1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 #include <map>
45 
46 namespace cv {
47 namespace detail {
48 
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)49 void PairwiseSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
50                               std::vector<UMat> &masks)
51 {
52     LOGLN("Finding seams...");
53     if (src.size() == 0)
54         return;
55 
56 #if ENABLE_LOG
57     int64 t = getTickCount();
58 #endif
59 
60     images_ = src;
61     sizes_.resize(src.size());
62     for (size_t i = 0; i < src.size(); ++i)
63         sizes_[i] = src[i].size();
64     corners_ = corners;
65     masks_ = masks;
66     run();
67 
68     LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
69 }
70 
71 
run()72 void PairwiseSeamFinder::run()
73 {
74     for (size_t i = 0; i < sizes_.size() - 1; ++i)
75     {
76         for (size_t j = i + 1; j < sizes_.size(); ++j)
77         {
78             Rect roi;
79             if (overlapRoi(corners_[i], corners_[j], sizes_[i], sizes_[j], roi))
80                 findInPair(i, j, roi);
81         }
82     }
83 }
84 
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)85 void VoronoiSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
86                              std::vector<UMat> &masks)
87 {
88     PairwiseSeamFinder::find(src, corners, masks);
89 }
90 
find(const std::vector<Size> & sizes,const std::vector<Point> & corners,std::vector<UMat> & masks)91 void VoronoiSeamFinder::find(const std::vector<Size> &sizes, const std::vector<Point> &corners,
92                              std::vector<UMat> &masks)
93 {
94     LOGLN("Finding seams...");
95     if (sizes.size() == 0)
96         return;
97 
98 #if ENABLE_LOG
99     int64 t = getTickCount();
100 #endif
101 
102     sizes_ = sizes;
103     corners_ = corners;
104     masks_ = masks;
105     run();
106 
107     LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
108 }
109 
110 
findInPair(size_t first,size_t second,Rect roi)111 void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
112 {
113     const int gap = 10;
114     Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
115     Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
116 
117     Size img1 = sizes_[first], img2 = sizes_[second];
118     Mat mask1 = masks_[first].getMat(ACCESS_READ), mask2 = masks_[second].getMat(ACCESS_READ);
119     Point tl1 = corners_[first], tl2 = corners_[second];
120 
121     // Cut submasks with some gap
122     for (int y = -gap; y < roi.height + gap; ++y)
123     {
124         for (int x = -gap; x < roi.width + gap; ++x)
125         {
126             int y1 = roi.y - tl1.y + y;
127             int x1 = roi.x - tl1.x + x;
128             if (y1 >= 0 && x1 >= 0 && y1 < img1.height && x1 < img1.width)
129                 submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
130             else
131                 submask1.at<uchar>(y + gap, x + gap) = 0;
132 
133             int y2 = roi.y - tl2.y + y;
134             int x2 = roi.x - tl2.x + x;
135             if (y2 >= 0 && x2 >= 0 && y2 < img2.height && x2 < img2.width)
136                 submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
137             else
138                 submask2.at<uchar>(y + gap, x + gap) = 0;
139         }
140     }
141 
142     Mat collision = (submask1 != 0) & (submask2 != 0);
143     Mat unique1 = submask1.clone(); unique1.setTo(0, collision);
144     Mat unique2 = submask2.clone(); unique2.setTo(0, collision);
145 
146     Mat dist1, dist2;
147     distanceTransform(unique1 == 0, dist1, DIST_L1, 3);
148     distanceTransform(unique2 == 0, dist2, DIST_L1, 3);
149 
150     Mat seam = dist1 < dist2;
151 
152     for (int y = 0; y < roi.height; ++y)
153     {
154         for (int x = 0; x < roi.width; ++x)
155         {
156             if (seam.at<uchar>(y + gap, x + gap))
157                 mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
158             else
159                 mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
160         }
161     }
162 }
163 
164 
DpSeamFinder(CostFunction costFunc)165 DpSeamFinder::DpSeamFinder(CostFunction costFunc) : costFunc_(costFunc) {}
166 
167 
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)168 void DpSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners, std::vector<UMat> &masks)
169 {
170     LOGLN("Finding seams...");
171 #if ENABLE_LOG
172     int64 t = getTickCount();
173 #endif
174 
175     if (src.size() == 0)
176         return;
177 
178     std::vector<std::pair<size_t, size_t> > pairs;
179 
180     for (size_t i = 0; i+1 < src.size(); ++i)
181         for (size_t j = i+1; j < src.size(); ++j)
182             pairs.push_back(std::make_pair(i, j));
183 
184     {
185         std::vector<Mat> _src(src.size());
186         for (size_t i = 0; i < src.size(); ++i) _src[i] = src[i].getMat(ACCESS_READ);
187         sort(pairs.begin(), pairs.end(), ImagePairLess(_src, corners));
188     }
189     std::reverse(pairs.begin(), pairs.end());
190 
191     for (size_t i = 0; i < pairs.size(); ++i)
192     {
193         size_t i0 = pairs[i].first, i1 = pairs[i].second;
194         Mat mask0 = masks[i0].getMat(ACCESS_RW), mask1 = masks[i1].getMat(ACCESS_RW);
195         process(src[i0].getMat(ACCESS_READ), src[i1].getMat(ACCESS_READ), corners[i0], corners[i1], mask0, mask1);
196     }
197 
198     LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
199 }
200 
201 
process(const Mat & image1,const Mat & image2,Point tl1,Point tl2,Mat & mask1,Mat & mask2)202 void DpSeamFinder::process(
203         const Mat &image1, const Mat &image2, Point tl1, Point tl2,
204         Mat &mask1, Mat &mask2)
205 {
206     CV_Assert(image1.size() == mask1.size());
207     CV_Assert(image2.size() == mask2.size());
208 
209     Point intersectTl(std::max(tl1.x, tl2.x), std::max(tl1.y, tl2.y));
210 
211     Point intersectBr(std::min(tl1.x + image1.cols, tl2.x + image2.cols),
212                       std::min(tl1.y + image1.rows, tl2.y + image2.rows));
213 
214     if (intersectTl.x >= intersectBr.x || intersectTl.y >= intersectBr.y)
215         return; // there are no conflicts
216 
217     unionTl_ = Point(std::min(tl1.x, tl2.x), std::min(tl1.y, tl2.y));
218 
219     unionBr_ = Point(std::max(tl1.x + image1.cols, tl2.x + image2.cols),
220                      std::max(tl1.y + image1.rows, tl2.y + image2.rows));
221 
222     unionSize_ = Size(unionBr_.x - unionTl_.x, unionBr_.y - unionTl_.y);
223 
224     mask1_ = Mat::zeros(unionSize_, CV_8U);
225     mask2_ = Mat::zeros(unionSize_, CV_8U);
226 
227     Mat tmp = mask1_(Rect(tl1.x - unionTl_.x, tl1.y - unionTl_.y, mask1.cols, mask1.rows));
228     mask1.copyTo(tmp);
229 
230     tmp = mask2_(Rect(tl2.x - unionTl_.x, tl2.y - unionTl_.y, mask2.cols, mask2.rows));
231     mask2.copyTo(tmp);
232 
233     // find both images contour masks
234 
235     contour1mask_ = Mat::zeros(unionSize_, CV_8U);
236     contour2mask_ = Mat::zeros(unionSize_, CV_8U);
237 
238     for (int y = 0; y < unionSize_.height; ++y)
239     {
240         for (int x = 0; x < unionSize_.width; ++x)
241         {
242             if (mask1_(y, x) &&
243                 ((x == 0 || !mask1_(y, x-1)) || (x == unionSize_.width-1 || !mask1_(y, x+1)) ||
244                  (y == 0 || !mask1_(y-1, x)) || (y == unionSize_.height-1 || !mask1_(y+1, x))))
245             {
246                 contour1mask_(y, x) = 255;
247             }
248 
249             if (mask2_(y, x) &&
250                 ((x == 0 || !mask2_(y, x-1)) || (x == unionSize_.width-1 || !mask2_(y, x+1)) ||
251                  (y == 0 || !mask2_(y-1, x)) || (y == unionSize_.height-1 || !mask2_(y+1, x))))
252             {
253                 contour2mask_(y, x) = 255;
254             }
255         }
256     }
257 
258     findComponents();
259 
260     findEdges();
261 
262     resolveConflicts(image1, image2, tl1, tl2, mask1, mask2);
263 }
264 
265 
findComponents()266 void DpSeamFinder::findComponents()
267 {
