;
693 default:
694 LOG_ALWAYS_FATAL("setParameter resample: bad param %d", param);
695 }
696 break;
697
698 case RAMP_VOLUME:
699 case VOLUME:
700 switch (param) {
701 case AUXLEVEL:
702 if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
703 target == RAMP_VOLUME ? mState.frameCount : 0,
704 &track.auxLevel, &track.prevAuxLevel, &track.auxInc,
705 &track.mAuxLevel, &track.mPrevAuxLevel, &track.mAuxInc)) {
706 ALOGV("setParameter(%s, AUXLEVEL: %04x)",
707 target == VOLUME ? "VOLUME" : "RAMP_VOLUME", track.auxLevel);
708 invalidateState(1 << name);
709 }
710 break;
711 default:
712 if ((unsigned)param >= VOLUME0 && (unsigned)param < VOLUME0 + MAX_NUM_VOLUMES) {
713 if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
714 target == RAMP_VOLUME ? mState.frameCount : 0,
715 &track.volume[param - VOLUME0], &track.prevVolume[param - VOLUME0],
716 &track.volumeInc[param - VOLUME0],
717 &track.mVolume[param - VOLUME0], &track.mPrevVolume[param - VOLUME0],
718 &track.mVolumeInc[param - VOLUME0])) {
719 ALOGV("setParameter(%s, VOLUME%d: %04x)",
720 target == VOLUME ? "VOLUME" : "RAMP_VOLUME", param - VOLUME0,
721 track.volume[param - VOLUME0]);
722 invalidateState(1 << name);
723 }
724 } else {
725 LOG_ALWAYS_FATAL("setParameter volume: bad param %d", param);
726 }
727 }
728 break;
729 case TIMESTRETCH:
730 switch (param) {
731 case PLAYBACK_RATE: {
732 const AudioPlaybackRate *playbackRate =
733 reinterpret_cast<AudioPlaybackRate*>(value);
734 ALOGW_IF(!isAudioPlaybackRateValid(*playbackRate),
735 "bad parameters speed %f, pitch %f",playbackRate->mSpeed,
736 playbackRate->mPitch);
737 if (track.setPlaybackRate(*playbackRate)) {
738 ALOGV("setParameter(TIMESTRETCH, PLAYBACK_RATE, STRETCH_MODE, FALLBACK_MODE "
739 "%f %f %d %d",
740 playbackRate->mSpeed,
741 playbackRate->mPitch,
742 playbackRate->mStretchMode,
743 playbackRate->mFallbackMode);
744 // invalidateState(1 << name);
745 }
746 } break;
747 default:
748 LOG_ALWAYS_FATAL("setParameter timestretch: bad param %d", param);
749 }
750 break;
751
752 default:
753 LOG_ALWAYS_FATAL("setParameter: bad target %d", target);
754 }
755 }
756
setResampler(uint32_t trackSampleRate,uint32_t devSampleRate)757 bool AudioMixer::track_t::setResampler(uint32_t trackSampleRate, uint32_t devSampleRate)
758 {
759 if (trackSampleRate != devSampleRate || resampler != NULL) {
760 if (sampleRate != trackSampleRate) {
761 sampleRate = trackSampleRate;
762 if (resampler == NULL) {
763 ALOGV("Creating resampler from track %d Hz to device %d Hz",
764 trackSampleRate, devSampleRate);
765 AudioResampler::src_quality quality;
766 // force lowest quality level resampler if use case isn't music or video
767 // FIXME this is flawed for dynamic sample rates, as we choose the resampler
768 // quality level based on the initial ratio, but that could change later.
769 // Should have a way to distinguish tracks with static ratios vs. dynamic ratios.
770 if (isMusicRate(trackSampleRate)) {
771 quality = AudioResampler::DEFAULT_QUALITY;
772 } else {
773 quality = AudioResampler::DYN_LOW_QUALITY;
774 }
775
776 // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
777 // but if none exists, it is the channel count (1 for mono).
778 const int resamplerChannelCount = downmixerBufferProvider != NULL
779 ? mMixerChannelCount : channelCount;
780 ALOGVV("Creating resampler:"
781 " format(%#x) channels(%d) devSampleRate(%u) quality(%d)\n",
782 mMixerInFormat, resamplerChannelCount, devSampleRate, quality);
783 resampler = AudioResampler::create(
784 mMixerInFormat,
785 resamplerChannelCount,
786 devSampleRate, quality);
787 }
788 return true;
789 }
790 }
791 return false;
792 }
793
setPlaybackRate(const AudioPlaybackRate & playbackRate)794 bool AudioMixer::track_t::setPlaybackRate(const AudioPlaybackRate &playbackRate)
795 {
796 if ((mTimestretchBufferProvider == NULL &&
797 fabs(playbackRate.mSpeed - mPlaybackRate.mSpeed) < AUDIO_TIMESTRETCH_SPEED_MIN_DELTA &&
798 fabs(playbackRate.mPitch - mPlaybackRate.mPitch) < AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) ||
799 isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
800 return false;
801 }
802 mPlaybackRate = playbackRate;
803 if (mTimestretchBufferProvider == NULL) {
804 // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
805 // but if none exists, it is the channel count (1 for mono).
806 const int timestretchChannelCount = downmixerBufferProvider != NULL
807 ? mMixerChannelCount : channelCount;
808 mTimestretchBufferProvider = new TimestretchBufferProvider(timestretchChannelCount,
809 mMixerInFormat, sampleRate, playbackRate);
810 reconfigureBufferProviders();
811 } else {
812 reinterpret_cast<TimestretchBufferProvider*>(mTimestretchBufferProvider)
813 ->setPlaybackRate(playbackRate);
814 }
815 return true;
816 }
817
818 /* Checks to see if the volume ramp has completed and clears the increment
819 * variables appropriately.
820 *
821 * FIXME: There is code to handle int/float ramp variable switchover should it not
822 * complete within a mixer buffer processing call, but it is preferred to avoid switchover
823 * due to precision issues. The switchover code is included for legacy code purposes
824 * and can be removed once the integer volume is removed.
825 *
826 * It is not sufficient to clear only the volumeInc integer variable because
827 * if one channel requires ramping, all channels are ramped.
828 *
829 * There is a bit of duplicated code here, but it keeps backward compatibility.
