1 /**************************************************************************
2  *
3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  * Copyright 2008  VMware, Inc.  All rights reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * @file
31  * Mipmap generation utility
32  *
33  * @author Brian Paul
34  */
35 
36 
37 #include "pipe/p_context.h"
38 #include "util/u_debug.h"
39 #include "pipe/p_defines.h"
40 #include "util/u_inlines.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "pipe/p_state.h"
43 
44 #include "util/u_format.h"
45 #include "util/u_memory.h"
46 #include "util/u_draw_quad.h"
47 #include "util/u_gen_mipmap.h"
48 #include "util/u_simple_shaders.h"
49 #include "util/u_math.h"
50 #include "util/u_texture.h"
51 #include "util/u_half.h"
52 #include "util/u_surface.h"
53 
54 #include "cso_cache/cso_context.h"
55 
56 
57 struct gen_mipmap_state
58 {
59    struct pipe_context *pipe;
60    struct cso_context *cso;
61 
62    struct pipe_blend_state blend_keep_color, blend_write_color;
63    struct pipe_depth_stencil_alpha_state dsa_keep_depth, dsa_write_depth;
64    struct pipe_rasterizer_state rasterizer;
65    struct pipe_sampler_state sampler;
66    struct pipe_vertex_element velem[2];
67 
68    void *vs;
69 
70    /** Not all are used, but simplifies code */
71    void *fs_color[TGSI_TEXTURE_COUNT];
72    void *fs_depth[TGSI_TEXTURE_COUNT];
73 
74    struct pipe_resource *vbuf;  /**< quad vertices */
75    unsigned vbuf_slot;
76 
77    float vertices[4][2][4];   /**< vertex/texcoords for quad */
78 };
79 
80 
81 
82 enum dtype
83 {
84    DTYPE_UBYTE,
85    DTYPE_UBYTE_3_3_2,
86    DTYPE_USHORT,
87    DTYPE_USHORT_4_4_4_4,
88    DTYPE_USHORT_5_6_5,
89    DTYPE_USHORT_1_5_5_5_REV,
90    DTYPE_UINT,
91    DTYPE_FLOAT,
92    DTYPE_HALF_FLOAT
93 };
94 
95 
96 typedef uint16_t half_float;
97 
98 
99 /**
100  * \name Support macros for do_row and do_row_3d
101  *
102  * The macro madness is here for two reasons.  First, it compacts the code
103  * slightly.  Second, it makes it much easier to adjust the specifics of the
104  * filter to tune the rounding characteristics.
105  */
106 /*@{*/
107 #define DECLARE_ROW_POINTERS(t, e) \
108       const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
109       const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
110       const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
111       const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
112       t(*dst)[e] = (t(*)[e]) dstRow
113 
114 #define DECLARE_ROW_POINTERS0(t) \
115       const t *rowA = (const t *) srcRowA; \
116       const t *rowB = (const t *) srcRowB; \
117       const t *rowC = (const t *) srcRowC; \
118       const t *rowD = (const t *) srcRowD; \
119       t *dst = (t *) dstRow
120 
121 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
122    ((unsigned) Aj + (unsigned) Ak \
123     + (unsigned) Bj + (unsigned) Bk \
124     + (unsigned) Cj + (unsigned) Ck \
125     + (unsigned) Dj + (unsigned) Dk \
126     + 4) >> 3
127 
128 #define FILTER_3D(e) \
129    do { \
130       dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
131                                 rowB[j][e], rowB[k][e], \
132                                 rowC[j][e], rowC[k][e], \
133                                 rowD[j][e], rowD[k][e]); \
134    } while(0)
135 
136 #define FILTER_F_3D(e) \
137    do { \
138       dst[i][e] = (rowA[j][e] + rowA[k][e] \
139                    + rowB[j][e] + rowB[k][e] \
140                    + rowC[j][e] + rowC[k][e] \
141                    + rowD[j][e] + rowD[k][e]) * 0.125F; \
142    } while(0)
143 
144 #define FILTER_HF_3D(e) \
145    do { \
146       const float aj = util_half_to_float(rowA[j][e]); \
147       const float ak = util_half_to_float(rowA[k][e]); \
148       const float bj = util_half_to_float(rowB[j][e]); \
149       const float bk = util_half_to_float(rowB[k][e]); \
150       const float cj = util_half_to_float(rowC[j][e]); \
151       const float ck = util_half_to_float(rowC[k][e]); \
152       const float dj = util_half_to_float(rowD[j][e]); \
153       const float dk = util_half_to_float(rowD[k][e]); \
154       dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
155                                       * 0.125F); \
156    } while(0)
157 /*@}*/
158 
159 
160 /**
161  * Average together two rows of a source image to produce a single new
162  * row in the dest image.  It's legal for the two source rows to point
163  * to the same data.  The source width must be equal to either the
164  * dest width or two times the dest width.
165  * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
166  * \param comps  number of components per pixel (1..4)
167  */
168 static void
do_row(enum dtype datatype,uint comps,int srcWidth,const void * srcRowA,const void * srcRowB,int dstWidth,void * dstRow)169 do_row(enum dtype datatype, uint comps, int srcWidth,
170        const void *srcRowA, const void *srcRowB,
171        int dstWidth, void *dstRow)
172 {
173    const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
174    const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
175 
176    assert(comps >= 1);
177    assert(comps <= 4);
178 
179    /* This assertion is no longer valid with non-power-of-2 textures
180    assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
181    */
182 
183    if (datatype == DTYPE_UBYTE && comps == 4) {
184       uint i, j, k;
185       const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
186       const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
187       ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
188       for (i = j = 0, k = k0; i < (uint) dstWidth;
189            i++, j += colStride, k += colStride) {
190          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
191          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
192          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
193          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
194       }
195    }
196    else if (datatype == DTYPE_UBYTE && comps == 3) {
197       uint i, j, k;
198       const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
199       const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
200       ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
201       for (i = j = 0, k = k0; i < (uint) dstWidth;
202            i++, j += colStride, k += colStride) {
203          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
204          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
205          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
206       }
207    }
208    else if (datatype == DTYPE_UBYTE && comps == 2) {
209       uint i, j, k;
210       const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
211       const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
212       ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
213       for (i = j = 0, k = k0; i < (uint) dstWidth;
214            i++, j += colStride, k += colStride) {
215          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
216          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
217       }
218    }
219    else if (datatype == DTYPE_UBYTE && comps == 1) {
220       uint i, j, k;
221       const ubyte *rowA = (const ubyte *) srcRowA;
222       const ubyte *rowB = (const ubyte *) srcRowB;
223       ubyte *dst = (ubyte *) dstRow;
224       for (i = j = 0, k = k0; i < (uint) dstWidth;
225            i++, j += colStride, k += colStride) {
226          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
227       }
228    }
229 
230    else if (datatype == DTYPE_USHORT && comps == 4) {
231       uint i, j, k;
232       const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
233       const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
234       ushort(*dst)[4] = (ushort(*)[4]) dstRow;
235       for (i = j = 0, k = k0; i < (uint) dstWidth;
236            i++, j += colStride, k += colStride) {
237          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
238          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
239          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
240          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
241       }
242    }
243    else if (datatype == DTYPE_USHORT && comps == 3) {
244       uint i, j, k;
245       const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
246       const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
247       ushort(*dst)[3] = (ushort(*)[3]) dstRow;
248       for (i = j = 0, k = k0; i < (uint) dstWidth;
249            i++, j += colStride, k += colStride) {
250          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