268     // label all connected components and get information about them
269 
270     ncomps_ = 0;
271     labels_.create(unionSize_);
272     states_.clear();
273     tls_.clear();
274     brs_.clear();
275     contours_.clear();
276 
277     for (int y = 0; y < unionSize_.height; ++y)
278     {
279         for (int x = 0; x < unionSize_.width; ++x)
280         {
281             if (mask1_(y, x) && mask2_(y, x))
282                 labels_(y, x) = std::numeric_limits<int>::max();
283             else if (mask1_(y, x))
284                 labels_(y, x) = std::numeric_limits<int>::max()-1;
285             else if (mask2_(y, x))
286                 labels_(y, x) = std::numeric_limits<int>::max()-2;
287             else
288                 labels_(y, x) = 0;
289         }
290     }
291 
292     for (int y = 0; y < unionSize_.height; ++y)
293     {
294         for (int x = 0; x < unionSize_.width; ++x)
295         {
296             if (labels_(y, x) >= std::numeric_limits<int>::max()-2)
297             {
298                 if (labels_(y, x) == std::numeric_limits<int>::max())
299                     states_.push_back(INTERS);
300                 else if (labels_(y, x) == std::numeric_limits<int>::max()-1)
301                     states_.push_back(FIRST);
302                 else if (labels_(y, x) == std::numeric_limits<int>::max()-2)
303                     states_.push_back(SECOND);
304 
305                 floodFill(labels_, Point(x, y), ++ncomps_);
306                 tls_.push_back(Point(x, y));
307                 brs_.push_back(Point(x+1, y+1));
308                 contours_.push_back(std::vector<Point>());
309             }
310 
311             if (labels_(y, x))
312             {
313                 int l = labels_(y, x);
314                 int ci = l-1;
315 
316                 tls_[ci].x = std::min(tls_[ci].x, x);
317                 tls_[ci].y = std::min(tls_[ci].y, y);
318                 brs_[ci].x = std::max(brs_[ci].x, x+1);
319                 brs_[ci].y = std::max(brs_[ci].y, y+1);
320 
321                 if ((x == 0 || labels_(y, x-1) != l) || (x == unionSize_.width-1 || labels_(y, x+1) != l) ||
322                     (y == 0 || labels_(y-1, x) != l) || (y == unionSize_.height-1 || labels_(y+1, x) != l))
323                 {
324                     contours_[ci].push_back(Point(x, y));
325                 }
326             }
327         }
328     }
329 }
330 
331 
findEdges()332 void DpSeamFinder::findEdges()
333 {
334     // find edges between components
335 
336     std::map<std::pair<int, int>, int> wedges; // weighted edges
337 
338     for (int ci = 0; ci < ncomps_-1; ++ci)
339     {
340         for (int cj = ci+1; cj < ncomps_; ++cj)
341         {
342             wedges[std::make_pair(ci, cj)] = 0;
343             wedges[std::make_pair(cj, ci)] = 0;
344         }
345     }
346 
347     for (int ci = 0; ci < ncomps_; ++ci)
348     {
349         for (size_t i = 0; i < contours_[ci].size(); ++i)
350         {
351             int x = contours_[ci][i].x;
352             int y = contours_[ci][i].y;
353             int l = ci + 1;
354 
355             if (x > 0 && labels_(y, x-1) && labels_(y, x-1) != l)
356             {
357                 wedges[std::make_pair(ci, labels_(y, x-1)-1)]++;
358                 wedges[std::make_pair(labels_(y, x-1)-1, ci)]++;
359             }
360 
361             if (y > 0 && labels_(y-1, x) && labels_(y-1, x) != l)
362             {
363                 wedges[std::make_pair(ci, labels_(y-1, x)-1)]++;
364                 wedges[std::make_pair(labels_(y-1, x)-1, ci)]++;
365             }
366 
367             if (x < unionSize_.width-1 && labels_(y, x+1) && labels_(y, x+1) != l)
368             {
369                 wedges[std::make_pair(ci, labels_(y, x+1)-1)]++;
370                 wedges[std::make_pair(labels_(y, x+1)-1, ci)]++;
371             }
372 
373             if (y < unionSize_.height-1 && labels_(y+1, x) && labels_(y+1, x) != l)
374             {
375                 wedges[std::make_pair(ci, labels_(y+1, x)-1)]++;
376                 wedges[std::make_pair(labels_(y+1, x)-1, ci)]++;
377             }
378         }
379     }
380 
381     edges_.clear();
382 
383     for (int ci = 0; ci < ncomps_-1; ++ci)
384     {
385         for (int cj = ci+1; cj < ncomps_; ++cj)
386         {
387             std::map<std::pair<int, int>, int>::iterator itr = wedges.find(std::make_pair(ci, cj));
388             if (itr != wedges.end() && itr->second > 0)
389                 edges_.insert(itr->first);
390 
391             itr = wedges.find(std::make_pair(cj, ci));
392             if (itr != wedges.end() && itr->second > 0)
393                 edges_.insert(itr->first);
394         }
395     }
396 }
397 
398 
resolveConflicts(const Mat & image1,const Mat & image2,Point tl1,Point tl2,Mat & mask1,Mat & mask2)399 void DpSeamFinder::resolveConflicts(
400         const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2)
401 {
402     if (costFunc_ == COLOR_GRAD)
403         computeGradients(image1, image2);
404 
405     // resolve conflicts between components
406 
407     bool hasConflict = true;
408     while (hasConflict)
409     {
410         int c1 = 0, c2 = 0;
411         hasConflict = false;
412 
413         for (std::set<std::pair<int, int> >::iterator itr = edges_.begin(); itr != edges_.end(); ++itr)
414         {
415             c1 = itr->first;
416             c2 = itr->second;
417 
418             if ((states_[c1] & INTERS) && (states_[c1] & (~INTERS)) != states_[c2])
419             {
420                 hasConflict = true;
421                 break;
422             }
423         }
424 
425         if (hasConflict)
426         {
427             int l1 = c1+1, l2 = c2+1;
428 
429             if (hasOnlyOneNeighbor(c1))
430             {
431                 // if the first components has only one adjacent component
432 
433                 for (int y = tls_[c1].y; y < brs_[c1].y; ++y)
434                     for (int x = tls_[c1].x; x < brs_[c1].x; ++x)
435                         if (labels_(y, x) == l1)
436                             labels_(y, x) = l2;
437 
438                 states_[c1] = states_[c2] == FIRST ? SECOND : FIRST;
439             }
440             else
441             {
442                 // if the first component has more than one adjacent component
443 
444                 Point p1, p2;
445                 if (getSeamTips(c1, c2, p1, p2))
446                 {
447                     std::vector<Point> seam;
448                     bool isHorizontalSeam;
449 
450                     if (estimateSeam(image1, image2, tl1, tl2, c1, p1, p2, seam, isHorizontalSeam))
451                         updateLabelsUsingSeam(c1, c2, seam, isHorizontalSeam);
452                 }
453 
454                 states_[c1] = states_[c2] == FIRST ? INTERS_SECOND : INTERS_FIRST;
455             }
456 
457             const int c[] = {c1, c2};
458             const int l[] = {l1, l2};
459 
460             for (int i = 0; i < 2; ++i)
461             {
462                 // update information about the (i+1)-th component
463 
464                 int x0 = tls_[c[i]].x, x1 = brs_[c[i]].x;
465                 int y0 = tls_[c[i]].y, y1 = brs_[c[i]].y;
466 
467                 tls_[c[i]] = Point(std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
468                 brs_[c[i]] = Point(std::numeric_limits<int>::min(), std::numeric_limits<int>::min());
469                 contours_[c[i]].clear();
470 
471                 for (int y = y0; y < y1; ++y)
472                 {
473                     for (int x = x0; x < x1; ++x)
474                     {
475                         if (labels_(y, x) == l[i])
476                         {
477                             tls_[c[i]].x = std::min(tls_[c[i]].x, x);
478                             tls_[c[i]].y = std::min(tls_[c[i]].y, y);
479                             brs_[c[i]].x = std::max(brs_[c[i]].x, x+1);
480                             brs_[c[i]].y = std::max(brs_[c[i]].y, y+1);
481 