830 */
adjustVolumeRamp(bool aux,bool useFloat)831 inline void AudioMixer::track_t::adjustVolumeRamp(bool aux, bool useFloat)
832 {
833 if (useFloat) {
834 for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
835 if ((mVolumeInc[i] > 0 && mPrevVolume[i] + mVolumeInc[i] >= mVolume[i]) ||
836 (mVolumeInc[i] < 0 && mPrevVolume[i] + mVolumeInc[i] <= mVolume[i])) {
837 volumeInc[i] = 0;
838 prevVolume[i] = volume[i] << 16;
839 mVolumeInc[i] = 0.;
840 mPrevVolume[i] = mVolume[i];
841 } else {
842 //ALOGV("ramp: %f %f %f", mVolume[i], mPrevVolume[i], mVolumeInc[i]);
843 prevVolume[i] = u4_28_from_float(mPrevVolume[i]);
844 }
845 }
846 } else {
847 for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
848 if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) ||
849 ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) {
850 volumeInc[i] = 0;
851 prevVolume[i] = volume[i] << 16;
852 mVolumeInc[i] = 0.;
853 mPrevVolume[i] = mVolume[i];
854 } else {
855 //ALOGV("ramp: %d %d %d", volume[i] << 16, prevVolume[i], volumeInc[i]);
856 mPrevVolume[i] = float_from_u4_28(prevVolume[i]);
857 }
858 }
859 }
860 /* TODO: aux is always integer regardless of output buffer type */
861 if (aux) {
862 if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) ||
863 ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) {
864 auxInc = 0;
865 prevAuxLevel = auxLevel << 16;
866 mAuxInc = 0.;
867 mPrevAuxLevel = mAuxLevel;
868 } else {
869 //ALOGV("aux ramp: %d %d %d", auxLevel << 16, prevAuxLevel, auxInc);
870 }
871 }
872 }
873
getUnreleasedFrames(int name) const874 size_t AudioMixer::getUnreleasedFrames(int name) const
875 {
876 name -= TRACK0;
877 if (uint32_t(name) < MAX_NUM_TRACKS) {
878 return mState.tracks[name].getUnreleasedFrames();
879 }
880 return 0;
881 }
882
setBufferProvider(int name,AudioBufferProvider * bufferProvider)883 void AudioMixer::setBufferProvider(int name, AudioBufferProvider* bufferProvider)
884 {
885 name -= TRACK0;
886 ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
887
888 if (mState.tracks[name].mInputBufferProvider == bufferProvider) {
889 return; // don't reset any buffer providers if identical.
890 }
891 if (mState.tracks[name].mReformatBufferProvider != NULL) {
892 mState.tracks[name].mReformatBufferProvider->reset();
893 } else if (mState.tracks[name].downmixerBufferProvider != NULL) {
894 mState.tracks[name].downmixerBufferProvider->reset();
895 } else if (mState.tracks[name].mPostDownmixReformatBufferProvider != NULL) {
896 mState.tracks[name].mPostDownmixReformatBufferProvider->reset();
897 } else if (mState.tracks[name].mTimestretchBufferProvider != NULL) {
898 mState.tracks[name].mTimestretchBufferProvider->reset();
899 }
900
901 mState.tracks[name].mInputBufferProvider = bufferProvider;
902 mState.tracks[name].reconfigureBufferProviders();
903 }
904
905
process()906 void AudioMixer::process()
907 {
908 mState.hook(&mState);
909 }
910
911
process__validate(state_t * state)912 void AudioMixer::process__validate(state_t* state)
913 {
914 ALOGW_IF(!state->needsChanged,
915 "in process__validate() but nothing's invalid");
916
917 uint32_t changed = state->needsChanged;
918 state->needsChanged = 0; // clear the validation flag
919
920 // recompute which tracks are enabled / disabled
921 uint32_t enabled = 0;
922 uint32_t disabled = 0;
923 while (changed) {
924 const int i = 31 - __builtin_clz(changed);
925 const uint32_t mask = 1<<i;
926 changed &= ~mask;
927 track_t& t = state->tracks[i];
928 (t.enabled ? enabled : disabled) |= mask;
929 }
930 state->enabledTracks &= ~disabled;
931 state->enabledTracks |= enabled;
932
933 // compute everything we need...
934 int countActiveTracks = 0;
935 // TODO: fix all16BitsStereNoResample logic to
936 // either properly handle muted tracks (it should ignore them)
937 // or remove altogether as an obsolete optimization.
938 bool all16BitsStereoNoResample = true;
939 bool resampling = false;
940 bool volumeRamp = false;
941 uint32_t en = state->enabledTracks;
942 while (en) {
943 const int i = 31 - __builtin_clz(en);
944 en &= ~(1<<i);
945
946 countActiveTracks++;
947 track_t& t = state->tracks[i];
948 uint32_t n = 0;
949 // FIXME can overflow (mask is only 3 bits)
950 n |= NEEDS_CHANNEL_1 + t.channelCount - 1;
951 if (t.doesResample()) {
952 n |= NEEDS_RESAMPLE;
953 }
954 if (t.auxLevel != 0 && t.auxBuffer != NULL) {
955 n |= NEEDS_AUX;
956 }
957
958 if (t.volumeInc[0]|t.volumeInc[1]) {
959 volumeRamp = true;
960 } else if (!t.doesResample() && t.volumeRL == 0) {
961 n |= NEEDS_MUTE;
962 }
963 t.needs = n;
964
965 if (n & NEEDS_MUTE) {
966 t.hook = track__nop;
967 } else {
968 if (n & NEEDS_AUX) {
969 all16BitsStereoNoResample = false;
970 }
971 if (n & NEEDS_RESAMPLE) {
972 all16BitsStereoNoResample = false;
973 resampling = true;
974 t.hook = getTrackHook(TRACKTYPE_RESAMPLE, t.mMixerChannelCount,
975 t.mMixerInFormat, t.mMixerFormat);
976 ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
977 "Track %d needs downmix + resample", i);
978 } else {
979 if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){
980 t.hook = getTrackHook(
981 (t.mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO // TODO: MONO_HACK
982 && t.channelMask == AUDIO_CHANNEL_OUT_MONO)
983 ? TRACKTYPE_NORESAMPLEMONO : TRACKTYPE_NORESAMPLE,
984 t.mMixerChannelCount,
985 t.mMixerInFormat, t.mMixerFormat);
986 all16BitsStereoNoResample = false;
987 }
988 if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){
989 t.hook = getTrackHook(TRACKTYPE_NORESAMPLE, t.mMixerChannelCount,
990 t.mMixerInFormat, t.mMixerFormat);
991 ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
992 "Track %d needs downmix", i);
993 }
994 }
995 }
996 }
997
998 // select the processing hooks
999 state->hook = process__nop;
1000 if (countActiveTracks > 0) {
1001 if (resampling) {
1002 if (!state->outputTemp) {
1003 state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
1004 }
1005 if (!state->resampleTemp) {
1006 state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
1007 }
1008 state->hook = process__genericResampling;
1009 } else {
1010 if (state->outputTemp) {
1011 delete [] state->outputTemp;
1012 state->outputTemp = NULL;
1013 }
1014 if (state->resampleTemp) {
1015 delete [] state->resampleTemp;
1016 state->resampleTemp = NULL;
1017 }
1018 state->hook = process__genericNoResampling;
1019 if (all16BitsStereoNoResample && !volumeRamp) {
1020 if (countActiveTracks == 1) {
1021 const int i = 31 - __builtin_clz(state->enabledTracks);
1022 track_t& t = state->tracks[i];
1023 if ((t.needs & NEEDS_MUTE) == 0) {
1024 // The check prevents a muted track from acquiring a process hook.
1025 //
1026 // This is dangerous if the track is MONO as that requires
1027 // special case handling due to implicit channel duplication.