251          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
252          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
253       }
254    }
255    else if (datatype == DTYPE_USHORT && comps == 2) {
256       uint i, j, k;
257       const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
258       const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
259       ushort(*dst)[2] = (ushort(*)[2]) dstRow;
260       for (i = j = 0, k = k0; i < (uint) dstWidth;
261            i++, j += colStride, k += colStride) {
262          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
263          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
264       }
265    }
266    else if (datatype == DTYPE_USHORT && comps == 1) {
267       uint i, j, k;
268       const ushort *rowA = (const ushort *) srcRowA;
269       const ushort *rowB = (const ushort *) srcRowB;
270       ushort *dst = (ushort *) dstRow;
271       for (i = j = 0, k = k0; i < (uint) dstWidth;
272            i++, j += colStride, k += colStride) {
273          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
274       }
275    }
276 
277    else if (datatype == DTYPE_FLOAT && comps == 4) {
278       uint i, j, k;
279       const float(*rowA)[4] = (const float(*)[4]) srcRowA;
280       const float(*rowB)[4] = (const float(*)[4]) srcRowB;
281       float(*dst)[4] = (float(*)[4]) dstRow;
282       for (i = j = 0, k = k0; i < (uint) dstWidth;
283            i++, j += colStride, k += colStride) {
284          dst[i][0] = (rowA[j][0] + rowA[k][0] +
285                       rowB[j][0] + rowB[k][0]) * 0.25F;
286          dst[i][1] = (rowA[j][1] + rowA[k][1] +
287                       rowB[j][1] + rowB[k][1]) * 0.25F;
288          dst[i][2] = (rowA[j][2] + rowA[k][2] +
289                       rowB[j][2] + rowB[k][2]) * 0.25F;
290          dst[i][3] = (rowA[j][3] + rowA[k][3] +
291                       rowB[j][3] + rowB[k][3]) * 0.25F;
292       }
293    }
294    else if (datatype == DTYPE_FLOAT && comps == 3) {
295       uint i, j, k;
296       const float(*rowA)[3] = (const float(*)[3]) srcRowA;
297       const float(*rowB)[3] = (const float(*)[3]) srcRowB;
298       float(*dst)[3] = (float(*)[3]) dstRow;
299       for (i = j = 0, k = k0; i < (uint) dstWidth;
300            i++, j += colStride, k += colStride) {
301          dst[i][0] = (rowA[j][0] + rowA[k][0] +
302                       rowB[j][0] + rowB[k][0]) * 0.25F;
303          dst[i][1] = (rowA[j][1] + rowA[k][1] +
304                       rowB[j][1] + rowB[k][1]) * 0.25F;
305          dst[i][2] = (rowA[j][2] + rowA[k][2] +
306                       rowB[j][2] + rowB[k][2]) * 0.25F;
307       }
308    }
309    else if (datatype == DTYPE_FLOAT && comps == 2) {
310       uint i, j, k;
311       const float(*rowA)[2] = (const float(*)[2]) srcRowA;
312       const float(*rowB)[2] = (const float(*)[2]) srcRowB;
313       float(*dst)[2] = (float(*)[2]) dstRow;
314       for (i = j = 0, k = k0; i < (uint) dstWidth;
315            i++, j += colStride, k += colStride) {
316          dst[i][0] = (rowA[j][0] + rowA[k][0] +
317                       rowB[j][0] + rowB[k][0]) * 0.25F;
318          dst[i][1] = (rowA[j][1] + rowA[k][1] +
319                       rowB[j][1] + rowB[k][1]) * 0.25F;
320       }
321    }
322    else if (datatype == DTYPE_FLOAT && comps == 1) {
323       uint i, j, k;
324       const float *rowA = (const float *) srcRowA;
325       const float *rowB = (const float *) srcRowB;
326       float *dst = (float *) dstRow;
327       for (i = j = 0, k = k0; i < (uint) dstWidth;
328            i++, j += colStride, k += colStride) {
329          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
330       }
331    }
332 
333    else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
334       uint i, j, k, comp;
335       const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
336       const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
337       half_float(*dst)[4] = (half_float(*)[4]) dstRow;
338       for (i = j = 0, k = k0; i < (uint) dstWidth;
339            i++, j += colStride, k += colStride) {
340          for (comp = 0; comp < 4; comp++) {
341             float aj, ak, bj, bk;
342             aj = util_half_to_float(rowA[j][comp]);
343             ak = util_half_to_float(rowA[k][comp]);
344             bj = util_half_to_float(rowB[j][comp]);
345             bk = util_half_to_float(rowB[k][comp]);
346             dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
347          }
348       }
349    }
350    else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
351       uint i, j, k, comp;
352       const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
353       const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
354       half_float(*dst)[3] = (half_float(*)[3]) dstRow;
355       for (i = j = 0, k = k0; i < (uint) dstWidth;
356            i++, j += colStride, k += colStride) {
357          for (comp = 0; comp < 3; comp++) {
358             float aj, ak, bj, bk;
359             aj = util_half_to_float(rowA[j][comp]);
360             ak = util_half_to_float(rowA[k][comp]);
361             bj = util_half_to_float(rowB[j][comp]);
362             bk = util_half_to_float(rowB[k][comp]);
363             dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
364          }
365       }
366    }
367    else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
368       uint i, j, k, comp;
369       const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
370       const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
371       half_float(*dst)[2] = (half_float(*)[2]) dstRow;
372       for (i = j = 0, k = k0; i < (uint) dstWidth;
373            i++, j += colStride, k += colStride) {
374          for (comp = 0; comp < 2; comp++) {
375             float aj, ak, bj, bk;
376             aj = util_half_to_float(rowA[j][comp]);
377             ak = util_half_to_float(rowA[k][comp]);
378             bj = util_half_to_float(rowB[j][comp]);
379             bk = util_half_to_float(rowB[k][comp]);
380             dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
381          }
382       }
383    }
384    else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
385       uint i, j, k;
386       const half_float *rowA = (const half_float *) srcRowA;
387       const half_float *rowB = (const half_float *) srcRowB;
388       half_float *dst = (half_float *) dstRow;
389       for (i = j = 0, k = k0; i < (uint) dstWidth;
390            i++, j += colStride, k += colStride) {
391          float aj, ak, bj, bk;
392          aj = util_half_to_float(rowA[j]);
393          ak = util_half_to_float(rowA[k]);
394          bj = util_half_to_float(rowB[j]);
395          bk = util_half_to_float(rowB[k]);
396          dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
397       }
398    }
399 
400    else if (datatype == DTYPE_UINT && comps == 1) {
401       uint i, j, k;
402       const uint *rowA = (const uint *) srcRowA;
403       const uint *rowB = (const uint *) srcRowB;
404       uint *dst = (uint *) dstRow;
405       for (i = j = 0, k = k0; i < (uint) dstWidth;
406            i++, j += colStride, k += colStride) {
407          dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
408       }
409    }
410 
411    else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
412       uint i, j, k;
413       const ushort *rowA = (const ushort *) srcRowA;
414       const ushort *rowB = (const ushort *) srcRowB;
415       ushort *dst = (ushort *) dstRow;
416       for (i = j = 0, k = k0; i < (uint) dstWidth;
417            i++, j += colStride, k += colStride) {
418          const int rowAr0 = rowA[j] & 0x1f;
419          const int rowAr1 = rowA[k] & 0x1f;
420          const int rowBr0 = rowB[j] & 0x1f;
421          const int rowBr1 = rowB[k] & 0x1f;
422          const int rowAg0 = (rowA[j] >> 5) & 0x3f;
423          const int rowAg1 = (rowA[k] >> 5) & 0x3f;
424          const int rowBg0 = (rowB[j] >> 5) & 0x3f;
425          const int rowBg1 = (rowB[k] >> 5) & 0x3f;
426          const int rowAb0 = (rowA[j] >> 11) & 0x1f;
427          const int rowAb1 = (rowA[k] >> 11) & 0x1f;
428          const int rowBb0 = (rowB[j] >> 11) & 0x1f;
429          const int rowBb1 = (rowB[k] >> 11) & 0x1f;
430          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
431          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
432          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
433          dst[i] = (blue << 11) | (green << 5) | red;
434       }
435    }
436    else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
437       uint i, j, k;
