1 /* 2 * Written by Doug Lea with assistance from members of JCP JSR-166 3 * Expert Group and released to the public domain, as explained at 4 * http://creativecommons.org/publicdomain/zero/1.0/ 5 */ 6 7 package java.util.concurrent; 8 9 import java.lang.Thread.UncaughtExceptionHandler; 10 import java.security.AccessControlContext; 11 import java.security.Permissions; 12 import java.security.ProtectionDomain; 13 import java.util.ArrayList; 14 import java.util.Arrays; 15 import java.util.Collection; 16 import java.util.Collections; 17 import java.util.List; 18 import java.util.concurrent.locks.ReentrantLock; 19 import java.util.concurrent.locks.LockSupport; 20 21 /** 22 * An {@link ExecutorService} for running {@link ForkJoinTask}s. 23 * A {@code ForkJoinPool} provides the entry point for submissions 24 * from non-{@code ForkJoinTask} clients, as well as management and 25 * monitoring operations. 26 * 27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link 28 * ExecutorService} mainly by virtue of employing 29 * <em>work-stealing</em>: all threads in the pool attempt to find and 30 * execute tasks submitted to the pool and/or created by other active 31 * tasks (eventually blocking waiting for work if none exist). This 32 * enables efficient processing when most tasks spawn other subtasks 33 * (as do most {@code ForkJoinTask}s), as well as when many small 34 * tasks are submitted to the pool from external clients. Especially 35 * when setting <em>asyncMode</em> to true in constructors, {@code 36 * ForkJoinPool}s may also be appropriate for use with event-style 37 * tasks that are never joined. 38 * 39 * <p>A static {@link #commonPool()} is available and appropriate for 40 * most applications. The common pool is used by any ForkJoinTask that 41 * is not explicitly submitted to a specified pool. Using the common 42 * pool normally reduces resource usage (its threads are slowly 43 * reclaimed during periods of non-use, and reinstated upon subsequent 44 * use). 45 * 46 * <p>For applications that require separate or custom pools, a {@code 47 * ForkJoinPool} may be constructed with a given target parallelism 48 * level; by default, equal to the number of available processors. 49 * The pool attempts to maintain enough active (or available) threads 50 * by dynamically adding, suspending, or resuming internal worker 51 * threads, even if some tasks are stalled waiting to join others. 52 * However, no such adjustments are guaranteed in the face of blocked 53 * I/O or other unmanaged synchronization. The nested {@link 54 * ManagedBlocker} interface enables extension of the kinds of 55 * synchronization accommodated. 56 * 57 * <p>In addition to execution and lifecycle control methods, this 58 * class provides status check methods (for example 59 * {@link #getStealCount}) that are intended to aid in developing, 60 * tuning, and monitoring fork/join applications. Also, method 61 * {@link #toString} returns indications of pool state in a 62 * convenient form for informal monitoring. 63 * 64 * <p>As is the case with other ExecutorServices, there are three 65 * main task execution methods summarized in the following table. 66 * These are designed to be used primarily by clients not already 67 * engaged in fork/join computations in the current pool. The main 68 * forms of these methods accept instances of {@code ForkJoinTask}, 69 * but overloaded forms also allow mixed execution of plain {@code 70 * Runnable}- or {@code Callable}- based activities as well. However, 71 * tasks that are already executing in a pool should normally instead 72 * use the within-computation forms listed in the table unless using 73 * async event-style tasks that are not usually joined, in which case 74 * there is little difference among choice of methods. 75 * 76 * <table BORDER CELLPADDING=3 CELLSPACING=1> 77 * <caption>Summary of task execution methods</caption> 78 * <tr> 79 * <td></td> 80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td> 81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td> 82 * </tr> 83 * <tr> 84 * <td> <b>Arrange async execution</b></td> 85 * <td> {@link #execute(ForkJoinTask)}</td> 86 * <td> {@link ForkJoinTask#fork}</td> 87 * </tr> 88 * <tr> 89 * <td> <b>Await and obtain result</b></td> 90 * <td> {@link #invoke(ForkJoinTask)}</td> 91 * <td> {@link ForkJoinTask#invoke}</td> 92 * </tr> 93 * <tr> 94 * <td> <b>Arrange exec and obtain Future</b></td> 95 * <td> {@link #submit(ForkJoinTask)}</td> 96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td> 97 * </tr> 98 * </table> 99 * 100 * <p>The common pool is by default constructed with default 101 * parameters, but these may be controlled by setting three 102 * {@linkplain System#getProperty system properties}: 103 * <ul> 104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism} 105 * - the parallelism level, a non-negative integer 106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory} 107 * - the class name of a {@link ForkJoinWorkerThreadFactory} 108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler} 109 * - the class name of a {@link UncaughtExceptionHandler} 110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares} 111 * - the maximum number of allowed extra threads to maintain target 112 * parallelism (default 256). 113 * </ul> 114 * If a {@link SecurityManager} is present and no factory is 115 * specified, then the default pool uses a factory supplying 116 * threads that have no {@link Permissions} enabled. 117 * The system class loader is used to load these classes. 118 * Upon any error in establishing these settings, default parameters 119 * are used. It is possible to disable or limit the use of threads in 120 * the common pool by setting the parallelism property to zero, and/or 121 * using a factory that may return {@code null}. However doing so may 122 * cause unjoined tasks to never be executed. 123 * 124 * <p><b>Implementation notes</b>: This implementation restricts the 125 * maximum number of running threads to 32767. Attempts to create 126 * pools with greater than the maximum number result in 127 * {@code IllegalArgumentException}. 128 * 129 * <p>This implementation rejects submitted tasks (that is, by throwing 130 * {@link RejectedExecutionException}) only when the pool is shut down 131 * or internal resources have been exhausted. 132 * 133 * @since 1.7 134 * @author Doug Lea 135 */ 136 //@jdk.internal.vm.annotation.Contended // android-removed 137 public class ForkJoinPool extends AbstractExecutorService { 138 139 /* 140 * Implementation Overview 141 * 142 * This class and its nested classes provide the main 143 * functionality and control for a set of worker threads: 144 * Submissions from non-FJ threads enter into submission queues. 145 * Workers take these tasks and typically split them into subtasks 146 * that may be stolen by other workers. Preference rules give 147 * first priority to processing tasks from their own queues (LIFO 148 * or FIFO, depending on mode), then to randomized FIFO steals of 149 * tasks in other queues. This framework began as vehicle for 150 * supporting tree-structured parallelism using work-stealing. 151 * Over time, its scalability advantages led to extensions and 152 * changes to better support more diverse usage contexts. Because 153 * most internal methods and nested classes are interrelated, 154 * their main rationale and descriptions are presented here; 155 * individual methods and nested classes contain only brief 156 * comments about details. 157 * 158 * WorkQueues 159 * ========== 160 * 161 * Most operations occur within work-stealing queues (in nested 162 * class WorkQueue). These are special forms of Deques that 163 * support only three of the four possible end-operations -- push, 164 * pop, and poll (aka steal), under the further constraints that 165 * push and pop are called only from the owning thread (or, as 166 * extended here, under a lock), while poll may be called from 167 * other threads. (If you are unfamiliar with them, you probably 168 * want to read Herlihy and Shavit's book "The Art of 169 * Multiprocessor programming", chapter 16 describing these in 170 * more detail before proceeding.) The main work-stealing queue 171 * design is roughly similar to those in the papers "Dynamic 172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005 173 * (http://research.sun.com/scalable/pubs/index.html) and 174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev, 175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186). 176 * The main differences ultimately stem from GC requirements that 177 * we null out taken slots as soon as we can, to maintain as small 178 * a footprint as possible even in programs generating huge 179 * numbers of tasks. To accomplish this, we shift the CAS 180 * arbitrating pop vs poll (steal) from being on the indices 181 * ("base" and "top") to the slots themselves. 182 * 183 * Adding tasks then takes the form of a classic array push(task) 184 * in a circular buffer: 185 * q.array[q.top++ % length] = task; 186 * 187 * (The actual code needs to null-check and size-check the array, 188 * uses masking, not mod, for indexing a power-of-two-sized array, 189 * properly fences accesses, and possibly signals waiting workers 190 * to start scanning -- see below.) Both a successful pop and 191 * poll mainly entail a CAS of a slot from non-null to null. 192 * 193 * The pop operation (always performed by owner) is: 194 * if ((the task at top slot is not null) and 195 * (CAS slot to null)) 196 * decrement top and return task; 197 * 198 * And the poll operation (usually by a stealer) is 199 * if ((the task at base slot is not null) and 200 * (CAS slot to null)) 201 * increment base and return task; 202 * 203 * There are several variants of each of these; for example most 204 * versions of poll pre-screen the CAS by rechecking that the base 205 * has not changed since reading the slot, and most methods only 206 * attempt the CAS if base appears not to be equal to top. 207 * 208 * Memory ordering. See "Correct and Efficient Work-Stealing for 209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013 210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an 211 * analysis of memory ordering requirements in work-stealing 212 * algorithms similar to (but different than) the one used here. 213 * Extracting tasks in array slots via (fully fenced) CAS provides 214 * primary synchronization. The base and top indices imprecisely 215 * guide where to extract from. We do not always require strict 216 * orderings of array and index updates, so sometimes let them be 217 * subject to compiler and processor reorderings. However, the 218 * volatile "base" index also serves as a basis for memory 219 * ordering: Slot accesses are preceded by a read of base, 220 * ensuring happens-before ordering with respect to stealers (so 221 * the slots themselves can be read via plain array reads.) The 222 * only other memory orderings relied on are maintained in the 223 * course of signalling and activation (see below). A check that 224 * base == top indicates (momentary) emptiness, but otherwise may 225 * err on the side of possibly making the queue appear nonempty 226 * when a push, pop, or poll have not fully committed, or making 227 * it appear empty when an update of top has not yet been visibly 228 * written. (Method isEmpty() checks the case of a partially 229 * completed removal of the last element.) Because of this, the 230 * poll operation, considered individually, is not wait-free. One 231 * thief cannot successfully continue until another in-progress 232 * one (or, if previously empty, a push) visibly completes. 233 * However, in the aggregate, we ensure at least probabilistic 234 * non-blockingness. If an attempted steal fails, a scanning 235 * thief chooses a different random victim target to try next. So, 236 * in order for one thief to progress, it suffices for any 237 * in-progress poll or new push on any empty queue to 238 * complete. (This is why we normally use method pollAt and its 239 * variants that try once at the apparent base index, else 240 * consider alternative actions, rather than method poll, which 241 * retries.) 242 * 243 * This approach also enables support of a user mode in which 244 * local task processing is in FIFO, not LIFO order, simply by 245 * using poll rather than pop. This can be useful in 246 * message-passing frameworks in which tasks are never joined. 247 * 248 * WorkQueues are also used in a similar way for tasks submitted 249 * to the pool. We cannot mix these tasks in the same queues used 250 * by workers. Instead, we randomly associate submission queues 251 * with submitting threads, using a form of hashing. The 252 * ThreadLocalRandom probe value serves as a hash code for 253 * choosing existing queues, and may be randomly repositioned upon 254 * contention with other submitters. In essence, submitters act 255 * like workers except that they are restricted to executing local 256 * tasks that they submitted (or in the case of CountedCompleters, 257 * others with the same root task). Insertion of tasks in shared 258 * mode requires a lock but we use only a simple spinlock (using 259 * field qlock), because submitters encountering a busy queue move 260 * on to try or create other queues -- they block only when 261 * creating and registering new queues. Because it is used only as 262 * a spinlock, unlocking requires only a "releasing" store (using 263 * putOrderedInt). The qlock is also used during termination 264 * detection, in which case it is forced to a negative 265 * non-lockable value. 266 * 267 * Management 268 * ========== 269 * 270 * The main throughput advantages of work-stealing stem from 271 * decentralized control -- workers mostly take tasks from 272 * themselves or each other, at rates that can exceed a billion 273 * per second. The pool itself creates, activates (enables 274 * scanning for and running tasks), deactivates, blocks, and 275 * terminates threads, all with minimal central information. 276 * There are only a few properties that we can globally track or 277 * maintain, so we pack them into a small number of variables, 278 * often maintaining atomicity without blocking or locking. 279 * Nearly all essentially atomic control state is held in two 280 * volatile variables that are by far most often read (not 281 * written) as status and consistency checks. (Also, field 282 * "config" holds unchanging configuration state.) 283 * 284 * Field "ctl" contains 64 bits holding information needed to 285 * atomically decide to add, inactivate, enqueue (on an event 286 * queue), dequeue, and/or re-activate workers. To enable this 287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is 288 * far in excess of normal operating range) to allow ids, counts, 289 * and their negations (used for thresholding) to fit into 16bit 290 * subfields. 291 * 292 * Field "runState" holds lifetime status, atomically and 293 * monotonically setting STARTED, SHUTDOWN, STOP, and finally 294 * TERMINATED bits. 295 * 296 * Field "auxState" is a ReentrantLock subclass that also 297 * opportunistically holds some other bookkeeping fields accessed 298 * only when locked. It is mainly used to lock (infrequent) 299 * updates to workQueues. The auxState instance is itself lazily 300 * constructed (see tryInitialize), requiring a double-check-style 301 * bootstrapping use of field runState, and locking a private 302 * static. 303 * 304 * Field "workQueues" holds references to WorkQueues. It is 305 * updated (only during worker creation and termination) under the 306 * lock, but is otherwise concurrently readable, and accessed 307 * directly. We also ensure that reads of the array reference 308 * itself never become too stale (for example, re-reading before 309 * each scan). To simplify index-based operations, the array size 310 * is always a power of two, and all readers must tolerate null 311 * slots. Worker queues are at odd indices. Shared (submission) 312 * queues are at even indices, up to a maximum of 64 slots, to 313 * limit growth even if array needs to expand to add more 314 * workers. Grouping them together in this way simplifies and 315 * speeds up task scanning. 316 * 317 * All worker thread creation is on-demand, triggered by task 318 * submissions, replacement of terminated workers, and/or 319 * compensation for blocked workers. However, all other support 320 * code is set up to work with other policies. To ensure that we 321 * do not hold on to worker references that would prevent GC, all 322 * accesses to workQueues are via indices into the workQueues 323 * array (which is one source of some of the messy code 324 * constructions here). In essence, the workQueues array serves as 325 * a weak reference mechanism. Thus for example the stack top 326 * subfield of ctl stores indices, not references. 