1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 /// Analyze 'Val', seeing if it is a simple linear expression.
25 /// If so, decompose it, returning some value X, such that Val is
26 /// X*Scale+Offset.
27 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)28 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29 uint64_t &Offset) {
30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31 Offset = CI->getZExtValue();
32 Scale = 0;
33 return ConstantInt::get(Val->getType(), 0);
34 }
35
36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37 // Cannot look past anything that might overflow.
38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40 Scale = 1;
41 Offset = 0;
42 return Val;
43 }
44
45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46 if (I->getOpcode() == Instruction::Shl) {
47 // This is a value scaled by '1 << the shift amt'.
48 Scale = UINT64_C(1) << RHS->getZExtValue();
49 Offset = 0;
50 return I->getOperand(0);
51 }
52
53 if (I->getOpcode() == Instruction::Mul) {
54 // This value is scaled by 'RHS'.
55 Scale = RHS->getZExtValue();
56 Offset = 0;
57 return I->getOperand(0);
58 }
59
60 if (I->getOpcode() == Instruction::Add) {
61 // We have X+C. Check to see if we really have (X*C2)+C1,
62 // where C1 is divisible by C2.
63 unsigned SubScale;
64 Value *SubVal =
65 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66 Offset += RHS->getZExtValue();
67 Scale = SubScale;
68 return SubVal;
69 }
70 }
71 }
72
73 // Otherwise, we can't look past this.
74 Scale = 1;
75 Offset = 0;
76 return Val;
77 }
78
79 /// If we find a cast of an allocation instruction, try to eliminate the cast by
80 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82 AllocaInst &AI) {
83 PointerType *PTy = cast<PointerType>(CI.getType());
84
85 BuilderTy AllocaBuilder(*Builder);
86 AllocaBuilder.SetInsertPoint(&AI);
87
88 // Get the type really allocated and the type casted to.
89 Type *AllocElTy = AI.getAllocatedType();
90 Type *CastElTy = PTy->getElementType();
91 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
92
93 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
94 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
95 if (CastElTyAlign < AllocElTyAlign) return nullptr;
96
97 // If the allocation has multiple uses, only promote it if we are strictly
98 // increasing the alignment of the resultant allocation. If we keep it the
99 // same, we open the door to infinite loops of various kinds.
100 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
101
102 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
103 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
104 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
105
106 // If the allocation has multiple uses, only promote it if we're not
107 // shrinking the amount of memory being allocated.
108 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
109 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
110 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
111
112 // See if we can satisfy the modulus by pulling a scale out of the array
113 // size argument.
114 unsigned ArraySizeScale;
115 uint64_t ArrayOffset;
116 Value *NumElements = // See if the array size is a decomposable linear expr.
117 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
118
119 // If we can now satisfy the modulus, by using a non-1 scale, we really can
120 // do the xform.
121 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
122 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
123
124 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
125 Value *Amt = nullptr;
126 if (Scale == 1) {
127 Amt = NumElements;
128 } else {
129 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
130 // Insert before the alloca, not before the cast.
131 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
132 }
133
134 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
135 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
136 Offset, true);
137 Amt = AllocaBuilder.CreateAdd(Amt, Off);
138 }
139
140 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
141 New->setAlignment(AI.getAlignment());
142 New->takeName(&AI);
143 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
144
145 // If the allocation has multiple real uses, insert a cast and change all
146 // things that used it to use the new cast. This will also hack on CI, but it
147 // will die soon.
148 if (!AI.hasOneUse()) {
149 // New is the allocation instruction, pointer typed. AI is the original
150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
152 ReplaceInstUsesWith(AI, NewCast);
153 }
154 return ReplaceInstUsesWith(CI, New);
155 }
156
157 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
158 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)159 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
160 bool isSigned) {
161 if (Constant *C = dyn_cast<Constant>(V)) {
162 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
163 // If we got a constantexpr back, try to simplify it with DL info.
164 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
165 C = ConstantFoldConstantExpression(CE, DL, TLI);
166 return C;
167 }
168
169 // Otherwise, it must be an instruction.
170 Instruction *I = cast<Instruction>(V);
171 Instruction *Res = nullptr;
172 unsigned Opc = I->getOpcode();
173 switch (Opc) {
174 case Instruction::Add:
175 case Instruction::Sub:
176 case Instruction::Mul:
177 case Instruction::And:
178 case Instruction::Or:
179 case Instruction::Xor:
180 case Instruction::AShr:
181 case Instruction::LShr:
182 case Instruction::Shl:
183 case Instruction::UDiv:
184 case Instruction::URem: {
185 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
186 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
187 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
188 break;
189 }
190 case Instruction::Trunc:
191 case Instruction::ZExt:
192 case Instruction::SExt:
193 // If the source type of the cast is the type we're trying for then we can
194 // just return the source. There's no need to insert it because it is not
195 // new.
196 if (I->getOperand(0)->getType() == Ty)
197 return I->getOperand(0);
198
199 // Otherwise, must be the same type of cast, so just reinsert a new one.
200 // This also handles the case of zext(trunc(x)) -> zext(x).
201 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
202 Opc == Instruction::SExt);
203 break;
204 case Instruction::Select: {
205 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
207 Res = SelectInst::Create(I->getOperand(0), True, False);
208 break;
209 }
210 case Instruction::PHI: {
211 PHINode *OPN = cast<PHINode>(I);
212 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
213 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
214 Value *V =
215 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
216 NPN->addIncoming(V, OPN->getIncomingBlock(i));
217 }
218 Res = NPN;
219 break;
220 }
221 default:
222 // TODO: Can handle more cases here.
223 llvm_unreachable("Unreachable!");
224 }
225
226 Res->takeName(I);
227 return InsertNewInstWith(Res, *I);
228 }
229
230
231 /// This function is a wrapper around CastInst::isEliminableCastPair. It
232 /// simply extracts arguments and returns what that function returns.
233 static Instruction::CastOps
isEliminableCastPair(const CastInst * CI,unsigned opcode,Type * DstTy,const DataLayout & DL)234 isEliminableCastPair(const CastInst *CI, ///< First cast instruction
235 unsigned opcode, ///< Opcode for the second cast
236 Type *DstTy, ///< Target type for the second cast
237 const DataLayout &DL) {
238 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
239 Type *MidTy = CI->getType(); // B from above
240
241 // Get the opcodes of the two Cast instructions
242 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
243 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
244 Type *SrcIntPtrTy =
245 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
246 Type *MidIntPtrTy =
247 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
248 Type *DstIntPtrTy =
249 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
250 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
251 DstTy, SrcIntPtrTy, MidIntPtrTy,
252 DstIntPtrTy);
253
254 // We don't want to form an inttoptr or ptrtoint that converts to an integer
255 // type that differs from the pointer size.
256 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
257 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
258 Res = 0;
259
260 return Instruction::CastOps(Res);
261 }
262
263 /// Return true if the cast from "V to Ty" actually results in any code being
264 /// generated and is interesting to optimize out.
265 /// If the cast can be eliminated by some other simple transformation, we prefer
266 /// to do the simplification first.
ShouldOptimizeCast(Instruction::CastOps opc,const Value * V,Type * Ty)267 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
268 Type *Ty) {
269 // Noop casts and casts of constants should be eliminated trivially.
270 if (V->getType() == Ty || isa<Constant>(V)) return false;
271
272 // If this is another cast that can be eliminated, we prefer to have it
273 // eliminated.