438       const ushort *rowA = (const ushort *) srcRowA;
439       const ushort *rowB = (const ushort *) srcRowB;
440       ushort *dst = (ushort *) dstRow;
441       for (i = j = 0, k = k0; i < (uint) dstWidth;
442            i++, j += colStride, k += colStride) {
443          const int rowAr0 = rowA[j] & 0xf;
444          const int rowAr1 = rowA[k] & 0xf;
445          const int rowBr0 = rowB[j] & 0xf;
446          const int rowBr1 = rowB[k] & 0xf;
447          const int rowAg0 = (rowA[j] >> 4) & 0xf;
448          const int rowAg1 = (rowA[k] >> 4) & 0xf;
449          const int rowBg0 = (rowB[j] >> 4) & 0xf;
450          const int rowBg1 = (rowB[k] >> 4) & 0xf;
451          const int rowAb0 = (rowA[j] >> 8) & 0xf;
452          const int rowAb1 = (rowA[k] >> 8) & 0xf;
453          const int rowBb0 = (rowB[j] >> 8) & 0xf;
454          const int rowBb1 = (rowB[k] >> 8) & 0xf;
455          const int rowAa0 = (rowA[j] >> 12) & 0xf;
456          const int rowAa1 = (rowA[k] >> 12) & 0xf;
457          const int rowBa0 = (rowB[j] >> 12) & 0xf;
458          const int rowBa1 = (rowB[k] >> 12) & 0xf;
459          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
460          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
461          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
462          const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
463          dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
464       }
465    }
466    else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
467       uint i, j, k;
468       const ushort *rowA = (const ushort *) srcRowA;
469       const ushort *rowB = (const ushort *) srcRowB;
470       ushort *dst = (ushort *) dstRow;
471       for (i = j = 0, k = k0; i < (uint) dstWidth;
472            i++, j += colStride, k += colStride) {
473          const int rowAr0 = rowA[j] & 0x1f;
474          const int rowAr1 = rowA[k] & 0x1f;
475          const int rowBr0 = rowB[j] & 0x1f;
476          const int rowBr1 = rowB[k] & 0x1f;
477          const int rowAg0 = (rowA[j] >> 5) & 0x1f;
478          const int rowAg1 = (rowA[k] >> 5) & 0x1f;
479          const int rowBg0 = (rowB[j] >> 5) & 0x1f;
480          const int rowBg1 = (rowB[k] >> 5) & 0x1f;
481          const int rowAb0 = (rowA[j] >> 10) & 0x1f;
482          const int rowAb1 = (rowA[k] >> 10) & 0x1f;
483          const int rowBb0 = (rowB[j] >> 10) & 0x1f;
484          const int rowBb1 = (rowB[k] >> 10) & 0x1f;
485          const int rowAa0 = (rowA[j] >> 15) & 0x1;
486          const int rowAa1 = (rowA[k] >> 15) & 0x1;
487          const int rowBa0 = (rowB[j] >> 15) & 0x1;
488          const int rowBa1 = (rowB[k] >> 15) & 0x1;
489          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
490          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
491          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
492          const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
493          dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
494       }
495    }
496    else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
497       uint i, j, k;
498       const ubyte *rowA = (const ubyte *) srcRowA;
499       const ubyte *rowB = (const ubyte *) srcRowB;
500       ubyte *dst = (ubyte *) dstRow;
501       for (i = j = 0, k = k0; i < (uint) dstWidth;
502            i++, j += colStride, k += colStride) {
503          const int rowAr0 = rowA[j] & 0x3;
504          const int rowAr1 = rowA[k] & 0x3;
505          const int rowBr0 = rowB[j] & 0x3;
506          const int rowBr1 = rowB[k] & 0x3;
507          const int rowAg0 = (rowA[j] >> 2) & 0x7;
508          const int rowAg1 = (rowA[k] >> 2) & 0x7;
509          const int rowBg0 = (rowB[j] >> 2) & 0x7;
510          const int rowBg1 = (rowB[k] >> 2) & 0x7;
511          const int rowAb0 = (rowA[j] >> 5) & 0x7;
512          const int rowAb1 = (rowA[k] >> 5) & 0x7;
513          const int rowBb0 = (rowB[j] >> 5) & 0x7;
514          const int rowBb1 = (rowB[k] >> 5) & 0x7;
515          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
516          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
517          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
518          dst[i] = (blue << 5) | (green << 2) | red;
519       }
520    }
521    else {
522       debug_printf("bad format in do_row()");
523    }
524 }
525 
526 
527 /**
528  * Average together four rows of a source image to produce a single new
529  * row in the dest image.  It's legal for the two source rows to point
530  * to the same data.  The source width must be equal to either the
531  * dest width or two times the dest width.
532  *
533  * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
534  *                  \c GL_FLOAT, etc.
535  * \param comps     number of components per pixel (1..4)
536  * \param srcWidth  Width of a row in the source data
537  * \param srcRowA   Pointer to one of the rows of source data
538  * \param srcRowB   Pointer to one of the rows of source data
539  * \param srcRowC   Pointer to one of the rows of source data
540  * \param srcRowD   Pointer to one of the rows of source data
541  * \param dstWidth  Width of a row in the destination data
542  * \param srcRowA   Pointer to the row of destination data
543  */
544 static void
do_row_3D(enum dtype datatype,uint comps,int srcWidth,const void * srcRowA,const void * srcRowB,const void * srcRowC,const void * srcRowD,int dstWidth,void * dstRow)545 do_row_3D(enum dtype datatype, uint comps, int srcWidth,
546           const void *srcRowA, const void *srcRowB,
547           const void *srcRowC, const void *srcRowD,
548           int dstWidth, void *dstRow)
549 {
550    const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
551    const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
552    uint i, j, k;
553 
554    assert(comps >= 1);
555    assert(comps <= 4);
556 
557    if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
558       DECLARE_ROW_POINTERS(ubyte, 4);
559 
560       for (i = j = 0, k = k0; i < (uint) dstWidth;
561            i++, j += colStride, k += colStride) {
562          FILTER_3D(0);
563          FILTER_3D(1);
564          FILTER_3D(2);
565          FILTER_3D(3);
566       }
567    }
568    else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
569       DECLARE_ROW_POINTERS(ubyte, 3);
570 
571       for (i = j = 0, k = k0; i < (uint) dstWidth;
572            i++, j += colStride, k += colStride) {
573          FILTER_3D(0);
574          FILTER_3D(1);
575          FILTER_3D(2);
576       }
577    }
578    else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
579       DECLARE_ROW_POINTERS(ubyte, 2);
580 
581       for (i = j = 0, k = k0; i < (uint) dstWidth;
582            i++, j += colStride, k += colStride) {
583          FILTER_3D(0);
584          FILTER_3D(1);
585       }
586    }
587    else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
588       DECLARE_ROW_POINTERS(ubyte, 1);
589 
590       for (i = j = 0, k = k0; i < (uint) dstWidth;
591            i++, j += colStride, k += colStride) {
592          FILTER_3D(0);
593       }
594    }
595    else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
596       DECLARE_ROW_POINTERS(ushort, 4);
597 
598       for (i = j = 0, k = k0; i < (uint) dstWidth;
599            i++, j += colStride, k += colStride) {
600          FILTER_3D(0);
601          FILTER_3D(1);
602          FILTER_3D(2);
603          FILTER_3D(3);
604       }
605    }
606    else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
607       DECLARE_ROW_POINTERS(ushort, 3);
608 
609       for (i = j = 0, k = k0; i < (uint) dstWidth;
610            i++, j += colStride, k += colStride) {
611          FILTER_3D(0);
612          FILTER_3D(1);
613          FILTER_3D(2);
614       }
615    }
616    else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
617       DECLARE_ROW_POINTERS(ushort, 2);
618 
619       for (i = j = 0, k = k0; i < (uint) dstWidth;
620            i++, j += colStride, k += colStride) {
621          FILTER_3D(0);
622          FILTER_3D(1);
623       }
624    }
625    else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
626       DECLARE_ROW_POINTERS(ushort, 1);
627 
628       for (i = j = 0, k = k0; i < (uint) dstWidth;
629            i++, j += colStride, k += colStride) {
630          FILTER_3D(0);
631       }
632    }
633    else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
634       DECLARE_ROW_POINTERS(float, 4);
635 
636       for (i = j = 0, k = k0; i < (uint) dstWidth;
637            i++, j += colStride, k += colStride) {
638          FILTER_F_3D(0);
639          FILTER_F_3D(1);
640          FILTER_F_3D(2);
641          FILTER_F_3D(3);
642       }
643    }