327 * 328 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we 329 * cannot let workers spin indefinitely scanning for tasks when 330 * none can be found immediately, and we cannot start/resume 331 * workers unless there appear to be tasks available. On the 332 * other hand, we must quickly prod them into action when new 333 * tasks are submitted or generated. In many usages, ramp-up time 334 * to activate workers is the main limiting factor in overall 335 * performance, which is compounded at program start-up by JIT 336 * compilation and allocation. So we streamline this as much as 337 * possible. 338 * 339 * The "ctl" field atomically maintains active and total worker 340 * counts as well as a queue to place waiting threads so they can 341 * be located for signalling. Active counts also play the role of 342 * quiescence indicators, so are decremented when workers believe 343 * that there are no more tasks to execute. The "queue" is 344 * actually a form of Treiber stack. A stack is ideal for 345 * activating threads in most-recently used order. This improves 346 * performance and locality, outweighing the disadvantages of 347 * being prone to contention and inability to release a worker 348 * unless it is topmost on stack. We block/unblock workers after 349 * pushing on the idle worker stack (represented by the lower 350 * 32bit subfield of ctl) when they cannot find work. The top 351 * stack state holds the value of the "scanState" field of the 352 * worker: its index and status, plus a version counter that, in 353 * addition to the count subfields (also serving as version 354 * stamps) provide protection against Treiber stack ABA effects. 355 * 356 * Creating workers. To create a worker, we pre-increment total 357 * count (serving as a reservation), and attempt to construct a 358 * ForkJoinWorkerThread via its factory. Upon construction, the 359 * new thread invokes registerWorker, where it constructs a 360 * WorkQueue and is assigned an index in the workQueues array 361 * (expanding the array if necessary). The thread is then started. 362 * Upon any exception across these steps, or null return from 363 * factory, deregisterWorker adjusts counts and records 364 * accordingly. If a null return, the pool continues running with 365 * fewer than the target number workers. If exceptional, the 366 * exception is propagated, generally to some external caller. 367 * Worker index assignment avoids the bias in scanning that would 368 * occur if entries were sequentially packed starting at the front 369 * of the workQueues array. We treat the array as a simple 370 * power-of-two hash table, expanding as needed. The seedIndex 371 * increment ensures no collisions until a resize is needed or a 372 * worker is deregistered and replaced, and thereafter keeps 373 * probability of collision low. We cannot use 374 * ThreadLocalRandom.getProbe() for similar purposes here because 375 * the thread has not started yet, but do so for creating 376 * submission queues for existing external threads (see 377 * externalPush). 378 * 379 * WorkQueue field scanState is used by both workers and the pool 380 * to manage and track whether a worker is UNSIGNALLED (possibly 381 * blocked waiting for a signal). When a worker is inactivated, 382 * its scanState field is set, and is prevented from executing 383 * tasks, even though it must scan once for them to avoid queuing 384 * races. Note that scanState updates lag queue CAS releases so 385 * usage requires care. When queued, the lower 16 bits of 386 * scanState must hold its pool index. So we place the index there 387 * upon initialization (see registerWorker) and otherwise keep it 388 * there or restore it when necessary. 389 * 390 * The ctl field also serves as the basis for memory 391 * synchronization surrounding activation. This uses a more 392 * efficient version of a Dekker-like rule that task producers and 393 * consumers sync with each other by both writing/CASing ctl (even 394 * if to its current value). This would be extremely costly. So 395 * we relax it in several ways: (1) Producers only signal when 396 * their queue is empty. Other workers propagate this signal (in 397 * method scan) when they find tasks. (2) Workers only enqueue 398 * after scanning (see below) and not finding any tasks. (3) 399 * Rather than CASing ctl to its current value in the common case 400 * where no action is required, we reduce write contention by 401 * equivalently prefacing signalWork when called by an external 402 * task producer using a memory access with full-volatile 403 * semantics or a "fullFence". (4) For internal task producers we 404 * rely on the fact that even if no other workers awaken, the 405 * producer itself will eventually see the task and execute it. 406 * 407 * Almost always, too many signals are issued. A task producer 408 * cannot in general tell if some existing worker is in the midst 409 * of finishing one task (or already scanning) and ready to take 410 * another without being signalled. So the producer might instead 411 * activate a different worker that does not find any work, and 412 * then inactivates. This scarcely matters in steady-state 413 * computations involving all workers, but can create contention 414 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small 415 * computations involving only a few workers. 416 * 417 * Scanning. Method scan() performs top-level scanning for tasks. 418 * Each scan traverses (and tries to poll from) each queue in 419 * pseudorandom permutation order by randomly selecting an origin 420 * index and a step value. (The pseudorandom generator need not 421 * have high-quality statistical properties in the long term, but 422 * just within computations; We use 64bit and 32bit Marsaglia 423 * XorShifts, which are cheap and suffice here.) Scanning also 424 * employs contention reduction: When scanning workers fail a CAS 425 * polling for work, they soon restart with a different 426 * pseudorandom scan order (thus likely retrying at different 427 * intervals). This improves throughput when many threads are 428 * trying to take tasks from few queues. Scans do not otherwise 429 * explicitly take into account core affinities, loads, cache 430 * localities, etc, However, they do exploit temporal locality 431 * (which usually approximates these) by preferring to re-poll (up 432 * to POLL_LIMIT times) from the same queue after a successful 433 * poll before trying others. Restricted forms of scanning occur 434 * in methods helpComplete and findNonEmptyStealQueue, and take 435 * similar but simpler forms. 436 * 437 * Deactivation and waiting. Queuing encounters several intrinsic 438 * races; most notably that an inactivating scanning worker can 439 * miss seeing a task produced during a scan. So when a worker 440 * cannot find a task to steal, it inactivates and enqueues, and 441 * then rescans to ensure that it didn't miss one, reactivating 442 * upon seeing one with probability approximately proportional to 443 * probability of a miss. (In most cases, the worker will be 444 * signalled before self-signalling, avoiding cascades of multiple 445 * signals for the same task). 446 * 447 * Workers block (in method awaitWork) using park/unpark; 448 * advertising the need for signallers to unpark by setting their 449 * "parker" fields. 450 * 451 * Trimming workers. To release resources after periods of lack of 452 * use, a worker starting to wait when the pool is quiescent will 453 * time out and terminate (see awaitWork) if the pool has remained 454 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the 455 * period as the number of threads decreases, eventually removing 456 * all workers. 457 * 458 * Shutdown and Termination. A call to shutdownNow invokes 459 * tryTerminate to atomically set a runState bit. The calling 460 * thread, as well as every other worker thereafter terminating, 461 * helps terminate others by setting their (qlock) status, 462 * cancelling their unprocessed tasks, and waking them up, doing 463 * so repeatedly until stable. Calls to non-abrupt shutdown() 464 * preface this by checking whether termination should commence. 465 * This relies primarily on the active count bits of "ctl" 466 * maintaining consensus -- tryTerminate is called from awaitWork 467 * whenever quiescent. However, external submitters do not take 468 * part in this consensus. So, tryTerminate sweeps through queues 469 * (until stable) to ensure lack of in-flight submissions and 470 * workers about to process them before triggering the "STOP" 471 * phase of termination. (Note: there is an intrinsic conflict if 472 * helpQuiescePool is called when shutdown is enabled. Both wait 473 * for quiescence, but tryTerminate is biased to not trigger until 474 * helpQuiescePool completes.) 475 * 476 * Joining Tasks 477 * ============= 478 * 479 * Any of several actions may be taken when one worker is waiting 480 * to join a task stolen (or always held) by another. Because we 481 * are multiplexing many tasks on to a pool of workers, we can't 482 * just let them block (as in Thread.join). We also cannot just 483 * reassign the joiner's run-time stack with another and replace 484 * it later, which would be a form of "continuation", that even if 485 * possible is not necessarily a good idea since we may need both 486 * an unblocked task and its continuation to progress. Instead we 487 * combine two tactics: 488 * 489 * Helping: Arranging for the joiner to execute some task that it 490 * would be running if the steal had not occurred. 491 * 492 * Compensating: Unless there are already enough live threads, 493 * method tryCompensate() may create or re-activate a spare 494 * thread to compensate for blocked joiners until they unblock. 495 * 496 * A third form (implemented in tryRemoveAndExec) amounts to 497 * helping a hypothetical compensator: If we can readily tell that 498 * a possible action of a compensator is to steal and execute the 499 * task being joined, the joining thread can do so directly, 500 * without the need for a compensation thread (although at the 501 * expense of larger run-time stacks, but the tradeoff is 502 * typically worthwhile). 503 * 504 * The ManagedBlocker extension API can't use helping so relies 505 * only on compensation in method awaitBlocker. 506 * 507 * The algorithm in helpStealer entails a form of "linear 508 * helping". Each worker records (in field currentSteal) the most 509 * recent task it stole from some other worker (or a submission). 510 * It also records (in field currentJoin) the task it is currently 511 * actively joining. Method helpStealer uses these markers to try 512 * to find a worker to help (i.e., steal back a task from and 513 * execute it) that could hasten completion of the actively joined 514 * task. Thus, the joiner executes a task that would be on its 515 * own local deque had the to-be-joined task not been stolen. This 516 * is a conservative variant of the approach described in Wagner & 517 * Calder "Leapfrogging: a portable technique for implementing 518 * efficient futures" SIGPLAN Notices, 1993 519 * (http://portal.acm.org/citation.cfm?id=155354). It differs in 520 * that: (1) We only maintain dependency links across workers upon 521 * steals, rather than use per-task bookkeeping. This sometimes 522 * requires a linear scan of workQueues array to locate stealers, 523 * but often doesn't because stealers leave hints (that may become 524 * stale/wrong) of where to locate them. It is only a hint 525 * because a worker might have had multiple steals and the hint 526 * records only one of them (usually the most current). Hinting 527 * isolates cost to when it is needed, rather than adding to 528 * per-task overhead. (2) It is "shallow", ignoring nesting and 529 * potentially cyclic mutual steals. (3) It is intentionally 530 * racy: field currentJoin is updated only while actively joining, 531 * which means that we miss links in the chain during long-lived 532 * tasks, GC stalls etc (which is OK since blocking in such cases 533 * is usually a good idea). (4) We bound the number of attempts 534 * to find work using checksums and fall back to suspending the 535 * worker and if necessary replacing it with another. 536 * 537 * Helping actions for CountedCompleters do not require tracking 538 * currentJoins: Method helpComplete takes and executes any task 539 * with the same root as the task being waited on (preferring 540 * local pops to non-local polls). However, this still entails 541 * some traversal of completer chains, so is less efficient than 542 * using CountedCompleters without explicit joins. 543 * 544 * Compensation does not aim to keep exactly the target 545 * parallelism number of unblocked threads running at any given 546 * time. Some previous versions of this class employed immediate 547 * compensations for any blocked join. However, in practice, the 548 * vast majority of blockages are transient byproducts of GC and 549 * other JVM or OS activities that are made worse by replacement. 550 * Currently, compensation is attempted only after validating that 551 * all purportedly active threads are processing tasks by checking 552 * field WorkQueue.scanState, which eliminates most false 553 * positives. Also, compensation is bypassed (tolerating fewer 554 * threads) in the most common case in which it is rarely 555 * beneficial: when a worker with an empty queue (thus no 556 * continuation tasks) blocks on a join and there still remain 557 * enough threads to ensure liveness. 558 * 559 * Spare threads are removed as soon as they notice that the 560 * target parallelism level has been exceeded, in method 561 * tryDropSpare. (Method scan arranges returns for rechecks upon 562 * each probe via the "bound" parameter.) 563 * 564 * The compensation mechanism may be bounded. Bounds for the 565 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope 566 * with programming errors and abuse before running out of 567 * resources to do so. In other cases, users may supply factories 568 * that limit thread construction. The effects of bounding in this 569 * pool (like all others) is imprecise. Total worker counts are 570 * decremented when threads deregister, not when they exit and 571 * resources are reclaimed by the JVM and OS. So the number of 572 * simultaneously live threads may transiently exceed bounds. 573 * 574 * Common Pool 575 * =========== 576 * 577 * The static common pool always exists after static 578 * initialization. Since it (or any other created pool) need 579 * never be used, we minimize initial construction overhead and 580 * footprint to the setup of about a dozen fields, with no nested 581 * allocation. Most bootstrapping occurs within method 582 * externalSubmit during the first submission to the pool. 583 * 584 * When external threads submit to the common pool, they can 585 * perform subtask processing (see externalHelpComplete and 586 * related methods) upon joins. This caller-helps policy makes it 587 * sensible to set common pool parallelism level to one (or more) 588 * less than the total number of available cores, or even zero for 589 * pure caller-runs. We do not need to record whether external 590 * submissions are to the common pool -- if not, external help 591 * methods return quickly. These submitters would otherwise be 592 * blocked waiting for completion, so the extra effort (with 593 * liberally sprinkled task status checks) in inapplicable cases 594 * amounts to an odd form of limited spin-wait before blocking in 595 * ForkJoinTask.join. 596 * 597 * As a more appropriate default in managed environments, unless 598 * overridden by system properties, we use workers of subclass 599 * InnocuousForkJoinWorkerThread when there is a SecurityManager 600 * present. These workers have no permissions set, do not belong 601 * to any user-defined ThreadGroup, and erase all ThreadLocals 602 * after executing any top-level task (see WorkQueue.runTask). 603 * The associated mechanics (mainly in ForkJoinWorkerThread) may 604 * be JVM-dependent and must access particular Thread class fields 605 * to achieve this effect. 606 * 607 * Style notes 608 * =========== 609 * 610 * Memory ordering relies mainly on Unsafe intrinsics that carry 611 * the further responsibility of explicitly performing null- and 612 * bounds- checks otherwise carried out implicitly by JVMs. This 613 * can be awkward and ugly, but also reflects the need to control 614 * outcomes across the unusual cases that arise in very racy code 615 * with very few invariants. So these explicit checks would exist 616 * in some form anyway. All fields are read into locals before 617 * use, and null-checked if they are references. This is usually 618 * done in a "C"-like style of listing declarations at the heads 619 * of methods or blocks, and using inline assignments on first 620 * encounter. Array bounds-checks are usually performed by 621 * masking with array.length-1, which relies on the invariant that 622 * these arrays are created with positive lengths, which is itself 623 * paranoically checked. Nearly all explicit checks lead to 624 * bypass/return, not exception throws, because they may 625 * legitimately arise due to cancellation/revocation during 626 * shutdown. 