1028 // Stereo or Multichannel should actually be fine here.
1029 state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
1030 t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
1031 }
1032 }
1033 }
1034 }
1035 }
1036
1037 ALOGV("mixer configuration change: %d activeTracks (%08x) "
1038 "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d",
1039 countActiveTracks, state->enabledTracks,
1040 all16BitsStereoNoResample, resampling, volumeRamp);
1041
1042 state->hook(state);
1043
1044 // Now that the volume ramp has been done, set optimal state and
1045 // track hooks for subsequent mixer process
1046 if (countActiveTracks > 0) {
1047 bool allMuted = true;
1048 uint32_t en = state->enabledTracks;
1049 while (en) {
1050 const int i = 31 - __builtin_clz(en);
1051 en &= ~(1<<i);
1052 track_t& t = state->tracks[i];
1053 if (!t.doesResample() && t.volumeRL == 0) {
1054 t.needs |= NEEDS_MUTE;
1055 t.hook = track__nop;
1056 } else {
1057 allMuted = false;
1058 }
1059 }
1060 if (allMuted) {
1061 state->hook = process__nop;
1062 } else if (all16BitsStereoNoResample) {
1063 if (countActiveTracks == 1) {
1064 const int i = 31 - __builtin_clz(state->enabledTracks);
1065 track_t& t = state->tracks[i];
1066 // Muted single tracks handled by allMuted above.
1067 state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
1068 t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
1069 }
1070 }
1071 }
1072 }
1073
1074
track__genericResample(track_t * t,int32_t * out,size_t outFrameCount,int32_t * temp,int32_t * aux)1075 void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount,
1076 int32_t* temp, int32_t* aux)
1077 {
1078 ALOGVV("track__genericResample\n");
1079 t->resampler->setSampleRate(t->sampleRate);
1080
1081 // ramp gain - resample to temp buffer and scale/mix in 2nd step
1082 if (aux != NULL) {
1083 // always resample with unity gain when sending to auxiliary buffer to be able
1084 // to apply send level after resampling
1085 t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1086 memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(int32_t));
1087 t->resampler->resample(temp, outFrameCount, t->bufferProvider);
1088 if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1089 volumeRampStereo(t, out, outFrameCount, temp, aux);
1090 } else {
1091 volumeStereo(t, out, outFrameCount, temp, aux);
1092 }
1093 } else {
1094 if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1095 t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1096 memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t));
1097 t->resampler->resample(temp, outFrameCount, t->bufferProvider);
1098 volumeRampStereo(t, out, outFrameCount, temp, aux);
1099 }
1100
1101 // constant gain
1102 else {
1103 t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
1104 t->resampler->resample(out, outFrameCount, t->bufferProvider);
1105 }
1106 }
1107 }
1108
track__nop(track_t * t __unused,int32_t * out __unused,size_t outFrameCount __unused,int32_t * temp __unused,int32_t * aux __unused)1109 void AudioMixer::track__nop(track_t* t __unused, int32_t* out __unused,
1110 size_t outFrameCount __unused, int32_t* temp __unused, int32_t* aux __unused)
1111 {
1112 }
1113
volumeRampStereo(track_t * t,int32_t * out,size_t frameCount,int32_t * temp,int32_t * aux)1114 void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
1115 int32_t* aux)
1116 {
1117 int32_t vl = t->prevVolume[0];
1118 int32_t vr = t->prevVolume[1];
1119 const int32_t vlInc = t->volumeInc[0];
1120 const int32_t vrInc = t->volumeInc[1];
1121
1122 //ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1123 // t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1124 // (vl + vlInc*frameCount)/65536.0f, frameCount);
1125
1126 // ramp volume
1127 if (CC_UNLIKELY(aux != NULL)) {
1128 int32_t va = t->prevAuxLevel;
1129 const int32_t vaInc = t->auxInc;
1130 int32_t l;
1131 int32_t r;
1132
1133 do {
1134 l = (*temp++ >> 12);
1135 r = (*temp++ >> 12);
1136 *out++ += (vl >> 16) * l;
1137 *out++ += (vr >> 16) * r;
1138 *aux++ += (va >> 17) * (l + r);
1139 vl += vlInc;
1140 vr += vrInc;
1141 va += vaInc;
1142 } while (--frameCount);
1143 t->prevAuxLevel = va;
1144 } else {
1145 do {
1146 *out++ += (vl >> 16) * (*temp++ >> 12);
1147 *out++ += (vr >> 16) * (*temp++ >> 12);
1148 vl += vlInc;
1149 vr += vrInc;
1150 } while (--frameCount);
1151 }
1152 t->prevVolume[0] = vl;
1153 t->prevVolume[1] = vr;
1154 t->adjustVolumeRamp(aux != NULL);
1155 }
1156
volumeStereo(track_t * t,int32_t * out,size_t frameCount,int32_t * temp,int32_t * aux)1157 void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
1158 int32_t* aux)
1159 {
1160 const int16_t vl = t->volume[0];
1161 const int16_t vr = t->volume[1];
1162
1163 if (CC_UNLIKELY(aux != NULL)) {
1164 const int16_t va = t->auxLevel;
1165 do {
1166 int16_t l = (int16_t)(*temp++ >> 12);
1167 int16_t r = (int16_t)(*temp++ >> 12);
1168 out[0] = mulAdd(l, vl, out[0]);
1169 int16_t a = (int16_t)(((int32_t)l + r) >> 1);
1170 out[1] = mulAdd(r, vr, out[1]);
1171 out += 2;
1172 aux[0] = mulAdd(a, va, aux[0]);
1173 aux++;
1174 } while (--frameCount);
1175 } else {
1176 do {
1177 int16_t l = (int16_t)(*temp++ >> 12);
1178 int16_t r = (int16_t)(*temp++ >> 12);
1179 out[0] = mulAdd(l, vl, out[0]);
1180 out[1] = mulAdd(r, vr, out[1]);
1181 out += 2;
1182 } while (--frameCount);
1183 }
1184 }
1185
track__16BitsStereo(track_t * t,int32_t * out,size_t frameCount,int32_t * temp __unused,int32_t * aux)1186 void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount,
1187 int32_t* temp __unused, int32_t* aux)
1188 {
1189 ALOGVV("track__16BitsStereo\n");
1190 const int16_t *in = static_cast<const int16_t *>(t->in);
1191
1192 if (CC_UNLIKELY(aux != NULL)) {
1193 int32_t l;
1194 int32_t r;
1195 // ramp gain
1196 if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1197 int32_t vl = t->prevVolume[0];
1198 int32_t vr = t->prevVolume[1];
1199 int32_t va = t->prevAuxLevel;
1200 const int32_t vlInc = t->volumeInc[0];