644    else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
645       DECLARE_ROW_POINTERS(float, 3);
646 
647       for (i = j = 0, k = k0; i < (uint) dstWidth;
648            i++, j += colStride, k += colStride) {
649          FILTER_F_3D(0);
650          FILTER_F_3D(1);
651          FILTER_F_3D(2);
652       }
653    }
654    else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
655       DECLARE_ROW_POINTERS(float, 2);
656 
657       for (i = j = 0, k = k0; i < (uint) dstWidth;
658            i++, j += colStride, k += colStride) {
659          FILTER_F_3D(0);
660          FILTER_F_3D(1);
661       }
662    }
663    else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
664       DECLARE_ROW_POINTERS(float, 1);
665 
666       for (i = j = 0, k = k0; i < (uint) dstWidth;
667            i++, j += colStride, k += colStride) {
668          FILTER_F_3D(0);
669       }
670    }
671    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
672       DECLARE_ROW_POINTERS(half_float, 4);
673 
674       for (i = j = 0, k = k0; i < (uint) dstWidth;
675            i++, j += colStride, k += colStride) {
676          FILTER_HF_3D(0);
677          FILTER_HF_3D(1);
678          FILTER_HF_3D(2);
679          FILTER_HF_3D(3);
680       }
681    }
682    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
683       DECLARE_ROW_POINTERS(half_float, 4);
684 
685       for (i = j = 0, k = k0; i < (uint) dstWidth;
686            i++, j += colStride, k += colStride) {
687          FILTER_HF_3D(0);
688          FILTER_HF_3D(1);
689          FILTER_HF_3D(2);
690       }
691    }
692    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
693       DECLARE_ROW_POINTERS(half_float, 4);
694 
695       for (i = j = 0, k = k0; i < (uint) dstWidth;
696            i++, j += colStride, k += colStride) {
697          FILTER_HF_3D(0);
698          FILTER_HF_3D(1);
699       }
700    }
701    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
702       DECLARE_ROW_POINTERS(half_float, 4);
703 
704       for (i = j = 0, k = k0; i < (uint) dstWidth;
705            i++, j += colStride, k += colStride) {
706          FILTER_HF_3D(0);
707       }
708    }
709    else if ((datatype == DTYPE_UINT) && (comps == 1)) {
710       const uint *rowA = (const uint *) srcRowA;
711       const uint *rowB = (const uint *) srcRowB;
712       const uint *rowC = (const uint *) srcRowC;
713       const uint *rowD = (const uint *) srcRowD;
714       float *dst = (float *) dstRow;
715 
716       for (i = j = 0, k = k0; i < (uint) dstWidth;
717            i++, j += colStride, k += colStride) {
718          const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
719                                + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
720                                + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
721                                + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
722          dst[i] = (float)((double) tmp * 0.125);
723       }
724    }
725    else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
726       DECLARE_ROW_POINTERS0(ushort);
727 
728       for (i = j = 0, k = k0; i < (uint) dstWidth;
729            i++, j += colStride, k += colStride) {
730          const int rowAr0 = rowA[j] & 0x1f;
731          const int rowAr1 = rowA[k] & 0x1f;
732          const int rowBr0 = rowB[j] & 0x1f;
733          const int rowBr1 = rowB[k] & 0x1f;
734          const int rowCr0 = rowC[j] & 0x1f;
735          const int rowCr1 = rowC[k] & 0x1f;
736          const int rowDr0 = rowD[j] & 0x1f;
737          const int rowDr1 = rowD[k] & 0x1f;
738          const int rowAg0 = (rowA[j] >> 5) & 0x3f;
739          const int rowAg1 = (rowA[k] >> 5) & 0x3f;
740          const int rowBg0 = (rowB[j] >> 5) & 0x3f;
741          const int rowBg1 = (rowB[k] >> 5) & 0x3f;
742          const int rowCg0 = (rowC[j] >> 5) & 0x3f;
743          const int rowCg1 = (rowC[k] >> 5) & 0x3f;
744          const int rowDg0 = (rowD[j] >> 5) & 0x3f;
745          const int rowDg1 = (rowD[k] >> 5) & 0x3f;
746          const int rowAb0 = (rowA[j] >> 11) & 0x1f;
747          const int rowAb1 = (rowA[k] >> 11) & 0x1f;
748          const int rowBb0 = (rowB[j] >> 11) & 0x1f;
749          const int rowBb1 = (rowB[k] >> 11) & 0x1f;
750          const int rowCb0 = (rowC[j] >> 11) & 0x1f;
751          const int rowCb1 = (rowC[k] >> 11) & 0x1f;
752          const int rowDb0 = (rowD[j] >> 11) & 0x1f;
753          const int rowDb1 = (rowD[k] >> 11) & 0x1f;
754          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
755                                        rowCr0, rowCr1, rowDr0, rowDr1);
756          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
757                                        rowCg0, rowCg1, rowDg0, rowDg1);
758          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
759                                        rowCb0, rowCb1, rowDb0, rowDb1);
760          dst[i] = (b << 11) | (g << 5) | r;
761       }
762    }
763    else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
764       DECLARE_ROW_POINTERS0(ushort);
765 
766       for (i = j = 0, k = k0; i < (uint) dstWidth;
767            i++, j += colStride, k += colStride) {
768          const int rowAr0 = rowA[j] & 0xf;
769          const int rowAr1 = rowA[k] & 0xf;
770          const int rowBr0 = rowB[j] & 0xf;
771          const int rowBr1 = rowB[k] & 0xf;
772          const int rowCr0 = rowC[j] & 0xf;
773          const int rowCr1 = rowC[k] & 0xf;
774          const int rowDr0 = rowD[j] & 0xf;
775          const int rowDr1 = rowD[k] & 0xf;
776          const int rowAg0 = (rowA[j] >> 4) & 0xf;
777          const int rowAg1 = (rowA[k] >> 4) & 0xf;
778          const int rowBg0 = (rowB[j] >> 4) & 0xf;
779          const int rowBg1 = (rowB[k] >> 4) & 0xf;
780          const int rowCg0 = (rowC[j] >> 4) & 0xf;
781          const int rowCg1 = (rowC[k] >> 4) & 0xf;
782          const int rowDg0 = (rowD[j] >> 4) & 0xf;
783          const int rowDg1 = (rowD[k] >> 4) & 0xf;
784          const int rowAb0 = (rowA[j] >> 8) & 0xf;
785          const int rowAb1 = (rowA[k] >> 8) & 0xf;
786          const int rowBb0 = (rowB[j] >> 8) & 0xf;
787          const int rowBb1 = (rowB[k] >> 8) & 0xf;
788          const int rowCb0 = (rowC[j] >> 8) & 0xf;
789          const int rowCb1 = (rowC[k] >> 8) & 0xf;
790          const int rowDb0 = (rowD[j] >> 8) & 0xf;
791          const int rowDb1 = (rowD[k] >> 8) & 0xf;
792          const int rowAa0 = (rowA[j] >> 12) & 0xf;
793          const int rowAa1 = (rowA[k] >> 12) & 0xf;
794          const int rowBa0 = (rowB[j] >> 12) & 0xf;
795          const int rowBa1 = (rowB[k] >> 12) & 0xf;
796          const int rowCa0 = (rowC[j] >> 12) & 0xf;
797          const int rowCa1 = (rowC[k] >> 12) & 0xf;
798          const int rowDa0 = (rowD[j] >> 12) & 0xf;
799          const int rowDa1 = (rowD[k] >> 12) & 0xf;
800          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
801                                        rowCr0, rowCr1, rowDr0, rowDr1);
802          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
803                                        rowCg0, rowCg1, rowDg0, rowDg1);
804          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
805                                        rowCb0, rowCb1, rowDb0, rowDb1);
806          const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
807                                        rowCa0, rowCa1, rowDa0, rowDa1);
808 
809          dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
810       }
811    }
812    else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
813       DECLARE_ROW_POINTERS0(ushort);
814 
815       for (i = j = 0, k = k0; i < (uint) dstWidth;
816            i++, j += colStride, k += colStride) {
817          const int rowAr0 = rowA[j] & 0x1f;
818          const int rowAr1 = rowA[k] & 0x1f;
819          const int rowBr0 = rowB[j] & 0x1f;
820          const int rowBr1 = rowB[k] & 0x1f;
821          const int rowCr0 = rowC[j] & 0x1f;
822          const int rowCr1 = rowC[k] & 0x1f;
823          const int rowDr0 = rowD[j] & 0x1f;
824          const int rowDr1 = rowD[k] & 0x1f;
825          const int rowAg0 = (rowA[j] >> 5) & 0x1f;
826          const int rowAg1 = (rowA[k] >> 5) & 0x1f;
827          const int rowBg0 = (rowB[j] >> 5) & 0x1f;
828          const int rowBg1 = (rowB[k] >> 5) & 0x1f;
829          const int rowCg0 = (rowC[j] >> 5) & 0x1f;
830          const int rowCg1 = (rowC[k] >> 5) & 0x1f;
831          const int rowDg0 = (rowD[j] >> 5) & 0x1f;
832          const int rowDg1 = (rowD[k] >> 5) & 0x1f;
833          const int rowAb0 = (rowA[j] >> 10) & 0x1f;
834          const int rowAb1 = (rowA[k] >> 10) & 0x1f;