627 * 628 * There is a lot of representation-level coupling among classes 629 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The 630 * fields of WorkQueue maintain data structures managed by 631 * ForkJoinPool, so are directly accessed. There is little point 632 * trying to reduce this, since any associated future changes in 633 * representations will need to be accompanied by algorithmic 634 * changes anyway. Several methods intrinsically sprawl because 635 * they must accumulate sets of consistent reads of fields held in 636 * local variables. There are also other coding oddities 637 * (including several unnecessary-looking hoisted null checks) 638 * that help some methods perform reasonably even when interpreted 639 * (not compiled). 640 * 641 * The order of declarations in this file is (with a few exceptions): 642 * (1) Static utility functions 643 * (2) Nested (static) classes 644 * (3) Static fields 645 * (4) Fields, along with constants used when unpacking some of them 646 * (5) Internal control methods 647 * (6) Callbacks and other support for ForkJoinTask methods 648 * (7) Exported methods 649 * (8) Static block initializing statics in minimally dependent order 650 */ 651 652 // Static utilities 653 654 /** 655 * If there is a security manager, makes sure caller has 656 * permission to modify threads. 657 */ checkPermission()658 private static void checkPermission() { 659 SecurityManager security = System.getSecurityManager(); 660 if (security != null) 661 security.checkPermission(modifyThreadPermission); 662 } 663 664 // Nested classes 665 666 /** 667 * Factory for creating new {@link ForkJoinWorkerThread}s. 668 * A {@code ForkJoinWorkerThreadFactory} must be defined and used 669 * for {@code ForkJoinWorkerThread} subclasses that extend base 670 * functionality or initialize threads with different contexts. 671 */ 672 public static interface ForkJoinWorkerThreadFactory { 673 /** 674 * Returns a new worker thread operating in the given pool. 675 * 676 * @param pool the pool this thread works in 677 * @return the new worker thread, or {@code null} if the request 678 * to create a thread is rejected 679 * @throws NullPointerException if the pool is null 680 */ newThread(ForkJoinPool pool)681 public ForkJoinWorkerThread newThread(ForkJoinPool pool); 682 } 683 684 /** 685 * Default ForkJoinWorkerThreadFactory implementation; creates a 686 * new ForkJoinWorkerThread. 687 */ 688 private static final class DefaultForkJoinWorkerThreadFactory 689 implements ForkJoinWorkerThreadFactory { newThread(ForkJoinPool pool)690 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { 691 return new ForkJoinWorkerThread(pool); 692 } 693 } 694 695 /** 696 * Class for artificial tasks that are used to replace the target 697 * of local joins if they are removed from an interior queue slot 698 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to 699 * actually do anything beyond having a unique identity. 700 */ 701 private static final class EmptyTask extends ForkJoinTask<Void> { 702 private static final long serialVersionUID = -7721805057305804111L; EmptyTask()703 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done getRawResult()704 public final Void getRawResult() { return null; } setRawResult(Void x)705 public final void setRawResult(Void x) {} exec()706 public final boolean exec() { return true; } 707 } 708 709 /** 710 * Additional fields and lock created upon initialization. 711 */ 712 private static final class AuxState extends ReentrantLock { 713 private static final long serialVersionUID = -6001602636862214147L; 714 volatile long stealCount; // cumulative steal count 715 long indexSeed; // index bits for registerWorker AuxState()716 AuxState() {} 717 } 718 719 // Constants shared across ForkJoinPool and WorkQueue 720 721 // Bounds 722 static final int SMASK = 0xffff; // short bits == max index 723 static final int MAX_CAP = 0x7fff; // max #workers - 1 724 static final int EVENMASK = 0xfffe; // even short bits 725 static final int SQMASK = 0x007e; // max 64 (even) slots 726 727 // Masks and units for WorkQueue.scanState and ctl sp subfield 728 static final int UNSIGNALLED = 1 << 31; // must be negative 729 static final int SS_SEQ = 1 << 16; // version count 730 731 // Mode bits for ForkJoinPool.config and WorkQueue.config 732 static final int MODE_MASK = 0xffff << 16; // top half of int 733 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation 734 static final int UNREGISTERED = 1 << 18; // to skip some of deregister 735 static final int FIFO_QUEUE = 1 << 31; // must be negative 736 static final int LIFO_QUEUE = 0; // for clarity 737 static final int IS_OWNED = 1; // low bit 0 if shared 738 739 /** 740 * The maximum number of task executions from the same queue 741 * before checking other queues, bounding unfairness and impact of 742 * infinite user task recursion. Must be a power of two minus 1. 743 */ 744 static final int POLL_LIMIT = (1 << 10) - 1; 745 746 /** 747 * Queues supporting work-stealing as well as external task 748 * submission. See above for descriptions and algorithms. 749 * Performance on most platforms is very sensitive to placement of 750 * instances of both WorkQueues and their arrays -- we absolutely 751 * do not want multiple WorkQueue instances or multiple queue 752 * arrays sharing cache lines. The @Contended annotation alerts 753 * JVMs to try to keep instances apart. 754 */ 755 //@jdk.internal.vm.annotation.Contended // android-removed 756 static final class WorkQueue { 757 758 /** 759 * Capacity of work-stealing queue array upon initialization. 760 * Must be a power of two; at least 4, but should be larger to 761 * reduce or eliminate cacheline sharing among queues. 762 * Currently, it is much larger, as a partial workaround for 763 * the fact that JVMs often place arrays in locations that 764 * share GC bookkeeping (especially cardmarks) such that 765 * per-write accesses encounter serious memory contention. 766 */ 767 static final int INITIAL_QUEUE_CAPACITY = 1 << 13; 768 769 /** 770 * Maximum size for queue arrays. Must be a power of two less 771 * than or equal to 1 << (31 - width of array entry) to ensure 772 * lack of wraparound of index calculations, but defined to a 773 * value a bit less than this to help users trap runaway 774 * programs before saturating systems. 775 */ 776 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M 777 778 // Instance fields 779 780 volatile int scanState; // versioned, negative if inactive 781 int stackPred; // pool stack (ctl) predecessor 782 int nsteals; // number of steals 783 int hint; // randomization and stealer index hint 784 int config; // pool index and mode 785 volatile int qlock; // 1: locked, < 0: terminate; else 0 786 volatile int base; // index of next slot for poll 787 int top; // index of next slot for push 788 ForkJoinTask<?>[] array; // the elements (initially unallocated) 789 final ForkJoinPool pool; // the containing pool (may be null) 790 final ForkJoinWorkerThread owner; // owning thread or null if shared 791 volatile Thread parker; // == owner during call to park; else null 792 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin 793 794 // @jdk.internal.vm.annotation.Contended("group2") // segregate // android-removed 795 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task 796 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner)797 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) { 798 this.pool = pool; 799 this.owner = owner; 800 // Place indices in the center of array (that is not yet allocated) 801 base = top = INITIAL_QUEUE_CAPACITY >>> 1; 802 } 803 804 /** 805 * Returns an exportable index (used by ForkJoinWorkerThread). 806 */ getPoolIndex()807 final int getPoolIndex() { 808 return (config & 0xffff) >>> 1; // ignore odd/even tag bit 809 } 810 811 /** 812 * Returns the approximate number of tasks in the queue. 813 */ queueSize()814 final int queueSize() { 815 int n = base - top; // read base first 816 return (n >= 0) ? 0 : -n; // ignore transient negative 817 } 818 819 /** 820 * Provides a more accurate estimate of whether this queue has 821 * any tasks than does queueSize, by checking whether a 822 * near-empty queue has at least one unclaimed task. 823 */ isEmpty()824 final boolean isEmpty() { 825 ForkJoinTask<?>[] a; int n, al, s; 826 return ((n = base - (s = top)) >= 0 || // possibly one task 827 (n == -1 && ((a = array) == null || 828 (al = a.length) == 0 || 829 a[(al - 1) & (s - 1)] == null))); 830 } 831 832 /** 833 * Pushes a task. Call only by owner in unshared queues. 834 * 835 * @param task the task. Caller must ensure non-null. 836 * @throws RejectedExecutionException if array cannot be resized 837 */ push(ForkJoinTask<?> task)838 final void push(ForkJoinTask<?> task) { 839 U.storeFence(); // ensure safe publication 840 int s = top, al, d; ForkJoinTask<?>[] a; 841 if ((a = array) != null && (al = a.length) > 0) { 842 a[(al - 1) & s] = task; // relaxed writes OK 843 top = s + 1; 844 ForkJoinPool p = pool; 845 if ((d = base - s) == 0 && p != null) { 846 U.fullFence(); 847 p.signalWork(); 848 } 849 else if (al + d == 1) 850 growArray(); 851 } 852 } 853 854 /** 855 * Initializes or doubles the capacity of array. Call either 856 * by owner or with lock held -- it is OK for base, but not 857 * top, to move while resizings are in progress. 858 */ growArray()859 final ForkJoinTask<?>[] growArray() { 860 ForkJoinTask<?>[] oldA = array; 861 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY; 862 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY) 863 throw new RejectedExecutionException("Queue capacity exceeded"); 864 int oldMask, t, b; 865 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size]; 866 if (oldA != null && (oldMask = oldA.length - 1) > 0 && 867 (t = top) - (b = base) > 0) { 868 int mask = size - 1; 869 do { // emulate poll from old array, push to new array 870 int index = b & oldMask; 871 long offset = ((long)index << ASHIFT) + ABASE; 872 ForkJoinTask<?> x = (ForkJoinTask<?>) 873 U.getObjectVolatile(oldA, offset); 874 if (x != null && 875 U.compareAndSwapObject(oldA, offset, x, null)) 876 a[b & mask] = x; 877 } while (++b != t); 878 U.storeFence(); 879 } 880 return a; 881 } 882 883 /** 884 * Takes next task, if one exists, in LIFO order. Call only 885 * by owner in unshared queues. 886 */ pop()887 final ForkJoinTask<?> pop() { 888 int b = base, s = top, al, i; ForkJoinTask<?>[] a; 889 if ((a = array) != null && b != s && (al = a.length) > 0) { 890 int index = (al - 1) & --s; 891 long offset = ((long)index << ASHIFT) + ABASE; 892 ForkJoinTask<?> t = (ForkJoinTask<?>) 893 U.getObject(a, offset); 894 if (t != null && 895 U.compareAndSwapObject(a, offset, t, null)) { 896 top = s; 897 return t; 898 } 899 } 900 return null; 901 } 902 903 /** 904 * Takes a task in FIFO order if b is base of queue and a task 905 * can be claimed without contention. Specialized versions 906 * appear in ForkJoinPool methods scan and helpStealer. 907 */ pollAt(int b)908 final ForkJoinTask<?> pollAt(int b) { 909 ForkJoinTask<?>[] a; int al; 910 if ((a = array) != null && (al = a.length) > 0) { 911 int index = (al - 1) & b; 912 long offset = ((long)index << ASHIFT) + ABASE; 913 ForkJoinTask<?> t = (ForkJoinTask<?>) 914 U.getObjectVolatile(a, offset); 915 if (t != null && b++ == base && 916 U.compareAndSwapObject(a, offset, t, null)) { 917 base = b; 918 return t; 919 } 920 } 921 return null; 922 } 923 924 /** 925 * Takes next task, if one exists, in FIFO order. 926 */ poll()927 final ForkJoinTask<?> poll() { 928 for (;;) { 929 int b = base, s = top, d, al; ForkJoinTask<?>[] a; 930 if ((a = array) != null && (d = b - s) < 0 && 931 (al = a.length) > 0) { 932 int index = (al - 1) & b; 933 long offset = ((long)index << ASHIFT) + ABASE; 934 ForkJoinTask<?> t = (ForkJoinTask<?>) 935 U.getObjectVolatile(a, offset); 936 if (b++ == base) { 937 if (t != null) { 938 if (U.compareAndSwapObject(a, offset, t, null)) { 939 base = b; 940 return t; 941 } 942 } 943 else if (d == -1) 944 break; // now empty 945 } 946 } 947 else 948 break; 949 } 950 return null; 951 } 952 953 /** 954 * Takes next task, if one exists, in order specified by mode. 955 */ nextLocalTask()956 final ForkJoinTask<?> nextLocalTask() { 957 return (config < 0) ? poll() : pop(); 958 } 959 960 /** 961 * Returns next task, if one exists, in order specified by mode. 962 */ peek()963 final ForkJoinTask<?> peek() { 964 int al; ForkJoinTask<?>[] a; 965 return ((a = array) != null && (al = a.length) > 0) ? 966 a[(al - 1) & (config < 0 ? base : top - 1)] : null; 967 } 968 969 /** 970 * Pops the given task only if it is at the current top. 971 */ tryUnpush(ForkJoinTask<?> task)972 final boolean tryUnpush(ForkJoinTask<?> task) { 973 int b = base, s = top, al; ForkJoinTask<?>[] a; 974 if ((a = array) != null && b != s && (al = a.length) > 0) { 975 int index = (al - 1) & --s; 976 long offset = ((long)index << ASHIFT) + ABASE; 977 if (U.compareAndSwapObject(a, offset, task, null)) { 978 top = s; 979 return true; 980 } 981 } 982 return false; 983 } 984 985 /** 986 * Shared version of push. Fails if already locked. 987 * 988 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty 989 */ sharedPush(ForkJoinTask<?> task)990 final int sharedPush(ForkJoinTask<?> task) { 991 int stat; 992 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) { 993 int b = base, s = top, al, d; ForkJoinTask<?>[] a; 994 if ((a = array) != null && (al = a.length) > 0 && 995 al - 1 + (d = b - s) > 0) { 996 a[(al - 1) & s] = task; 997 top = s + 1; // relaxed writes OK here 998 qlock = 0; 999 stat = (d < 0 && b == base) ? d : 0; 1000 } 1001 else { 1002 growAndSharedPush(task); 1003 stat = 0; 1004 } 1005 } 1006 else 1007 stat = 1; 1008 return stat; 1009 } 1010 1011 /** 1012 * Helper for sharedPush; called only when locked and resize 1013 * needed. 1014 */ growAndSharedPush(ForkJoinTask<?> task)1015 private void growAndSharedPush(ForkJoinTask<?> task) { 1016 try { 1017 growArray(); 1018 int s = top, al; ForkJoinTask<?>[] a; 1019 if ((a = array) != null && (al = a.length) > 0) { 1020 a[(al - 1) & s] = task; 1021 top = s + 1; 1022 } 1023 } finally { 1024 qlock = 0; 1025 } 1026 } 1027 1028 /** 1029 * Shared version of tryUnpush. 1030 */ trySharedUnpush(ForkJoinTask<?> task)1031 final boolean trySharedUnpush(ForkJoinTask<?> task) { 1032 boolean popped = false; 1033 int s = top - 1, al; ForkJoinTask<?>[] a; 1034 if ((a = array) != null && (al = a.length) > 0) { 1035 int index = (al - 1) & s; 1036 long offset = ((long)index << ASHIFT) + ABASE; 1037 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset); 1038 if (t == task && 1039 U.compareAndSwapInt(this, QLOCK, 0, 1)) { 1040 if (top == s + 1 && array == a && 1041 U.compareAndSwapObject(a, offset, task, null)) { 1042 popped = true; 1043 top = s; 1044 } 1045 U.putOrderedInt(this, QLOCK, 0); 1046 } 1047 } 1048 return popped; 1049 } 1050 1051 /** 1052 * Removes and cancels all known tasks, ignoring any exceptions. 1053 */ cancelAll()1054 final void cancelAll() { 1055 ForkJoinTask<?> t; 1056 if ((t = currentJoin) != null) { 1057 currentJoin = null; 1058 ForkJoinTask.cancelIgnoringExceptions(t); 1059 } 1060 if ((t = currentSteal) != null) { 1061 currentSteal = null; 1062 ForkJoinTask.cancelIgnoringExceptions(t); 1063 } 1064 while ((t = poll()) != null) 1065 ForkJoinTask.cancelIgnoringExceptions(t); 1066 } 1067 1068 // Specialized execution methods 1069 1070 /** 1071 * Pops and executes up to POLL_LIMIT tasks or until empty. 1072 */ localPopAndExec()1073 final void localPopAndExec() { 1074 for (int nexec = 0;;) { 1075 int b = base, s = top, al; ForkJoinTask<?>[] a; 1076 if ((a = array) != null && b != s && (al = a.length) > 0) { 1077 int index = (al - 1) & --s; 1078 long offset = ((long)index << ASHIFT) + ABASE; 1079 ForkJoinTask<?> t = (ForkJoinTask<?>) 1080 U.getAndSetObject(a, offset, null); 1081 if (t != null) { 1082 top = s; 1083 (currentSteal = t).doExec(); 1084 if (++nexec > POLL_LIMIT) 1085 break; 1086 } 1087 else 1088 break; 1089 } 1090 else 1091 break; 1092 } 1093 } 1094 1095 /** 1096 * Polls and executes up to POLL_LIMIT tasks or until empty. 1097 */ localPollAndExec()1098 final void localPollAndExec() { 1099 for (int nexec = 0;;) { 1100 int b = base, s = top, al; ForkJoinTask<?>[] a; 1101 if ((a = array) != null && b != s && (al = a.length) > 0) { 1102 int index = (al - 1) & b++; 1103 long offset = ((long)index << ASHIFT) + ABASE; 1104 ForkJoinTask<?> t = (ForkJoinTask<?