274 if (const CastInst *CI = dyn_cast<CastInst>(V))
275 if (isEliminableCastPair(CI, opc, Ty, DL))
276 return false;
277
278 // If this is a vector sext from a compare, then we don't want to break the
279 // idiom where each element of the extended vector is either zero or all ones.
280 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
281 return false;
282
283 return true;
284 }
285
286
287 /// @brief Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)288 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
289 Value *Src = CI.getOperand(0);
290
291 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
292 // eliminate it now.
293 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
294 if (Instruction::CastOps opc =
295 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
296 // The first cast (CSrc) is eliminable so we need to fix up or replace
297 // the second cast (CI). CSrc will then have a good chance of being dead.
298 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
299 }
300 }
301
302 // If we are casting a select then fold the cast into the select
303 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
304 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
305 return NV;
306
307 // If we are casting a PHI then fold the cast into the PHI
308 if (isa<PHINode>(Src)) {
309 // We don't do this if this would create a PHI node with an illegal type if
310 // it is currently legal.
311 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
312 ShouldChangeType(CI.getType(), Src->getType()))
313 if (Instruction *NV = FoldOpIntoPhi(CI))
314 return NV;
315 }
316
317 return nullptr;
318 }
319
320 /// Return true if we can evaluate the specified expression tree as type Ty
321 /// instead of its larger type, and arrive with the same value.
322 /// This is used by code that tries to eliminate truncates.
323 ///
324 /// Ty will always be a type smaller than V. We should return true if trunc(V)
325 /// can be computed by computing V in the smaller type. If V is an instruction,
326 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
327 /// makes sense if x and y can be efficiently truncated.
328 ///
329 /// This function works on both vectors and scalars.
330 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombiner & IC,Instruction * CxtI)331 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
332 Instruction *CxtI) {
333 // We can always evaluate constants in another type.
334 if (isa<Constant>(V))
335 return true;
336
337 Instruction *I = dyn_cast<Instruction>(V);
338 if (!I) return false;
339
340 Type *OrigTy = V->getType();
341
342 // If this is an extension from the dest type, we can eliminate it, even if it
343 // has multiple uses.
344 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
345 I->getOperand(0)->getType() == Ty)
346 return true;
347
348 // We can't extend or shrink something that has multiple uses: doing so would
349 // require duplicating the instruction in general, which isn't profitable.
350 if (!I->hasOneUse()) return false;
351
352 unsigned Opc = I->getOpcode();
353 switch (Opc) {
354 case Instruction::Add:
355 case Instruction::Sub:
356 case Instruction::Mul:
357 case Instruction::And:
358 case Instruction::Or:
359 case Instruction::Xor:
360 // These operators can all arbitrarily be extended or truncated.
361 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
362 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
363
364 case Instruction::UDiv:
365 case Instruction::URem: {
366 // UDiv and URem can be truncated if all the truncated bits are zero.
367 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
368 uint32_t BitWidth = Ty->getScalarSizeInBits();
369 if (BitWidth < OrigBitWidth) {
370 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
371 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
372 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
373 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
374 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
375 }
376 }
377 break;
378 }
379 case Instruction::Shl:
380 // If we are truncating the result of this SHL, and if it's a shift of a
381 // constant amount, we can always perform a SHL in a smaller type.
382 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
383 uint32_t BitWidth = Ty->getScalarSizeInBits();
384 if (CI->getLimitedValue(BitWidth) < BitWidth)
385 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
386 }
387 break;
388 case Instruction::LShr:
389 // If this is a truncate of a logical shr, we can truncate it to a smaller
390 // lshr iff we know that the bits we would otherwise be shifting in are
391 // already zeros.
392 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394 uint32_t BitWidth = Ty->getScalarSizeInBits();
395 if (IC.MaskedValueIsZero(I->getOperand(0),
396 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
397 CI->getLimitedValue(BitWidth) < BitWidth) {
398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399 }
400 }
401 break;
402 case Instruction::Trunc:
403 // trunc(trunc(x)) -> trunc(x)
404 return true;
405 case Instruction::ZExt:
406 case Instruction::SExt:
407 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
408 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
409 return true;
410 case Instruction::Select: {
411 SelectInst *SI = cast<SelectInst>(I);
412 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
413 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
414 }
415 case Instruction::PHI: {
416 // We can change a phi if we can change all operands. Note that we never
417 // get into trouble with cyclic PHIs here because we only consider
418 // instructions with a single use.
419 PHINode *PN = cast<PHINode>(I);
420 for (Value *IncValue : PN->incoming_values())
421 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
422 return false;
423 return true;
424 }
425 default:
426 // TODO: Can handle more cases here.
427 break;
428 }
429
430 return false;
431 }
432
433 /// Given a vector that is bitcast to an integer, optionally logically
434 /// right-shifted, and truncated, convert it to an extractelement.
435 /// Example (big endian):
436 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
437 /// --->
438 /// extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombiner & IC,const DataLayout & DL)439 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
440 const DataLayout &DL) {
441 Value *TruncOp = Trunc.getOperand(0);
442 Type *DestType = Trunc.getType();
443 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
444 return nullptr;
445
446 Value *VecInput = nullptr;
447 ConstantInt *ShiftVal = nullptr;
448 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
449 m_LShr(m_BitCast(m_Value(VecInput)),
450 m_ConstantInt(ShiftVal)))) ||
451 !isa<VectorType>(VecInput->getType()))
452 return nullptr;
453
454 VectorType *VecType = cast<VectorType>(VecInput->getType());
455 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
456 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
457 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
458
459 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
460 return nullptr;
461
462 // If the element type of the vector doesn't match the result type,
463 // bitcast it to a vector type that we can extract from.
464 unsigned NumVecElts = VecWidth / DestWidth;
465 if (VecType->getElementType() != DestType) {
466 VecType = VectorType::get(DestType, NumVecElts);
467 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
468 }
469
470 unsigned Elt = ShiftAmount / DestWidth;
471 if (DL.isBigEndian())
472 Elt = NumVecElts - 1 - Elt;
473
474 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
475 }
476
visitTrunc(TruncInst & CI)477 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
478 if (Instruction *Result = commonCastTransforms(CI))
479 return Result;
480
481 // Test if the trunc is the user of a select which is part of a
482 // minimum or maximum operation. If so, don't do any more simplification.
483 // Even simplifying demanded bits can break the canonical form of a
484 // min/max.
485 Value *LHS, *RHS;
486 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
487 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
488 return nullptr;
489
490 // See if we can simplify any instructions used by the input whose sole
491 // purpose is to compute bits we don't care about.
492 if (SimplifyDemandedInstructionBits(CI))
493 return &CI;
494
495 Value *Src = CI.getOperand(0);
496 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
497
498 // Attempt to truncate the entire input expression tree to the destination
499 // type. Only do this if the dest type is a simple type, don't convert the
500 // expression tree to something weird like i93 unless the source is also
501 // strange.
502 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
503 canEvaluateTruncated(Src, DestTy, *this, &CI)) {
504
505 // If this cast is a truncate, evaluting in a different type always
506 // eliminates the cast, so it is always a win.
507 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
508 " to avoid cast: " << CI << '\n');
509 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
510 assert(Res->getType() == DestTy);
511 return ReplaceInstUsesWith(CI, Res);
512 }
513
514 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
515 if (DestTy->getScalarSizeInBits() == 1) {
516 Constant *One = ConstantInt::get(SrcTy, 1);
517 Src = Builder->CreateAnd(Src, One);
518 Value *Zero = Constant::getNullValue(Src->getType());
519 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
520 }
521
522 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
523 Value *A = nullptr; ConstantInt *Cst = nullptr;
524 if (Src->hasOneUse() &&
525 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
526 // We have three types to worry about here, the type of A, the source of
527 // the truncate (MidSize), and the destination of the truncate. We know that
528 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
529 // between ASize and ResultSize.