1201 const int32_t vrInc = t->volumeInc[1];
1202 const int32_t vaInc = t->auxInc;
1203 // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1204 // t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1205 // (vl + vlInc*frameCount)/65536.0f, frameCount);
1206
1207 do {
1208 l = (int32_t)*in++;
1209 r = (int32_t)*in++;
1210 *out++ += (vl >> 16) * l;
1211 *out++ += (vr >> 16) * r;
1212 *aux++ += (va >> 17) * (l + r);
1213 vl += vlInc;
1214 vr += vrInc;
1215 va += vaInc;
1216 } while (--frameCount);
1217
1218 t->prevVolume[0] = vl;
1219 t->prevVolume[1] = vr;
1220 t->prevAuxLevel = va;
1221 t->adjustVolumeRamp(true);
1222 }
1223
1224 // constant gain
1225 else {
1226 const uint32_t vrl = t->volumeRL;
1227 const int16_t va = (int16_t)t->auxLevel;
1228 do {
1229 uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1230 int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1);
1231 in += 2;
1232 out[0] = mulAddRL(1, rl, vrl, out[0]);
1233 out[1] = mulAddRL(0, rl, vrl, out[1]);
1234 out += 2;
1235 aux[0] = mulAdd(a, va, aux[0]);
1236 aux++;
1237 } while (--frameCount);
1238 }
1239 } else {
1240 // ramp gain
1241 if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1242 int32_t vl = t->prevVolume[0];
1243 int32_t vr = t->prevVolume[1];
1244 const int32_t vlInc = t->volumeInc[0];
1245 const int32_t vrInc = t->volumeInc[1];
1246
1247 // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1248 // t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1249 // (vl + vlInc*frameCount)/65536.0f, frameCount);
1250
1251 do {
1252 *out++ += (vl >> 16) * (int32_t) *in++;
1253 *out++ += (vr >> 16) * (int32_t) *in++;
1254 vl += vlInc;
1255 vr += vrInc;
1256 } while (--frameCount);
1257
1258 t->prevVolume[0] = vl;
1259 t->prevVolume[1] = vr;
1260 t->adjustVolumeRamp(false);
1261 }
1262
1263 // constant gain
1264 else {
1265 const uint32_t vrl = t->volumeRL;
1266 do {
1267 uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1268 in += 2;
1269 out[0] = mulAddRL(1, rl, vrl, out[0]);
1270 out[1] = mulAddRL(0, rl, vrl, out[1]);
1271 out += 2;
1272 } while (--frameCount);
1273 }
1274 }
1275 t->in = in;
1276 }
1277
track__16BitsMono(track_t * t,int32_t * out,size_t frameCount,int32_t * temp __unused,int32_t * aux)1278 void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount,
1279 int32_t* temp __unused, int32_t* aux)
1280 {
1281 ALOGVV("track__16BitsMono\n");
1282 const int16_t *in = static_cast<int16_t const *>(t->in);
1283
1284 if (CC_UNLIKELY(aux != NULL)) {
1285 // ramp gain
1286 if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1287 int32_t vl = t->prevVolume[0];
1288 int32_t vr = t->prevVolume[1];
1289 int32_t va = t->prevAuxLevel;
1290 const int32_t vlInc = t->volumeInc[0];
1291 const int32_t vrInc = t->volumeInc[1];
1292 const int32_t vaInc = t->auxInc;
1293
1294 // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1295 // t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1296 // (vl + vlInc*frameCount)/65536.0f, frameCount);
1297
1298 do {
1299 int32_t l = *in++;
1300 *out++ += (vl >> 16) * l;
1301 *out++ += (vr >> 16) * l;
1302 *aux++ += (va >> 16) * l;
1303 vl += vlInc;
1304 vr += vrInc;
1305 va += vaInc;
1306 } while (--frameCount);
1307
1308 t->prevVolume[0] = vl;
1309 t->prevVolume[1] = vr;
1310 t->prevAuxLevel = va;
1311 t->adjustVolumeRamp(true);
1312 }
1313 // constant gain
1314 else {
1315 const int16_t vl = t->volume[0];
1316 const int16_t vr = t->volume[1];
1317 const int16_t va = (int16_t)t->auxLevel;
1318 do {
1319 int16_t l = *in++;
1320 out[0] = mulAdd(l, vl, out[0]);
1321 out[1] = mulAdd(l, vr, out[1]);
1322 out += 2;
1323 aux[0] = mulAdd(l, va, aux[0]);
1324 aux++;
1325 } while (--frameCount);
1326 }
1327 } else {
1328 // ramp gain
1329 if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1330 int32_t vl = t->prevVolume[0];
1331 int32_t vr = t->prevVolume[1];
1332 const int32_t vlInc = t->volumeInc[0];
1333 const int32_t vrInc = t->volumeInc[1];
1334
1335 // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1336 // t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1337 // (vl + vlInc*frameCount)/65536.0f, frameCount);
1338
1339 do {
1340 int32_t l = *in++;
1341 *out++ += (vl >> 16) * l;
1342 *out++ += (vr >> 16) * l;
1343 vl += vlInc;
1344 vr += vrInc;
1345 } while (--frameCount);
1346
1347 t->prevVolume[0] = vl;
1348 t->prevVolume[1] = vr;
1349 t->adjustVolumeRamp(false);
1350 }
1351 // constant gain
1352 else {
1353 const int16_t vl = t->volume[0];
1354 const int16_t vr = t->volume[1];
1355 do {
1356 int16_t l = *in++;
1357 out[0] = mulAdd(l, vl, out[0]);
1358 out[1] = mulAdd(l, vr, out[1]);
1359 out += 2;
1360 } while (--frameCount);
1361 }
1362 }
1363 t->in = in;
1364 }
1365
1366 // no-op case
process__nop(state_t * state)1367 void AudioMixer::process__nop(state_t* state)
1368 {
1369 ALOGVV("process__nop\n");
1370 uint32_t e0 = state->enabledTracks;
1371 while (e0) {
1372 // process by group of tracks with same output buffer to
1373 // avoid multiple memset() on same buffer
1374 uint32_t e1 = e0, e2 = e0;
1375 int i = 31 - __builtin_clz(e1);
1376 {
1377 track_t& t1 = state->tracks[i];
1378 e2 &= ~(1<<i);
1379 while (e2) {
1380 i = 31 - __builtin_clz(e2);
1381 e2 &= ~(1<<i);
1382 track_t& t2 = state->tracks[i];
1383 if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1384 e1 &= ~(1<<i);
1385 }
1386 }
1387 e0 &= ~(e1);
1388
1389 memset(t1.mainBuffer, 0, state->frameCount * t1.mMixerChannelCount
1390 * audio_bytes_per_sample(t1.mMixerFormat));
1391 }
1392
1393 while (e1) {
1394 i = 31 - __builtin_clz(e1);
1395 e1 &= ~(1<<i);
1396 {
1397 track_t& t3 = state->tracks[i];
1398 size_t outFrames = state->frameCount;
1399 while (outFrames) {
1400 t3.buffer.frameCount = outFrames;
1401 t3.bufferProvider->getNextBuffer(&t3.buffer);
1402 if (t3.buffer.raw == NULL) break;
1403 outFrames -= t3.buffer.frameCount;
1404 t3.bufferProvider->releaseBuffer(&t3.buffer);
1405 }
1406 }
1407 }
1408 }
1409 }
1410
1411 // generic code without resampling