>) 1105 U.getAndSetObject(a, offset, null); 1106 if (t != null) { 1107 base = b; 1108 t.doExec(); 1109 if (++nexec > POLL_LIMIT) 1110 break; 1111 } 1112 } 1113 else 1114 break; 1115 } 1116 } 1117 1118 /** 1119 * Executes the given task and (some) remaining local tasks. 1120 */ runTask(ForkJoinTask<?> task)1121 final void runTask(ForkJoinTask<?> task) { 1122 if (task != null) { 1123 task.doExec(); 1124 if (config < 0) 1125 localPollAndExec(); 1126 else 1127 localPopAndExec(); 1128 int ns = ++nsteals; 1129 ForkJoinWorkerThread thread = owner; 1130 currentSteal = null; 1131 if (ns < 0) // collect on overflow 1132 transferStealCount(pool); 1133 if (thread != null) 1134 thread.afterTopLevelExec(); 1135 } 1136 } 1137 1138 /** 1139 * Adds steal count to pool steal count if it exists, and resets. 1140 */ transferStealCount(ForkJoinPool p)1141 final void transferStealCount(ForkJoinPool p) { 1142 AuxState aux; 1143 if (p != null && (aux = p.auxState) != null) { 1144 long s = nsteals; 1145 nsteals = 0; // if negative, correct for overflow 1146 if (s < 0) s = Integer.MAX_VALUE; 1147 aux.lock(); 1148 try { 1149 aux.stealCount += s; 1150 } finally { 1151 aux.unlock(); 1152 } 1153 } 1154 } 1155 1156 /** 1157 * If present, removes from queue and executes the given task, 1158 * or any other cancelled task. Used only by awaitJoin. 1159 * 1160 * @return true if queue empty and task not known to be done 1161 */ tryRemoveAndExec(ForkJoinTask<?> task)1162 final boolean tryRemoveAndExec(ForkJoinTask<?> task) { 1163 if (task != null && task.status >= 0) { 1164 int b, s, d, al; ForkJoinTask<?>[] a; 1165 while ((d = (b = base) - (s = top)) < 0 && 1166 (a = array) != null && (al = a.length) > 0) { 1167 for (;;) { // traverse from s to b 1168 int index = --s & (al - 1); 1169 long offset = (index << ASHIFT) + ABASE; 1170 ForkJoinTask<?> t = (ForkJoinTask<?>) 1171 U.getObjectVolatile(a, offset); 1172 if (t == null) 1173 break; // restart 1174 else if (t == task) { 1175 boolean removed = false; 1176 if (s + 1 == top) { // pop 1177 if (U.compareAndSwapObject(a, offset, t, null)) { 1178 top = s; 1179 removed = true; 1180 } 1181 } 1182 else if (base == b) // replace with proxy 1183 removed = U.compareAndSwapObject(a, offset, t, 1184 new EmptyTask()); 1185 if (removed) { 1186 ForkJoinTask<?> ps = currentSteal; 1187 (currentSteal = task).doExec(); 1188 currentSteal = ps; 1189 } 1190 break; 1191 } 1192 else if (t.status < 0 && s + 1 == top) { 1193 if (U.compareAndSwapObject(a, offset, t, null)) { 1194 top = s; 1195 } 1196 break; // was cancelled 1197 } 1198 else if (++d == 0) { 1199 if (base != b) // rescan 1200 break; 1201 return false; 1202 } 1203 } 1204 if (task.status < 0) 1205 return false; 1206 } 1207 } 1208 return true; 1209 } 1210 1211 /** 1212 * Pops task if in the same CC computation as the given task, 1213 * in either shared or owned mode. Used only by helpComplete. 1214 */ popCC(CountedCompleter<?> task, int mode)1215 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) { 1216 int b = base, s = top, al; ForkJoinTask<?>[] a; 1217 if ((a = array) != null && b != s && (al = a.length) > 0) { 1218 int index = (al - 1) & (s - 1); 1219 long offset = ((long)index << ASHIFT) + ABASE; 1220 ForkJoinTask<?> o = (ForkJoinTask<?>) 1221 U.getObjectVolatile(a, offset); 1222 if (o instanceof CountedCompleter) { 1223 CountedCompleter<?> t = (CountedCompleter<?>)o; 1224 for (CountedCompleter<?> r = t;;) { 1225 if (r == task) { 1226 if ((mode & IS_OWNED) == 0) { 1227 boolean popped = false; 1228 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) { 1229 if (top == s && array == a && 1230 U.compareAndSwapObject(a, offset, 1231 t, null)) { 1232 popped = true; 1233 top = s - 1; 1234 } 1235 U.putOrderedInt(this, QLOCK, 0); 1236 if (popped) 1237 return t; 1238 } 1239 } 1240 else if (U.compareAndSwapObject(a, offset, 1241 t, null)) { 1242 top = s - 1; 1243 return t; 1244 } 1245 break; 1246 } 1247 else if ((r = r.completer) == null) // try parent 1248 break; 1249 } 1250 } 1251 } 1252 return null; 1253 } 1254 1255 /** 1256 * Steals and runs a task in the same CC computation as the 1257 * given task if one exists and can be taken without 1258 * contention. Otherwise returns a checksum/control value for 1259 * use by method helpComplete. 1260 * 1261 * @return 1 if successful, 2 if retryable (lost to another 1262 * stealer), -1 if non-empty but no matching task found, else 1263 * the base index, forced negative. 1264 */ pollAndExecCC(CountedCompleter<?> task)1265 final int pollAndExecCC(CountedCompleter<?> task) { 1266 ForkJoinTask<?>[] a; 1267 int b = base, s = top, al, h; 1268 if ((a = array) != null && b != s && (al = a.length) > 0) { 1269 int index = (al - 1) & b; 1270 long offset = ((long)index << ASHIFT) + ABASE; 1271 ForkJoinTask<?> o = (ForkJoinTask<?>) 1272 U.getObjectVolatile(a, offset); 1273 if (o == null) 1274 h = 2; // retryable 1275 else if (!(o instanceof CountedCompleter)) 1276 h = -1; // unmatchable 1277 else { 1278 CountedCompleter<?> t = (CountedCompleter<?>)o; 1279 for (CountedCompleter<?> r = t;;) { 1280 if (r == task) { 1281 if (b++ == base && 1282 U.compareAndSwapObject(a, offset, t, null)) { 1283 base = b; 1284 t.doExec(); 1285 h = 1; // success 1286 } 1287 else 1288 h = 2; // lost CAS 1289 break; 1290 } 1291 else if ((r = r.completer) == null) { 1292 h = -1; // unmatched 1293 break; 1294 } 1295 } 1296 } 1297 } 1298 else 1299 h = b | Integer.MIN_VALUE; // to sense movement on re-poll 1300 return h; 1301 } 1302 1303 /** 1304 * Returns true if owned and not known to be blocked. 1305 */ isApparentlyUnblocked()1306 final boolean isApparentlyUnblocked() { 1307 Thread wt; Thread.State s; 1308 return (scanState >= 0 && 1309 (wt = owner) != null && 1310 (s = wt.getState()) != Thread.State.BLOCKED && 1311 s != Thread.State.WAITING && 1312 s != Thread.State.TIMED_WAITING); 1313 } 1314 1315 // Unsafe mechanics. Note that some are (and must be) the same as in FJP 1316 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 1317 private static final long QLOCK; 1318 private static final int ABASE; 1319 private static final int ASHIFT; 1320 static { 1321 try { 1322 QLOCK = U.objectFieldOffset 1323 (WorkQueue.class.getDeclaredField("qlock")); 1324 ABASE = U.arrayBaseOffset(ForkJoinTask[].class); 1325 int scale = U.arrayIndexScale(ForkJoinTask[].class); 1326 if ((scale & (scale - 1)) != 0) 1327 throw new Error("array index scale not a power of two"); 1328 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 1329 } catch (ReflectiveOperationException e) { 1330 throw new Error(e); 1331 } 1332 } 1333 } 1334 1335 // static fields (initialized in static initializer below) 1336 1337 /** 1338 * Creates a new ForkJoinWorkerThread. This factory is used unless 1339 * overridden in ForkJoinPool constructors. 1340 */ 1341 public static final ForkJoinWorkerThreadFactory 1342 defaultForkJoinWorkerThreadFactory; 1343 1344 /** 1345 * Permission required for callers of methods that may start or 1346 * kill threads. Also used as a static lock in tryInitialize. 1347 */ 1348 static final RuntimePermission modifyThreadPermission; 1349 1350 /** 1351 * Common (static) pool. Non-null for public use unless a static 1352 * construction exception, but internal usages null-check on use 1353 * to paranoically avoid potential initialization circularities 1354 * as well as to simplify generated code. 1355 */ 1356 static final ForkJoinPool common; 1357 1358 /** 1359 * Common pool parallelism. To allow simpler use and management 1360 * when common pool threads are disabled, we allow the underlying 1361 * common.parallelism field to be zero, but in that case still report 1362 * parallelism as 1 to reflect resulting caller-runs mechanics. 1363 */ 1364 static final int COMMON_PARALLELISM; 1365 1366 /** 1367 * Limit on spare thread construction in tryCompensate. 1368 */ 1369 private static final int COMMON_MAX_SPARES; 1370 1371 /** 1372 * Sequence number for creating workerNamePrefix. 1373 */ 1374 private static int poolNumberSequence; 1375 1376 /** 1377 * Returns the next sequence number. We don't expect this to 1378 * ever contend, so use simple builtin sync. 1379 */ nextPoolId()1380 private static final synchronized int nextPoolId() { 1381 return ++poolNumberSequence; 1382 } 1383 1384 // static configuration constants 1385 1386 /** 1387 * Initial timeout value (in milliseconds) for the thread 1388 * triggering quiescence to park waiting for new work. On timeout, 1389 * the thread will instead try to shrink the number of workers. 1390 * The value should be large enough to avoid overly aggressive 1391 * shrinkage during most transient stalls (long GCs etc). 1392 */ 1393 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec 1394 1395 /** 1396 * Tolerance for idle timeouts, to cope with timer undershoots. 1397 */ 1398 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms 1399 1400 /** 1401 * The default value for COMMON_MAX_SPARES. Overridable using the 1402 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system 1403 * property. The default value is far in excess of normal 1404 * requirements, but also far short of MAX_CAP and typical OS 1405 * thread limits, so allows JVMs to catch misuse/abuse before 1406 * running out of resources needed to do so. 1407 */ 1408 private static final int DEFAULT_COMMON_MAX_SPARES = 256; 1409 1410 /** 1411 * Increment for seed generators. See class ThreadLocal for 1412 * explanation. 1413 */ 1414 private static final int SEED_INCREMENT = 0x9e3779b9; 1415 1416 /* 1417 * Bits and masks for field ctl, packed with 4 16 bit subfields: 1418 * AC: Number of active running workers minus target parallelism 1419 * TC: Number of total workers minus target parallelism 1420 * SS: version count and status of top waiting thread 1421 * ID: poolIndex of top of Treiber stack of waiters 1422 * 1423 * When convenient, we can extract the lower 32 stack top bits 1424 * (including version bits) as sp=(int)ctl. The offsets of counts 1425 * by the target parallelism and the positionings of fields makes 1426 * it possible to perform the most common checks via sign tests of 1427 * fields: When ac is negative, there are not enough active 1428 * workers, when tc is negative, there are not enough total 1429 * workers. When sp is non-zero, there are waiting workers. To 1430 * deal with possibly negative fields, we use casts in and out of 1431 * "short" and/or signed shifts to maintain signedness. 1432 * 1433 * Because it occupies uppermost bits, we can add one active count 1434 * using getAndAddLong of AC_UNIT, rather than CAS, when returning 1435 * from a blocked join. Other updates entail multiple subfields 1436 * and masking, requiring CAS. 1437 */ 1438 1439 // Lower and upper word masks 1440 private static final long SP_MASK = 0xffffffffL; 1441 private static final long UC_MASK = ~SP_MASK; 1442 1443 // Active counts 1444 private static final int AC_SHIFT = 48; 1445 private static final long AC_UNIT = 0x0001L << AC_SHIFT; 1446 private static final long AC_MASK = 0xffffL << AC_SHIFT; 1447 1448 // Total counts 1449 private static final int TC_SHIFT = 32; 1450 private static final long TC_UNIT = 0x0001L << TC_SHIFT; 1451 private static final long TC_MASK = 0xffffL << TC_SHIFT; 1452 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign 1453 1454 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two 1455 private static final int STARTED = 1; 1456 private static final int STOP = 1 << 1; 1457 private static final int TERMINATED = 1 << 2; 1458 private static final int SHUTDOWN = 1 << 31; 1459 1460 // Instance fields 1461 volatile long ctl; // main pool control 1462 volatile int runState; 1463 final int config; // parallelism, mode 1464 AuxState auxState; // lock, steal counts 1465 volatile WorkQueue[] workQueues; // main registry 1466 final String workerNamePrefix; // to create worker name string 1467 final ForkJoinWorkerThreadFactory factory; 1468 final UncaughtExceptionHandler ueh; // per-worker UEH 1469 1470 /** 1471 * Instantiates fields upon first submission, or upon shutdown if 1472 * no submissions. If checkTermination true, also responds to 1473 * termination by external calls submitting tasks. 1474 */ tryInitialize(boolean checkTermination)1475 private void tryInitialize(boolean checkTermination) { 1476 if (runState == 0) { // bootstrap by locking static field 1477 int p = config & SMASK; 1478 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots 1479 n |= n >>> 1; // create workQueues array with size a power of two 1480 n |= n >>> 2; 1481 n |= n >>> 4; 1482 n |= n >>> 8; 1483 n |= n >>> 16; 1484 n = ((n + 1) << 1) & SMASK; 1485 AuxState aux = new AuxState(); 1486 WorkQueue[] ws = new WorkQueue[n]; 1487 synchronized (modifyThreadPermission) { // double-check 1488 if (runState == 0) { 1489 workQueues = ws; 1490 auxState = aux; 1491 runState = STARTED; 1492 } 1493 } 1494 } 1495 if (checkTermination && runState < 0) { 1496 tryTerminate(false, false); // help terminate 1497 throw new RejectedExecutionException(); 1498 } 1499 } 1500 1501 // Creating, registering and deregistering workers 1502 1503 /** 1504 * Tries to construct and start one worker. Assumes that total 1505 * count has already been incremented as a reservation. Invokes 1506 * deregisterWorker on any failure. 1507 * 1508 * @param isSpare true if this is a spare thread 1509 * @return true if successful 1510 */ createWorker(boolean isSpare)1511 private boolean createWorker(boolean isSpare) { 1512 ForkJoinWorkerThreadFactory fac = factory; 1513 Throwable ex = null; 1514 ForkJoinWorkerThread wt = null; 1515 WorkQueue q; 1516 try { 1517 if (fac != null && (wt = fac.newThread(this)) != null) { 1518 if (isSpare && (q = wt.workQueue) != null) 1519 q.config |= SPARE_WORKER; 1520 wt.start(); 1521 return true; 1522 } 1523 } catch (Throwable rex) { 1524 ex = rex; 1525 } 1526 deregisterWorker(wt, ex); 1527 return false; 1528 } 1529 1530 /** 1531 * Tries to add one worker, incrementing ctl counts before doing 1532 * so, relying on createWorker to back out on failure. 1533 * 1534 * @param c incoming ctl value, with total count negative and no 1535 * idle workers. On CAS failure, c is refreshed and retried if 1536 * this holds (otherwise, a new worker is not needed). 1537 */ tryAddWorker(long c)1538 private void tryAddWorker(long c) { 1539 do { 1540 long nc = ((AC_MASK & (c + AC_UNIT)) | 1541 (TC_MASK & (c + TC_UNIT))); 1542 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) { 1543 createWorker(false); 1544 break; 1545 } 1546 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0); 1547 } 1548 1549 /** 1550 * Callback from ForkJoinWorkerThread constructor to establish and 1551 * record its WorkQueue. 1552 * 1553 * @param wt the worker thread 1554 * @return the worker's queue 1555 */ registerWorker(ForkJoinWorkerThread wt)1556 final WorkQueue registerWorker(ForkJoinWorkerThread wt) { 1557 UncaughtExceptionHandler handler; 1558 AuxState aux; 1559 wt.setDaemon(true); // configure thread 1560 if ((handler = ueh) != null) 1561 wt.setUncaughtExceptionHandler(handler); 1562 WorkQueue w = new WorkQueue(this, wt); 1563 int i = 0; // assign a pool index 1564 int mode = config & MODE_MASK; 1565 if ((aux = auxState) != null) { 1566 aux.lock(); 1567 try { 1568 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m; 1569 WorkQueue[] ws = workQueues; 1570 if (ws != null && (n = ws.length) > 0) { 1571 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices 1572 if (ws[i] != null) { // collision 1573 int probes = 0; // step by approx half n 1574 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2; 1575 while (ws[i = (i + step) & m] != null) { 1576 if (++probes >= n) { 1577 workQueues = ws = Arrays.copyOf(ws, n <<= 1); 1578 m = n - 1; 1579 probes = 0; 1580 } 1581 } 1582 } 1583 w.hint = s; // use as random seed 1584 w.config = i | mode; 1585 w.scanState = i | (s & 0x7fff0000); // random seq bits 1586 ws[i] = w; 1587 } 1588 } finally { 1589 aux.unlock(); 1590 } 1591 } 1592 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1))); 1593 return w; 1594 } 1595 1596 /** 1597 * Final callback from terminating worker, as well as upon failure 1598 * to construct or start a worker. Removes record of worker from 1599 * array, and adjusts counts. If pool is shutting down, tries to 1600 * complete termination. 