530 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
531
532 // If the shift amount is larger than the size of A, then the result is
533 // known to be zero because all the input bits got shifted out.
534 if (Cst->getZExtValue() >= ASize)
535 return ReplaceInstUsesWith(CI, Constant::getNullValue(DestTy));
536
537 // Since we're doing an lshr and a zero extend, and know that the shift
538 // amount is smaller than ASize, it is always safe to do the shift in A's
539 // type, then zero extend or truncate to the result.
540 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
541 Shift->takeName(Src);
542 return CastInst::CreateIntegerCast(Shift, DestTy, false);
543 }
544
545 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
546 // conversion.
547 // It works because bits coming from sign extension have the same value as
548 // the sign bit of the original value; performing ashr instead of lshr
549 // generates bits of the same value as the sign bit.
550 if (Src->hasOneUse() &&
551 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
552 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
553 const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
554 // This optimization can be only performed when zero bits generated by
555 // the original lshr aren't pulled into the value after truncation, so we
556 // can only shift by values smaller than the size of destination type (in
557 // bits).
558 if (Cst->getValue().ult(ASize)) {
559 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
560 Shift->takeName(Src);
561 return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
562 }
563 }
564
565 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
566 // type isn't non-native.
567 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
568 ShouldChangeType(SrcTy, DestTy) &&
569 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
570 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
571 return BinaryOperator::CreateAnd(NewTrunc,
572 ConstantExpr::getTrunc(Cst, DestTy));
573 }
574
575 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
576 return I;
577
578 return nullptr;
579 }
580
581 /// Transform (zext icmp) to bitwise / integer operations in order to eliminate
582 /// the icmp.
transformZExtICmp(ICmpInst * ICI,Instruction & CI,bool DoXform)583 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
584 bool DoXform) {
585 // If we are just checking for a icmp eq of a single bit and zext'ing it
586 // to an integer, then shift the bit to the appropriate place and then
587 // cast to integer to avoid the comparison.
588 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
589 const APInt &Op1CV = Op1C->getValue();
590
591 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
592 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
593 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
594 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
595 if (!DoXform) return ICI;
596
597 Value *In = ICI->getOperand(0);
598 Value *Sh = ConstantInt::get(In->getType(),
599 In->getType()->getScalarSizeInBits()-1);
600 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
601 if (In->getType() != CI.getType())
602 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
603
604 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
605 Constant *One = ConstantInt::get(In->getType(), 1);
606 In = Builder->CreateXor(In, One, In->getName()+".not");
607 }
608
609 return ReplaceInstUsesWith(CI, In);
610 }
611
612 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
613 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
614 // zext (X == 1) to i32 --> X iff X has only the low bit set.
615 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
616 // zext (X != 0) to i32 --> X iff X has only the low bit set.
617 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
618 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
619 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
620 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
621 // This only works for EQ and NE
622 ICI->isEquality()) {
623 // If Op1C some other power of two, convert:
624 uint32_t BitWidth = Op1C->getType()->getBitWidth();
625 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
626 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
627
628 APInt KnownZeroMask(~KnownZero);
629 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
630 if (!DoXform) return ICI;
631
632 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
633 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
634 // (X&4) == 2 --> false
635 // (X&4) != 2 --> true
636 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
637 isNE);
638 Res = ConstantExpr::getZExt(Res, CI.getType());
639 return ReplaceInstUsesWith(CI, Res);
640 }
641
642 uint32_t ShiftAmt = KnownZeroMask.logBase2();
643 Value *In = ICI->getOperand(0);
644 if (ShiftAmt) {
645 // Perform a logical shr by shiftamt.
646 // Insert the shift to put the result in the low bit.
647 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
648 In->getName()+".lobit");
649 }
650
651 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
652 Constant *One = ConstantInt::get(In->getType(), 1);
653 In = Builder->CreateXor(In, One);
654 }
655
656 if (CI.getType() == In->getType())
657 return ReplaceInstUsesWith(CI, In);
658 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
659 }
660 }
661 }
662
663 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
664 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
665 // may lead to additional simplifications.
666 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
667 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
668 uint32_t BitWidth = ITy->getBitWidth();
669 Value *LHS = ICI->getOperand(0);
670 Value *RHS = ICI->getOperand(1);
671
672 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
673 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
674 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
675 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
676
677 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
678 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
679 APInt UnknownBit = ~KnownBits;
680 if (UnknownBit.countPopulation() == 1) {
681 if (!DoXform) return ICI;
682
683 Value *Result = Builder->CreateXor(LHS, RHS);
684
685 // Mask off any bits that are set and won't be shifted away.
686 if (KnownOneLHS.uge(UnknownBit))
687 Result = Builder->CreateAnd(Result,
688 ConstantInt::get(ITy, UnknownBit));
689
690 // Shift the bit we're testing down to the lsb.
691 Result = Builder->CreateLShr(
692 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
693
694 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
695 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
696 Result->takeName(ICI);
697 return ReplaceInstUsesWith(CI, Result);
698 }
699 }
700 }
701 }
702
703 return nullptr;
704 }
705
706 /// Determine if the specified value can be computed in the specified wider type
707 /// and produce the same low bits. If not, return false.
708 ///
709 /// If this function returns true, it can also return a non-zero number of bits
710 /// (in BitsToClear) which indicates that the value it computes is correct for
711 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
712 /// out. For example, to promote something like:
713 ///
714 /// %B = trunc i64 %A to i32
715 /// %C = lshr i32 %B, 8
716 /// %E = zext i32 %C to i64
717 ///
718 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
719 /// set to 8 to indicate that the promoted value needs to have bits 24-31
720 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
721 /// clear the top bits anyway, doing this has no extra cost.
722 ///
723 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombiner & IC,Instruction * CxtI)724 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
725 InstCombiner &IC, Instruction *CxtI) {
726 BitsToClear = 0;
727 if (isa<Constant>(V))
728 return true;
729
730 Instruction *I = dyn_cast<Instruction>(V);
731 if (!I) return false;
732
733 // If the input is a truncate from the destination type, we can trivially
734 // eliminate it.
735 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
736 return true;
737
738 // We can't extend or shrink something that has multiple uses: doing so would
739 // require duplicating the instruction in general, which isn't profitable.
740 if (!I->hasOneUse()) return false;
741
742 unsigned Opc = I->getOpcode(), Tmp;
743 switch (Opc) {
744 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
745 case Instruction::SExt: // zext(sext(x)) -> sext(x).
746 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
747 return true;
748 case Instruction::And:
749 case Instruction::Or:
750 case Instruction::Xor:
751 case Instruction::Add:
752 case Instruction::Sub:
753 case Instruction::Mul:
754 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
755 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
756 return false;
757 // These can all be promoted if neither operand has 'bits to clear'.
758 if (BitsToClear == 0 && Tmp == 0)
759 return true;
760
761 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
762 // other side, BitsToClear is ok.
763 if (Tmp == 0 &&
764 (Opc == Instruction::And || Opc == Instruction::Or ||
765 Opc == Instruction::Xor)) {
766 // We use MaskedValueIsZero here for generality, but the case we care
767 // about the most is constant RHS.
