1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
triangular(const MatrixType & m)12 template<typename MatrixType> void triangular(const MatrixType& m)
13 {
14   typedef typename MatrixType::Scalar Scalar;
15   typedef typename NumTraits<Scalar>::Real RealScalar;
16 
17   RealScalar largerEps = 10*test_precision<RealScalar>();
18 
19   int rows = m.rows();
20   int cols = m.cols();
21 
22   MatrixType m1 = MatrixType::Random(rows, cols),
23              m2 = MatrixType::Random(rows, cols),
24              m3(rows, cols),
25              m4(rows, cols),
26              r1(rows, cols),
27              r2(rows, cols);
28 
29   MatrixType m1up = m1.template part<Eigen::UpperTriangular>();
30   MatrixType m2up = m2.template part<Eigen::UpperTriangular>();
31 
32   if (rows*cols>1)
33   {
34     VERIFY(m1up.isUpperTriangular());
35     VERIFY(m2up.transpose().isLowerTriangular());
36     VERIFY(!m2.isLowerTriangular());
37   }
38 
39 //   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
40 
41   // test overloaded operator+=
42   r1.setZero();
43   r2.setZero();
44   r1.template part<Eigen::UpperTriangular>() +=  m1;
45   r2 += m1up;
46   VERIFY_IS_APPROX(r1,r2);
47 
48   // test overloaded operator=
49   m1.setZero();
50   m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy();
51   m3 = m2.transpose() * m2;
52   VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1);
53 
54   // test overloaded operator=
55   m1.setZero();
56   m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy();
57   VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1);
58 
59   VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal());
60 
61   m1 = MatrixType::Random(rows, cols);
62   for (int i=0; i<rows; ++i)
63     while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>();
64 
65   Transpose<MatrixType> trm4(m4);
66   // test back and forward subsitution
67   m3 = m1.template part<Eigen::LowerTriangular>();
68   VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
69   VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>()
70     .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
71   // check M * inv(L) using in place API
72   m4 = m3;
73   m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4);
74   VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
75 
76   m3 = m1.template part<Eigen::UpperTriangular>();
77   VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
78   VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>()
79     .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
80   // check M * inv(U) using in place API
81   m4 = m3;
82   m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4);
83   VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
84 
85   m3 = m1.template part<Eigen::UpperTriangular>();
86   VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps));
87   m3 = m1.template part<Eigen::LowerTriangular>();
88   VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps));
89 
90   VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular());
91 
92   // test swap
93   m1.setOnes();
94   m2.setZero();
95   m2.template part<Eigen::UpperTriangular>().swap(m1);
96   m3.setZero();
97   m3.template part<Eigen::UpperTriangular>().setOnes();
98   VERIFY_IS_APPROX(m2,m3);
99 
100 }
101 
selfadjoint()102 void selfadjoint()
103 {
104   Matrix2i m;
105   m << 1, 2,
106        3, 4;
107 
108   Matrix2i m1 = Matrix2i::Zero();
109   m1.part<SelfAdjoint>() = m;
110   Matrix2i ref1;
111   ref1 << 1, 2,
112           2, 4;
113   VERIFY(m1 == ref1);
114 
115   Matrix2i m2 = Matrix2i::Zero();
116   m2.part<SelfAdjoint>() = m.part<UpperTriangular>();
117   Matrix2i ref2;
118   ref2 << 1, 2,
119           2, 4;
120   VERIFY(m2 == ref2);
121 
122   Matrix2i m3 = Matrix2i::Zero();
123   m3.part<SelfAdjoint>() = m.part<LowerTriangular>();
124   Matrix2i ref3;
125   ref3 << 1, 0,
126           0, 4;
127   VERIFY(m3 == ref3);
128 
129   // example inspired from bug 159
130   int array[] = {1, 2, 3, 4};
131   Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>();
132 
133   std::cout << "hello\n" << array << std::endl;
134 }
135 
test_eigen2_triangular()136 void test_eigen2_triangular()
137 {
138   CALL_SUBTEST_8( selfadjoint() );
139   for(int i = 0; i < g_repeat ; i++) {
140     CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) );
141     CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) );
142     CALL_SUBTEST_3( triangular(Matrix3d()) );
143     CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) );
144     CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) );
145     CALL_SUBTEST_6( triangular(MatrixXd(17,17)) );
146     CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
147   }
148 }
149