process__genericNoResampling(state_t * state)1412 void AudioMixer::process__genericNoResampling(state_t* state)
1413 {
1414 ALOGVV("process__genericNoResampling\n");
1415 int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32)));
1416
1417 // acquire each track's buffer
1418 uint32_t enabledTracks = state->enabledTracks;
1419 uint32_t e0 = enabledTracks;
1420 while (e0) {
1421 const int i = 31 - __builtin_clz(e0);
1422 e0 &= ~(1<<i);
1423 track_t& t = state->tracks[i];
1424 t.buffer.frameCount = state->frameCount;
1425 t.bufferProvider->getNextBuffer(&t.buffer);
1426 t.frameCount = t.buffer.frameCount;
1427 t.in = t.buffer.raw;
1428 }
1429
1430 e0 = enabledTracks;
1431 while (e0) {
1432 // process by group of tracks with same output buffer to
1433 // optimize cache use
1434 uint32_t e1 = e0, e2 = e0;
1435 int j = 31 - __builtin_clz(e1);
1436 track_t& t1 = state->tracks[j];
1437 e2 &= ~(1<<j);
1438 while (e2) {
1439 j = 31 - __builtin_clz(e2);
1440 e2 &= ~(1<<j);
1441 track_t& t2 = state->tracks[j];
1442 if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1443 e1 &= ~(1<<j);
1444 }
1445 }
1446 e0 &= ~(e1);
1447 // this assumes output 16 bits stereo, no resampling
1448 int32_t *out = t1.mainBuffer;
1449 size_t numFrames = 0;
1450 do {
1451 memset(outTemp, 0, sizeof(outTemp));
1452 e2 = e1;
1453 while (e2) {
1454 const int i = 31 - __builtin_clz(e2);
1455 e2 &= ~(1<<i);
1456 track_t& t = state->tracks[i];
1457 size_t outFrames = BLOCKSIZE;
1458 int32_t *aux = NULL;
1459 if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
1460 aux = t.auxBuffer + numFrames;
1461 }
1462 while (outFrames) {
1463 // t.in == NULL can happen if the track was flushed just after having
1464 // been enabled for mixing.
1465 if (t.in == NULL) {
1466 enabledTracks &= ~(1<<i);
1467 e1 &= ~(1<<i);
1468 break;
1469 }
1470 size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount;
1471 if (inFrames > 0) {
1472 t.hook(&t, outTemp + (BLOCKSIZE - outFrames) * t.mMixerChannelCount,
1473 inFrames, state->resampleTemp, aux);
1474 t.frameCount -= inFrames;
1475 outFrames -= inFrames;
1476 if (CC_UNLIKELY(aux != NULL)) {
1477 aux += inFrames;
1478 }
1479 }
1480 if (t.frameCount == 0 && outFrames) {
1481 t.bufferProvider->releaseBuffer(&t.buffer);
1482 t.buffer.frameCount = (state->frameCount - numFrames) -
1483 (BLOCKSIZE - outFrames);
1484 t.bufferProvider->getNextBuffer(&t.buffer);
1485 t.in = t.buffer.raw;
1486 if (t.in == NULL) {
1487 enabledTracks &= ~(1<<i);
1488 e1 &= ~(1<<i);
1489 break;
1490 }
1491 t.frameCount = t.buffer.frameCount;
1492 }
1493 }
1494 }
1495
1496 convertMixerFormat(out, t1.mMixerFormat, outTemp, t1.mMixerInFormat,
1497 BLOCKSIZE * t1.mMixerChannelCount);
1498 // TODO: fix ugly casting due to choice of out pointer type
1499 out = reinterpret_cast<int32_t*>((uint8_t*)out
1500 + BLOCKSIZE * t1.mMixerChannelCount
1501 * audio_bytes_per_sample(t1.mMixerFormat));
1502 numFrames += BLOCKSIZE;
1503 } while (numFrames < state->frameCount);
1504 }
1505
1506 // release each track's buffer
1507 e0 = enabledTracks;
1508 while (e0) {
1509 const int i = 31 - __builtin_clz(e0);
1510 e0 &= ~(1<<i);
1511 track_t& t = state->tracks[i];
1512 t.bufferProvider->releaseBuffer(&t.buffer);
1513 }
1514 }
1515
1516
1517 // generic code with resampling
process__genericResampling(state_t * state)1518 void AudioMixer::process__genericResampling(state_t* state)
1519 {
1520 ALOGVV("process__genericResampling\n");
1521 // this const just means that local variable outTemp doesn't change
1522 int32_t* const outTemp = state->outputTemp;
1523 size_t numFrames = state->frameCount;
1524
1525 uint32_t e0 = state->enabledTracks;
1526 while (e0) {
1527 // process by group of tracks with same output buffer
1528 // to optimize cache use
1529 uint32_t e1 = e0, e2 = e0;
1530 int j = 31 - __builtin_clz(e1);
1531 track_t& t1 = state->tracks[j];
1532 e2 &= ~(1<<j);
1533 while (e2) {
1534 j = 31 - __builtin_clz(e2);
1535 e2 &= ~(1<<j);
1536 track_t& t2 = state->tracks[j];
1537 if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1538 e1 &= ~(1<<j);
1539 }
1540 }
1541 e0 &= ~(e1);
1542 int32_t *out = t1.mainBuffer;
1543 memset(outTemp, 0, sizeof(*outTemp) * t1.mMixerChannelCount * state->frameCount);
1544 while (e1) {
1545 const int i = 31 - __builtin_clz(e1);
1546 e1 &= ~(1<<i);
1547 track_t& t = state->tracks[i];
1548 int32_t *aux = NULL;
1549 if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
1550 aux = t.auxBuffer;
1551 }
1552
1553 // this is a little goofy, on the resampling case we don't
1554 // acquire/release the buffers because it's done by
1555 // the resampler.
1556 if (t.needs & NEEDS_RESAMPLE) {
1557 t.hook(&t, outTemp, numFrames, state->resampleTemp, aux);
1558 } else {
1559
1560 size_t outFrames = 0;
1561
1562 while (outFrames < numFrames) {
1563 t.buffer.frameCount = numFrames - outFrames;
1564 t.bufferProvider->getNextBuffer(&t.buffer);
1565 t.in = t.buffer.raw;
1566 // t.in == NULL can happen if the track was flushed just after having
1567 // been enabled for mixing.
1568 if (t.in == NULL) break;
1569
1570 if (CC_UNLIKELY(aux != NULL)) {
1571 aux += outFrames;
1572 }
1573 t.hook(&t, outTemp + outFrames * t.mMixerChannelCount, t.buffer.frameCount,
1574 state->resampleTemp, aux);
1575 outFrames += t.buffer.frameCount;
1576 t.bufferProvider->releaseBuffer(&t.buffer);
1577 }
1578 }
1579 }
1580 convertMixerFormat(out, t1.mMixerFormat,
1581 outTemp, t1.mMixerInFormat, numFrames * t1.mMixerChannelCount);
1582 }
1583 }
1584
1585 // one track, 16 bits stereo without resampling is the most common case
process__OneTrack16BitsStereoNoResampling(state_t * state)1586 void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state)
1587 {
1588 ALOGVV("process__OneTrack16BitsStereoNoResampling\n");
1589 // This method is only called when state->enabledTracks has exactly
1590 // one bit set. The asserts below would verify this, but are commented out
1591 // since the whole point of this method is to optimize performance.