768 unsigned VSize = V->getType()->getScalarSizeInBits();
769 if (IC.MaskedValueIsZero(I->getOperand(1),
770 APInt::getHighBitsSet(VSize, BitsToClear),
771 0, CxtI))
772 return true;
773 }
774
775 // Otherwise, we don't know how to analyze this BitsToClear case yet.
776 return false;
777
778 case Instruction::Shl:
779 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
780 // upper bits we can reduce BitsToClear by the shift amount.
781 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
782 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
783 return false;
784 uint64_t ShiftAmt = Amt->getZExtValue();
785 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
786 return true;
787 }
788 return false;
789 case Instruction::LShr:
790 // We can promote lshr(x, cst) if we can promote x. This requires the
791 // ultimate 'and' to clear out the high zero bits we're clearing out though.
792 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
793 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
794 return false;
795 BitsToClear += Amt->getZExtValue();
796 if (BitsToClear > V->getType()->getScalarSizeInBits())
797 BitsToClear = V->getType()->getScalarSizeInBits();
798 return true;
799 }
800 // Cannot promote variable LSHR.
801 return false;
802 case Instruction::Select:
803 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
804 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
805 // TODO: If important, we could handle the case when the BitsToClear are
806 // known zero in the disagreeing side.
807 Tmp != BitsToClear)
808 return false;
809 return true;
810
811 case Instruction::PHI: {
812 // We can change a phi if we can change all operands. Note that we never
813 // get into trouble with cyclic PHIs here because we only consider
814 // instructions with a single use.
815 PHINode *PN = cast<PHINode>(I);
816 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
817 return false;
818 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
819 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
820 // TODO: If important, we could handle the case when the BitsToClear
821 // are known zero in the disagreeing input.
822 Tmp != BitsToClear)
823 return false;
824 return true;
825 }
826 default:
827 // TODO: Can handle more cases here.
828 return false;
829 }
830 }
831
visitZExt(ZExtInst & CI)832 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
833 // If this zero extend is only used by a truncate, let the truncate be
834 // eliminated before we try to optimize this zext.
835 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
836 return nullptr;
837
838 // If one of the common conversion will work, do it.
839 if (Instruction *Result = commonCastTransforms(CI))
840 return Result;
841
842 // See if we can simplify any instructions used by the input whose sole
843 // purpose is to compute bits we don't care about.
844 if (SimplifyDemandedInstructionBits(CI))
845 return &CI;
846
847 Value *Src = CI.getOperand(0);
848 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
849
850 // Attempt to extend the entire input expression tree to the destination
851 // type. Only do this if the dest type is a simple type, don't convert the
852 // expression tree to something weird like i93 unless the source is also
853 // strange.
854 unsigned BitsToClear;
855 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
856 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
857 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
858 "Unreasonable BitsToClear");
859
860 // Okay, we can transform this! Insert the new expression now.
861 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
862 " to avoid zero extend: " << CI << '\n');
863 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
864 assert(Res->getType() == DestTy);
865
866 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
867 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
868
869 // If the high bits are already filled with zeros, just replace this
870 // cast with the result.
871 if (MaskedValueIsZero(Res,
872 APInt::getHighBitsSet(DestBitSize,
873 DestBitSize-SrcBitsKept),
874 0, &CI))
875 return ReplaceInstUsesWith(CI, Res);
876
877 // We need to emit an AND to clear the high bits.
878 Constant *C = ConstantInt::get(Res->getType(),
879 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
880 return BinaryOperator::CreateAnd(Res, C);
881 }
882
883 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
884 // types and if the sizes are just right we can convert this into a logical
885 // 'and' which will be much cheaper than the pair of casts.
886 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
887 // TODO: Subsume this into EvaluateInDifferentType.
888
889 // Get the sizes of the types involved. We know that the intermediate type
890 // will be smaller than A or C, but don't know the relation between A and C.
891 Value *A = CSrc->getOperand(0);
892 unsigned SrcSize = A->getType()->getScalarSizeInBits();
893 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
894 unsigned DstSize = CI.getType()->getScalarSizeInBits();
895 // If we're actually extending zero bits, then if
896 // SrcSize < DstSize: zext(a & mask)
897 // SrcSize == DstSize: a & mask
898 // SrcSize > DstSize: trunc(a) & mask
899 if (SrcSize < DstSize) {
900 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
901 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
902 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
903 return new ZExtInst(And, CI.getType());
904 }
905
906 if (SrcSize == DstSize) {
907 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
908 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
909 AndValue));
910 }
911 if (SrcSize > DstSize) {
912 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
913 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
914 return BinaryOperator::CreateAnd(Trunc,
915 ConstantInt::get(Trunc->getType(),
916 AndValue));
917 }
918 }
919
920 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
921 return transformZExtICmp(ICI, CI);
922
923 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
924 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
925 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
926 // of the (zext icmp) will be transformed.
927 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
928 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
929 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
930 (transformZExtICmp(LHS, CI, false) ||
931 transformZExtICmp(RHS, CI, false))) {
932 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
933 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
934 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
935 }
936 }
937
938 // zext(trunc(X) & C) -> (X & zext(C)).
939 Constant *C;
940 Value *X;
941 if (SrcI &&
942 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
943 X->getType() == CI.getType())
944 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
945
946 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
947 Value *And;
948 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
949 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
950 X->getType() == CI.getType()) {
951 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
952 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
953 }
954
955 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
956 if (SrcI && SrcI->hasOneUse() &&
957 SrcI->getType()->getScalarType()->isIntegerTy(1) &&
958 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
959 Value *New = Builder->CreateZExt(X, CI.getType());
960 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
961 }
962
963 return nullptr;
964 }
965
966 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)967 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
968 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
969 ICmpInst::Predicate Pred = ICI->getPredicate();
970
971 // Don't bother if Op1 isn't of vector or integer type.
972 if (!Op1->getType()->isIntOrIntVectorTy())
973 return nullptr;
974
975 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
976 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
977 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
978 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
979 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
980
981 Value *Sh = ConstantInt::get(Op0->getType(),
982 Op0->getType()->getScalarSizeInBits()-1);
983 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
984 if (In->getType() != CI.getType())
985 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
986
987 if (Pred == ICmpInst::ICMP_SGT)
988 In = Builder->CreateNot(In, In->getName()+".not");
989 return ReplaceInstUsesWith(CI, In);
990 }
991 }
992
993 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
994 // If we know that only one bit of the LHS of the icmp can be set and we
995 // have an equality comparison with zero or a power of 2, we can transform
996 // the icmp and sext into bitwise/integer operations.
997 if (ICI->hasOneUse() &&
998 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
999 unsigned BitWidth = Op1C->getType()->getBitWidth();
1000 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1001 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
1002
1003 APInt KnownZeroMask(~KnownZero);
1004 if (KnownZeroMask.isPowerOf2()) {
1005 Value *In = ICI->getOperand(0);
1006
1007 // If the icmp tests for a known zero bit we can constant fold it.
1008 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1009 Value *V = Pred == ICmpInst::ICMP_NE ?
1010 ConstantInt::getAllOnesValue(CI.getType()) :
1011 ConstantInt::getNullValue(CI.getType());
1012 return ReplaceInstUsesWith(CI, V);
1013 }
1014
1015 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1016 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1017 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1018 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1019 // Perform a right shift to place the desired bit in the LSB.