1601 * 1602 * @param wt the worker thread, or null if construction failed 1603 * @param ex the exception causing failure, or null if none 1604 */ deregisterWorker(ForkJoinWorkerThread wt, Throwable ex)1605 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) { 1606 WorkQueue w = null; 1607 if (wt != null && (w = wt.workQueue) != null) { 1608 AuxState aux; WorkQueue[] ws; // remove index from array 1609 int idx = w.config & SMASK; 1610 int ns = w.nsteals; 1611 if ((aux = auxState) != null) { 1612 aux.lock(); 1613 try { 1614 if ((ws = workQueues) != null && ws.length > idx && 1615 ws[idx] == w) 1616 ws[idx] = null; 1617 aux.stealCount += ns; 1618 } finally { 1619 aux.unlock(); 1620 } 1621 } 1622 } 1623 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted 1624 long c; // decrement counts 1625 do {} while (!U.compareAndSwapLong 1626 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) | 1627 (TC_MASK & (c - TC_UNIT)) | 1628 (SP_MASK & c)))); 1629 } 1630 if (w != null) { 1631 w.currentSteal = null; 1632 w.qlock = -1; // ensure set 1633 w.cancelAll(); // cancel remaining tasks 1634 } 1635 while (tryTerminate(false, false) >= 0) { // possibly replace 1636 WorkQueue[] ws; int wl, sp; long c; 1637 if (w == null || w.array == null || 1638 (ws = workQueues) == null || (wl = ws.length) <= 0) 1639 break; 1640 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement 1641 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT)) 1642 break; 1643 } 1644 else if (ex != null && (c & ADD_WORKER) != 0L) { 1645 tryAddWorker(c); // create replacement 1646 break; 1647 } 1648 else // don't need replacement 1649 break; 1650 } 1651 if (ex == null) // help clean on way out 1652 ForkJoinTask.helpExpungeStaleExceptions(); 1653 else // rethrow 1654 ForkJoinTask.rethrow(ex); 1655 } 1656 1657 // Signalling 1658 1659 /** 1660 * Tries to create or activate a worker if too few are active. 1661 */ signalWork()1662 final void signalWork() { 1663 for (;;) { 1664 long c; int sp, i; WorkQueue v; WorkQueue[] ws; 1665 if ((c = ctl) >= 0L) // enough workers 1666 break; 1667 else if ((sp = (int)c) == 0) { // no idle workers 1668 if ((c & ADD_WORKER) != 0L) // too few workers 1669 tryAddWorker(c); 1670 break; 1671 } 1672 else if ((ws = workQueues) == null) 1673 break; // unstarted/terminated 1674 else if (ws.length <= (i = sp & SMASK)) 1675 break; // terminated 1676 else if ((v = ws[i]) == null) 1677 break; // terminating 1678 else { 1679 int ns = sp & ~UNSIGNALLED; 1680 int vs = v.scanState; 1681 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT)); 1682 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) { 1683 v.scanState = ns; 1684 LockSupport.unpark(v.parker); 1685 break; 1686 } 1687 } 1688 } 1689 } 1690 1691 /** 1692 * Signals and releases worker v if it is top of idle worker 1693 * stack. This performs a one-shot version of signalWork only if 1694 * there is (apparently) at least one idle worker. 1695 * 1696 * @param c incoming ctl value 1697 * @param v if non-null, a worker 1698 * @param inc the increment to active count (zero when compensating) 1699 * @return true if successful 1700 */ tryRelease(long c, WorkQueue v, long inc)1701 private boolean tryRelease(long c, WorkQueue v, long inc) { 1702 int sp = (int)c, ns = sp & ~UNSIGNALLED; 1703 if (v != null) { 1704 int vs = v.scanState; 1705 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc)); 1706 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) { 1707 v.scanState = ns; 1708 LockSupport.unpark(v.parker); 1709 return true; 1710 } 1711 } 1712 return false; 1713 } 1714 1715 /** 1716 * With approx probability of a missed signal, tries (once) to 1717 * reactivate worker w (or some other worker), failing if stale or 1718 * known to be already active. 1719 * 1720 * @param w the worker 1721 * @param ws the workQueue array to use 1722 * @param r random seed 1723 */ tryReactivate(WorkQueue w, WorkQueue[] ws, int r)1724 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) { 1725 long c; int sp, wl; WorkQueue v; 1726 if ((sp = (int)(c = ctl)) != 0 && w != null && 1727 ws != null && (wl = ws.length) > 0 && 1728 ((sp ^ r) & SS_SEQ) == 0 && 1729 (v = ws[(wl - 1) & sp]) != null) { 1730 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT)); 1731 int ns = sp & ~UNSIGNALLED; 1732 if (w.scanState < 0 && 1733 v.scanState == sp && 1734 U.compareAndSwapLong(this, CTL, c, nc)) { 1735 v.scanState = ns; 1736 LockSupport.unpark(v.parker); 1737 } 1738 } 1739 } 1740 1741 /** 1742 * If worker w exists and is active, enqueues and sets status to inactive. 1743 * 1744 * @param w the worker 1745 * @param ss current (non-negative) scanState 1746 */ inactivate(WorkQueue w, int ss)1747 private void inactivate(WorkQueue w, int ss) { 1748 int ns = (ss + SS_SEQ) | UNSIGNALLED; 1749 long lc = ns & SP_MASK, nc, c; 1750 if (w != null) { 1751 w.scanState = ns; 1752 do { 1753 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT)); 1754 w.stackPred = (int)c; 1755 } while (!U.compareAndSwapLong(this, CTL, c, nc)); 1756 } 1757 } 1758 1759 /** 1760 * Possibly blocks worker w waiting for signal, or returns 1761 * negative status if the worker should terminate. May return 1762 * without status change if multiple stale unparks and/or 1763 * interrupts occur. 1764 * 1765 * @param w the calling worker 1766 * @return negative if w should terminate 1767 */ awaitWork(WorkQueue w)1768 private int awaitWork(WorkQueue w) { 1769 int stat = 0; 1770 if (w != null && w.scanState < 0) { 1771 long c = ctl; 1772 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0) 1773 stat = timedAwaitWork(w, c); // possibly quiescent 1774 else if ((runState & STOP) != 0) 1775 stat = w.qlock = -1; // pool terminating 1776 else if (w.scanState < 0) { 1777 w.parker = Thread.currentThread(); 1778 if (w.scanState < 0) // recheck after write 1779 LockSupport.park(this); 1780 w.parker = null; 1781 if ((runState & STOP) != 0) 1782 stat = w.qlock = -1; // recheck 1783 else if (w.scanState < 0) 1784 Thread.interrupted(); // clear status 1785 } 1786 } 1787 return stat; 1788 } 1789 1790 /** 1791 * Possibly triggers shutdown and tries (once) to block worker 1792 * when pool is (or may be) quiescent. Waits up to a duration 1793 * determined by number of workers. On timeout, if ctl has not 1794 * changed, terminates the worker, which will in turn wake up 1795 * another worker to possibly repeat this process. 1796 * 1797 * @param w the calling worker 1798 * @return negative if w should terminate 1799 */ timedAwaitWork(WorkQueue w, long c)1800 private int timedAwaitWork(WorkQueue w, long c) { 1801 int stat = 0; 1802 int scale = 1 - (short)(c >>> TC_SHIFT); 1803 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS + 1804 System.currentTimeMillis()); 1805 if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) && 1806 w != null && w.scanState < 0) { 1807 int ss; AuxState aux; 1808 w.parker = Thread.currentThread(); 1809 if (w.scanState < 0) 1810 LockSupport.parkUntil(this, deadline); 1811 w.parker = null; 1812 if ((runState & STOP) != 0) 1813 stat = w.qlock = -1; // pool terminating 1814 else if ((ss = w.scanState) < 0 && !Thread.interrupted() && 1815 (int)c == ss && (aux = auxState) != null && ctl == c && 1816 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) { 1817 aux.lock(); 1818 try { // pre-deregister 1819 WorkQueue[] ws; 1820 int cfg = w.config, idx = cfg & SMASK; 1821 long nc = ((UC_MASK & (c - TC_UNIT)) | 1822 (SP_MASK & w.stackPred)); 1823 if ((runState & STOP) == 0 && 1824 (ws = workQueues) != null && 1825 idx < ws.length && idx >= 0 && ws[idx] == w && 1826 U.compareAndSwapLong(this, CTL, c, nc)) { 1827 ws[idx] = null; 1828 w.config = cfg | UNREGISTERED; 1829 stat = w.qlock = -1; 1830 } 1831 } finally { 1832 aux.unlock(); 1833 } 1834 } 1835 } 1836 return stat; 1837 } 1838 1839 /** 1840 * If the given worker is a spare with no queued tasks, and there 1841 * are enough existing workers, drops it from ctl counts and sets 1842 * its state to terminated. 1843 * 1844 * @param w the calling worker -- must be a spare 1845 * @return true if dropped (in which case it must not process more tasks) 1846 */ tryDropSpare(WorkQueue w)1847 private boolean tryDropSpare(WorkQueue w) { 1848 if (w != null && w.isEmpty()) { // no local tasks 1849 long c; int sp, wl; WorkQueue[] ws; WorkQueue v; 1850 while ((short)((c = ctl) >> TC_SHIFT) > 0 && 1851 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) && 1852 (ws = workQueues) != null && (wl = ws.length) > 0) { 1853 boolean dropped, canDrop; 1854 if (sp == 0) { // no queued workers 1855 long nc = ((AC_MASK & (c - AC_UNIT)) | 1856 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c)); 1857 dropped = U.compareAndSwapLong(this, CTL, c, nc); 1858 } 1859 else if ( 1860 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp) 1861 dropped = false; // stale; retry 1862 else { 1863 long nc = v.stackPred & SP_MASK; 1864 if (w == v || w.scanState >= 0) { 1865 canDrop = true; // w unqueued or topmost 1866 nc |= ((AC_MASK & c) | // ensure replacement 1867 (TC_MASK & (c - TC_UNIT))); 1868 } 1869 else { // w may be queued 1870 canDrop = false; // help uncover 1871 nc |= ((AC_MASK & (c + AC_UNIT)) | 1872 (TC_MASK & c)); 1873 } 1874 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1875 v.scanState = sp & ~UNSIGNALLED; 1876 LockSupport.unpark(v.parker); 1877 dropped = canDrop; 1878 } 1879 else 1880 dropped = false; 1881 } 1882 if (dropped) { // pre-deregister 1883 int cfg = w.config, idx = cfg & SMASK; 1884 if (idx >= 0 && idx < ws.length && ws[idx] == w) 1885 ws[idx] = null; 1886 w.config = cfg | UNREGISTERED; 1887 w.qlock = -1; 1888 return true; 1889 } 1890 } 1891 } 1892 return false; 1893 } 1894 1895 /** 1896 * Top-level runloop for workers, called by ForkJoinWorkerThread.run. 1897 */ runWorker(WorkQueue w)1898 final void runWorker(WorkQueue w) { 1899 w.growArray(); // allocate queue 1900 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT; 1901 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed 1902 if ((runState & STOP) == 0) { 1903 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero 1904 if (bound == 0 && tryDropSpare(w)) 1905 break; 1906 // high bits of prev seed for step; current low bits for idx 1907 int step = (int)(r >>> 48) | 1; 1908 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift 1909 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0) 1910 break; 1911 } 1912 } 1913 } 1914 1915 // Scanning for tasks 1916 1917 /** 1918 * Repeatedly scans for and tries to steal and execute (via 1919 * workQueue.runTask) a queued task. Each scan traverses queues in 1920 * pseudorandom permutation. Upon finding a non-empty queue, makes 1921 * at most the given bound attempts to re-poll (fewer if 1922 * contended) on the same queue before returning (impossible 1923 * scanState value) 0 to restart scan. Else returns after at least 1924 * 1 and at most 32 full scans. 1925 * 1926 * @param w the worker (via its WorkQueue) 1927 * @param bound repoll bound as bitmask (0 if spare) 1928 * @param step (circular) index increment per iteration (must be odd) 1929 * @param r a random seed for origin index 1930 * @return negative if should await signal 1931 */ scan(WorkQueue w, int bound, int step, int r)1932 private int scan(WorkQueue w, int bound, int step, int r) { 1933 int stat = 0, wl; WorkQueue[] ws; 1934 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) { 1935 for (int m = wl - 1, 1936 origin = m & r, idx = origin, 1937 npolls = 0, 1938 ss = w.scanState;;) { // negative if inactive 1939 WorkQueue q; ForkJoinTask<?>[] a; int b, al; 1940 if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 && 1941 (a = q.array) != null && (al = a.length) > 0) { 1942 int index = (al - 1) & b; 1943 long offset = ((long)index << ASHIFT) + ABASE; 1944 ForkJoinTask<?> t = (ForkJoinTask<?>) 1945 U.getObjectVolatile(a, offset); 1946 if (t == null) 1947 break; // empty or busy 1948 else if (b++ != q.base) 1949 break; // busy 1950 else if (ss < 0) { 1951 tryReactivate(w, ws, r); 1952 break; // retry upon rescan 1953 } 1954 else if (!U.compareAndSwapObject(a, offset, t, null)) 1955 break; // contended 1956 else { 1957 q.base = b; 1958 w.currentSteal = t; 1959 if (b != q.top) // propagate signal 1960 signalWork(); 1961 w.runTask(t); 1962 if (++npolls > bound) 1963 break; 1964 } 1965 } 1966 else if (npolls != 0) // rescan 1967 break; 1968 else if ((idx = (idx + step) & m) == origin) { 1969 if (ss < 0) { // await signal 1970 stat = ss; 1971 break; 1972 } 1973 else if (r >= 0) { 1974 inactivate(w, ss); 1975 break; 1976 } 1977 else 1978 r <<= 1; // at most 31 rescans 1979 } 1980 } 1981 } 1982 return stat; 1983 } 1984 1985 // Joining tasks 1986 1987 /** 1988 * Tries to steal and run tasks within the target's computation. 1989 * Uses a variant of the top-level algorithm, restricted to tasks 1990 * with the given task as ancestor: It prefers taking and running 1991 * eligible tasks popped from the worker's own queue (via 1992 * popCC). Otherwise it scans others, randomly moving on 1993 * contention or execution, deciding to give up based on a 1994 * checksum (via return codes from pollAndExecCC). The maxTasks 1995 * argument supports external usages; internal calls use zero, 1996 * allowing unbounded steps (external calls trap non-positive 1997 * values). 1998 * 1999 * @param w caller 2000 * @param maxTasks if non-zero, the maximum number of other tasks to run 2001 * @return task status on exit 2002 */ helpComplete(WorkQueue w, CountedCompleter<?> task, int maxTasks)2003 final int helpComplete(WorkQueue w, CountedCompleter<?> task, 2004 int maxTasks) { 2005 WorkQueue[] ws; int s = 0, wl; 2006 if ((ws = workQueues) != null && (wl = ws.length) > 1 && 2007 task != null && w != null) { 2008 for (int m = wl - 1, 2009 mode = w.config, 2010 r = ~mode, // scanning seed 2011 origin = r & m, k = origin, // first queue to scan 2012 step = 3, // first scan step 2013 h = 1, // 1:ran, >1:contended, <0:hash 2014 oldSum = 0, checkSum = 0;;) { 2015 CountedCompleter<?> p; WorkQueue q; int i; 2016 if ((s = task.status) < 0) 2017 break; 2018 if (h == 1 && (p = w.popCC(task, mode)) != null) { 2019 p.doExec(); // run local task 2020 if (maxTasks != 0 && --maxTasks == 0) 2021 break; 2022 origin = k; // reset 2023 oldSum = checkSum = 0; 2024 } 2025 else { // poll other worker queues 2026 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null) 2027 h = 0; 2028 else if ((h = q.pollAndExecCC(task)) < 0) 2029 checkSum += h; 2030 if (h > 0) { 2031 if (h == 1 && maxTasks != 0 && --maxTasks == 0) 2032 break; 2033 step = (r >>> 16) | 3; 2034 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift 2035 k = origin = r & m; // move and restart 2036 oldSum = checkSum = 0; 2037 } 2038 else if ((k = (k + step) & m) == origin) { 2039 if (oldSum == (oldSum = checkSum)) 2040 break; 2041 checkSum = 0; 2042 } 2043 } 2044 } 2045 } 2046 return s; 2047 } 2048 2049 /** 2050 * Tries to locate and execute tasks for a stealer of the given 2051 * task, or in turn one of its stealers. Traces currentSteal -> 2052 * currentJoin links looking for a thread working on a descendant 2053 * of the given task and with a non-empty queue to steal back and 2054 * execute tasks from. The first call to this method upon a 2055 * waiting join will often entail scanning/search, (which is OK 2056 * because the joiner has nothing better to do), but this method 2057 * leaves hints in workers to speed up subsequent calls. 2058 * 2059 * @param w caller 2060 * @param task the task to join 2061 */ helpStealer(WorkQueue w, ForkJoinTask<?> task)2062 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) { 2063 if (task != null && w != null) { 2064 ForkJoinTask<?> ps = w.currentSteal; 2065 WorkQueue[] ws; int wl, oldSum = 0; 2066 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 && 2067 (ws = workQueues) != null && (wl = ws.length) > 0) { 2068 ForkJoinTask<?> subtask; 2069 int m = wl - 1, checkSum = 0; // for stability check 2070 WorkQueue j = w, v; // v is subtask stealer 2071 descent: for (subtask = task; subtask.status >= 0; ) { 2072 for (int h = j.hint | 1, k = 0, i;;) { 2073 if ((v = ws[i = (h + (k << 1)) & m]) != null) { 2074 if (v.currentSteal == subtask) { 2075 j.hint = i; 2076 break; 2077 } 2078 checkSum += v.base; 2079 } 2080 if (++k > m) // can't find stealer 2081 break outer; 2082 } 2083 2084 for (;;) { // help v or descend 2085 ForkJoinTask<?>[] a; int b, al; 2086 if (subtask.status < 0) // too late to help 2087 break descent; 2088 checkSum += (b = v.base); 2089 ForkJoinTask<?> next = v.currentJoin; 2090 ForkJoinTask<?> t = null; 2091 if ((a = v.array) != null && (al = a.length) > 0) { 2092 int index = (al - 1) & b; 2093 long offset = ((long)index << ASHIFT) + ABASE; 2094 t = (ForkJoinTask<?>) 2095 U.getObjectVolatile(a, offset); 2096 if (t != null && b++ == v.base) { 2097 if (j.currentJoin != subtask || 2098 v.currentSteal != subtask || 2099 subtask.status < 0) 2100 break descent; // stale 2101 if (U.compareAndSwapObject(a, offset, t, null)) { 2102 v.base = b; 2103 w.currentSteal = t; 2104 for (int top = w.top;;) { 2105 t.doExec(); // help 2106 w.currentSteal = ps; 2107 if (task.status < 0) 2108 break outer; 2109 if (w.top == top) 2110 break; // run local tasks 2111 if ((t = w.pop()) == null) 2112 break descent; 2113 w.currentSteal = t; 2114 } 2115 } 2116 } 2117 } 2118 if (t == null && b == v.base && b - v.top >= 0) { 2119 if ((subtask = next) == null) { // try to descend 2120 if (next == v.currentJoin && 2121 oldSum == (oldSum = checkSum)) 2122 break outer; 2123 break descent; 2124 } 2125 j = v; 2126 break; 2127 } 2128 } 2129 } 2130 } 2131 } 2132 } 2133 2134 /** 2135 * Tries to decrement active count (sometimes implicitly) and 2136 * possibly release or create a compensating worker in preparation 2137 * for blocking. Returns false (retryable by caller), on 2138 * contention, detected staleness, instability, or termination. 