482                             if ((x == 0 || labels_(y, x-1) != l[i]) || (x == unionSize_.width-1 || labels_(y, x+1) != l[i]) ||
483                                 (y == 0 || labels_(y-1, x) != l[i]) || (y == unionSize_.height-1 || labels_(y+1, x) != l[i]))
484                             {
485                                 contours_[c[i]].push_back(Point(x, y));
486                             }
487                         }
488                     }
489                 }
490             }
491 
492             // remove edges
493 
494             edges_.erase(std::make_pair(c1, c2));
495             edges_.erase(std::make_pair(c2, c1));
496         }
497     }
498 
499     // update masks
500 
501     int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
502     int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
503 
504     for (int y = 0; y < mask2.rows; ++y)
505     {
506         for (int x = 0; x < mask2.cols; ++x)
507         {
508              int l = labels_(y - dy2, x - dx2);
509              if (l > 0 && (states_[l-1] & FIRST) && mask1.at<uchar>(y - dy2 + dy1, x - dx2 + dx1))
510                 mask2.at<uchar>(y, x) = 0;
511         }
512     }
513 
514     for (int y = 0; y < mask1.rows; ++y)
515     {
516         for (int x = 0; x < mask1.cols; ++x)
517         {
518              int l = labels_(y - dy1, x - dx1);
519              if (l > 0 && (states_[l-1] & SECOND) && mask2.at<uchar>(y - dy1 + dy2, x - dx1 + dx2))
520                 mask1.at<uchar>(y, x) = 0;
521         }
522     }
523 }
524 
525 
computeGradients(const Mat & image1,const Mat & image2)526 void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2)
527 {
528     CV_Assert(image1.channels() == 3 || image1.channels() == 4);
529     CV_Assert(image2.channels() == 3 || image2.channels() == 4);
530     CV_Assert(costFunction() == COLOR_GRAD);
531 
532     Mat gray;
533 
534     if (image1.channels() == 3)
535         cvtColor(image1, gray, COLOR_BGR2GRAY);
536     else if (image1.channels() == 4)
537         cvtColor(image1, gray, COLOR_BGRA2GRAY);
538 
539     Sobel(gray, gradx1_, CV_32F, 1, 0);
540     Sobel(gray, grady1_, CV_32F, 0, 1);
541 
542     if (image2.channels() == 3)
543         cvtColor(image2, gray, COLOR_BGR2GRAY);
544     else if (image2.channels() == 4)
545         cvtColor(image2, gray, COLOR_BGRA2GRAY);
546 
547     Sobel(gray, gradx2_, CV_32F, 1, 0);
548     Sobel(gray, grady2_, CV_32F, 0, 1);
549 }
550 
551 
hasOnlyOneNeighbor(int comp)552 bool DpSeamFinder::hasOnlyOneNeighbor(int comp)
553 {
554     std::set<std::pair<int, int> >::iterator begin, end;
555     begin = lower_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::min()));
556     end = upper_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::max()));
557     return ++begin == end;
558 }
559 
560 
closeToContour(int y,int x,const Mat_<uchar> & contourMask)561 bool DpSeamFinder::closeToContour(int y, int x, const Mat_<uchar> &contourMask)
562 {
563     const int rad = 2;
564 
565     for (int dy = -rad; dy <= rad; ++dy)
566     {
567         if (y + dy >= 0 && y + dy < unionSize_.height)
568         {
569             for (int dx = -rad; dx <= rad; ++dx)
570             {
571                 if (x + dx >= 0 && x + dx < unionSize_.width &&
572                     contourMask(y + dy, x + dx))
573                 {
574                     return true;
575                 }
576             }
577         }
578     }
579 
580     return false;
581 }
582 
583 
getSeamTips(int comp1,int comp2,Point & p1,Point & p2)584 bool DpSeamFinder::getSeamTips(int comp1, int comp2, Point &p1, Point &p2)
585 {
586     CV_Assert(states_[comp1] & INTERS);
587 
588     // find special points
589 
590     std::vector<Point> specialPoints;
591     int l2 = comp2+1;
592 
593     for (size_t i = 0; i < contours_[comp1].size(); ++i)
594     {
595         int x = contours_[comp1][i].x;
596         int y = contours_[comp1][i].y;
597 
598         if (closeToContour(y, x, contour1mask_) &&
599             closeToContour(y, x, contour2mask_) &&
600             ((x > 0 && labels_(y, x-1) == l2) ||
601              (y > 0 && labels_(y-1, x) == l2) ||
602              (x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
603              (y < unionSize_.height-1 && labels_(y+1, x) == l2)))
604         {
605             specialPoints.push_back(Point(x, y));
606         }
607     }
608 
609     if (specialPoints.size() < 2)
610         return false;
611 
612     // find clusters
613 
614     std::vector<int> labels;
615     cv::partition(specialPoints, labels, ClosePoints(10));
616 
617     int nlabels = *std::max_element(labels.begin(), labels.end()) + 1;
618     if (nlabels < 2)
619         return false;
620 
621     std::vector<Point> sum(nlabels);
622     std::vector<std::vector<Point> > points(nlabels);
623 
624     for (size_t i = 0; i < specialPoints.size(); ++i)
625     {
626         sum[labels[i]] += specialPoints[i];
627         points[labels[i]].push_back(specialPoints[i]);
628     }
629 
630     // select two most distant clusters
631 
632     int idx[2] = {-1,-1};
633     double maxDist = -std::numeric_limits<double>::max();
634 
635     for (int i = 0; i < nlabels-1; ++i)
636     {
637         for (int j = i+1; j < nlabels; ++j)
638         {
639             double size1 = static_cast<double>(points[i].size()), size2 = static_cast<double>(points[j].size());
640             double cx1 = cvRound(sum[i].x / size1), cy1 = cvRound(sum[i].y / size1);
641             double cx2 = cvRound(sum[j].x / size2), cy2 = cvRound(sum[j].y / size1);
642 
643             double dist = (cx1 - cx2) * (cx1 - cx2) + (cy1 - cy2) * (cy1 - cy2);
644             if (dist > maxDist)
645             {
646                 maxDist = dist;
647                 idx[0] = i;
648                 idx[1] = j;
649             }
650         }
651     }
652 
653     // select two points closest to the clusters' centers
654 
655     Point p[2];
656 
657     for (int i = 0; i < 2; ++i)
658     {
659         double size = static_cast<double>(points[idx[i]].size());
660         double cx = cvRound(sum[idx[i]].x / size);
661         double cy = cvRound(sum[idx[i]].y / size);
662 
663         size_t closest = points[idx[i]].size();
664         double minDist = std::numeric_limits<double>::max();
665 
666         for (size_t j = 0; j < points[idx[i]].size(); ++j)
667         {
668             double dist = (points[idx[i]][j].x - cx) * (points[idx[i]][j].x - cx) +
669                           (points[idx[i]][j].y - cy) * (points[idx[i]][j].y - cy);
670             if (dist < minDist)
671             {
672                 minDist = dist;
673                 closest = j;
674             }
675         }
676 
677         p[i] = points[idx[i]][closest];
678     }
679 
680     p1 = p[0];
681     p2 = p[1];
682     return true;
683 }
684 
685 
686 namespace
687 {
688 
689 template <typename T>
diffL2Square3(const Mat & image1,int y1,int x1,const Mat & image2,int y2,int x2)690 float diffL2Square3(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2)
691 {
692     const T *r1 = image1.ptr<T>(y1);
693     const T *r2 = image2.ptr<T>(y2);
694     return static_cast<float>(sqr(r1[3*x1] - r2[3*x2]) + sqr(r1[3*x1+1] - r2[3*x2+1]) +
695                               sqr(r1[3*x1+2] - r2[3*x2+2]));
696 }
697 
698 
699 template <typename T>
diffL2Square4(const Mat & image1,int y1,int x1,const Mat & image2,int y2,int x2)700 float diffL2Square4(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2)
701 {
702     const T *r1 = image1.ptr<T>(y1);
703     const T *r2 = image2.ptr<T>(y2);
704     return static_cast<float>(sqr(r1[4*x1] - r2[4*x2]) + sqr(r1[4*x1+1] - r2[4*x2+1]) +
705                               sqr(r1[4*x1+2] - r2[4*x2+2]));
706 }
707 
708 } // namespace
709 
710 
computeCosts(const Mat & image1,const Mat & image2,Point tl1,Point tl2,int comp,Mat_<float> & costV,Mat_<float> & costH)711 void DpSeamFinder::computeCosts(
712         const Mat &image1, const Mat &image2, Point tl1, Point tl2,