1592 //ALOG_ASSERT(0 != state->enabledTracks, "no tracks enabled");
1593 const int i = 31 - __builtin_clz(state->enabledTracks);
1594 //ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
1595 const track_t& t = state->tracks[i];
1596
1597 AudioBufferProvider::Buffer& b(t.buffer);
1598
1599 int32_t* out = t.mainBuffer;
1600 float *fout = reinterpret_cast<float*>(out);
1601 size_t numFrames = state->frameCount;
1602
1603 const int16_t vl = t.volume[0];
1604 const int16_t vr = t.volume[1];
1605 const uint32_t vrl = t.volumeRL;
1606 while (numFrames) {
1607 b.frameCount = numFrames;
1608 t.bufferProvider->getNextBuffer(&b);
1609 const int16_t *in = b.i16;
1610
1611 // in == NULL can happen if the track was flushed just after having
1612 // been enabled for mixing.
1613 if (in == NULL || (((uintptr_t)in) & 3)) {
1614 memset(out, 0, numFrames
1615 * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat));
1616 ALOGE_IF((((uintptr_t)in) & 3),
1617 "process__OneTrack16BitsStereoNoResampling: misaligned buffer"
1618 " %p track %d, channels %d, needs %08x, volume %08x vfl %f vfr %f",
1619 in, i, t.channelCount, t.needs, vrl, t.mVolume[0], t.mVolume[1]);
1620 return;
1621 }
1622 size_t outFrames = b.frameCount;
1623
1624 switch (t.mMixerFormat) {
1625 case AUDIO_FORMAT_PCM_FLOAT:
1626 do {
1627 uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1628 in += 2;
1629 int32_t l = mulRL(1, rl, vrl);
1630 int32_t r = mulRL(0, rl, vrl);
1631 *fout++ = float_from_q4_27(l);
1632 *fout++ = float_from_q4_27(r);
1633 // Note: In case of later int16_t sink output,
1634 // conversion and clamping is done by memcpy_to_i16_from_float().
1635 } while (--outFrames);
1636 break;
1637 case AUDIO_FORMAT_PCM_16_BIT:
1638 if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN_INT || uint32_t(vr) > UNITY_GAIN_INT)) {
1639 // volume is boosted, so we might need to clamp even though
1640 // we process only one track.
1641 do {
1642 uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1643 in += 2;
1644 int32_t l = mulRL(1, rl, vrl) >> 12;
1645 int32_t r = mulRL(0, rl, vrl) >> 12;
1646 // clamping...
1647 l = clamp16(l);
1648 r = clamp16(r);
1649 *out++ = (r<<16) | (l & 0xFFFF);
1650 } while (--outFrames);
1651 } else {
1652 do {
1653 uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1654 in += 2;
1655 int32_t l = mulRL(1, rl, vrl) >> 12;
1656 int32_t r = mulRL(0, rl, vrl) >> 12;
1657 *out++ = (r<<16) | (l & 0xFFFF);
1658 } while (--outFrames);
1659 }
1660 break;
1661 default:
1662 LOG_ALWAYS_FATAL("bad mixer format: %d", t.mMixerFormat);
1663 }
1664 numFrames -= b.frameCount;
1665 t.bufferProvider->releaseBuffer(&b);
1666 }
1667 }
1668
1669 /*static*/ pthread_once_t AudioMixer::sOnceControl = PTHREAD_ONCE_INIT;
1670
sInitRoutine()1671 /*static*/ void AudioMixer::sInitRoutine()
1672 {
1673 DownmixerBufferProvider::init(); // for the downmixer
1674 }
1675
1676 /* TODO: consider whether this level of optimization is necessary.
1677 * Perhaps just stick with a single for loop.
1678 */
1679
1680 // Needs to derive a compile time constant (constexpr). Could be targeted to go
1681 // to a MONOVOL mixtype based on MAX_NUM_VOLUMES, but that's an unnecessary complication.
1682 #define MIXTYPE_MONOVOL(mixtype) (mixtype == MIXTYPE_MULTI ? MIXTYPE_MULTI_MONOVOL : \
1683 mixtype == MIXTYPE_MULTI_SAVEONLY ? MIXTYPE_MULTI_SAVEONLY_MONOVOL : mixtype)
1684
1685 /* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
1686 * TO: int32_t (Q4.27) or float
1687 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1688 * TA: int32_t (Q4.27)
1689 */
1690 template <int MIXTYPE,
1691 typename TO, typename TI, typename TV, typename TA, typename TAV>
volumeRampMulti(uint32_t channels,TO * out,size_t frameCount,const TI * in,TA * aux,TV * vol,const TV * volinc,TAV * vola,TAV volainc)1692 static void volumeRampMulti(uint32_t channels, TO* out, size_t frameCount,
1693 const TI* in, TA* aux, TV *vol, const TV *volinc, TAV *vola, TAV volainc)
1694 {
1695 switch (channels) {
1696 case 1:
1697 volumeRampMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, volinc, vola, volainc);
1698 break;
1699 case 2:
1700 volumeRampMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, volinc, vola, volainc);
1701 break;
1702 case 3:
1703 volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out,
1704 frameCount, in, aux, vol, volinc, vola, volainc);
1705 break;
1706 case 4:
1707 volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out,
1708 frameCount, in, aux, vol, volinc, vola, volainc);
1709 break;
1710 case 5:
1711 volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out,
1712 frameCount, in, aux, vol, volinc, vola, volainc);
1713 break;
1714 case 6:
1715 volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out,
1716 frameCount, in, aux, vol, volinc, vola, volainc);
1717 break;
1718 case 7:
1719 volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out,
1720 frameCount, in, aux, vol, volinc, vola, volainc);
1721 break;
1722 case 8:
1723 volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out,
1724 frameCount, in, aux, vol, volinc, vola, volainc);
1725 break;
1726 }
1727 }
1728
1729 /* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
1730 * TO: int32_t (Q4.27) or float
1731 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1732 * TA: int32_t (Q4.27)
1733 */
1734 template <int MIXTYPE,
1735 typename TO, typename TI, typename TV, typename TA, typename TAV>
volumeMulti(uint32_t channels,TO * out,size_t frameCount,const TI * in,TA * aux,const TV * vol,TAV vola)1736 static void volumeMulti(uint32_t channels, TO* out, size_t frameCount,
1737 const TI* in, TA* aux, const TV *vol, TAV vola)
1738 {
1739 switch (channels) {
1740 case 1:
1741 volumeMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, vola);
1742 break;
1743 case 2:
1744 volumeMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, vola);
1745 break;
1746 case 3:
1747 volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out, frameCount, in, aux, vol, vola);
1748 break;
1749 case 4:
1750 volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out, frameCount, in, aux, vol, vola);
1751 break;
1752 case 5:
1753 volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out, frameCount, in, aux, vol, vola);
1754 break;
1755 case 6:
1756 volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out, frameCount, in, aux, vol, vola);
1757 break;
1758 case 7:
1759 volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out, frameCount, in, aux, vol, vola);
1760 break;
1761 case 8:
1762 volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out, frameCount, in, aux, vol, vola);
1763 break;
1764 }
1765 }
1766
1767 /* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
1768 * USEFLOATVOL (set to true if float volume is used)
1769 * ADJUSTVOL (set to true if volume ramp parameters needs adjustment afterwards)
1770 * TO: int32_t (Q4.27) or float
1771 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1772 * TA: int32_t (Q4.27)
1773 */
1774 template <int MIXTYPE, bool USEFLOATVOL, bool ADJUSTVOL,
1775 typename TO, typename TI, typename TA>
volumeMix(TO * out,size_t outFrames,const TI * in,TA * aux,bool ramp,AudioMixer::track_t * t)1776 void AudioMixer::volumeMix(TO *out, size_t outFrames,
1777 const TI *in, TA *aux, bool ramp, AudioMixer::track_t *t)
1778 {
1779 if (USEFLOATVOL) {
1780 if (ramp) {
1781 volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1782 t->mPrevVolume, t->mVolumeInc, &t->prevAuxLevel, t->auxInc);
1783 if (ADJUSTVOL) {
1784 t->adjustVolumeRamp(aux != NULL, true);
1785 }
1786 } else {
1787 volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1788 t->mVolume, t->auxLevel);
1789 }
1790 } else {
1791 if (ramp) {
1792 volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1793 t->prevVolume, t->volumeInc, &t->prevAuxLevel, t->auxInc);
1794 if (ADJUSTVOL) {
1795 t->adjustVolumeRamp(aux != NULL);
1796 }
1797 } else {
1798 volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1799 t->volume, t->auxLevel);
1800 }
1801 }
1802 }
1803
1804 /* This process hook is called when there is a single track without
1805 * aux buffer, volume ramp, or resampling.
1806 * TODO: Update the hook selection: this can properly handle aux and ramp.
1807 *
1808 * MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
1809 * TO: int32_t (Q4.27) or float
1810 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1811 * TA: int32_t (Q4.27)
1812 */
1813 template <int MIXTYPE, typename TO, typename TI, typename TA>
process_NoResampleOneTrack(state_t * state)1814 void AudioMixer::process_NoResampleOneTrack(state_t* state)
1815 {
1816 ALOGVV("process_NoResampleOneTrack\n");
1817 // CLZ is faster than CTZ on ARM, though really not sure if true after 31 - clz.
1818 const int i = 31 - __builtin_clz(state->enabledTracks);
1819 ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
1820 track_t *t = &state->tracks[i];
1821 const uint32_t channels = t->mMixerChannelCount;
1822 TO* out = reinterpret_cast<TO*>(t->mainBuffer);
1823 TA* aux = reinterpret_cast<TA*>(t->auxBuffer);
1824 const bool ramp = t->needsRamp();
1825
1826 for (size_t numFrames = state->frameCount; numFrames; ) {
1827 AudioBufferProvider::Buffer& b(t->buffer);
1828 // get input buffer
1829 b.frameCount = numFrames;
1830 t->bufferProvider->getNextBuffer(&b);
1831 const TI *in = reinterpret_cast<TI*>(b.raw);
1832
1833 // in == NULL can happen if the track was flushed just after having
1834 // been enabled for mixing.
1835 if (in == NULL || (((uintptr_t)in) & 3)) {
1836 memset(out, 0, numFrames
1837 * channels * audio_bytes_per_sample(t->mMixerFormat));
1838 ALOGE_IF((((uintptr_t)in) & 3), "process_NoResampleOneTrack: bus error: "
1839 "buffer %p track %p, channels %d, needs %#x",
1840 in, t, t->channelCount, t->needs);
1841 return;
1842 }
1843
1844 const size_t outFrames = b.frameCount;
1845 volumeMix<MIXTYPE, is_same<TI, float>::value, false> (
1846 out, outFrames, in, aux, ramp, t);
1847
1848 out += outFrames * channels;
1849 if (aux != NULL) {
1850 aux += channels;
1851 }
1852 numFrames -= b.frameCount;
1853
1854 // release buffer
1855 t->bufferProvider->releaseBuffer(&b);
1856 }
1857 if (ramp) {
1858 t->adjustVolumeRamp(aux != NULL, is_same<TI, float>::value);
1859 }
1860 }
1861
1862 /* This track hook is called to do resampling then mixing,
1863 * pulling from the track's upstream AudioBufferProvider.
1864 *
1865 * MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
1866 * TO: int32_t (Q4.27) or float
1867 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1868 * TA: int32_t (Q4.27)
1869 */
1870 template <int MIXTYPE, typename TO, typename TI, typename TA>
track__Resample(track_t * t,TO * out,size_t outFrameCount,TO * temp,TA * aux)1871 void AudioMixer::track__Resample(track_t* t, TO* out, size_t outFrameCount, TO* temp, TA* aux)
1872 {
1873 ALOGVV("track__Resample\n");
1874 t->resampler->setSampleRate(t->sampleRate);
1875 const bool ramp = t->needsRamp();
1876 if (ramp || aux != NULL) {
1877 // if ramp: resample with unity gain to temp buffer and scale/mix in 2nd step.
1878 // if aux != NULL: resample with unity gain to temp buffer then apply send level.
1879
1880 t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1881 memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(TO));
1882 t->resampler->resample((int32_t*)temp, outFrameCount, t->bufferProvider);
1883
1884 volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
1885 out, outFrameCount, temp, aux, ramp, t);
1886
1887 } else { // constant volume gain
1888 t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
1889 t->resampler->resample((int32_t*)out, outFrameCount, t->bufferProvider);
1890 }
1891 }
1892
1893 /* This track hook is called to mix a track, when no resampling is required.
1894 * The input buffer should be present in t->in.
1895 *
1896 * MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
1897 * TO: int32_t (Q4.27) or float
1898 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1899 * TA: int32_t (Q4.27)
1900 */
1901 template <int MIXTYPE, typename TO, typename TI, typename TA>
track__NoResample(track_t * t,TO * out,size_t frameCount,TO * temp __unused,TA * aux)1902 void AudioMixer::track__NoResample(track_t* t, TO* out, size_t frameCount,
1903 TO* temp __unused, TA* aux)
1904 {
1905 ALOGVV("track__NoResample\n");
1906 const TI *in = static_cast<const TI *>(t->in);
1907
1908 volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
1909 out, frameCount, in, aux, t->needsRamp(), t);
1910
1911 // MIXTYPE_MONOEXPAND reads a single input channel and expands to NCHAN output channels.