2139 * 2140 * @param w caller 2141 */ tryCompensate(WorkQueue w)2142 private boolean tryCompensate(WorkQueue w) { 2143 boolean canBlock; int wl; 2144 long c = ctl; 2145 WorkQueue[] ws = workQueues; 2146 int pc = config & SMASK; 2147 int ac = pc + (int)(c >> AC_SHIFT); 2148 int tc = pc + (short)(c >> TC_SHIFT); 2149 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled 2150 ws == null || (wl = ws.length) <= 0) 2151 canBlock = false; 2152 else { 2153 int m = wl - 1, sp; 2154 boolean busy = true; // validate ac 2155 for (int i = 0; i <= m; ++i) { 2156 int k; WorkQueue v; 2157 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null && 2158 v.scanState >= 0 && v.currentSteal == null) { 2159 busy = false; 2160 break; 2161 } 2162 } 2163 if (!busy || ctl != c) 2164 canBlock = false; // unstable or stale 2165 else if ((sp = (int)c) != 0) // release idle worker 2166 canBlock = tryRelease(c, ws[m & sp], 0L); 2167 else if (tc >= pc && ac > 1 && w.isEmpty()) { 2168 long nc = ((AC_MASK & (c - AC_UNIT)) | 2169 (~AC_MASK & c)); // uncompensated 2170 canBlock = U.compareAndSwapLong(this, CTL, c, nc); 2171 } 2172 else if (tc >= MAX_CAP || 2173 (this == common && tc >= pc + COMMON_MAX_SPARES)) 2174 throw new RejectedExecutionException( 2175 "Thread limit exceeded replacing blocked worker"); 2176 else { // similar to tryAddWorker 2177 boolean isSpare = (tc >= pc); 2178 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT)); 2179 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) && 2180 createWorker(isSpare)); // throws on exception 2181 } 2182 } 2183 return canBlock; 2184 } 2185 2186 /** 2187 * Helps and/or blocks until the given task is done or timeout. 2188 * 2189 * @param w caller 2190 * @param task the task 2191 * @param deadline for timed waits, if nonzero 2192 * @return task status on exit 2193 */ awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline)2194 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) { 2195 int s = 0; 2196 if (w != null) { 2197 ForkJoinTask<?> prevJoin = w.currentJoin; 2198 if (task != null && (s = task.status) >= 0) { 2199 w.currentJoin = task; 2200 CountedCompleter<?> cc = (task instanceof CountedCompleter) ? 2201 (CountedCompleter<?>)task : null; 2202 for (;;) { 2203 if (cc != null) 2204 helpComplete(w, cc, 0); 2205 else 2206 helpStealer(w, task); 2207 if ((s = task.status) < 0) 2208 break; 2209 long ms, ns; 2210 if (deadline == 0L) 2211 ms = 0L; 2212 else if ((ns = deadline - System.nanoTime()) <= 0L) 2213 break; 2214 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L) 2215 ms = 1L; 2216 if (tryCompensate(w)) { 2217 task.internalWait(ms); 2218 U.getAndAddLong(this, CTL, AC_UNIT); 2219 } 2220 if ((s = task.status) < 0) 2221 break; 2222 } 2223 w.currentJoin = prevJoin; 2224 } 2225 } 2226 return s; 2227 } 2228 2229 // Specialized scanning 2230 2231 /** 2232 * Returns a (probably) non-empty steal queue, if one is found 2233 * during a scan, else null. This method must be retried by 2234 * caller if, by the time it tries to use the queue, it is empty. 2235 */ findNonEmptyStealQueue()2236 private WorkQueue findNonEmptyStealQueue() { 2237 WorkQueue[] ws; int wl; // one-shot version of scan loop 2238 int r = ThreadLocalRandom.nextSecondarySeed(); 2239 if ((ws = workQueues) != null && (wl = ws.length) > 0) { 2240 int m = wl - 1, origin = r & m; 2241 for (int k = origin, oldSum = 0, checkSum = 0;;) { 2242 WorkQueue q; int b; 2243 if ((q = ws[k]) != null) { 2244 if ((b = q.base) - q.top < 0) 2245 return q; 2246 checkSum += b; 2247 } 2248 if ((k = (k + 1) & m) == origin) { 2249 if (oldSum == (oldSum = checkSum)) 2250 break; 2251 checkSum = 0; 2252 } 2253 } 2254 } 2255 return null; 2256 } 2257 2258 /** 2259 * Runs tasks until {@code isQuiescent()}. We piggyback on 2260 * active count ctl maintenance, but rather than blocking 2261 * when tasks cannot be found, we rescan until all others cannot 2262 * find tasks either. 2263 */ helpQuiescePool(WorkQueue w)2264 final void helpQuiescePool(WorkQueue w) { 2265 ForkJoinTask<?> ps = w.currentSteal; // save context 2266 int wc = w.config; 2267 for (boolean active = true;;) { 2268 long c; WorkQueue q; ForkJoinTask<?> t; 2269 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO 2270 (w.currentSteal = t).doExec(); 2271 w.currentSteal = ps; 2272 } 2273 else if ((q = findNonEmptyStealQueue()) != null) { 2274 if (!active) { // re-establish active count 2275 active = true; 2276 U.getAndAddLong(this, CTL, AC_UNIT); 2277 } 2278 if ((t = q.pollAt(q.base)) != null) { 2279 (w.currentSteal = t).doExec(); 2280 w.currentSteal = ps; 2281 if (++w.nsteals < 0) 2282 w.transferStealCount(this); 2283 } 2284 } 2285 else if (active) { // decrement active count without queuing 2286 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c); 2287 if (U.compareAndSwapLong(this, CTL, c, nc)) 2288 active = false; 2289 } 2290 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 && 2291 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT)) 2292 break; 2293 } 2294 } 2295 2296 /** 2297 * Gets and removes a local or stolen task for the given worker. 2298 * 2299 * @return a task, if available 2300 */ nextTaskFor(WorkQueue w)2301 final ForkJoinTask<?> nextTaskFor(WorkQueue w) { 2302 for (ForkJoinTask<?> t;;) { 2303 WorkQueue q; 2304 if ((t = w.nextLocalTask()) != null) 2305 return t; 2306 if ((q = findNonEmptyStealQueue()) == null) 2307 return null; 2308 if ((t = q.pollAt(q.base)) != null) 2309 return t; 2310 } 2311 } 2312 2313 /** 2314 * Returns a cheap heuristic guide for task partitioning when 2315 * programmers, frameworks, tools, or languages have little or no 2316 * idea about task granularity. In essence, by offering this 2317 * method, we ask users only about tradeoffs in overhead vs 2318 * expected throughput and its variance, rather than how finely to 2319 * partition tasks. 2320 * 2321 * In a steady state strict (tree-structured) computation, each 2322 * thread makes available for stealing enough tasks for other 2323 * threads to remain active. Inductively, if all threads play by 2324 * the same rules, each thread should make available only a 2325 * constant number of tasks. 2326 * 2327 * The minimum useful constant is just 1. But using a value of 1 2328 * would require immediate replenishment upon each steal to 2329 * maintain enough tasks, which is infeasible. Further, 2330 * partitionings/granularities of offered tasks should minimize 2331 * steal rates, which in general means that threads nearer the top 2332 * of computation tree should generate more than those nearer the 2333 * bottom. In perfect steady state, each thread is at 2334 * approximately the same level of computation tree. However, 2335 * producing extra tasks amortizes the uncertainty of progress and 2336 * diffusion assumptions. 2337 * 2338 * So, users will want to use values larger (but not much larger) 2339 * than 1 to both smooth over transient shortages and hedge 2340 * against uneven progress; as traded off against the cost of 2341 * extra task overhead. We leave the user to pick a threshold 2342 * value to compare with the results of this call to guide 2343 * decisions, but recommend values such as 3. 2344 * 2345 * When all threads are active, it is on average OK to estimate 2346 * surplus strictly locally. In steady-state, if one thread is 2347 * maintaining say 2 surplus tasks, then so are others. So we can 2348 * just use estimated queue length. However, this strategy alone 2349 * leads to serious mis-estimates in some non-steady-state 2350 * conditions (ramp-up, ramp-down, other stalls). We can detect 2351 * many of these by further considering the number of "idle" 2352 * threads, that are known to have zero queued tasks, so 2353 * compensate by a factor of (#idle/#active) threads. 2354 */ getSurplusQueuedTaskCount()2355 static int getSurplusQueuedTaskCount() { 2356 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q; 2357 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) { 2358 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK; 2359 int n = (q = wt.workQueue).top - q.base; 2360 int a = (int)(pool.ctl >> AC_SHIFT) + p; 2361 return n - (a > (p >>>= 1) ? 0 : 2362 a > (p >>>= 1) ? 1 : 2363 a > (p >>>= 1) ? 2 : 2364 a > (p >>>= 1) ? 4 : 2365 8); 2366 } 2367 return 0; 2368 } 2369 2370 // Termination 2371 2372 /** 2373 * Possibly initiates and/or completes termination. 2374 * 2375 * @param now if true, unconditionally terminate, else only 2376 * if no work and no active workers 2377 * @param enable if true, terminate when next possible 2378 * @return -1: terminating/terminated, 0: retry if internal caller, else 1 2379 */ tryTerminate(boolean now, boolean enable)2380 private int tryTerminate(boolean now, boolean enable) { 2381 int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED 2382 2383 while ((rs = runState) >= 0) { 2384 if (!enable || this == common) // cannot shutdown 2385 return 1; 2386 else if (rs == 0) 2387 tryInitialize(false); // ensure initialized 2388 else 2389 U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN); 2390 } 2391 2392 if ((rs & STOP) == 0) { // try to initiate termination 2393 if (!now) { // check quiescence 2394 for (long oldSum = 0L;;) { // repeat until stable 2395 WorkQueue[] ws; WorkQueue w; int b; 2396 long checkSum = ctl; 2397 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0) 2398 return 0; // still active workers 2399 if ((ws = workQueues) != null) { 2400 for (int i = 0; i < ws.length; ++i) { 2401 if ((w = ws[i]) != null) { 2402 checkSum += (b = w.base); 2403 if (w.currentSteal != null || b != w.top) 2404 return 0; // retry if internal caller 2405 } 2406 } 2407 } 2408 if (oldSum == (oldSum = checkSum)) 2409 break; 2410 } 2411 } 2412 do {} while (!U.compareAndSwapInt(this, RUNSTATE, 2413 rs = runState, rs | STOP)); 2414 } 2415 2416 for (long oldSum = 0L;;) { // repeat until stable 2417 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; 2418 long checkSum = ctl; 2419 if ((ws = workQueues) != null) { // help terminate others 2420 for (int i = 0; i < ws.length; ++i) { 2421 if ((w = ws[i]) != null) { 2422 w.cancelAll(); // clear queues 2423 checkSum += w.base; 2424 if (w.qlock >= 0) { 2425 w.qlock = -1; // racy set OK 2426 if ((wt = w.owner) != null) { 2427 try { // unblock join or park 2428 wt.interrupt(); 2429 } catch (Throwable ignore) { 2430 } 2431 } 2432 } 2433 } 2434 } 2435 } 2436 if (oldSum == (oldSum = checkSum)) 2437 break; 2438 } 2439 2440 if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) { 2441 runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write 2442 synchronized (this) { 2443 notifyAll(); // for awaitTermination 2444 } 2445 } 2446 2447 return -1; 2448 } 2449 2450 // External operations 2451 2452 /** 2453 * Constructs and tries to install a new external queue, 2454 * failing if the workQueues array already has a queue at 2455 * the given index. 2456 * 2457 * @param index the index of the new queue 2458 */ tryCreateExternalQueue(int index)2459 private void tryCreateExternalQueue(int index) { 2460 AuxState aux; 2461 if ((aux = auxState) != null && index >= 0) { 2462 WorkQueue q = new WorkQueue(this, null); 2463 q.config = index; 2464 q.scanState = ~UNSIGNALLED; 2465 q.qlock = 1; // lock queue 2466 boolean installed = false; 2467 aux.lock(); 2468 try { // lock pool to install 2469 WorkQueue[] ws; 2470 if ((ws = workQueues) != null && index < ws.length && 2471 ws[index] == null) { 2472 ws[index] = q; // else throw away 2473 installed = true; 2474 } 2475 } finally { 2476 aux.unlock(); 2477 } 2478 if (installed) { 2479 try { 2480 q.growArray(); 2481 } finally { 2482 q.qlock = 0; 2483 } 2484 } 2485 } 2486 } 2487 2488 /** 2489 * Adds the given task to a submission queue at submitter's 2490 * current queue. Also performs secondary initialization upon the 2491 * first submission of the first task to the pool, and detects 2492 * first submission by an external thread and creates a new shared 2493 * queue if the one at index if empty or contended. 2494 * 2495 * @param task the task. Caller must ensure non-null. 2496 */ externalPush(ForkJoinTask<?> task)2497 final void externalPush(ForkJoinTask<?> task) { 2498 int r; // initialize caller's probe 2499 if ((r = ThreadLocalRandom.getProbe()) == 0) { 2500 ThreadLocalRandom.localInit(); 2501 r = ThreadLocalRandom.getProbe(); 2502 } 2503 for (;;) { 2504 WorkQueue q; int wl, k, stat; 2505 int rs = runState; 2506 WorkQueue[] ws = workQueues; 2507 if (rs <= 0 || ws == null || (wl = ws.length) <= 0) 2508 tryInitialize(true); 2509 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null) 2510 tryCreateExternalQueue(k); 2511 else if ((stat = q.sharedPush(task)) < 0) 2512 break; 2513 else if (stat == 0) { 2514 signalWork(); 2515 break; 2516 } 2517 else // move if busy 2518 r = ThreadLocalRandom.advanceProbe(r); 2519 } 2520 } 2521 2522 /** 2523 * Pushes a possibly-external submission. 2524 */ externalSubmit(ForkJoinTask<T> task)2525 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) { 2526 Thread t; ForkJoinWorkerThread w; WorkQueue q; 2527 if (task == null) 2528 throw new NullPointerException(); 2529 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) && 2530 (w = (ForkJoinWorkerThread)t).pool == this && 2531 (q = w.workQueue) != null) 2532 q.push(task); 2533 else 2534 externalPush(task); 2535 return task; 2536 } 2537 2538 /** 2539 * Returns common pool queue for an external thread. 2540 */ commonSubmitterQueue()2541 static WorkQueue commonSubmitterQueue() { 2542 ForkJoinPool p = common; 2543 int r = ThreadLocalRandom.getProbe(); 2544 WorkQueue[] ws; int wl; 2545 return (p != null && (ws = p.workQueues) != null && 2546 (wl = ws.length) > 0) ? 2547 ws[(wl - 1) & r & SQMASK] : null; 2548 } 2549 2550 /** 2551 * Performs tryUnpush for an external submitter. 2552 */ tryExternalUnpush(ForkJoinTask<?> task)2553 final boolean tryExternalUnpush(ForkJoinTask<?> task) { 2554 int r = ThreadLocalRandom.getProbe(); 2555 WorkQueue[] ws; WorkQueue w; int wl; 2556 return ((ws = workQueues) != null && 2557 (wl = ws.length) > 0 && 2558 (w = ws[(wl - 1) & r & SQMASK]) != null && 2559 w.trySharedUnpush(task)); 2560 } 2561 2562 /** 2563 * Performs helpComplete for an external submitter. 2564 */ externalHelpComplete(CountedCompleter<?> task, int maxTasks)2565 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) { 2566 WorkQueue[] ws; int wl; 2567 int r = ThreadLocalRandom.getProbe(); 2568 return ((ws = workQueues) != null && (wl = ws.length) > 0) ? 2569 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0; 2570 } 2571 2572 // Exported methods 2573 2574 // Constructors 2575 2576 /** 2577 * Creates a {@code ForkJoinPool} with parallelism equal to {@link 2578 * java.lang.Runtime#availableProcessors}, using the {@linkplain 2579 * #defaultForkJoinWorkerThreadFactory default thread factory}, 2580 * no UncaughtExceptionHandler, and non-async LIFO processing mode. 2581 * 2582 * @throws SecurityException if a security manager exists and 2583 * the caller is not permitted to modify threads 2584 * because it does not hold {@link 2585 * java.lang.RuntimePermission}{@code ("modifyThread")} 2586 */ ForkJoinPool()2587 public ForkJoinPool() { 2588 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()), 2589 defaultForkJoinWorkerThreadFactory, null, false); 2590 } 2591 2592 /** 2593 * Creates a {@code ForkJoinPool} with the indicated parallelism 2594 * level, the {@linkplain 2595 * #defaultForkJoinWorkerThreadFactory default thread factory}, 2596 * no UncaughtExceptionHandler, and non-async LIFO processing mode. 2597 * 2598 * @param parallelism the parallelism level 2599 * @throws IllegalArgumentException if parallelism less than or 2600 * equal to zero, or greater than implementation limit 2601 * @throws SecurityException if a security manager exists and 2602 * the caller is not permitted to modify threads 2603 * because it does not hold {@link 2604 * java.lang.RuntimePermission}{@code ("modifyThread")} 2605 */ ForkJoinPool(int parallelism)2606 public ForkJoinPool(int parallelism) { 2607 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false); 2608 } 2609 2610 /** 2611 * Creates a {@code ForkJoinPool} with the given parameters. 2612 * 2613 * @param parallelism the parallelism level. For default value, 2614 * use {@link java.lang.Runtime#availableProcessors}. 2615 * @param factory the factory for creating new threads. For default value, 2616 * use {@link #defaultForkJoinWorkerThreadFactory}. 2617 * @param handler the handler for internal worker threads that 2618 * terminate due to unrecoverable errors encountered while executing 2619 * tasks. For default value, use {@code null}. 