713         int comp, Mat_<float> &costV, Mat_<float> &costH)
714 {
715     CV_Assert(states_[comp] & INTERS);
716 
717     // compute costs
718 
719     float (*diff)(const Mat&, int, int, const Mat&, int, int) = 0;
720     if (image1.type() == CV_32FC3 && image2.type() == CV_32FC3)
721         diff = diffL2Square3<float>;
722     else if (image1.type() == CV_8UC3 && image2.type() == CV_8UC3)
723         diff = diffL2Square3<uchar>;
724     else if (image1.type() == CV_32FC4 && image2.type() == CV_32FC4)
725         diff = diffL2Square4<float>;
726     else if (image1.type() == CV_8UC4 && image2.type() == CV_8UC4)
727         diff = diffL2Square4<uchar>;
728     else
729         CV_Error(Error::StsBadArg, "both images must have CV_32FC3(4) or CV_8UC3(4) type");
730 
731     int l = comp+1;
732     Rect roi(tls_[comp], brs_[comp]);
733 
734     int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
735     int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
736 
737     const float badRegionCost = normL2(Point3f(255.f, 255.f, 255.f),
738                                        Point3f(0.f, 0.f, 0.f));
739 
740     costV.create(roi.height, roi.width+1);
741 
742     for (int y = roi.y; y < roi.br().y; ++y)
743     {
744         for (int x = roi.x; x < roi.br().x+1; ++x)
745         {
746             if (labels_(y, x) == l && x > 0 && labels_(y, x-1) == l)
747             {
748                 float costColor = (diff(image1, y + dy1, x + dx1 - 1, image2, y + dy2, x + dx2) +
749                                    diff(image1, y + dy1, x + dx1, image2, y + dy2, x + dx2 - 1)) / 2;
750                 if (costFunc_ == COLOR)
751                     costV(y - roi.y, x - roi.x) = costColor;
752                 else if (costFunc_ == COLOR_GRAD)
753                 {
754                     float costGrad = std::abs(gradx1_(y + dy1, x + dx1)) + std::abs(gradx1_(y + dy1, x + dx1 - 1)) +
755                                      std::abs(gradx2_(y + dy2, x + dx2)) + std::abs(gradx2_(y + dy2, x + dx2 - 1)) + 1.f;
756                     costV(y - roi.y, x - roi.x) = costColor / costGrad;
757                 }
758             }
759             else
760                 costV(y - roi.y, x - roi.x) = badRegionCost;
761         }
762     }
763 
764     costH.create(roi.height+1, roi.width);
765 
766     for (int y = roi.y; y < roi.br().y+1; ++y)
767     {
768         for (int x = roi.x; x < roi.br().x; ++x)
769         {
770             if (labels_(y, x) == l && y > 0 && labels_(y-1, x) == l)
771             {
772                 float costColor = (diff(image1, y + dy1 - 1, x + dx1, image2, y + dy2, x + dx2) +
773                                    diff(image1, y + dy1, x + dx1, image2, y + dy2 - 1, x + dx2)) / 2;
774                 if (costFunc_ == COLOR)
775                     costH(y - roi.y, x - roi.x) = costColor;
776                 else if (costFunc_ == COLOR_GRAD)
777                 {
778                     float costGrad = std::abs(grady1_(y + dy1, x + dx1)) + std::abs(grady1_(y + dy1 - 1, x + dx1)) +
779                                      std::abs(grady2_(y + dy2, x + dx2)) + std::abs(grady2_(y + dy2 - 1, x + dx2)) + 1.f;
780                     costH(y - roi.y, x - roi.x) = costColor / costGrad;
781                 }
782             }
783             else
784                 costH(y - roi.y, x - roi.x) = badRegionCost;
785         }
786     }
787 }
788 
789 
estimateSeam(const Mat & image1,const Mat & image2,Point tl1,Point tl2,int comp,Point p1,Point p2,std::vector<Point> & seam,bool & isHorizontal)790 bool DpSeamFinder::estimateSeam(
791         const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp,
792         Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal)
793 {
794     CV_Assert(states_[comp] & INTERS);
795 
796     Mat_<float> costV, costH;
797     computeCosts(image1, image2, tl1, tl2, comp, costV, costH);
798 
799     Rect roi(tls_[comp], brs_[comp]);
800     Point src = p1 - roi.tl();
801     Point dst = p2 - roi.tl();
802     int l = comp+1;
803 
804     // estimate seam direction
805 
806     bool swapped = false;
807     isHorizontal = std::abs(dst.x - src.x) > std::abs(dst.y - src.y);
808 
809     if (isHorizontal)
810     {
811         if (src.x > dst.x)
812         {
813             std::swap(src, dst);
814             swapped = true;
815         }
816     }
817     else if (src.y > dst.y)
818     {
819         swapped = true;
820         std::swap(src, dst);
821     }
822 
823     // find optimal control
824 
825     Mat_<uchar> control = Mat::zeros(roi.size(), CV_8U);
826     Mat_<uchar> reachable = Mat::zeros(roi.size(), CV_8U);
827     Mat_<float> cost = Mat::zeros(roi.size(), CV_32F);
828 
829     reachable(src) = 1;
830     cost(src) = 0.f;
831 
832     int nsteps;
833     std::pair<float, int> steps[3];
834 
835     if (isHorizontal)
836     {
837         for (int x = src.x+1; x <= dst.x; ++x)
838         {
839             for (int y = 0; y < roi.height; ++y)
840             {
841                 // seam follows along upper side of pixels
842 
843                 nsteps = 0;
844 
845                 if (labels_(y + roi.y, x + roi.x) == l)
846                 {
847                     if (reachable(y, x-1))
848                         steps[nsteps++] = std::make_pair(cost(y, x-1) + costH(y, x-1), 1);
849                     if (y > 0 && reachable(y-1, x-1))
850                         steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costH(y-1, x-1) + costV(y-1, x), 2);
851                     if (y < roi.height-1 && reachable(y+1, x-1))
852                         steps[nsteps++] = std::make_pair(cost(y+1, x-1) + costH(y+1, x-1) + costV(y, x), 3);
853                 }
854 
855                 if (nsteps)
856                 {
857                     std::pair<float, int> opt = *min_element(steps, steps + nsteps);
858                     cost(y, x) = opt.first;
859                     control(y, x) = (uchar)opt.second;
860                     reachable(y, x) = 255;
861                 }
862             }
863         }
864     }
865     else
866     {
867         for (int y = src.y+1; y <= dst.y; ++y)
868         {
869             for (int x = 0; x < roi.width; ++x)
870             {
871                 // seam follows along left side of pixels
872 
873                 nsteps = 0;
874 
875                 if (labels_(y + roi.y, x + roi.x) == l)
876                 {
877                     if (reachable(y-1, x))
878                         steps[nsteps++] = std::make_pair(cost(y-1, x) + costV(y-1, x), 1);
879                     if (x > 0 && reachable(y-1, x-1))
880                         steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costV(y-1, x-1) + costH(y, x-1), 2);
881                     if (x < roi.width-1 && reachable(y-1, x+1))
882                         steps[nsteps++] = std::make_pair(cost(y-1, x+1) + costV(y-1, x+1) + costH(y, x), 3);
883                 }
884 
885                 if (nsteps)
886                 {
887                     std::pair<float, int> opt = *min_element(steps, steps + nsteps);
888                     cost(y, x) = opt.first;
889                     control(y, x) = (uchar)opt.second;
890                     reachable(y, x) = 255;
891                 }
892             }
893         }
894     }
895 
896     if (!reachable(dst))
897         return false;
898 
899     // restore seam
900 
901     Point p = dst;
902     seam.clear();
903     seam.push_back(p + roi.tl());
904 
905     if (isHorizontal)
906     {
907         for (; p.x != src.x; seam.push_back(p + roi.tl()))
908         {
909             if (control(p) == 2) p.y--;
910             else if (control(p) == 3) p.y++;
911             p.x--;
912         }
913     }
914     else
915     {
916         for (; p.y != src.y; seam.push_back(p + roi.tl()))
917         {
918             if (control(p) == 2) p.x--;
919             else if (control(p) == 3) p.x++;
920             p.y--;
921         }
922     }
923 
924     if (!swapped)