835          const int rowBb0 = (rowB[j] >> 10) & 0x1f;
836          const int rowBb1 = (rowB[k] >> 10) & 0x1f;
837          const int rowCb0 = (rowC[j] >> 10) & 0x1f;
838          const int rowCb1 = (rowC[k] >> 10) & 0x1f;
839          const int rowDb0 = (rowD[j] >> 10) & 0x1f;
840          const int rowDb1 = (rowD[k] >> 10) & 0x1f;
841          const int rowAa0 = (rowA[j] >> 15) & 0x1;
842          const int rowAa1 = (rowA[k] >> 15) & 0x1;
843          const int rowBa0 = (rowB[j] >> 15) & 0x1;
844          const int rowBa1 = (rowB[k] >> 15) & 0x1;
845          const int rowCa0 = (rowC[j] >> 15) & 0x1;
846          const int rowCa1 = (rowC[k] >> 15) & 0x1;
847          const int rowDa0 = (rowD[j] >> 15) & 0x1;
848          const int rowDa1 = (rowD[k] >> 15) & 0x1;
849          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
850                                        rowCr0, rowCr1, rowDr0, rowDr1);
851          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
852                                        rowCg0, rowCg1, rowDg0, rowDg1);
853          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
854                                        rowCb0, rowCb1, rowDb0, rowDb1);
855          const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
856                                        rowCa0, rowCa1, rowDa0, rowDa1);
857 
858          dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
859       }
860    }
861    else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
862       DECLARE_ROW_POINTERS0(ushort);
863 
864       for (i = j = 0, k = k0; i < (uint) dstWidth;
865            i++, j += colStride, k += colStride) {
866          const int rowAr0 = rowA[j] & 0x3;
867          const int rowAr1 = rowA[k] & 0x3;
868          const int rowBr0 = rowB[j] & 0x3;
869          const int rowBr1 = rowB[k] & 0x3;
870          const int rowCr0 = rowC[j] & 0x3;
871          const int rowCr1 = rowC[k] & 0x3;
872          const int rowDr0 = rowD[j] & 0x3;
873          const int rowDr1 = rowD[k] & 0x3;
874          const int rowAg0 = (rowA[j] >> 2) & 0x7;
875          const int rowAg1 = (rowA[k] >> 2) & 0x7;
876          const int rowBg0 = (rowB[j] >> 2) & 0x7;
877          const int rowBg1 = (rowB[k] >> 2) & 0x7;
878          const int rowCg0 = (rowC[j] >> 2) & 0x7;
879          const int rowCg1 = (rowC[k] >> 2) & 0x7;
880          const int rowDg0 = (rowD[j] >> 2) & 0x7;
881          const int rowDg1 = (rowD[k] >> 2) & 0x7;
882          const int rowAb0 = (rowA[j] >> 5) & 0x7;
883          const int rowAb1 = (rowA[k] >> 5) & 0x7;
884          const int rowBb0 = (rowB[j] >> 5) & 0x7;
885          const int rowBb1 = (rowB[k] >> 5) & 0x7;
886          const int rowCb0 = (rowC[j] >> 5) & 0x7;
887          const int rowCb1 = (rowC[k] >> 5) & 0x7;
888          const int rowDb0 = (rowD[j] >> 5) & 0x7;
889          const int rowDb1 = (rowD[k] >> 5) & 0x7;
890          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
891                                        rowCr0, rowCr1, rowDr0, rowDr1);
892          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
893                                        rowCg0, rowCg1, rowDg0, rowDg1);
894          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
895                                        rowCb0, rowCb1, rowDb0, rowDb1);
896          dst[i] = (b << 5) | (g << 2) | r;
897       }
898    }
899    else {
900       debug_printf("bad format in do_row_3D()");
901    }
902 }
903 
904 
905 
906 static void
format_to_type_comps(enum pipe_format pformat,enum dtype * datatype,uint * comps)907 format_to_type_comps(enum pipe_format pformat,
908                      enum dtype *datatype, uint *comps)
909 {
910    /* XXX I think this could be implemented in terms of the pf_*() functions */
911    switch (pformat) {
912    case PIPE_FORMAT_B8G8R8A8_UNORM:
913    case PIPE_FORMAT_B8G8R8X8_UNORM:
914    case PIPE_FORMAT_A8R8G8B8_UNORM:
915    case PIPE_FORMAT_X8R8G8B8_UNORM:
916    case PIPE_FORMAT_A8B8G8R8_SRGB:
917    case PIPE_FORMAT_X8B8G8R8_SRGB:
918    case PIPE_FORMAT_B8G8R8A8_SRGB:
919    case PIPE_FORMAT_B8G8R8X8_SRGB:
920    case PIPE_FORMAT_A8R8G8B8_SRGB:
921    case PIPE_FORMAT_X8R8G8B8_SRGB:
922    case PIPE_FORMAT_R8G8B8_SRGB:
923       *datatype = DTYPE_UBYTE;
924       *comps = 4;
925       return;
926    case PIPE_FORMAT_B5G5R5X1_UNORM:
927    case PIPE_FORMAT_B5G5R5A1_UNORM:
928       *datatype = DTYPE_USHORT_1_5_5_5_REV;
929       *comps = 4;
930       return;
931    case PIPE_FORMAT_B4G4R4A4_UNORM:
932       *datatype = DTYPE_USHORT_4_4_4_4;
933       *comps = 4;
934       return;
935    case PIPE_FORMAT_B5G6R5_UNORM:
936       *datatype = DTYPE_USHORT_5_6_5;
937       *comps = 3;
938       return;
939    case PIPE_FORMAT_L8_UNORM:
940    case PIPE_FORMAT_L8_SRGB:
941    case PIPE_FORMAT_A8_UNORM:
942    case PIPE_FORMAT_I8_UNORM:
943       *datatype = DTYPE_UBYTE;
944       *comps = 1;
945       return;
946    case PIPE_FORMAT_L8A8_UNORM:
947    case PIPE_FORMAT_L8A8_SRGB:
948       *datatype = DTYPE_UBYTE;
949       *comps = 2;
950       return;
951    default:
952       assert(0);
953       *datatype = DTYPE_UBYTE;
954       *comps = 0;
955       break;
956    }
957 }
958 
959 
960 static void
reduce_1d(enum pipe_format pformat,int srcWidth,const ubyte * srcPtr,int dstWidth,ubyte * dstPtr)961 reduce_1d(enum pipe_format pformat,
962           int srcWidth, const ubyte *srcPtr,
963           int dstWidth, ubyte *dstPtr)
964 {
965    enum dtype datatype;
966    uint comps;
967 
968    format_to_type_comps(pformat, &datatype, &comps);
969 
970    /* we just duplicate the input row, kind of hack, saves code */
971    do_row(datatype, comps,
972           srcWidth, srcPtr, srcPtr,
973           dstWidth, dstPtr);
974 }
975 
976 
977 /**
978  * Strides are in bytes.  If zero, it'll be computed as width * bpp.
979  */
980 static void
reduce_2d(enum pipe_format pformat,int srcWidth,int srcHeight,int srcRowStride,const ubyte * srcPtr,int dstWidth,int dstHeight,int dstRowStride,ubyte * dstPtr)981 reduce_2d(enum pipe_format pformat,
982           int srcWidth, int srcHeight,
983           int srcRowStride, const ubyte *srcPtr,
984           int dstWidth, int dstHeight,
985           int dstRowStride, ubyte *dstPtr)
986 {
987    enum dtype datatype;
988    uint comps;
989    const int bpt = util_format_get_blocksize(pformat);
990    const ubyte *srcA, *srcB;
991    ubyte *dst;
992    int row;
993 
994    format_to_type_comps(pformat, &datatype, &comps);
995 
996    if (!srcRowStride)
997       srcRowStride = bpt * srcWidth;
998 
999    if (!dstRowStride)
1000       dstRowStride = bpt * dstWidth;
1001 
1002    /* Compute src and dst pointers */
1003    srcA = srcPtr;
1004    if (srcHeight > 1)
1005       srcB = srcA + srcRowStride;
1006    else
1007       srcB = srcA;
1008    dst = dstPtr;
1009 
1010    for (row = 0; row < dstHeight; row++) {
1011       do_row(datatype, comps,
1012              srcWidth, srcA, srcB,
1013              dstWidth, dst);
1014       srcA += 2 * srcRowStride;
1015       srcB += 2 * srcRowStride;
1016       dst += dstRowStride;
1017    }
1018 }
1019 
1020 
1021 static void
reduce_3d(enum pipe_format pformat,int srcWidth,int srcHeight,int srcDepth,int srcRowStride,int srcImageStride,const ubyte * srcPtr,int dstWidth,int dstHeight,int dstDepth,int dstRowStride,int dstImageStride,ubyte * dstPtr)1022 reduce_3d(enum pipe_format pformat,
1023           int srcWidth, int srcHeight, int srcDepth,
1024           int srcRowStride, int srcImageStride, const ubyte *srcPtr,
1025           int dstWidth, int dstHeight, int dstDepth,
1026           int dstRowStride, int dstImageStride, ubyte *dstPtr)
1027 {
1028    const int bpt = util_format_get_blocksize(pformat);
1029    int img, row;
1030    int srcImageOffset, srcRowOffset;
1031    enum dtype datatype;
1032    uint comps;
1033 
1034    format_to_type_comps(pformat, &datatype, &comps);
1035 
1036    /* XXX I think we should rather assert those strides */
1037    if (!srcImageStride)
1038       srcImageStride = srcWidth * srcHeight * bpt;
1039    if (!dstImageStride)
1040       dstImageStride = dstWidth * dstHeight * bpt;
1041 
1042    if (!srcRowStride)
1043       srcRowStride = srcWidth * bpt;
1044    if (!dstRowStride)
1045       dstRowStride = dstWidth * bpt;
1046 
1047    /* Offset between adjacent src images to be averaged together */
1048    srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
1049 
1050    /* Offset between adjacent src rows to be averaged together */
1051    srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1052 
1053    /*
1054     * Need to average together up to 8 src pixels for each dest pixel.