2620 * @param asyncMode if true, 2621 * establishes local first-in-first-out scheduling mode for forked 2622 * tasks that are never joined. This mode may be more appropriate 2623 * than default locally stack-based mode in applications in which 2624 * worker threads only process event-style asynchronous tasks. 2625 * For default value, use {@code false}. 2626 * @throws IllegalArgumentException if parallelism less than or 2627 * equal to zero, or greater than implementation limit 2628 * @throws NullPointerException if the factory is null 2629 * @throws SecurityException if a security manager exists and 2630 * the caller is not permitted to modify threads 2631 * because it does not hold {@link 2632 * java.lang.RuntimePermission}{@code ("modifyThread")} 2633 */ ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, boolean asyncMode)2634 public ForkJoinPool(int parallelism, 2635 ForkJoinWorkerThreadFactory factory, 2636 UncaughtExceptionHandler handler, 2637 boolean asyncMode) { 2638 this(checkParallelism(parallelism), 2639 checkFactory(factory), 2640 handler, 2641 asyncMode ? FIFO_QUEUE : LIFO_QUEUE, 2642 "ForkJoinPool-" + nextPoolId() + "-worker-"); 2643 checkPermission(); 2644 } 2645 checkParallelism(int parallelism)2646 private static int checkParallelism(int parallelism) { 2647 if (parallelism <= 0 || parallelism > MAX_CAP) 2648 throw new IllegalArgumentException(); 2649 return parallelism; 2650 } 2651 checkFactory(ForkJoinWorkerThreadFactory factory)2652 private static ForkJoinWorkerThreadFactory checkFactory 2653 (ForkJoinWorkerThreadFactory factory) { 2654 if (factory == null) 2655 throw new NullPointerException(); 2656 return factory; 2657 } 2658 2659 /** 2660 * Creates a {@code ForkJoinPool} with the given parameters, without 2661 * any security checks or parameter validation. Invoked directly by 2662 * makeCommonPool. 2663 */ ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, int mode, String workerNamePrefix)2664 private ForkJoinPool(int parallelism, 2665 ForkJoinWorkerThreadFactory factory, 2666 UncaughtExceptionHandler handler, 2667 int mode, 2668 String workerNamePrefix) { 2669 this.workerNamePrefix = workerNamePrefix; 2670 this.factory = factory; 2671 this.ueh = handler; 2672 this.config = (parallelism & SMASK) | mode; 2673 long np = (long)(-parallelism); // offset ctl counts 2674 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); 2675 } 2676 2677 /** 2678 * Returns the common pool instance. This pool is statically 2679 * constructed; its run state is unaffected by attempts to {@link 2680 * #shutdown} or {@link #shutdownNow}. However this pool and any 2681 * ongoing processing are automatically terminated upon program 2682 * {@link System#exit}. Any program that relies on asynchronous 2683 * task processing to complete before program termination should 2684 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence}, 2685 * before exit. 2686 * 2687 * @return the common pool instance 2688 * @since 1.8 2689 */ commonPool()2690 public static ForkJoinPool commonPool() { 2691 // assert common != null : "static init error"; 2692 return common; 2693 } 2694 2695 // Execution methods 2696 2697 /** 2698 * Performs the given task, returning its result upon completion. 2699 * If the computation encounters an unchecked Exception or Error, 2700 * it is rethrown as the outcome of this invocation. Rethrown 2701 * exceptions behave in the same way as regular exceptions, but, 2702 * when possible, contain stack traces (as displayed for example 2703 * using {@code ex.printStackTrace()}) of both the current thread 2704 * as well as the thread actually encountering the exception; 2705 * minimally only the latter. 2706 * 2707 * @param task the task 2708 * @param <T> the type of the task's result 2709 * @return the task's result 2710 * @throws NullPointerException if the task is null 2711 * @throws RejectedExecutionException if the task cannot be 2712 * scheduled for execution 2713 */ invoke(ForkJoinTask<T> task)2714 public <T> T invoke(ForkJoinTask<T> task) { 2715 if (task == null) 2716 throw new NullPointerException(); 2717 externalSubmit(task); 2718 return task.join(); 2719 } 2720 2721 /** 2722 * Arranges for (asynchronous) execution of the given task. 2723 * 2724 * @param task the task 2725 * @throws NullPointerException if the task is null 2726 * @throws RejectedExecutionException if the task cannot be 2727 * scheduled for execution 2728 */ execute(ForkJoinTask<?> task)2729 public void execute(ForkJoinTask<?> task) { 2730 externalSubmit(task); 2731 } 2732 2733 // AbstractExecutorService methods 2734 2735 /** 2736 * @throws NullPointerException if the task is null 2737 * @throws RejectedExecutionException if the task cannot be 2738 * scheduled for execution 2739 */ execute(Runnable task)2740 public void execute(Runnable task) { 2741 if (task == null) 2742 throw new NullPointerException(); 2743 ForkJoinTask<?> job; 2744 if (task instanceof ForkJoinTask<?>) // avoid re-wrap 2745 job = (ForkJoinTask<?>) task; 2746 else 2747 job = new ForkJoinTask.RunnableExecuteAction(task); 2748 externalSubmit(job); 2749 } 2750 2751 /** 2752 * Submits a ForkJoinTask for execution. 2753 * 2754 * @param task the task to submit 2755 * @param <T> the type of the task's result 2756 * @return the task 2757 * @throws NullPointerException if the task is null 2758 * @throws RejectedExecutionException if the task cannot be 2759 * scheduled for execution 2760 */ submit(ForkJoinTask<T> task)2761 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) { 2762 return externalSubmit(task); 2763 } 2764 2765 /** 2766 * @throws NullPointerException if the task is null 2767 * @throws RejectedExecutionException if the task cannot be 2768 * scheduled for execution 2769 */ submit(Callable<T> task)2770 public <T> ForkJoinTask<T> submit(Callable<T> task) { 2771 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task)); 2772 } 2773 2774 /** 2775 * @throws NullPointerException if the task is null 2776 * @throws RejectedExecutionException if the task cannot be 2777 * scheduled for execution 2778 */ submit(Runnable task, T result)2779 public <T> ForkJoinTask<T> submit(Runnable task, T result) { 2780 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result)); 2781 } 2782 2783 /** 2784 * @throws NullPointerException if the task is null 2785 * @throws RejectedExecutionException if the task cannot be 2786 * scheduled for execution 2787 */ submit(Runnable task)2788 public ForkJoinTask<?> submit(Runnable task) { 2789 if (task == null) 2790 throw new NullPointerException(); 2791 ForkJoinTask<?> job; 2792 if (task instanceof ForkJoinTask<?>) // avoid re-wrap 2793 job = (ForkJoinTask<?>) task; 2794 else 2795 job = new ForkJoinTask.AdaptedRunnableAction(task); 2796 return externalSubmit(job); 2797 } 2798 2799 /** 2800 * @throws NullPointerException {@inheritDoc} 2801 * @throws RejectedExecutionException {@inheritDoc} 2802 */ invokeAll(Collection<? extends Callable<T>> tasks)2803 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) { 2804 // In previous versions of this class, this method constructed 2805 // a task to run ForkJoinTask.invokeAll, but now external 2806 // invocation of multiple tasks is at least as efficient. 2807 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size()); 2808 2809 try { 2810 for (Callable<T> t : tasks) { 2811 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t); 2812 futures.add(f); 2813 externalSubmit(f); 2814 } 2815 for (int i = 0, size = futures.size(); i < size; i++) 2816 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin(); 2817 return futures; 2818 } catch (Throwable t) { 2819 for (int i = 0, size = futures.size(); i < size; i++) 2820 futures.get(i).cancel(false); 2821 throw t; 2822 } 2823 } 2824 2825 /** 2826 * Returns the factory used for constructing new workers. 2827 * 2828 * @return the factory used for constructing new workers 2829 */ getFactory()2830 public ForkJoinWorkerThreadFactory getFactory() { 2831 return factory; 2832 } 2833 2834 /** 2835 * Returns the handler for internal worker threads that terminate 2836 * due to unrecoverable errors encountered while executing tasks. 2837 * 2838 * @return the handler, or {@code null} if none 2839 */ getUncaughtExceptionHandler()2840 public UncaughtExceptionHandler getUncaughtExceptionHandler() { 2841 return ueh; 2842 } 2843 2844 /** 2845 * Returns the targeted parallelism level of this pool. 2846 * 2847 * @return the targeted parallelism level of this pool 2848 */ getParallelism()2849 public int getParallelism() { 2850 int par; 2851 return ((par = config & SMASK) > 0) ? par : 1; 2852 } 2853 2854 /** 2855 * Returns the targeted parallelism level of the common pool. 2856 * 2857 * @return the targeted parallelism level of the common pool 2858 * @since 1.8 2859 */ getCommonPoolParallelism()2860 public static int getCommonPoolParallelism() { 2861 return COMMON_PARALLELISM; 2862 } 2863 2864 /** 2865 * Returns the number of worker threads that have started but not 2866 * yet terminated. The result returned by this method may differ 2867 * from {@link #getParallelism} when threads are created to 2868 * maintain parallelism when others are cooperatively blocked. 2869 * 2870 * @return the number of worker threads 2871 */ getPoolSize()2872 public int getPoolSize() { 2873 return (config & SMASK) + (short)(ctl >>> TC_SHIFT); 2874 } 2875 2876 /** 2877 * Returns {@code true} if this pool uses local first-in-first-out 2878 * scheduling mode for forked tasks that are never joined. 2879 * 2880 * @return {@code true} if this pool uses async mode 2881 */ getAsyncMode()2882 public boolean getAsyncMode() { 2883 return (config & FIFO_QUEUE) != 0; 2884 } 2885 2886 /** 2887 * Returns an estimate of the number of worker threads that are 2888 * not blocked waiting to join tasks or for other managed 2889 * synchronization. This method may overestimate the 2890 * number of running threads. 2891 * 2892 * @return the number of worker threads 2893 */ getRunningThreadCount()2894 public int getRunningThreadCount() { 2895 int rc = 0; 2896 WorkQueue[] ws; WorkQueue w; 2897 if ((ws = workQueues) != null) { 2898 for (int i = 1; i < ws.length; i += 2) { 2899 if ((w = ws[i]) != null && w.isApparentlyUnblocked()) 2900 ++rc; 2901 } 2902 } 2903 return rc; 2904 } 2905 2906 /** 2907 * Returns an estimate of the number of threads that are currently 2908 * stealing or executing tasks. This method may overestimate the 2909 * number of active threads. 2910 * 2911 * @return the number of active threads 2912 */ getActiveThreadCount()2913 public int getActiveThreadCount() { 2914 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT); 2915 return (r <= 0) ? 0 : r; // suppress momentarily negative values 2916 } 2917 2918 /** 2919 * Returns {@code true} if all worker threads are currently idle. 2920 * An idle worker is one that cannot obtain a task to execute 2921 * because none are available to steal from other threads, and 2922 * there are no pending submissions to the pool. This method is 2923 * conservative; it might not return {@code true} immediately upon 2924 * idleness of all threads, but will eventually become true if 2925 * threads remain inactive. 2926 * 2927 * @return {@code true} if all threads are currently idle 2928 */ isQuiescent()2929 public boolean isQuiescent() { 2930 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0; 2931 } 2932 2933 /** 2934 * Returns an estimate of the total number of tasks stolen from 2935 * one thread's work queue by another. The reported value 2936 * underestimates the actual total number of steals when the pool 2937 * is not quiescent. This value may be useful for monitoring and 2938 * tuning fork/join programs: in general, steal counts should be 2939 * high enough to keep threads busy, but low enough to avoid 2940 * overhead and contention across threads. 2941 * 2942 * @return the number of steals 2943 */ getStealCount()2944 public long getStealCount() { 2945 AuxState sc = auxState; 2946 long count = (sc == null) ? 0L : sc.stealCount; 2947 WorkQueue[] ws; WorkQueue w; 2948 if ((ws = workQueues) != null) { 2949 for (int i = 1; i < ws.length; i += 2) { 2950 if ((w = ws[i]) != null) 2951 count += w.nsteals; 2952 } 2953 } 2954 return count; 2955 } 2956 2957 /** 2958 * Returns an estimate of the total number of tasks currently held 2959 * in queues by worker threads (but not including tasks submitted 2960 * to the pool that have not begun executing). This value is only 2961 * an approximation, obtained by iterating across all threads in 2962 * the pool. This method may be useful for tuning task 2963 * granularities. 2964 * 2965 * @return the number of queued tasks 2966 */ getQueuedTaskCount()2967 public long getQueuedTaskCount() { 2968 long count = 0; 2969 WorkQueue[] ws; WorkQueue w; 2970 if ((ws = workQueues) != null) { 2971 for (int i = 1; i < ws.length; i += 2) { 2972 if ((w = ws[i]) != null) 2973 count += w.queueSize(); 2974 } 2975 } 2976 return count; 2977 } 2978 2979 /** 2980 * Returns an estimate of the number of tasks submitted to this 2981 * pool that have not yet begun executing. This method may take 2982 * time proportional to the number of submissions. 2983 * 2984 * @return the number of queued submissions 2985 */ getQueuedSubmissionCount()2986 public int getQueuedSubmissionCount() { 2987 int count = 0; 2988 WorkQueue[] ws; WorkQueue w; 2989 if ((ws = workQueues) != null) { 2990 for (int i = 0; i < ws.length; i += 2) { 2991 if ((w = ws[i]) != null) 2992 count += w.queueSize(); 2993 } 2994 } 2995 return count; 2996 } 2997 2998 /** 2999 * Returns {@code true} if there are any tasks submitted to this 3000 * pool that have not yet begun executing. 3001 * 3002 * @return {@code true} if there are any queued submissions 3003 */ hasQueuedSubmissions()3004 public boolean hasQueuedSubmissions() { 3005 WorkQueue[] ws; WorkQueue w; 3006 if ((ws = workQueues) != null) { 3007 for (int i = 0; i < ws.length; i += 2) { 3008 if ((w = ws[i]) != null && !w.isEmpty()) 3009 return true; 3010 } 3011 } 3012 return false; 3013 } 3014 3015 /** 3016 * Removes and returns the next unexecuted submission if one is 3017 * available. This method may be useful in extensions to this 3018 * class that re-assign work in systems with multiple pools. 3019 * 3020 * @return the next submission, or {@code null} if none 3021 */ pollSubmission()3022 protected ForkJoinTask<?> pollSubmission() { 3023 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t; 3024 int r = ThreadLocalRandom.nextSecondarySeed(); 3025 if ((ws = workQueues) != null && (wl = ws.length) > 0) { 3026 for (int m = wl - 1, i = 0; i < wl; ++i) { 3027 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null) 3028 return t; 3029 } 3030 } 3031 return null; 3032 } 3033 3034 /** 3035 * Removes all available unexecuted submitted and forked tasks 3036 * from scheduling queues and adds them to the given collection, 3037 * without altering their execution status. These may include 3038 * artificially generated or wrapped tasks. This method is 3039 * designed to be invoked only when the pool is known to be 3040 * quiescent. Invocations at other times may not remove all 3041 * tasks. A failure encountered while attempting to add elements 3042 * to collection {@code c} may result in elements being in 3043 * neither, either or both collections when the associated 3044 * exception is thrown. The behavior of this operation is 3045 * undefined if the specified collection is modified while the 3046 * operation is in progress. 3047 * 3048 * @param c the collection to transfer elements into 3049 * @return the number of elements transferred 3050 */ drainTasksTo(Collection<? super ForkJoinTask<?>> c)3051 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) { 3052 int count = 0; 3053 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t; 3054 if ((ws = workQueues) != null) { 3055 for (int i = 0; i < ws.length; ++i) { 3056 if ((w = ws[i]) != null) { 3057 while ((t = w.poll()) != null) { 3058 c.add(t); 3059 ++count; 3060 } 3061 } 3062 } 3063 } 3064 return count; 3065 } 3066 3067 /** 3068 * Returns a string identifying this pool, as well as its state, 3069 * including indications of run state, parallelism level, and 3070 * worker and task counts. 3071 * 3072 * @return a string identifying this pool, as well as its state 3073 */ toString()3074 public String toString() { 3075 // Use a single pass through workQueues to collect counts 3076 long qt = 0L, qs = 0L; int rc = 0; 3077 AuxState sc = auxState; 3078 long st = (sc == null) ? 