1020 if (ShiftAmt)
1021 In = Builder->CreateLShr(In,
1022 ConstantInt::get(In->getType(), ShiftAmt));
1023
1024 // At this point "In" is either 1 or 0. Subtract 1 to turn
1025 // {1, 0} -> {0, -1}.
1026 In = Builder->CreateAdd(In,
1027 ConstantInt::getAllOnesValue(In->getType()),
1028 "sext");
1029 } else {
1030 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1031 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1032 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1033 // Perform a left shift to place the desired bit in the MSB.
1034 if (ShiftAmt)
1035 In = Builder->CreateShl(In,
1036 ConstantInt::get(In->getType(), ShiftAmt));
1037
1038 // Distribute the bit over the whole bit width.
1039 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1040 BitWidth - 1), "sext");
1041 }
1042
1043 if (CI.getType() == In->getType())
1044 return ReplaceInstUsesWith(CI, In);
1045 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1046 }
1047 }
1048 }
1049
1050 return nullptr;
1051 }
1052
1053 /// Return true if we can take the specified value and return it as type Ty
1054 /// without inserting any new casts and without changing the value of the common
1055 /// low bits. This is used by code that tries to promote integer operations to
1056 /// a wider types will allow us to eliminate the extension.
1057 ///
1058 /// This function works on both vectors and scalars.
1059 ///
canEvaluateSExtd(Value * V,Type * Ty)1060 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1061 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1062 "Can't sign extend type to a smaller type");
1063 // If this is a constant, it can be trivially promoted.
1064 if (isa<Constant>(V))
1065 return true;
1066
1067 Instruction *I = dyn_cast<Instruction>(V);
1068 if (!I) return false;
1069
1070 // If this is a truncate from the dest type, we can trivially eliminate it.
1071 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1072 return true;
1073
1074 // We can't extend or shrink something that has multiple uses: doing so would
1075 // require duplicating the instruction in general, which isn't profitable.
1076 if (!I->hasOneUse()) return false;
1077
1078 switch (I->getOpcode()) {
1079 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1080 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1081 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1082 return true;
1083 case Instruction::And:
1084 case Instruction::Or:
1085 case Instruction::Xor:
1086 case Instruction::Add:
1087 case Instruction::Sub:
1088 case Instruction::Mul:
1089 // These operators can all arbitrarily be extended if their inputs can.
1090 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1091 canEvaluateSExtd(I->getOperand(1), Ty);
1092
1093 //case Instruction::Shl: TODO
1094 //case Instruction::LShr: TODO
1095
1096 case Instruction::Select:
1097 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1098 canEvaluateSExtd(I->getOperand(2), Ty);
1099
1100 case Instruction::PHI: {
1101 // We can change a phi if we can change all operands. Note that we never
1102 // get into trouble with cyclic PHIs here because we only consider
1103 // instructions with a single use.
1104 PHINode *PN = cast<PHINode>(I);
1105 for (Value *IncValue : PN->incoming_values())
1106 if (!canEvaluateSExtd(IncValue, Ty)) return false;
1107 return true;
1108 }
1109 default:
1110 // TODO: Can handle more cases here.
1111 break;
1112 }
1113
1114 return false;
1115 }
1116
visitSExt(SExtInst & CI)1117 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1118 // If this sign extend is only used by a truncate, let the truncate be
1119 // eliminated before we try to optimize this sext.
1120 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1121 return nullptr;
1122
1123 if (Instruction *I = commonCastTransforms(CI))
1124 return I;
1125
1126 // See if we can simplify any instructions used by the input whose sole
1127 // purpose is to compute bits we don't care about.
1128 if (SimplifyDemandedInstructionBits(CI))
1129 return &CI;
1130
1131 Value *Src = CI.getOperand(0);
1132 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1133
1134 // If we know that the value being extended is positive, we can use a zext
1135 // instead.
1136 bool KnownZero, KnownOne;
1137 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1138 if (KnownZero) {
1139 Value *ZExt = Builder->CreateZExt(Src, DestTy);
1140 return ReplaceInstUsesWith(CI, ZExt);
1141 }
1142
1143 // Attempt to extend the entire input expression tree to the destination
1144 // type. Only do this if the dest type is a simple type, don't convert the
1145 // expression tree to something weird like i93 unless the source is also
1146 // strange.
1147 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1148 canEvaluateSExtd(Src, DestTy)) {
1149 // Okay, we can transform this! Insert the new expression now.
1150 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1151 " to avoid sign extend: " << CI << '\n');
1152 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1153 assert(Res->getType() == DestTy);
1154
1155 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1156 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1157
1158 // If the high bits are already filled with sign bit, just replace this
1159 // cast with the result.
1160 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1161 return ReplaceInstUsesWith(CI, Res);
1162
1163 // We need to emit a shl + ashr to do the sign extend.
1164 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1165 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1166 ShAmt);
1167 }
1168
1169 // If this input is a trunc from our destination, then turn sext(trunc(x))
1170 // into shifts.
1171 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1172 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1173 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1174 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1175
1176 // We need to emit a shl + ashr to do the sign extend.
1177 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1178 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1179 return BinaryOperator::CreateAShr(Res, ShAmt);
1180 }
1181
1182 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1183 return transformSExtICmp(ICI, CI);
1184
1185 // If the input is a shl/ashr pair of a same constant, then this is a sign
1186 // extension from a smaller value. If we could trust arbitrary bitwidth
1187 // integers, we could turn this into a truncate to the smaller bit and then
1188 // use a sext for the whole extension. Since we don't, look deeper and check
1189 // for a truncate. If the source and dest are the same type, eliminate the
1190 // trunc and extend and just do shifts. For example, turn:
1191 // %a = trunc i32 %i to i8
1192 // %b = shl i8 %a, 6
1193 // %c = ashr i8 %b, 6
1194 // %d = sext i8 %c to i32
1195 // into:
1196 // %a = shl i32 %i, 30
1197 // %d = ashr i32 %a, 30
1198 Value *A = nullptr;
1199 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1200 ConstantInt *BA = nullptr, *CA = nullptr;
1201 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1202 m_ConstantInt(CA))) &&
1203 BA == CA && A->getType() == CI.getType()) {
1204 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1205 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1206 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1207 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1208 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1209 return BinaryOperator::CreateAShr(A, ShAmtV);
1210 }
1211
1212 return nullptr;
1213 }
1214
1215
1216 /// Return a Constant* for the specified floating-point constant if it fits
1217 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1218 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1219 bool losesInfo;
1220 APFloat F = CFP->getValueAPF();
1221 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1222 if (!losesInfo)
1223 return ConstantFP::get(CFP->getContext(), F);
1224 return nullptr;
1225 }
1226
1227 /// If this is a floating-point extension instruction, look
1228 /// through it until we get the source value.
lookThroughFPExtensions(Value * V)1229 static Value *lookThroughFPExtensions(Value *V) {
1230 if (Instruction *I = dyn_cast<Instruction>(V))
1231 if (I->getOpcode() == Instruction::FPExt)
1232 return lookThroughFPExtensions(I->getOperand(0));
1233
1234 // If this value is a constant, return the constant in the smallest FP type
1235 // that can accurately represent it. This allows us to turn
1236 // (float)((double)X+2.0) into x+2.0f.
1237 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1238 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1239 return V; // No constant folding of this.
1240 // See if the value can be truncated to half and then reextended.
1241 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
1242 return V;
1243 // See if the value can be truncated to float and then reextended.
1244 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
1245 return V;
1246 if (CFP->getType()->isDoubleTy())
1247 return V; // Won't shrink.