925         std::reverse(seam.begin(), seam.end());
926 
927     CV_Assert(seam.front() == p1);
928     CV_Assert(seam.back() == p2);
929     return true;
930 }
931 
932 
updateLabelsUsingSeam(int comp1,int comp2,const std::vector<Point> & seam,bool isHorizontalSeam)933 void DpSeamFinder::updateLabelsUsingSeam(
934         int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam)
935 {
936     Mat_<int> mask = Mat::zeros(brs_[comp1].y - tls_[comp1].y,
937                                 brs_[comp1].x - tls_[comp1].x, CV_32S);
938 
939     for (size_t i = 0; i < contours_[comp1].size(); ++i)
940         mask(contours_[comp1][i] - tls_[comp1]) = 255;
941 
942     for (size_t i = 0; i < seam.size(); ++i)
943         mask(seam[i] - tls_[comp1]) = 255;
944 
945     // find connected components after seam carving
946 
947     int l1 = comp1+1, l2 = comp2+1;
948 
949     int ncomps = 0;
950 
951     for (int y = 0; y < mask.rows; ++y)
952         for (int x = 0; x < mask.cols; ++x)
953             if (!mask(y, x) && labels_(y + tls_[comp1].y, x + tls_[comp1].x) == l1)
954                 floodFill(mask, Point(x, y), ++ncomps);
955 
956     for (size_t i = 0; i < contours_[comp1].size(); ++i)
957     {
958         int x = contours_[comp1][i].x - tls_[comp1].x;
959         int y = contours_[comp1][i].y - tls_[comp1].y;
960 
961         bool ok = false;
962         static const int dx[] = {-1, +1, 0, 0, -1, +1, -1, +1};
963         static const int dy[] = {0, 0, -1, +1, -1, -1, +1, +1};
964 
965         for (int j = 0; j < 8; ++j)
966         {
967             int c = x + dx[j];
968             int r = y + dy[j];
969 
970             if (c >= 0 && c < mask.cols && r >= 0 && r < mask.rows &&
971                 mask(r, c) && mask(r, c) != 255)
972             {
973                 ok = true;
974                 mask(y, x) = mask(r, c);
975             }
976         }
977 
978         if (!ok)
979             mask(y, x) = 0;
980     }
981 
982     if (isHorizontalSeam)
983     {
984         for (size_t i = 0; i < seam.size(); ++i)
985         {
986             int x = seam[i].x - tls_[comp1].x;
987             int y = seam[i].y - tls_[comp1].y;
988 
989             if (y < mask.rows-1 && mask(y+1, x) && mask(y+1, x) != 255)
990                 mask(y, x) = mask(y+1, x);
991             else
992                 mask(y, x) = 0;
993         }
994     }
995     else
996     {
997         for (size_t i = 0; i < seam.size(); ++i)
998         {
999             int x = seam[i].x - tls_[comp1].x;
1000             int y = seam[i].y - tls_[comp1].y;
1001 
1002             if (x < mask.cols-1 && mask(y, x+1) && mask(y, x+1) != 255)
1003                 mask(y, x) = mask(y, x+1);
1004             else
1005                 mask(y, x) = 0;
1006         }
1007     }
1008 
1009     // find new components connected with the second component and
1010     // with other components except the ones we are working with
1011 
1012     std::map<int, int> connect2;
1013     std::map<int, int> connectOther;
1014 
1015     for (int i = 1; i <= ncomps; ++i)
1016     {
1017         connect2.insert(std::make_pair(i, 0));
1018         connectOther.insert(std::make_pair(i, 0));
1019     }
1020 
1021     for (size_t i = 0; i < contours_[comp1].size(); ++i)
1022     {
1023         int x = contours_[comp1][i].x;
1024         int y = contours_[comp1][i].y;
1025 
1026         if ((x > 0 && labels_(y, x-1) == l2) ||
1027             (y > 0 && labels_(y-1, x) == l2) ||
1028             (x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
1029             (y < unionSize_.height-1 && labels_(y+1, x) == l2))
1030         {
1031             connect2[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++;
1032         }
1033 
1034         if ((x > 0 && labels_(y, x-1) != l1 && labels_(y, x-1) != l2) ||
1035             (y > 0 && labels_(y-1, x) != l1 && labels_(y-1, x) != l2) ||
1036             (x < unionSize_.width-1 && labels_(y, x+1) != l1 && labels_(y, x+1) != l2) ||
1037             (y < unionSize_.height-1 && labels_(y+1, x) != l1 && labels_(y+1, x) != l2))
1038         {
1039             connectOther[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++;
1040         }
1041     }
1042 
1043     std::vector<int> isAdjComp(ncomps + 1, 0);
1044 
1045     for (std::map<int, int>::iterator itr = connect2.begin(); itr != connect2.end(); ++itr)
1046     {
1047         double len = static_cast<double>(contours_[comp1].size());
1048         isAdjComp[itr->first] = itr->second / len > 0.05 && connectOther.find(itr->first)->second / len < 0.1;
1049     }
1050 
1051     // update labels
1052 
1053     for (int y = 0; y < mask.rows; ++y)
1054         for (int x = 0; x < mask.cols; ++x)
1055             if (mask(y, x) && isAdjComp[mask(y, x)])
1056                 labels_(y + tls_[comp1].y, x + tls_[comp1].x) = l2;
1057 }
1058 
1059 
1060 class GraphCutSeamFinder::Impl : public PairwiseSeamFinder
1061 {
1062 public:
Impl(int cost_type,float terminal_cost,float bad_region_penalty)1063     Impl(int cost_type, float terminal_cost, float bad_region_penalty)
1064         : cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}
1065 
~Impl()1066     ~Impl() {}
1067 
1068     void find(const std::vector<UMat> &src, const std::vector<Point> &corners, std::vector<UMat> &masks);
1069     void findInPair(size_t first, size_t second, Rect roi);
1070 
1071 private:
1072     void setGraphWeightsColor(const Mat &img1, const Mat &img2,
1073                               const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);
1074     void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
1075                                   const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
1076                                   GCGraph<float> &graph);
1077 
1078     std::vector<Mat> dx_, dy_;
1079     int cost_type_;
1080     float terminal_cost_;
1081     float bad_region_penalty_;
1082 };
1083 
1084 
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)1085 void GraphCutSeamFinder::Impl::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
1086                                     std::vector<UMat> &masks)
1087 {
1088     // Compute gradients
1089     dx_.resize(src.size());
1090     dy_.resize(src.size());
1091     Mat dx, dy;
1092     for (size_t i = 0; i < src.size(); ++i)
1093     {
1094         CV_Assert(src[i].channels() == 3);
1095         Sobel(src[i], dx, CV_32F, 1, 0);
1096         Sobel(src[i], dy, CV_32F, 0, 1);
1097         dx_[i].create(src[i].size(), CV_32F);
1098         dy_[i].create(src[i].size(), CV_32F);
1099         for (int y = 0; y < src[i].rows; ++y)
1100         {
1101             const Point3f* dx_row = dx.ptr<Point3f>(y);
1102             const Point3f* dy_row = dy.ptr<Point3f>(y);
1103             float* dx_row_ = dx_[i].ptr<float>(y);
1104             float* dy_row_ = dy_[i].ptr<float>(y);
1105             for (int x = 0; x < src[i].cols; ++x)
1106             {
1107                 dx_row_[x] = normL2(dx_row[x]);
1108                 dy_row_[x] = normL2(dy_row[x]);
1109             }
1110         }
1111     }
1112     PairwiseSeamFinder::find(src, corners, masks);
1113 }
1114 
1115 
setGraphWeightsColor(const Mat & img1,const Mat & img2,const Mat & mask1,const Mat & mask2,GCGraph<float> & graph)1116 void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2,
1117                                                     const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)
1118 {
1119     const Size img_size = img1.size();
1120 
1121     // Set terminal weights
1122     for (int y = 0; y < img_size.height; ++y)
1123     {
1124         for (int x = 0; x < img_size.width; ++x)
1125         {
1126             int v = graph.addVtx();
1127             graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
1128                                     mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
1129         }
1130     }
1131 
1132     // Set regular edge weights
1133     const float weight_eps = 1.f;