0L : sc.stealCount; 3079 long c = ctl; 3080 WorkQueue[] ws; WorkQueue w; 3081 if ((ws = workQueues) != null) { 3082 for (int i = 0; i < ws.length; ++i) { 3083 if ((w = ws[i]) != null) { 3084 int size = w.queueSize(); 3085 if ((i & 1) == 0) 3086 qs += size; 3087 else { 3088 qt += size; 3089 st += w.nsteals; 3090 if (w.isApparentlyUnblocked()) 3091 ++rc; 3092 } 3093 } 3094 } 3095 } 3096 int pc = (config & SMASK); 3097 int tc = pc + (short)(c >>> TC_SHIFT); 3098 int ac = pc + (int)(c >> AC_SHIFT); 3099 if (ac < 0) // ignore transient negative 3100 ac = 0; 3101 int rs = runState; 3102 String level = ((rs & TERMINATED) != 0 ? "Terminated" : 3103 (rs & STOP) != 0 ? "Terminating" : 3104 (rs & SHUTDOWN) != 0 ? "Shutting down" : 3105 "Running"); 3106 return super.toString() + 3107 "[" + level + 3108 ", parallelism = " + pc + 3109 ", size = " + tc + 3110 ", active = " + ac + 3111 ", running = " + rc + 3112 ", steals = " + st + 3113 ", tasks = " + qt + 3114 ", submissions = " + qs + 3115 "]"; 3116 } 3117 3118 /** 3119 * Possibly initiates an orderly shutdown in which previously 3120 * submitted tasks are executed, but no new tasks will be 3121 * accepted. Invocation has no effect on execution state if this 3122 * is the {@link #commonPool()}, and no additional effect if 3123 * already shut down. Tasks that are in the process of being 3124 * submitted concurrently during the course of this method may or 3125 * may not be rejected. 3126 * 3127 * @throws SecurityException if a security manager exists and 3128 * the caller is not permitted to modify threads 3129 * because it does not hold {@link 3130 * java.lang.RuntimePermission}{@code ("modifyThread")} 3131 */ shutdown()3132 public void shutdown() { 3133 checkPermission(); 3134 tryTerminate(false, true); 3135 } 3136 3137 /** 3138 * Possibly attempts to cancel and/or stop all tasks, and reject 3139 * all subsequently submitted tasks. Invocation has no effect on 3140 * execution state if this is the {@link #commonPool()}, and no 3141 * additional effect if already shut down. Otherwise, tasks that 3142 * are in the process of being submitted or executed concurrently 3143 * during the course of this method may or may not be 3144 * rejected. This method cancels both existing and unexecuted 3145 * tasks, in order to permit termination in the presence of task 3146 * dependencies. So the method always returns an empty list 3147 * (unlike the case for some other Executors). 3148 * 3149 * @return an empty list 3150 * @throws SecurityException if a security manager exists and 3151 * the caller is not permitted to modify threads 3152 * because it does not hold {@link 3153 * java.lang.RuntimePermission}{@code ("modifyThread")} 3154 */ shutdownNow()3155 public List<Runnable> shutdownNow() { 3156 checkPermission(); 3157 tryTerminate(true, true); 3158 return Collections.emptyList(); 3159 } 3160 3161 /** 3162 * Returns {@code true} if all tasks have completed following shut down. 3163 * 3164 * @return {@code true} if all tasks have completed following shut down 3165 */ isTerminated()3166 public boolean isTerminated() { 3167 return (runState & TERMINATED) != 0; 3168 } 3169 3170 /** 3171 * Returns {@code true} if the process of termination has 3172 * commenced but not yet completed. This method may be useful for 3173 * debugging. A return of {@code true} reported a sufficient 3174 * period after shutdown may indicate that submitted tasks have 3175 * ignored or suppressed interruption, or are waiting for I/O, 3176 * causing this executor not to properly terminate. (See the 3177 * advisory notes for class {@link ForkJoinTask} stating that 3178 * tasks should not normally entail blocking operations. But if 3179 * they do, they must abort them on interrupt.) 3180 * 3181 * @return {@code true} if terminating but not yet terminated 3182 */ isTerminating()3183 public boolean isTerminating() { 3184 int rs = runState; 3185 return (rs & STOP) != 0 && (rs & TERMINATED) == 0; 3186 } 3187 3188 /** 3189 * Returns {@code true} if this pool has been shut down. 3190 * 3191 * @return {@code true} if this pool has been shut down 3192 */ isShutdown()3193 public boolean isShutdown() { 3194 return (runState & SHUTDOWN) != 0; 3195 } 3196 3197 /** 3198 * Blocks until all tasks have completed execution after a 3199 * shutdown request, or the timeout occurs, or the current thread 3200 * is interrupted, whichever happens first. Because the {@link 3201 * #commonPool()} never terminates until program shutdown, when 3202 * applied to the common pool, this method is equivalent to {@link 3203 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}. 3204 * 3205 * @param timeout the maximum time to wait 3206 * @param unit the time unit of the timeout argument 3207 * @return {@code true} if this executor terminated and 3208 * {@code false} if the timeout elapsed before termination 3209 * @throws InterruptedException if interrupted while waiting 3210 */ awaitTermination(long timeout, TimeUnit unit)3211 public boolean awaitTermination(long timeout, TimeUnit unit) 3212 throws InterruptedException { 3213 if (Thread.interrupted()) 3214 throw new InterruptedException(); 3215 if (this == common) { 3216 awaitQuiescence(timeout, unit); 3217 return false; 3218 } 3219 long nanos = unit.toNanos(timeout); 3220 if (isTerminated()) 3221 return true; 3222 if (nanos <= 0L) 3223 return false; 3224 long deadline = System.nanoTime() + nanos; 3225 synchronized (this) { 3226 for (;;) { 3227 if (isTerminated()) 3228 return true; 3229 if (nanos <= 0L) 3230 return false; 3231 long millis = TimeUnit.NANOSECONDS.toMillis(nanos); 3232 wait(millis > 0L ? millis : 1L); 3233 nanos = deadline - System.nanoTime(); 3234 } 3235 } 3236 } 3237 3238 /** 3239 * If called by a ForkJoinTask operating in this pool, equivalent 3240 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise, 3241 * waits and/or attempts to assist performing tasks until this 3242 * pool {@link #isQuiescent} or the indicated timeout elapses. 3243 * 3244 * @param timeout the maximum time to wait 3245 * @param unit the time unit of the timeout argument 3246 * @return {@code true} if quiescent; {@code false} if the 3247 * timeout elapsed. 3248 */ awaitQuiescence(long timeout, TimeUnit unit)3249 public boolean awaitQuiescence(long timeout, TimeUnit unit) { 3250 long nanos = unit.toNanos(timeout); 3251 ForkJoinWorkerThread wt; 3252 Thread thread = Thread.currentThread(); 3253 if ((thread instanceof ForkJoinWorkerThread) && 3254 (wt = (ForkJoinWorkerThread)thread).pool == this) { 3255 helpQuiescePool(wt.workQueue); 3256 return true; 3257 } 3258 long startTime = System.nanoTime(); 3259 WorkQueue[] ws; 3260 int r = 0, wl; 3261 boolean found = true; 3262 while (!isQuiescent() && (ws = workQueues) != null && 3263 (wl = ws.length) > 0) { 3264 if (!found) { 3265 if ((System.nanoTime() - startTime) > nanos) 3266 return false; 3267 Thread.yield(); // cannot block 3268 } 3269 found = false; 3270 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) { 3271 ForkJoinTask<?> t; WorkQueue q; int b, k; 3272 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null && 3273 (b = q.base) - q.top < 0) { 3274 found = true; 3275 if ((t = q.pollAt(b)) != null) 3276 t.doExec(); 3277 break; 3278 } 3279 } 3280 } 3281 return true; 3282 } 3283 3284 /** 3285 * Waits and/or attempts to assist performing tasks indefinitely 3286 * until the {@link #commonPool()} {@link #isQuiescent}. 3287 */ quiesceCommonPool()3288 static void quiesceCommonPool() { 3289 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS); 3290 } 3291 3292 /** 3293 * Interface for extending managed parallelism for tasks running 3294 * in {@link ForkJoinPool}s. 3295 * 3296 * <p>A {@code ManagedBlocker} provides two methods. Method 3297 * {@link #isReleasable} must return {@code true} if blocking is 3298 * not necessary. Method {@link #block} blocks the current thread 3299 * if necessary (perhaps internally invoking {@code isReleasable} 3300 * before actually blocking). These actions are performed by any 3301 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}. 3302 * The unusual methods in this API accommodate synchronizers that 3303 * may, but don't usually, block for long periods. Similarly, they 3304 * allow more efficient internal handling of cases in which 3305 * additional workers may be, but usually are not, needed to 3306 * ensure sufficient parallelism. Toward this end, 3307 * implementations of method {@code isReleasable} must be amenable 3308 * to repeated invocation. 3309 * 3310 * <p>For example, here is a ManagedBlocker based on a 3311 * ReentrantLock: 3312 * <pre> {@code 3313 * class ManagedLocker implements ManagedBlocker { 3314 * final ReentrantLock lock; 3315 * boolean hasLock = false; 3316 * ManagedLocker(ReentrantLock lock) { this.lock = lock; } 3317 * public boolean block() { 3318 * if (!hasLock) 3319 * lock.lock(); 3320 * return true; 3321 * } 3322 * public boolean isReleasable() { 3323 * return hasLock || (hasLock = lock.tryLock()); 3324 * } 3325 * }}</pre> 3326 * 3327 * <p>Here is a class that possibly blocks waiting for an 3328 * item on a given queue: 3329 * <pre> {@code 3330 * class QueueTaker<E> implements ManagedBlocker { 3331 * final BlockingQueue<E> queue; 3332 * volatile E item = null; 3333 * QueueTaker(BlockingQueue<E> q) { this.queue = q; } 3334 * public boolean block() throws InterruptedException { 3335 * if (item == null) 3336 * item = queue.take(); 3337 * return true; 3338 * } 3339 * public boolean isReleasable() { 3340 * return item != null || (item = queue.poll()) != null; 3341 * } 3342 * public E getItem() { // call after pool.managedBlock completes 3343 * return item; 3344 * } 3345 * }}</pre> 3346 */ 3347 public static interface ManagedBlocker { 3348 /** 3349 * Possibly blocks the current thread, for example waiting for 3350 * a lock or condition. 3351 * 3352 * @return {@code true} if no additional blocking is necessary 3353 * (i.e., if isReleasable would return true) 3354 * @throws InterruptedException if interrupted while waiting 3355 * (the method is not required to do so, but is allowed to) 3356 */ block()3357 boolean block() throws InterruptedException; 3358 3359 /** 3360 * Returns {@code true} if blocking is unnecessary. 3361 * @return {@code true} if blocking is unnecessary 3362 */ isReleasable()3363 boolean isReleasable(); 3364 } 3365 3366 /** 3367 * Runs the given possibly blocking task. When {@linkplain 3368 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this 3369 * method possibly arranges for a spare thread to be activated if 3370 * necessary to ensure sufficient parallelism while the current 3371 * thread is blocked in {@link ManagedBlocker#block blocker.block()}. 3372 * 3373 * <p>This method repeatedly calls {@code blocker.isReleasable()} and 3374 * {@code blocker.block()} until either method returns {@code true}. 3375 * Every call to {@code blocker.block()} is preceded by a call to 3376 * {@code blocker.isReleasable()} that returned {@code false}. 3377 * 3378 * <p>If not running in a ForkJoinPool, this method is 3379 * behaviorally equivalent to 3380 * <pre> {@code 3381 * while (!blocker.isReleasable()) 3382 * if (blocker.block()) 3383 * break;}</pre> 3384 * 3385 * If running in a ForkJoinPool, the pool may first be expanded to 3386 * ensure sufficient parallelism available during the call to 3387 * {@code blocker.block()}. 3388 * 3389 * @param blocker the blocker task 3390 * @throws InterruptedException if {@code blocker.block()} did so 3391 */ managedBlock(ManagedBlocker blocker)3392 public static void managedBlock(ManagedBlocker blocker) 3393 throws InterruptedException { 3394 ForkJoinPool p; 3395 ForkJoinWorkerThread wt; 3396 Thread t = Thread.currentThread(); 3397 if ((t instanceof ForkJoinWorkerThread) && 3398 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) { 3399 WorkQueue w = wt.workQueue; 3400 while (!blocker.isReleasable()) { 3401 if (p.tryCompensate(w)) { 3402 try { 3403 do {} while (!blocker.isReleasable() && 3404 !blocker.block()); 3405 } finally { 3406 U.getAndAddLong(p, CTL, AC_UNIT); 3407 } 3408 break; 3409 } 3410 } 3411 } 3412 else { 3413 do {} while (!blocker.isReleasable() && 3414 !blocker.block()); 3415 } 3416 } 3417 3418 // AbstractExecutorService overrides. These rely on undocumented 3419 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also 3420 // implement RunnableFuture. 3421 newTaskFor(Runnable runnable, T value)3422 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { 3423 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value); 3424 } 3425 newTaskFor(Callable<T> callable)3426 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { 3427 return new ForkJoinTask.AdaptedCallable<T>(callable); 3428 } 3429 3430 // Unsafe mechanics 3431 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 3432 private static final long CTL; 3433 private static final long RUNSTATE; 3434 private static final int ABASE; 3435 private static final int ASHIFT; 3436 3437 static { 3438 try { 3439 CTL = U.objectFieldOffset 3440 (ForkJoinPool.class.getDeclaredField("ctl")); 3441 RUNSTATE = U.objectFieldOffset 3442 (ForkJoinPool.class.getDeclaredField("runState")); 3443 ABASE = U.arrayBaseOffset(ForkJoinTask[].class); 3444 int scale = U.arrayIndexScale(ForkJoinTask[].class); 3445 if ((scale & (scale - 1)) != 0) 3446 throw new Error("array index scale not a power of two"); 3447 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 3448 } catch (ReflectiveOperationException e) { 3449 throw new Error(e); 3450 } 3451 3452 // Reduce the risk of rare disastrous classloading in first call to 3453 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 3454 Class<?> ensureLoaded = LockSupport.class; 3455 3456 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES; 3457 try { 3458 String p = System.getProperty 3459 ("java.util.concurrent.ForkJoinPool.common.maximumSpares"); 3460 if (p != null) 3461 commonMaxSpares = Integer.parseInt(p); 3462 } catch (Exception ignore) {} 3463 COMMON_MAX_SPARES = commonMaxSpares; 3464 3465 defaultForkJoinWorkerThreadFactory = 3466 new DefaultForkJoinWorkerThreadFactory(); 3467 modifyThreadPermission = new RuntimePermission("modifyThread"); 3468 3469 common = java.security.AccessController.doPrivileged 3470 (new java.security.PrivilegedAction<ForkJoinPool>() { 3471 public ForkJoinPool run() { return makeCommonPool(); }}); 3472 3473 // report 1 even if threads disabled 3474 COMMON_PARALLELISM = Math.max(common.config & SMASK, 1); 3475 } 3476 3477 /** 3478 * Creates and returns the common pool, respecting user settings 3479 * specified via system properties. 3480 */ makeCommonPool()3481 static ForkJoinPool makeCommonPool() { 3482 int parallelism = -1; 3483 ForkJoinWorkerThreadFactory factory = null; 3484 UncaughtExceptionHandler handler = null; 3485 try { // ignore exceptions in accessing/parsing properties 3486 String pp = System.getProperty 3487 ("java.util.concurrent.ForkJoinPool.common.parallelism"); 3488 String fp = System.getProperty 3489 ("java.util.concurrent.ForkJoinPool.common.threadFactory"); 3490 String hp = System.getProperty 3491 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler"); 3492 if (pp != null) 3493 parallelism = Integer.parseInt(pp); 3494 if (fp != null) 3495 factory = ((ForkJoinWorkerThreadFactory)ClassLoader. 3496 getSystemClassLoader().loadClass(fp).newInstance()); 3497 if (hp != null) 3498 handler = ((UncaughtExceptionHandler)ClassLoader. 3499 getSystemClassLoader().loadClass(hp).newInstance()); 3500 } catch (Exception ignore) { 3501 } 3502 if (factory == null) { 3503 if (System.getSecurityManager() == null) 3504 factory = defaultForkJoinWorkerThreadFactory; 3505 else // use security-managed default 3506 factory = new InnocuousForkJoinWorkerThreadFactory(); 3507 } 3508 if (parallelism < 0 && // default 1 less than #cores 3509 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0) 3510 parallelism = 1; 3511 if (parallelism > MAX_CAP) 3512 parallelism = MAX_CAP; 3513 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE, 3514 "ForkJoinPool.commonPool-worker-"); 3515 } 3516 3517 /** 3518 * Factory for innocuous worker threads. 3519 */ 3520 private static final class InnocuousForkJoinWorkerThreadFactory 3521 implements ForkJoinWorkerThreadFactory { 3522 3523 /** 3524 * An ACC to restrict permissions for the factory itself. 3525 * The constructed workers have no permissions set. 3526 */ 3527 private static final AccessControlContext innocuousAcc; 3528 static { 3529 Permissions innocuousPerms = new Permissions(); 3530 innocuousPerms.add(modifyThreadPermission); innocuousPerms.add(new RuntimePermission( "enableContextClassLoaderOverride"))3531 innocuousPerms.add(new RuntimePermission( 3532 "enableContextClassLoaderOverride")); innocuousPerms.add(new RuntimePermission( "modifyThreadGroup"))3533 innocuousPerms.add(new RuntimePermission( 3534 "modifyThreadGroup")); 3535 innocuousAcc = new AccessControlContext(new ProtectionDomain[] { 3536 new ProtectionDomain(null, innocuousPerms) 3537 }); 3538 } 3539 newThread(ForkJoinPool pool)3540 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { 3541 return java.security.AccessController.doPrivileged( 3542 new java.security.PrivilegedAction<ForkJoinWorkerThread>() { 3543 public ForkJoinWorkerThread run() { 3544 return new ForkJoinWorkerThread. 3545 InnocuousForkJoinWorkerThread(pool); 3546 }}, innocuousAcc); 3547 } 3548 } 3549 3550 } 3551