1248 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
1249 return V;
1250 // Don't try to shrink to various long double types.
1251 }
1252
1253 return V;
1254 }
1255
visitFPTrunc(FPTruncInst & CI)1256 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1257 if (Instruction *I = commonCastTransforms(CI))
1258 return I;
1259 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1260 // simplify this expression to avoid one or more of the trunc/extend
1261 // operations if we can do so without changing the numerical results.
1262 //
1263 // The exact manner in which the widths of the operands interact to limit
1264 // what we can and cannot do safely varies from operation to operation, and
1265 // is explained below in the various case statements.
1266 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1267 if (OpI && OpI->hasOneUse()) {
1268 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1269 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1270 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1271 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1272 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1273 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1274 unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1275 switch (OpI->getOpcode()) {
1276 default: break;
1277 case Instruction::FAdd:
1278 case Instruction::FSub:
1279 // For addition and subtraction, the infinitely precise result can
1280 // essentially be arbitrarily wide; proving that double rounding
1281 // will not occur because the result of OpI is exact (as we will for
1282 // FMul, for example) is hopeless. However, we *can* nonetheless
1283 // frequently know that double rounding cannot occur (or that it is
1284 // innocuous) by taking advantage of the specific structure of
1285 // infinitely-precise results that admit double rounding.
1286 //
1287 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1288 // to represent both sources, we can guarantee that the double
1289 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1290 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1291 // for proof of this fact).
1292 //
1293 // Note: Figueroa does not consider the case where DstFormat !=
1294 // SrcFormat. It's possible (likely even!) that this analysis
1295 // could be tightened for those cases, but they are rare (the main
1296 // case of interest here is (float)((double)float + float)).
1297 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1298 if (LHSOrig->getType() != CI.getType())
1299 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1300 if (RHSOrig->getType() != CI.getType())
1301 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1302 Instruction *RI =
1303 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1304 RI->copyFastMathFlags(OpI);
1305 return RI;
1306 }
1307 break;
1308 case Instruction::FMul:
1309 // For multiplication, the infinitely precise result has at most
1310 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1311 // that such a value can be exactly represented, then no double
1312 // rounding can possibly occur; we can safely perform the operation
1313 // in the destination format if it can represent both sources.
1314 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1315 if (LHSOrig->getType() != CI.getType())
1316 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1317 if (RHSOrig->getType() != CI.getType())
1318 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1319 Instruction *RI =
1320 BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1321 RI->copyFastMathFlags(OpI);
1322 return RI;
1323 }
1324 break;
1325 case Instruction::FDiv:
1326 // For division, we use again use the bound from Figueroa's
1327 // dissertation. I am entirely certain that this bound can be
1328 // tightened in the unbalanced operand case by an analysis based on
1329 // the diophantine rational approximation bound, but the well-known
1330 // condition used here is a good conservative first pass.
1331 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1332 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1333 if (LHSOrig->getType() != CI.getType())
1334 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1335 if (RHSOrig->getType() != CI.getType())
1336 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1337 Instruction *RI =
1338 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1339 RI->copyFastMathFlags(OpI);
1340 return RI;
1341 }
1342 break;
1343 case Instruction::FRem:
1344 // Remainder is straightforward. Remainder is always exact, so the
1345 // type of OpI doesn't enter into things at all. We simply evaluate
1346 // in whichever source type is larger, then convert to the
1347 // destination type.
1348 if (SrcWidth == OpWidth)
1349 break;
1350 if (LHSWidth < SrcWidth)
1351 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1352 else if (RHSWidth <= SrcWidth)
1353 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1354 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1355 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1356 if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1357 RI->copyFastMathFlags(OpI);
1358 return CastInst::CreateFPCast(ExactResult, CI.getType());
1359 }
1360 }
1361
1362 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1363 if (BinaryOperator::isFNeg(OpI)) {
1364 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1365 CI.getType());
1366 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1367 RI->copyFastMathFlags(OpI);
1368 return RI;
1369 }
1370 }
1371
1372 // (fptrunc (select cond, R1, Cst)) -->
1373 // (select cond, (fptrunc R1), (fptrunc Cst))
1374 //
1375 // - but only if this isn't part of a min/max operation, else we'll
1376 // ruin min/max canonical form which is to have the select and
1377 // compare's operands be of the same type with no casts to look through.
1378 Value *LHS, *RHS;
1379 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1380 if (SI &&
1381 (isa<ConstantFP>(SI->getOperand(1)) ||
1382 isa<ConstantFP>(SI->getOperand(2))) &&
1383 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1384 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1385 CI.getType());
1386 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1387 CI.getType());
1388 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1389 }
1390
1391 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1392 if (II) {
1393 switch (II->getIntrinsicID()) {
1394 default: break;
1395 case Intrinsic::fabs: {
1396 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1397 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1398 CI.getType());
1399 Type *IntrinsicType[] = { CI.getType() };
1400 Function *Overload = Intrinsic::getDeclaration(
1401 CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1402
1403 Value *Args[] = { InnerTrunc };
1404 return CallInst::Create(Overload, Args, II->getName());
1405 }
1406 }
1407 }
1408
1409 return nullptr;
1410 }
1411
visitFPExt(CastInst & CI)1412 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1413 return commonCastTransforms(CI);
1414 }
1415
1416 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1417 // This is safe if the intermediate type has enough bits in its mantissa to
1418 // accurately represent all values of X. For example, this won't work with
1419 // i64 -> float -> i64.
FoldItoFPtoI(Instruction & FI)1420 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1421 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1422 return nullptr;
1423 Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1424
1425 Value *SrcI = OpI->getOperand(0);
1426 Type *FITy = FI.getType();
1427 Type *OpITy = OpI->getType();
1428 Type *SrcTy = SrcI->getType();
1429 bool IsInputSigned = isa<SIToFPInst>(OpI);
1430 bool IsOutputSigned = isa<FPToSIInst>(FI);
1431
1432 // We can safely assume the conversion won't overflow the output range,
1433 // because (for example) (uint8_t)18293.f is undefined behavior.
1434
1435 // Since we can assume the conversion won't overflow, our decision as to
1436 // whether the input will fit in the float should depend on the minimum
1437 // of the input range and output range.
1438
1439 // This means this is also safe for a signed input and unsigned output, since
1440 // a negative input would lead to undefined behavior.
1441 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1442 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1443 int ActualSize = std::min(InputSize, OutputSize);
1444
1445 if (ActualSize <= OpITy->getFPMantissaWidth()) {
1446 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1447 if (IsInputSigned && IsOutputSigned)
1448 return new SExtInst(SrcI, FITy);
1449 return new ZExtInst(SrcI, FITy);
1450 }
1451 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1452 return new TruncInst(SrcI, FITy);
1453 if (SrcTy == FITy)
1454 return ReplaceInstUsesWith(FI, SrcI);
1455 return new BitCastInst(SrcI, FITy);
1456 }
1457 return nullptr;
1458 }
1459
visitFPToUI(FPToUIInst & FI)1460 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1461 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1462 if (!OpI)
1463 return commonCastTransforms(FI);
1464
1465 if (Instruction *I = FoldItoFPtoI(FI))
1466 return I;
1467
1468 return commonCastTransforms(FI);
1469 }
1470
visitFPToSI(FPToSIInst & FI)1471 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1472 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1473 if (!OpI)
1474 return commonCastTransforms(FI);
1475
1476 if (Instruction *I = FoldItoFPtoI(FI))
1477 return I;
1478
1479 return commonCastTransforms(FI);
1480 }
1481
visitUIToFP(CastInst & CI)1482 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1483 return commonCastTransforms(CI);
1484 }
1485
visitSIToFP(CastInst & CI)1486 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1487 return commonCastTransforms(CI);
1488 }
1489
visitIntToPtr(IntToPtrInst & CI)1490 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1491 // If the source integer type is not the intptr_t type for this target, do a
1492 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1493 // cast to be exposed to other transforms.