1134     for (int y = 0; y < img_size.height; ++y)
1135     {
1136         for (int x = 0; x < img_size.width; ++x)
1137         {
1138             int v = y * img_size.width + x;
1139             if (x < img_size.width - 1)
1140             {
1141                 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1142                                normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
1143                                weight_eps;
1144                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1145                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1146                     weight += bad_region_penalty_;
1147                 graph.addEdges(v, v + 1, weight, weight);
1148             }
1149             if (y < img_size.height - 1)
1150             {
1151                 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1152                                normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
1153                                weight_eps;
1154                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1155                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1156                     weight += bad_region_penalty_;
1157                 graph.addEdges(v, v + img_size.width, weight, weight);
1158             }
1159         }
1160     }
1161 }
1162 
1163 
setGraphWeightsColorGrad(const Mat & img1,const Mat & img2,const Mat & dx1,const Mat & dx2,const Mat & dy1,const Mat & dy2,const Mat & mask1,const Mat & mask2,GCGraph<float> & graph)1164 void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad(
1165         const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
1166         const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
1167         GCGraph<float> &graph)
1168 {
1169     const Size img_size = img1.size();
1170 
1171     // Set terminal weights
1172     for (int y = 0; y < img_size.height; ++y)
1173     {
1174         for (int x = 0; x < img_size.width; ++x)
1175         {
1176             int v = graph.addVtx();
1177             graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
1178                                     mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
1179         }
1180     }
1181 
1182     // Set regular edge weights
1183     const float weight_eps = 1.f;
1184     for (int y = 0; y < img_size.height; ++y)
1185     {
1186         for (int x = 0; x < img_size.width; ++x)
1187         {
1188             int v = y * img_size.width + x;
1189             if (x < img_size.width - 1)
1190             {
1191                 float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
1192                              dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
1193                 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1194                                 normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
1195                                weight_eps;
1196                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1197                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1198                     weight += bad_region_penalty_;
1199                 graph.addEdges(v, v + 1, weight, weight);
1200             }
1201             if (y < img_size.height - 1)
1202             {
1203                 float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
1204                              dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
1205                 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1206                                 normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
1207                                weight_eps;
1208                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1209                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1210                     weight += bad_region_penalty_;
1211                 graph.addEdges(v, v + img_size.width, weight, weight);
1212             }
1213         }
1214     }
1215 }
1216 
1217 
findInPair(size_t first,size_t second,Rect roi)1218 void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)
1219 {
1220     Mat img1 = images_[first].getMat(ACCESS_READ), img2 = images_[second].getMat(ACCESS_READ);
1221     Mat dx1 = dx_[first], dx2 = dx_[second];
1222     Mat dy1 = dy_[first], dy2 = dy_[second];
1223     Mat mask1 = masks_[first].getMat(ACCESS_RW), mask2 = masks_[second].getMat(ACCESS_RW);
1224     Point tl1 = corners_[first], tl2 = corners_[second];
1225 
1226     const int gap = 10;
1227     Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1228     Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1229     Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1230     Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1231     Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1232     Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1233     Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1234     Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1235 
1236     // Cut subimages and submasks with some gap
1237     for (int y = -gap; y < roi.height + gap; ++y)
1238     {
1239         for (int x = -gap; x < roi.width + gap; ++x)
1240         {
1241             int y1 = roi.y - tl1.y + y;
1242             int x1 = roi.x - tl1.x + x;
1243             if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
1244             {
1245                 subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
1246                 submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
1247                 subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
1248                 subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
1249             }
1250             else
1251             {
1252                 subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1253                 submask1.at<uchar>(y + gap, x + gap) = 0;
1254                 subdx1.at<float>(y + gap, x + gap) = 0.f;
1255                 subdy1.at<float>(y + gap, x + gap) = 0.f;
1256             }
1257 
1258             int y2 = roi.y - tl2.y + y;
1259             int x2 = roi.x - tl2.x + x;
1260             if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
1261             {
1262                 subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
1263                 submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
1264                 subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
1265                 subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
1266             }
1267             else
1268             {
1269                 subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1270                 submask2.at<uchar>(y + gap, x + gap) = 0;
1271                 subdx2.at<float>(y + gap, x + gap) = 0.f;
1272                 subdy2.at<float>(y + gap, x + gap) = 0.f;
1273             }
1274         }
1275     }
1276 
1277     const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);
1278     const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +
1279                            (roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);
1280     GCGraph<float> graph(vertex_count, edge_count);
1281 
1282     switch (cost_type_)
1283     {
1284     case GraphCutSeamFinder::COST_COLOR:
1285         setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);
1286         break;
1287     case GraphCutSeamFinder::COST_COLOR_GRAD:
1288         setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
1289                                  submask1, submask2, graph);
1290         break;
1291     default:
1292         CV_Error(Error::StsBadArg, "unsupported pixel similarity measure");
1293     }
1294 
1295     graph.maxFlow();
1296 
1297     for (int y = 0; y < roi.height; ++y)
1298     {
1299         for (int x = 0; x < roi.width; ++x)
1300         {
1301             if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))
1302             {