1055     * Break that down into 3 operations:
1056     *   1. take two rows from source image and average them together.
1057     *   2. take two rows from next source image and average them together.
1058     *   3. take the two averaged rows and average them for the final dst row.
1059     */
1060 
1061    /*
1062    printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1063           srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1064    */
1065 
1066    for (img = 0; img < dstDepth; img++) {
1067       /* first source image pointer */
1068       const ubyte *imgSrcA = srcPtr
1069          + img * (srcImageStride + srcImageOffset);
1070       /* second source image pointer */
1071       const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1072       /* address of the dest image */
1073       ubyte *imgDst = dstPtr + img * dstImageStride;
1074 
1075       /* setup the four source row pointers and the dest row pointer */
1076       const ubyte *srcImgARowA = imgSrcA;
1077       const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1078       const ubyte *srcImgBRowA = imgSrcB;
1079       const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1080       ubyte *dstImgRow = imgDst;
1081 
1082       for (row = 0; row < dstHeight; row++) {
1083          do_row_3D(datatype, comps, srcWidth,
1084                    srcImgARowA, srcImgARowB,
1085                    srcImgBRowA, srcImgBRowB,
1086                    dstWidth, dstImgRow);
1087 
1088          /* advance to next rows */
1089          srcImgARowA += srcRowStride + srcRowOffset;
1090          srcImgARowB += srcRowStride + srcRowOffset;
1091          srcImgBRowA += srcRowStride + srcRowOffset;
1092          srcImgBRowB += srcRowStride + srcRowOffset;
1093          dstImgRow += dstImageStride;
1094       }
1095    }
1096 }
1097 
1098 
1099 
1100 
1101 static void
make_1d_mipmap(struct gen_mipmap_state * ctx,struct pipe_resource * pt,uint layer,uint baseLevel,uint lastLevel)1102 make_1d_mipmap(struct gen_mipmap_state *ctx,
1103                struct pipe_resource *pt,
1104                uint layer, uint baseLevel, uint lastLevel)
1105 {
1106    struct pipe_context *pipe = ctx->pipe;
1107    uint dstLevel;
1108 
1109    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1110       const uint srcLevel = dstLevel - 1;
1111       struct pipe_transfer *srcTrans, *dstTrans;
1112       void *srcMap, *dstMap;
1113 
1114       srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1115                                    PIPE_TRANSFER_READ, 0, 0,
1116                                    u_minify(pt->width0, srcLevel),
1117                                    u_minify(pt->height0, srcLevel));
1118       dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1119                                    PIPE_TRANSFER_WRITE, 0, 0,
1120                                    u_minify(pt->width0, dstLevel),
1121                                    u_minify(pt->height0, dstLevel));
1122 
1123       srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1124       dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1125 
1126       reduce_1d(pt->format,
1127                 srcTrans->box.width, srcMap,
1128                 dstTrans->box.width, dstMap);
1129 
1130       pipe->transfer_unmap(pipe, srcTrans);
1131       pipe->transfer_unmap(pipe, dstTrans);
1132 
1133       pipe->transfer_destroy(pipe, srcTrans);
1134       pipe->transfer_destroy(pipe, dstTrans);
1135    }
1136 }
1137 
1138 
1139 static void
make_2d_mipmap(struct gen_mipmap_state * ctx,struct pipe_resource * pt,uint layer,uint baseLevel,uint lastLevel)1140 make_2d_mipmap(struct gen_mipmap_state *ctx,
1141                struct pipe_resource *pt,
1142                uint layer, uint baseLevel, uint lastLevel)
1143 {
1144    struct pipe_context *pipe = ctx->pipe;
1145    uint dstLevel;
1146 
1147    assert(util_format_get_blockwidth(pt->format) == 1);
1148    assert(util_format_get_blockheight(pt->format) == 1);
1149 
1150    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1151       const uint srcLevel = dstLevel - 1;
1152       struct pipe_transfer *srcTrans, *dstTrans;
1153       ubyte *srcMap, *dstMap;
1154 
1155       srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1156                                    PIPE_TRANSFER_READ, 0, 0,
1157                                    u_minify(pt->width0, srcLevel),
1158                                    u_minify(pt->height0, srcLevel));
1159       dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1160                                    PIPE_TRANSFER_WRITE, 0, 0,
1161                                    u_minify(pt->width0, dstLevel),
1162                                    u_minify(pt->height0, dstLevel));
1163 
1164       srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1165       dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1166 
1167       reduce_2d(pt->format,
1168                 srcTrans->box.width, srcTrans->box.height,
1169                 srcTrans->stride, srcMap,
1170                 dstTrans->box.width, dstTrans->box.height,
1171                 dstTrans->stride, dstMap);
1172 
1173       pipe->transfer_unmap(pipe, srcTrans);
1174       pipe->transfer_unmap(pipe, dstTrans);
1175 
1176       pipe->transfer_destroy(pipe, srcTrans);
1177       pipe->transfer_destroy(pipe, dstTrans);
1178    }
1179 }
1180 
1181 
1182 /* XXX looks a bit more like it could work now but need to test */
1183 static void
make_3d_mipmap(struct gen_mipmap_state * ctx,struct pipe_resource * pt,uint face,uint baseLevel,uint lastLevel)1184 make_3d_mipmap(struct gen_mipmap_state *ctx,
1185                struct pipe_resource *pt,
1186                uint face, uint baseLevel, uint lastLevel)
1187 {
1188    struct pipe_context *pipe = ctx->pipe;
1189    uint dstLevel;
1190    struct pipe_box src_box, dst_box;
1191 
1192    assert(util_format_get_blockwidth(pt->format) == 1);
1193    assert(util_format_get_blockheight(pt->format) == 1);
1194 
1195    src_box.x = src_box.y = src_box.z = 0;
1196    dst_box.x = dst_box.y = dst_box.z = 0;
1197 
1198    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1199       const uint srcLevel = dstLevel - 1;
1200       struct pipe_transfer *srcTrans, *dstTrans;
1201       ubyte *srcMap, *dstMap;
1202       struct pipe_box src_box, dst_box;
1203       src_box.width = u_minify(pt->width0, srcLevel);
1204       src_box.height = u_minify(pt->height0, srcLevel);
1205       src_box.depth = u_minify(pt->depth0, srcLevel);
1206       dst_box.width = u_minify(pt->width0, dstLevel);
1207       dst_box.height = u_minify(pt->height0, dstLevel);
1208       dst_box.depth = u_minify(pt->depth0, dstLevel);
1209 
1210       srcTrans = pipe->get_transfer(pipe, pt, srcLevel,
1211                                     PIPE_TRANSFER_READ,
1212                                     &src_box);
1213       dstTrans = pipe->get_transfer(pipe, pt, dstLevel,
1214                                     PIPE_TRANSFER_WRITE,
1215                                     &dst_box);
1216 
1217       srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1218       dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1219 
1220       reduce_3d(pt->format,
1221                 srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
1222                 srcTrans->stride, srcTrans->layer_stride, srcMap,
1223                 dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
1224                 dstTrans->stride, dstTrans->layer_stride, dstMap);
1225 
1226       pipe->transfer_unmap(pipe, srcTrans);
1227       pipe->transfer_unmap(pipe, dstTrans);
1228 
1229       pipe->transfer_destroy(pipe, srcTrans);
1230       pipe->transfer_destroy(pipe, dstTrans);
1231    }
1232 }
1233 
1234 
1235 static void
fallback_gen_mipmap(struct gen_mipmap_state * ctx,struct pipe_resource * pt,uint layer,uint baseLevel,uint lastLevel)1236 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1237                     struct pipe_resource *pt,
1238                     uint layer, uint baseLevel, uint lastLevel)
1239 {
1240    switch (pt->target) {
1241    case PIPE_TEXTURE_1D:
1242       make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1243       break;
1244    case PIPE_TEXTURE_2D:
1245    case PIPE_TEXTURE_RECT:
1246    case PIPE_TEXTURE_CUBE:
1247       make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1248       break;
1249    case PIPE_TEXTURE_3D:
1250       make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1251       break;
1252    default:
1253       assert(0);
1254    }
1255 }
1256 
1257 
1258 /**
1259  * Create a mipmap generation context.
1260  * The idea is to create one of these and re-use it each time we need to
1261  * generate a mipmap.