1912 // MIXTYPE_MULTI reads NCHAN input channels and places to NCHAN output channels.
1913 in += (MIXTYPE == MIXTYPE_MONOEXPAND) ? frameCount : frameCount * t->mMixerChannelCount;
1914 t->in = in;
1915 }
1916
1917 /* The Mixer engine generates either int32_t (Q4_27) or float data.
1918 * We use this function to convert the engine buffers
1919 * to the desired mixer output format, either int16_t (Q.15) or float.
1920 */
convertMixerFormat(void * out,audio_format_t mixerOutFormat,void * in,audio_format_t mixerInFormat,size_t sampleCount)1921 void AudioMixer::convertMixerFormat(void *out, audio_format_t mixerOutFormat,
1922 void *in, audio_format_t mixerInFormat, size_t sampleCount)
1923 {
1924 switch (mixerInFormat) {
1925 case AUDIO_FORMAT_PCM_FLOAT:
1926 switch (mixerOutFormat) {
1927 case AUDIO_FORMAT_PCM_FLOAT:
1928 memcpy(out, in, sampleCount * sizeof(float)); // MEMCPY. TODO optimize out
1929 break;
1930 case AUDIO_FORMAT_PCM_16_BIT:
1931 memcpy_to_i16_from_float((int16_t*)out, (float*)in, sampleCount);
1932 break;
1933 default:
1934 LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
1935 break;
1936 }
1937 break;
1938 case AUDIO_FORMAT_PCM_16_BIT:
1939 switch (mixerOutFormat) {
1940 case AUDIO_FORMAT_PCM_FLOAT:
1941 memcpy_to_float_from_q4_27((float*)out, (int32_t*)in, sampleCount);
1942 break;
1943 case AUDIO_FORMAT_PCM_16_BIT:
1944 // two int16_t are produced per iteration
1945 ditherAndClamp((int32_t*)out, (int32_t*)in, sampleCount >> 1);
1946 break;
1947 default:
1948 LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
1949 break;
1950 }
1951 break;
1952 default:
1953 LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
1954 break;
1955 }
1956 }
1957
1958 /* Returns the proper track hook to use for mixing the track into the output buffer.
1959 */
getTrackHook(int trackType,uint32_t channelCount,audio_format_t mixerInFormat,audio_format_t mixerOutFormat __unused)1960 AudioMixer::hook_t AudioMixer::getTrackHook(int trackType, uint32_t channelCount,
1961 audio_format_t mixerInFormat, audio_format_t mixerOutFormat __unused)
1962 {
1963 if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
1964 switch (trackType) {
1965 case TRACKTYPE_NOP:
1966 return track__nop;
1967 case TRACKTYPE_RESAMPLE:
1968 return track__genericResample;
1969 case TRACKTYPE_NORESAMPLEMONO:
1970 return track__16BitsMono;
1971 case TRACKTYPE_NORESAMPLE:
1972 return track__16BitsStereo;
1973 default:
1974 LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
1975 break;
1976 }
1977 }
1978 LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
1979 switch (trackType) {
1980 case TRACKTYPE_NOP:
1981 return track__nop;
1982 case TRACKTYPE_RESAMPLE:
1983 switch (mixerInFormat) {
1984 case AUDIO_FORMAT_PCM_FLOAT:
1985 return (AudioMixer::hook_t)
1986 track__Resample<MIXTYPE_MULTI, float /*TO*/, float /*TI*/, int32_t /*TA*/>;
1987 case AUDIO_FORMAT_PCM_16_BIT:
1988 return (AudioMixer::hook_t)\
1989 track__Resample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
1990 default:
1991 LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
1992 break;
1993 }
1994 break;
1995 case TRACKTYPE_NORESAMPLEMONO:
1996 switch (mixerInFormat) {
1997 case AUDIO_FORMAT_PCM_FLOAT:
1998 return (AudioMixer::hook_t)
1999 track__NoResample<MIXTYPE_MONOEXPAND, float, float, int32_t>;
2000 case AUDIO_FORMAT_PCM_16_BIT:
2001 return (AudioMixer::hook_t)
2002 track__NoResample<MIXTYPE_MONOEXPAND, int32_t, int16_t, int32_t>;
2003 default:
2004 LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2005 break;
2006 }
2007 break;
2008 case TRACKTYPE_NORESAMPLE:
2009 switch (mixerInFormat) {
2010 case AUDIO_FORMAT_PCM_FLOAT:
2011 return (AudioMixer::hook_t)
2012 track__NoResample<MIXTYPE_MULTI, float, float, int32_t>;
2013 case AUDIO_FORMAT_PCM_16_BIT:
2014 return (AudioMixer::hook_t)
2015 track__NoResample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
2016 default:
2017 LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2018 break;
2019 }
2020 break;
2021 default:
2022 LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
2023 break;
2024 }
2025 return NULL;
2026 }
2027
2028 /* Returns the proper process hook for mixing tracks. Currently works only for
2029 * PROCESSTYPE_NORESAMPLEONETRACK, a mix involving one track, no resampling.
2030 *
2031 * TODO: Due to the special mixing considerations of duplicating to
2032 * a stereo output track, the input track cannot be MONO. This should be
2033 * prevented by the caller.
2034 */
getProcessHook(int processType,uint32_t channelCount,audio_format_t mixerInFormat,audio_format_t mixerOutFormat)2035 AudioMixer::process_hook_t AudioMixer::getProcessHook(int processType, uint32_t channelCount,
2036 audio_format_t mixerInFormat, audio_format_t mixerOutFormat)
2037 {
2038 if (processType != PROCESSTYPE_NORESAMPLEONETRACK) { // Only NORESAMPLEONETRACK
2039 LOG_ALWAYS_FATAL("bad processType: %d", processType);
2040 return NULL;
2041 }
2042 if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
2043 return process__OneTrack16BitsStereoNoResampling;
2044 }
2045 LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
2046 switch (mixerInFormat) {
2047 case AUDIO_FORMAT_PCM_FLOAT:
2048 switch (mixerOutFormat) {
2049 case AUDIO_FORMAT_PCM_FLOAT:
2050 return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2051 float /*TO*/, float /*TI*/, int32_t /*TA*/>;
2052 case AUDIO_FORMAT_PCM_16_BIT:
2053 return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2054 int16_t, float, int32_t>;
2055 default:
2056 LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
2057 break;
2058 }
2059 break;
2060 case AUDIO_FORMAT_PCM_16_BIT:
2061 switch (mixerOutFormat) {
2062 case AUDIO_FORMAT_PCM_FLOAT:
2063 return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2064 float, int16_t, int32_t>;
2065 case AUDIO_FORMAT_PCM_16_BIT:
2066 return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2067 int16_t, int16_t, int32_t>;
2068 default:
2069 LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
2070 break;
2071 }
2072 break;
2073 default:
2074 LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2075 break;
2076 }
2077 return NULL;
2078 }
2079
2080 // ----------------------------------------------------------------------------
2081 } // namespace android
2082