1303                 if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
1304                     mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
1305             }
1306             else
1307             {
1308                 if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
1309                     mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
1310             }
1311         }
1312     }
1313 }
1314 
1315 
GraphCutSeamFinder(int cost_type,float terminal_cost,float bad_region_penalty)1316 GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)
1317     : impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}
1318 
~GraphCutSeamFinder()1319 GraphCutSeamFinder::~GraphCutSeamFinder() {}
1320 
1321 
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)1322 void GraphCutSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
1323                               std::vector<UMat> &masks)
1324 {
1325     impl_->find(src, corners, masks);
1326 }
1327 
1328 
1329 #ifdef HAVE_OPENCV_CUDALEGACY
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)1330 void GraphCutSeamFinderGpu::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
1331                                  std::vector<UMat> &masks)
1332 {
1333     // Compute gradients
1334     dx_.resize(src.size());
1335     dy_.resize(src.size());
1336     Mat dx, dy;
1337     for (size_t i = 0; i < src.size(); ++i)
1338     {
1339         CV_Assert(src[i].channels() == 3);
1340         Sobel(src[i], dx, CV_32F, 1, 0);
1341         Sobel(src[i], dy, CV_32F, 0, 1);
1342         dx_[i].create(src[i].size(), CV_32F);
1343         dy_[i].create(src[i].size(), CV_32F);
1344         for (int y = 0; y < src[i].rows; ++y)
1345         {
1346             const Point3f* dx_row = dx.ptr<Point3f>(y);
1347             const Point3f* dy_row = dy.ptr<Point3f>(y);
1348             float* dx_row_ = dx_[i].ptr<float>(y);
1349             float* dy_row_ = dy_[i].ptr<float>(y);
1350             for (int x = 0; x < src[i].cols; ++x)
1351             {
1352                 dx_row_[x] = normL2(dx_row[x]);
1353                 dy_row_[x] = normL2(dy_row[x]);
1354             }
1355         }
1356     }
1357     PairwiseSeamFinder::find(src, corners, masks);
1358 }
1359 
1360 
findInPair(size_t first,size_t second,Rect roi)1361 void GraphCutSeamFinderGpu::findInPair(size_t first, size_t second, Rect roi)
1362 {
1363     Mat img1 = images_[first].getMat(ACCESS_READ), img2 = images_[second].getMat(ACCESS_READ);
1364     Mat dx1 = dx_[first], dx2 = dx_[second];
1365     Mat dy1 = dy_[first], dy2 = dy_[second];
1366     Mat mask1 = masks_[first].getMat(ACCESS_READ), mask2 = masks_[second].getMat(ACCESS_READ);
1367     Point tl1 = corners_[first], tl2 = corners_[second];
1368 
1369     const int gap = 10;
1370     Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1371     Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1372     Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1373     Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1374     Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1375     Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1376     Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1377     Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1378 
1379     // Cut subimages and submasks with some gap
1380     for (int y = -gap; y < roi.height + gap; ++y)
1381     {
1382         for (int x = -gap; x < roi.width + gap; ++x)
1383         {
1384             int y1 = roi.y - tl1.y + y;
1385             int x1 = roi.x - tl1.x + x;
1386             if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
1387             {
1388                 subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
1389                 submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
1390                 subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
1391                 subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
1392             }
1393             else
1394             {
1395                 subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1396                 submask1.at<uchar>(y + gap, x + gap) = 0;
1397                 subdx1.at<float>(y + gap, x + gap) = 0.f;
1398                 subdy1.at<float>(y + gap, x + gap) = 0.f;
1399             }
1400 
1401             int y2 = roi.y - tl2.y + y;
1402             int x2 = roi.x - tl2.x + x;
1403             if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
1404             {
1405                 subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
1406                 submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
1407                 subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
1408                 subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
1409             }
1410             else
1411             {
1412                 subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1413                 submask2.at<uchar>(y + gap, x + gap) = 0;
1414                 subdx2.at<float>(y + gap, x + gap) = 0.f;
1415                 subdy2.at<float>(y + gap, x + gap) = 0.f;
1416             }
1417         }
1418     }
1419 
1420     Mat terminals, leftT, rightT, top, bottom;
1421 
1422     switch (cost_type_)
1423     {
1424     case GraphCutSeamFinder::COST_COLOR:
1425         setGraphWeightsColor(subimg1, subimg2, submask1, submask2,
1426                              terminals, leftT, rightT, top, bottom);
1427         break;
1428     case GraphCutSeamFinder::COST_COLOR_GRAD:
1429         setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
1430                                  submask1, submask2, terminals, leftT, rightT, top, bottom);
1431         break;
1432     default:
1433         CV_Error(Error::StsBadArg, "unsupported pixel similarity measure");
1434     }
1435 
1436     cuda::GpuMat terminals_d(terminals);
1437     cuda::GpuMat leftT_d(leftT);
1438     cuda::GpuMat rightT_d(rightT);
1439     cuda::GpuMat top_d(top);
1440     cuda::GpuMat bottom_d(bottom);
1441     cuda::GpuMat labels_d, buf_d;
1442 
1443     cuda::graphcut(terminals_d, leftT_d, rightT_d, top_d, bottom_d, labels_d, buf_d);
1444 
1445     Mat_<uchar> labels = (Mat)labels_d;
1446     for (int y = 0; y < roi.height; ++y)
1447     {
1448         for (int x = 0; x < roi.width; ++x)
1449         {
1450             if (labels(y + gap, x + gap))
1451             {
1452                 if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
1453                     mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
1454             }
1455             else
1456             {
1457                 if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
1458                     mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
1459             }
1460         }
1461     }
1462 }
1463 
1464 
setGraphWeightsColor(const Mat & img1,const Mat & img2,const Mat & mask1,const Mat & mask2,Mat & terminals,Mat & leftT,Mat & rightT,Mat & top,Mat & bottom)1465 void GraphCutSeamFinderGpu::setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2,
1466                                                  Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom)
1467 {
1468     const Size img_size = img1.size();
1469 
1470     terminals.create(img_size, CV_32S);
1471     leftT.create(Size(img_size.height, img_size.width), CV_32S);
1472     rightT.create(Size(img_size.height, img_size.width), CV_32S);
1473     top.create(img_size, CV_32S);
1474     bottom.create(img_size, CV_32S);
1475 
1476     Mat_<int> terminals_(terminals);
1477     Mat_<int> leftT_(leftT);
1478     Mat_<int> rightT_(rightT);
1479     Mat_<int> top_(top);
1480     Mat_<int> bottom_(bottom);
1481 
1482     // Set terminal weights
1483     for (int y = 0; y < img_size.height; ++y)
1484     {
1485         for (int x = 0; x < img_size.width; ++x)
1486         {
1487             float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1488             float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1489             terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f);