1262  */
1263 struct gen_mipmap_state *
util_create_gen_mipmap(struct pipe_context * pipe,struct cso_context * cso)1264 util_create_gen_mipmap(struct pipe_context *pipe,
1265                        struct cso_context *cso)
1266 {
1267    struct gen_mipmap_state *ctx;
1268    uint i;
1269 
1270    ctx = CALLOC_STRUCT(gen_mipmap_state);
1271    if (!ctx)
1272       return NULL;
1273 
1274    ctx->pipe = pipe;
1275    ctx->cso = cso;
1276 
1277    /* disabled blending/masking */
1278    memset(&ctx->blend_keep_color, 0, sizeof(ctx->blend_keep_color));
1279    memset(&ctx->blend_write_color, 0, sizeof(ctx->blend_write_color));
1280    ctx->blend_write_color.rt[0].colormask = PIPE_MASK_RGBA;
1281 
1282    /* no-op depth/stencil/alpha */
1283    memset(&ctx->dsa_keep_depth, 0, sizeof(ctx->dsa_keep_depth));
1284    memset(&ctx->dsa_write_depth, 0, sizeof(ctx->dsa_write_depth));
1285    ctx->dsa_write_depth.depth.enabled = 1;
1286    ctx->dsa_write_depth.depth.func = PIPE_FUNC_ALWAYS;
1287    ctx->dsa_write_depth.depth.writemask = 1;
1288 
1289    /* rasterizer */
1290    memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1291    ctx->rasterizer.cull_face = PIPE_FACE_NONE;
1292    ctx->rasterizer.gl_rasterization_rules = 1;
1293    ctx->rasterizer.depth_clip = 1;
1294 
1295    /* sampler state */
1296    memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1297    ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1298    ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1299    ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1300    ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1301    ctx->sampler.normalized_coords = 1;
1302 
1303    /* vertex elements state */
1304    memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
1305    for (i = 0; i < 2; i++) {
1306       ctx->velem[i].src_offset = i * 4 * sizeof(float);
1307       ctx->velem[i].instance_divisor = 0;
1308       ctx->velem[i].vertex_buffer_index = 0;
1309       ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
1310    }
1311 
1312    /* vertex data that doesn't change */
1313    for (i = 0; i < 4; i++) {
1314       ctx->vertices[i][0][2] = 0.0f; /* z */
1315       ctx->vertices[i][0][3] = 1.0f; /* w */
1316       ctx->vertices[i][1][3] = 1.0f; /* q */
1317    }
1318 
1319    /* Note: the actual vertex buffer is allocated as needed below */
1320 
1321    return ctx;
1322 }
1323 
1324 
1325 /**
1326  * Helper function to set the fragment shaders.
1327  */
1328 static INLINE void
set_fragment_shader(struct gen_mipmap_state * ctx,uint type,boolean output_depth)1329 set_fragment_shader(struct gen_mipmap_state *ctx, uint type,
1330                     boolean output_depth)
1331 {
1332    if (output_depth) {
1333       if (!ctx->fs_depth[type])
1334          ctx->fs_depth[type] =
1335             util_make_fragment_tex_shader_writedepth(ctx->pipe, type,
1336                                                      TGSI_INTERPOLATE_LINEAR);
1337 
1338       cso_set_fragment_shader_handle(ctx->cso, ctx->fs_depth[type]);
1339    }
1340    else {
1341       if (!ctx->fs_color[type])
1342          ctx->fs_color[type] =
1343             util_make_fragment_tex_shader(ctx->pipe, type,
1344                                           TGSI_INTERPOLATE_LINEAR);
1345 
1346       cso_set_fragment_shader_handle(ctx->cso, ctx->fs_color[type]);
1347    }
1348 }
1349 
1350 
1351 /**
1352  * Helper function to set the vertex shader.
1353  */
1354 static INLINE void
set_vertex_shader(struct gen_mipmap_state * ctx)1355 set_vertex_shader(struct gen_mipmap_state *ctx)
1356 {
1357    /* vertex shader - still required to provide the linkage between
1358     * fragment shader input semantics and vertex_element/buffers.
1359     */
1360    if (!ctx->vs)
1361    {
1362       const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1363                                       TGSI_SEMANTIC_GENERIC };
1364       const uint semantic_indexes[] = { 0, 0 };
1365       ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
1366                                                     semantic_names,
1367                                                     semantic_indexes);
1368    }
1369 
1370    cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1371 }
1372 
1373 
1374 /**
1375  * Get next "slot" of vertex space in the vertex buffer.
1376  * We're allocating one large vertex buffer and using it piece by piece.
1377  */
1378 static unsigned
get_next_slot(struct gen_mipmap_state * ctx)1379 get_next_slot(struct gen_mipmap_state *ctx)
1380 {
1381    const unsigned max_slots = 4096 / sizeof ctx->vertices;
1382 
1383    if (ctx->vbuf_slot >= max_slots) {
1384       pipe_resource_reference(&ctx->vbuf, NULL);
1385       ctx->vbuf_slot = 0;
1386    }
1387 
1388    if (!ctx->vbuf) {
1389       ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1390                                      PIPE_BIND_VERTEX_BUFFER,
1391                                      PIPE_USAGE_STREAM,
1392                                      max_slots * sizeof ctx->vertices);
1393    }
1394 
1395    return ctx->vbuf_slot++ * sizeof ctx->vertices;
1396 }
1397 
1398 
1399 static unsigned
set_vertex_data(struct gen_mipmap_state * ctx,enum pipe_texture_target tex_target,uint layer,float r)1400 set_vertex_data(struct gen_mipmap_state *ctx,
1401                 enum pipe_texture_target tex_target,
1402                 uint layer, float r)
1403 {
1404    unsigned offset;
1405 
1406    /* vert[0].position */
1407    ctx->vertices[0][0][0] = -1.0f; /*x*/
1408    ctx->vertices[0][0][1] = -1.0f; /*y*/
1409 
1410    /* vert[1].position */
1411    ctx->vertices[1][0][0] = 1.0f;
1412    ctx->vertices[1][0][1] = -1.0f;
1413 
1414    /* vert[2].position */
1415    ctx->vertices[2][0][0] = 1.0f;
1416    ctx->vertices[2][0][1] = 1.0f;
1417 
1418    /* vert[3].position */
1419    ctx->vertices[3][0][0] = -1.0f;
1420    ctx->vertices[3][0][1] = 1.0f;
1421 
1422    /* Setup vertex texcoords.  This is a little tricky for cube maps. */
1423    if (tex_target == PIPE_TEXTURE_CUBE) {
1424       static const float st[4][2] = {
1425          {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1426       };
1427 
1428       util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
1429                                         &ctx->vertices[0][1][0], 8);
1430    }
1431    else if (tex_target == PIPE_TEXTURE_1D_ARRAY) {
1432       /* 1D texture array  */
1433       ctx->vertices[0][1][0] = 0.0f; /*s*/
1434       ctx->vertices[0][1][1] = r; /*t*/
1435       ctx->vertices[0][1][2] = 0.0f;    /*r*/
1436 
1437       ctx->vertices[1][1][0] = 1.0f;
1438       ctx->vertices[1][1][1] = r;
1439       ctx->vertices[1][1][2] = 0.0f;
1440 
1441       ctx->vertices[2][1][0] = 1.0f;
1442       ctx->vertices[2][1][1] = r;
1443       ctx->vertices[2][1][2] = 0.0f;
1444 
1445       ctx->vertices[3][1][0] = 0.0f;
1446       ctx->vertices[3][1][1] = r;
1447       ctx->vertices[3][1][2] = 0.0f;
1448    } else {
1449       /* 1D/2D/3D/2D array */
1450       ctx->vertices[0][1][0] = 0.0f; /*s*/
1451       ctx->vertices[0][1][1] = 0.0f; /*t*/
1452       ctx->vertices[0][1][2] = r;    /*r*/
1453 
1454       ctx->vertices[1][1][0] = 1.0f;
1455       ctx->vertices[1][1][1] = 0.0f;
1456       ctx->vertices[1][1][2] = r;
1457 
1458       ctx->vertices[2][1][0] = 1.0f;
1459       ctx->vertices[2][1][1] = 1.0f;
1460       ctx->vertices[2][1][2] = r;
1461 
1462       ctx->vertices[3][1][0] = 0.0f;
1463       ctx->vertices[3][1][1] = 1.0f;
1464       ctx->vertices[3][1][2] = r;
1465    }
1466 
1467    offset = get_next_slot( ctx );
1468 
1469    pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
1470                                offset, sizeof(ctx->vertices), ctx->vertices);
1471 
1472    return offset;
1473 }
1474 
1475 
1476 
1477 /**
1478  * Destroy a mipmap generation context
1479  */
1480 void
util_destroy_gen_mipmap(struct gen_mipmap_state * ctx)1481 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1482 {
1483    struct pipe_context *pipe = ctx->pipe;
1484    unsigned i;
1485 
1486    for (i = 0; i < Elements(ctx->fs_color); i++)
1487       if (ctx->fs_color[i])
1488          pipe->delete_fs_state(pipe, ctx->fs_color[i]);
1489 
1490    for (i = 0; i < Elements(ctx->fs_depth); i++)
1491       if (ctx->fs_depth[i])
1492          pipe->delete_fs_state(pipe, ctx->fs_depth[i]);
1493 
1494    if (ctx->vs)
1495       pipe->delete_vs_state(pipe, ctx->vs);
1496 
1497    pipe_resource_reference(&ctx->vbuf, NULL);
1498 
1499    FREE(ctx);
1500 }
1501 
1502 
1503 /**
1504  * Generate mipmap images.  It's assumed all needed texture memory is
1505  * already allocated.