1494 unsigned AS = CI.getAddressSpace();
1495 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1496 DL.getPointerSizeInBits(AS)) {
1497 Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1498 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1499 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1500
1501 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1502 return new IntToPtrInst(P, CI.getType());
1503 }
1504
1505 if (Instruction *I = commonCastTransforms(CI))
1506 return I;
1507
1508 return nullptr;
1509 }
1510
1511 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1512 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1513 Value *Src = CI.getOperand(0);
1514
1515 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1516 // If casting the result of a getelementptr instruction with no offset, turn
1517 // this into a cast of the original pointer!
1518 if (GEP->hasAllZeroIndices() &&
1519 // If CI is an addrspacecast and GEP changes the poiner type, merging
1520 // GEP into CI would undo canonicalizing addrspacecast with different
1521 // pointer types, causing infinite loops.
1522 (!isa<AddrSpaceCastInst>(CI) ||
1523 GEP->getType() == GEP->getPointerOperand()->getType())) {
1524 // Changing the cast operand is usually not a good idea but it is safe
1525 // here because the pointer operand is being replaced with another
1526 // pointer operand so the opcode doesn't need to change.
1527 Worklist.Add(GEP);
1528 CI.setOperand(0, GEP->getOperand(0));
1529 return &CI;
1530 }
1531 }
1532
1533 return commonCastTransforms(CI);
1534 }
1535
visitPtrToInt(PtrToIntInst & CI)1536 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1537 // If the destination integer type is not the intptr_t type for this target,
1538 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1539 // to be exposed to other transforms.
1540
1541 Type *Ty = CI.getType();
1542 unsigned AS = CI.getPointerAddressSpace();
1543
1544 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1545 return commonPointerCastTransforms(CI);
1546
1547 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1548 if (Ty->isVectorTy()) // Handle vectors of pointers.
1549 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1550
1551 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1552 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1553 }
1554
1555 /// This input value (which is known to have vector type) is being zero extended
1556 /// or truncated to the specified vector type.
1557 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1558 ///
1559 /// The source and destination vector types may have different element types.
optimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1560 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1561 InstCombiner &IC) {
1562 // We can only do this optimization if the output is a multiple of the input
1563 // element size, or the input is a multiple of the output element size.
1564 // Convert the input type to have the same element type as the output.
1565 VectorType *SrcTy = cast<VectorType>(InVal->getType());
1566
1567 if (SrcTy->getElementType() != DestTy->getElementType()) {
1568 // The input types don't need to be identical, but for now they must be the
1569 // same size. There is no specific reason we couldn't handle things like
1570 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1571 // there yet.
1572 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1573 DestTy->getElementType()->getPrimitiveSizeInBits())
1574 return nullptr;
1575
1576 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1577 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1578 }
1579
1580 // Now that the element types match, get the shuffle mask and RHS of the
1581 // shuffle to use, which depends on whether we're increasing or decreasing the
1582 // size of the input.
1583 SmallVector<uint32_t, 16> ShuffleMask;
1584 Value *V2;
1585
1586 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1587 // If we're shrinking the number of elements, just shuffle in the low
1588 // elements from the input and use undef as the second shuffle input.
1589 V2 = UndefValue::get(SrcTy);
1590 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1591 ShuffleMask.push_back(i);
1592
1593 } else {
1594 // If we're increasing the number of elements, shuffle in all of the
1595 // elements from InVal and fill the rest of the result elements with zeros
1596 // from a constant zero.
1597 V2 = Constant::getNullValue(SrcTy);
1598 unsigned SrcElts = SrcTy->getNumElements();
1599 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1600 ShuffleMask.push_back(i);
1601
1602 // The excess elements reference the first element of the zero input.
1603 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1604 ShuffleMask.push_back(SrcElts);
1605 }
1606
1607 return new ShuffleVectorInst(InVal, V2,
1608 ConstantDataVector::get(V2->getContext(),
1609 ShuffleMask));
1610 }
1611
isMultipleOfTypeSize(unsigned Value,Type * Ty)1612 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1613 return Value % Ty->getPrimitiveSizeInBits() == 0;
1614 }
1615
getTypeSizeIndex(unsigned Value,Type * Ty)1616 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1617 return Value / Ty->getPrimitiveSizeInBits();
1618 }
1619
1620 /// V is a value which is inserted into a vector of VecEltTy.
1621 /// Look through the value to see if we can decompose it into
1622 /// insertions into the vector. See the example in the comment for
1623 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1624 /// The type of V is always a non-zero multiple of VecEltTy's size.
1625 /// Shift is the number of bits between the lsb of V and the lsb of
1626 /// the vector.
1627 ///
1628 /// This returns false if the pattern can't be matched or true if it can,
1629 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)1630 static bool collectInsertionElements(Value *V, unsigned Shift,
1631 SmallVectorImpl<Value *> &Elements,
1632 Type *VecEltTy, bool isBigEndian) {
1633 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1634 "Shift should be a multiple of the element type size");
1635
1636 // Undef values never contribute useful bits to the result.
1637 if (isa<UndefValue>(V)) return true;
1638
1639 // If we got down to a value of the right type, we win, try inserting into the
1640 // right element.
1641 if (V->getType() == VecEltTy) {
1642 // Inserting null doesn't actually insert any elements.
1643 if (Constant *C = dyn_cast<Constant>(V))
1644 if (C->isNullValue())
1645 return true;
1646
1647 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1648 if (isBigEndian)
1649 ElementIndex = Elements.size() - ElementIndex - 1;
1650
1651 // Fail if multiple elements are inserted into this slot.
1652 if (Elements[ElementIndex])
1653 return false;
1654
1655 Elements[ElementIndex] = V;
1656 return true;
1657 }
1658
1659 if (Constant *C = dyn_cast<Constant>(V)) {
1660 // Figure out the # elements this provides, and bitcast it or slice it up
1661 // as required.
1662 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1663 VecEltTy);
1664 // If the constant is the size of a vector element, we just need to bitcast
1665 // it to the right type so it gets properly inserted.
1666 if (NumElts == 1)
1667 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1668 Shift, Elements, VecEltTy, isBigEndian);
1669
1670 // Okay, this is a constant that covers multiple elements. Slice it up into
1671 // pieces and insert each element-sized piece into the vector.
1672 if (!isa<IntegerType>(C->getType()))
1673 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1674 C->getType()->getPrimitiveSizeInBits()));
1675 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1676 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1677
1678 for (unsigned i = 0; i != NumElts; ++i) {
1679 unsigned ShiftI = Shift+i*ElementSize;
1680 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1681 ShiftI));
1682 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1683 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1684 isBigEndian))
1685 return false;
1686 }
1687 return true;
1688 }
1689
1690 if (!V->hasOneUse()) return false;
1691
1692 Instruction *I = dyn_cast<Instruction>(V);
1693 if (!I) return false;
1694 switch (I->getOpcode()) {
1695 default: return false; // Unhandled case.