1490         }
1491     }
1492 
1493     // Set regular edge weights
1494     const float weight_eps = 1.f;
1495     for (int y = 0; y < img_size.height; ++y)
1496     {
1497         for (int x = 0; x < img_size.width; ++x)
1498         {
1499             if (x > 0)
1500             {
1501                 float weight = normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) +
1502                                normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1503                                weight_eps;
1504                 if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) ||
1505                     !mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x))
1506                     weight += bad_region_penalty_;
1507                 leftT_(x, y) = saturate_cast<int>(weight * 255.f);
1508             }
1509             else
1510                 leftT_(x, y) = 0;
1511 
1512             if (x < img_size.width - 1)
1513             {
1514                 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1515                                normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
1516                                weight_eps;
1517                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1518                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1519                     weight += bad_region_penalty_;
1520                 rightT_(x, y) = saturate_cast<int>(weight * 255.f);
1521             }
1522             else
1523                 rightT_(x, y) = 0;
1524 
1525             if (y > 0)
1526             {
1527                 float weight = normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) +
1528                                normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1529                                weight_eps;
1530                 if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) ||
1531                     !mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x))
1532                     weight += bad_region_penalty_;
1533                 top_(y, x) = saturate_cast<int>(weight * 255.f);
1534             }
1535             else
1536                 top_(y, x) = 0;
1537 
1538             if (y < img_size.height - 1)
1539             {
1540                 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1541                                normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
1542                                weight_eps;
1543                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1544                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1545                     weight += bad_region_penalty_;
1546                 bottom_(y, x) = saturate_cast<int>(weight * 255.f);
1547             }
1548             else
1549                 bottom_(y, x) = 0;
1550         }
1551     }
1552 }
1553 
1554 
setGraphWeightsColorGrad(const Mat & img1,const Mat & img2,const Mat & dx1,const Mat & dx2,const Mat & dy1,const Mat & dy2,const Mat & mask1,const Mat & mask2,Mat & terminals,Mat & leftT,Mat & rightT,Mat & top,Mat & bottom)1555 void GraphCutSeamFinderGpu::setGraphWeightsColorGrad(
1556         const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
1557         const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
1558         Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom)
1559 {
1560     const Size img_size = img1.size();
1561 
1562     terminals.create(img_size, CV_32S);
1563     leftT.create(Size(img_size.height, img_size.width), CV_32S);
1564     rightT.create(Size(img_size.height, img_size.width), CV_32S);
1565     top.create(img_size, CV_32S);
1566     bottom.create(img_size, CV_32S);
1567 
1568     Mat_<int> terminals_(terminals);
1569     Mat_<int> leftT_(leftT);
1570     Mat_<int> rightT_(rightT);
1571     Mat_<int> top_(top);
1572     Mat_<int> bottom_(bottom);
1573 
1574     // Set terminal weights
1575     for (int y = 0; y < img_size.height; ++y)
1576     {
1577         for (int x = 0; x < img_size.width; ++x)
1578         {
1579             float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1580             float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1581             terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f);
1582         }
1583     }
1584 
1585     // Set regular edge weights
1586     const float weight_eps = 1.f;
1587     for (int y = 0; y < img_size.height; ++y)
1588     {
1589         for (int x = 0; x < img_size.width; ++x)
1590         {
1591             if (x > 0)
1592             {
1593                 float grad = dx1.at<float>(y, x - 1) + dx1.at<float>(y, x) +
1594                              dx2.at<float>(y, x - 1) + dx2.at<float>(y, x) + weight_eps;
1595                 float weight = (normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) +
1596                                 normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad +
1597                                weight_eps;
1598                 if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) ||
1599                     !mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x))
1600                     weight += bad_region_penalty_;
1601                 leftT_(x, y) = saturate_cast<int>(weight * 255.f);
1602             }
1603             else
1604                 leftT_(x, y) = 0;
1605 
1606             if (x < img_size.width - 1)
1607             {
1608                 float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
1609                              dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
1610                 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1611                                 normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
1612                                weight_eps;
1613                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1614                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1615                     weight += bad_region_penalty_;
1616                 rightT_(x, y) = saturate_cast<int>(weight * 255.f);
1617             }
1618             else
1619                 rightT_(x, y) = 0;
1620 
1621             if (y > 0)
1622             {
1623                 float grad = dy1.at<float>(y - 1, x) + dy1.at<float>(y, x) +
1624                              dy2.at<float>(y - 1, x) + dy2.at<float>(y, x) + weight_eps;
1625                 float weight = (normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) +
1626                                 normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad +
1627                                weight_eps;
1628                 if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) ||
1629                     !mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x))
1630                     weight += bad_region_penalty_;
1631                 top_(y, x) = saturate_cast<int>(weight * 255.f);
1632             }
1633             else
1634                 top_(y, x) = 0;
1635 
1636             if (y < img_size.height - 1)
1637             {
1638                 float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
1639                              dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
1640                 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1641                                 normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
1642                                weight_eps;
1643                 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1644                     !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1645                     weight += bad_region_penalty_;
1646                 bottom_(y, x) = saturate_cast<int>(weight * 255.f);
1647             }
1648             else
1649                 bottom_(y, x) = 0;
1650         }
1651     }
1652 }
1653 #endif
1654 
1655 } // namespace detail
1656 } // namespace cv
1657