1696 case Instruction::BitCast:
1697 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1698 isBigEndian);
1699 case Instruction::ZExt:
1700 if (!isMultipleOfTypeSize(
1701 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1702 VecEltTy))
1703 return false;
1704 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1705 isBigEndian);
1706 case Instruction::Or:
1707 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1708 isBigEndian) &&
1709 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1710 isBigEndian);
1711 case Instruction::Shl: {
1712 // Must be shifting by a constant that is a multiple of the element size.
1713 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1714 if (!CI) return false;
1715 Shift += CI->getZExtValue();
1716 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1717 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1718 isBigEndian);
1719 }
1720
1721 }
1722 }
1723
1724
1725 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1726 /// assemble the elements of the vector manually.
1727 /// Try to rip the code out and replace it with insertelements. This is to
1728 /// optimize code like this:
1729 ///
1730 /// %tmp37 = bitcast float %inc to i32
1731 /// %tmp38 = zext i32 %tmp37 to i64
1732 /// %tmp31 = bitcast float %inc5 to i32
1733 /// %tmp32 = zext i32 %tmp31 to i64
1734 /// %tmp33 = shl i64 %tmp32, 32
1735 /// %ins35 = or i64 %tmp33, %tmp38
1736 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
1737 ///
1738 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)1739 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1740 InstCombiner &IC) {
1741 VectorType *DestVecTy = cast<VectorType>(CI.getType());
1742 Value *IntInput = CI.getOperand(0);
1743
1744 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1745 if (!collectInsertionElements(IntInput, 0, Elements,
1746 DestVecTy->getElementType(),
1747 IC.getDataLayout().isBigEndian()))
1748 return nullptr;
1749
1750 // If we succeeded, we know that all of the element are specified by Elements
1751 // or are zero if Elements has a null entry. Recast this as a set of
1752 // insertions.
1753 Value *Result = Constant::getNullValue(CI.getType());
1754 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1755 if (!Elements[i]) continue; // Unset element.
1756
1757 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1758 IC.Builder->getInt32(i));
1759 }
1760
1761 return Result;
1762 }
1763
1764 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1765 /// vector followed by extract element. The backend tends to handle bitcasts of
1766 /// vectors better than bitcasts of scalars because vector registers are
1767 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombiner & IC,const DataLayout & DL)1768 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1769 InstCombiner &IC,
1770 const DataLayout &DL) {
1771 // TODO: Create and use a pattern matcher for ExtractElementInst.
1772 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1773 if (!ExtElt || !ExtElt->hasOneUse())
1774 return nullptr;
1775
1776 // The bitcast must be to a vectorizable type, otherwise we can't make a new
1777 // type to extract from.
1778 Type *DestType = BitCast.getType();
1779 if (!VectorType::isValidElementType(DestType))
1780 return nullptr;
1781
1782 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1783 auto *NewVecType = VectorType::get(DestType, NumElts);
1784 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1785 NewVecType, "bc");
1786 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1787 }
1788
visitBitCast(BitCastInst & CI)1789 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1790 // If the operands are integer typed then apply the integer transforms,
1791 // otherwise just apply the common ones.
1792 Value *Src = CI.getOperand(0);
1793 Type *SrcTy = Src->getType();
1794 Type *DestTy = CI.getType();
1795
1796 // Get rid of casts from one type to the same type. These are useless and can
1797 // be replaced by the operand.
1798 if (DestTy == Src->getType())
1799 return ReplaceInstUsesWith(CI, Src);
1800
1801 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1802 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1803 Type *DstElTy = DstPTy->getElementType();
1804 Type *SrcElTy = SrcPTy->getElementType();
1805
1806 // If we are casting a alloca to a pointer to a type of the same
1807 // size, rewrite the allocation instruction to allocate the "right" type.
1808 // There is no need to modify malloc calls because it is their bitcast that
1809 // needs to be cleaned up.
1810 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1811 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1812 return V;
1813
1814 // If the source and destination are pointers, and this cast is equivalent
1815 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1816 // This can enhance SROA and other transforms that want type-safe pointers.
1817 unsigned NumZeros = 0;
1818 while (SrcElTy != DstElTy &&
1819 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1820 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1821 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
1822 ++NumZeros;
1823 }
1824
1825 // If we found a path from the src to dest, create the getelementptr now.
1826 if (SrcElTy == DstElTy) {
1827 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
1828 return GetElementPtrInst::CreateInBounds(Src, Idxs);
1829 }
1830 }
1831
1832 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1833 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1834 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1835 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1836 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1837 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1838 }
1839
1840 if (isa<IntegerType>(SrcTy)) {
1841 // If this is a cast from an integer to vector, check to see if the input
1842 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1843 // the casts with a shuffle and (potentially) a bitcast.
1844 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1845 CastInst *SrcCast = cast<CastInst>(Src);
1846 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1847 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1848 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
1849 cast<VectorType>(DestTy), *this))
1850 return I;
1851 }
1852
1853 // If the input is an 'or' instruction, we may be doing shifts and ors to
1854 // assemble the elements of the vector manually. Try to rip the code out
1855 // and replace it with insertelements.
1856 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
1857 return ReplaceInstUsesWith(CI, V);
1858 }
1859 }
1860
1861 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1862 if (SrcVTy->getNumElements() == 1) {
1863 // If our destination is not a vector, then make this a straight
1864 // scalar-scalar cast.
1865 if (!DestTy->isVectorTy()) {
1866 Value *Elem =
1867 Builder->CreateExtractElement(Src,
1868 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1869 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1870 }
1871
1872 // Otherwise, see if our source is an insert. If so, then use the scalar
1873 // component directly.
1874 if (InsertElementInst *IEI =
1875 dyn_cast<InsertElementInst>(CI.getOperand(0)))
1876 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1877 DestTy);
1878 }
1879 }
1880
1881 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1882 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
1883 // a bitcast to a vector with the same # elts.
1884 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1885 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1886 SVI->getType()->getNumElements() ==
1887 SVI->getOperand(0)->getType()->getVectorNumElements()) {
1888 BitCastInst *Tmp;
1889 // If either of the operands is a cast from CI.getType(), then
1890 // evaluating the shuffle in the casted destination's type will allow
1891 // us to eliminate at least one cast.
1892 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1893 Tmp->getOperand(0)->getType() == DestTy) ||
1894 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1895 Tmp->getOperand(0)->getType() == DestTy)) {
1896 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1897 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1898 // Return a new shuffle vector. Use the same element ID's, as we
1899 // know the vector types match #elts.
1900 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1901 }
1902 }
1903 }
1904
1905 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
1906 return I;
1907
1908 if (SrcTy->isPointerTy())
1909 return commonPointerCastTransforms(CI);
1910 return commonCastTransforms(CI);
1911 }
1912
visitAddrSpaceCast(AddrSpaceCastInst & CI)1913 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1914 // If the destination pointer element type is not the same as the source's
1915 // first do a bitcast to the destination type, and then the addrspacecast.
1916 // This allows the cast to be exposed to other transforms.
1917 Value *Src = CI.getOperand(0);
1918 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1919 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1920
1921 Type *DestElemTy = DestTy->getElementType();
1922 if (SrcTy->getElementType() != DestElemTy) {
1923 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1924 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1925 // Handle vectors of pointers.
1926 MidTy = VectorType::get(MidTy, VT->getNumElements());
1927 }
1928
1929 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1930 return new AddrSpaceCastInst(NewBitCast, CI.getType());
1931 }
1932
1933 return commonPointerCastTransforms(CI);
1934 }
1935