1506  *
1507  * \param psv  the sampler view to the texture to generate mipmap levels for
1508  * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
1509  * \param baseLevel  the first mipmap level to use as a src
1510  * \param lastLevel  the last mipmap level to generate
1511  * \param filter  the minification filter used to generate mipmap levels with
1512  * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1513  */
1514 void
util_gen_mipmap(struct gen_mipmap_state * ctx,struct pipe_sampler_view * psv,uint face,uint baseLevel,uint lastLevel,uint filter)1515 util_gen_mipmap(struct gen_mipmap_state *ctx,
1516                 struct pipe_sampler_view *psv,
1517                 uint face, uint baseLevel, uint lastLevel, uint filter)
1518 {
1519    struct pipe_context *pipe = ctx->pipe;
1520    struct pipe_screen *screen = pipe->screen;
1521    struct pipe_framebuffer_state fb;
1522    struct pipe_resource *pt = psv->texture;
1523    uint dstLevel;
1524    uint offset;
1525    uint type;
1526    boolean is_depth = util_format_is_depth_or_stencil(psv->format);
1527 
1528    /* The texture object should have room for the levels which we're
1529     * about to generate.
1530     */
1531    assert(lastLevel <= pt->last_level);
1532 
1533    /* If this fails, why are we here? */
1534    assert(lastLevel > baseLevel);
1535 
1536    assert(filter == PIPE_TEX_FILTER_LINEAR ||
1537           filter == PIPE_TEX_FILTER_NEAREST);
1538 
1539    switch (pt->target) {
1540    case PIPE_TEXTURE_1D:
1541       type = TGSI_TEXTURE_1D;
1542       break;
1543    case PIPE_TEXTURE_2D:
1544       type = TGSI_TEXTURE_2D;
1545       break;
1546    case PIPE_TEXTURE_3D:
1547       type = TGSI_TEXTURE_3D;
1548       break;
1549    case PIPE_TEXTURE_CUBE:
1550       type = TGSI_TEXTURE_CUBE;
1551       break;
1552    case PIPE_TEXTURE_1D_ARRAY:
1553       type = TGSI_TEXTURE_1D_ARRAY;
1554       break;
1555    case PIPE_TEXTURE_2D_ARRAY:
1556       type = TGSI_TEXTURE_2D_ARRAY;
1557       break;
1558    default:
1559       assert(0);
1560       type = TGSI_TEXTURE_2D;
1561    }
1562 
1563    /* check if we can render in the texture's format */
1564    if (!screen->is_format_supported(screen, psv->format, pt->target,
1565                                     pt->nr_samples,
1566                                     is_depth ? PIPE_BIND_DEPTH_STENCIL :
1567                                                PIPE_BIND_RENDER_TARGET)) {
1568       fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1569       return;
1570    }
1571 
1572    /* save state (restored below) */
1573    cso_save_blend(ctx->cso);
1574    cso_save_depth_stencil_alpha(ctx->cso);
1575    cso_save_rasterizer(ctx->cso);
1576    cso_save_sample_mask(ctx->cso);
1577    cso_save_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
1578    cso_save_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
1579    cso_save_stream_outputs(ctx->cso);
1580    cso_save_framebuffer(ctx->cso);
1581    cso_save_fragment_shader(ctx->cso);
1582    cso_save_vertex_shader(ctx->cso);
1583    cso_save_geometry_shader(ctx->cso);
1584    cso_save_viewport(ctx->cso);
1585    cso_save_vertex_elements(ctx->cso);
1586    cso_save_vertex_buffers(ctx->cso);
1587 
1588    /* bind our state */
1589    cso_set_blend(ctx->cso, is_depth ? &ctx->blend_keep_color :
1590                                       &ctx->blend_write_color);
1591    cso_set_depth_stencil_alpha(ctx->cso, is_depth ? &ctx->dsa_write_depth :
1592                                                     &ctx->dsa_keep_depth);
1593    cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1594    cso_set_sample_mask(ctx->cso, ~0);
1595    cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
1596    cso_set_stream_outputs(ctx->cso, 0, NULL, 0);
1597 
1598    set_fragment_shader(ctx, type, is_depth);
1599    set_vertex_shader(ctx);
1600    cso_set_geometry_shader_handle(ctx->cso, NULL);
1601 
1602    /* init framebuffer state */
1603    memset(&fb, 0, sizeof(fb));
1604 
1605    /* set min/mag to same filter for faster sw speed */
1606    ctx->sampler.mag_img_filter = filter;
1607    ctx->sampler.min_img_filter = filter;
1608 
1609    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1610       const uint srcLevel = dstLevel - 1;
1611       struct pipe_viewport_state vp;
1612       unsigned nr_layers, layer, i;
1613       float rcoord = 0.0f;
1614 
1615       if (pt->target == PIPE_TEXTURE_3D)
1616          nr_layers = u_minify(pt->depth0, dstLevel);
1617       else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY)
1618 	 nr_layers = pt->array_size;
1619       else
1620          nr_layers = 1;
1621 
1622       for (i = 0; i < nr_layers; i++) {
1623          struct pipe_surface *surf, surf_templ;
1624          if (pt->target == PIPE_TEXTURE_3D) {
1625             /* in theory with geom shaders and driver with full layer support
1626                could do that in one go. */
1627             layer = i;
1628             /* XXX hmm really? */
1629             rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
1630          } else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) {
1631 	    layer = i;
1632 	    rcoord = (float)layer;
1633 	 } else
1634             layer = face;
1635 
1636          memset(&surf_templ, 0, sizeof(surf_templ));
1637          u_surface_default_template(&surf_templ, pt,
1638                                     is_depth ? PIPE_BIND_DEPTH_STENCIL :
1639                                                PIPE_BIND_RENDER_TARGET);
1640          surf_templ.u.tex.level = dstLevel;
1641          surf_templ.u.tex.first_layer = layer;
1642          surf_templ.u.tex.last_layer = layer;
1643          surf = pipe->create_surface(pipe, pt, &surf_templ);
1644 
1645          /*
1646           * Setup framebuffer / dest surface
1647           */
1648          if (is_depth) {
1649             fb.nr_cbufs = 0;
1650             fb.zsbuf = surf;
1651          }
1652          else {
1653             fb.nr_cbufs = 1;
1654             fb.cbufs[0] = surf;
1655          }
1656          fb.width = u_minify(pt->width0, dstLevel);
1657          fb.height = u_minify(pt->height0, dstLevel);
1658          cso_set_framebuffer(ctx->cso, &fb);
1659 
1660          /* viewport */
1661          vp.scale[0] = 0.5f * fb.width;
1662          vp.scale[1] = 0.5f * fb.height;
1663          vp.scale[2] = 1.0f;
1664          vp.scale[3] = 1.0f;
1665          vp.translate[0] = 0.5f * fb.width;
1666          vp.translate[1] = 0.5f * fb.height;
1667          vp.translate[2] = 0.0f;
1668          vp.translate[3] = 0.0f;
1669          cso_set_viewport(ctx->cso, &vp);
1670 
1671          /*
1672           * Setup sampler state
1673           * Note: we should only have to set the min/max LOD clamps to ensure
1674           * we grab texels from the right mipmap level.  But some hardware
1675           * has trouble with min clamping so we also set the lod_bias to
1676           * try to work around that.
1677           */
1678          ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1679          ctx->sampler.lod_bias = (float) srcLevel;
1680          cso_single_sampler(ctx->cso, PIPE_SHADER_FRAGMENT, 0, &ctx->sampler);
1681          cso_single_sampler_done(ctx->cso, PIPE_SHADER_FRAGMENT);
1682 
1683          cso_set_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT, 1, &psv);
1684 
1685          /* quad coords in clip coords */
1686          offset = set_vertex_data(ctx,
1687                                   pt->target,
1688                                   face,
1689                                   rcoord);
1690 
1691          util_draw_vertex_buffer(ctx->pipe,
1692                                  ctx->cso,
1693                                  ctx->vbuf,
1694                                  offset,
1695                                  PIPE_PRIM_TRIANGLE_FAN,
1696                                  4,  /* verts */
1697                                  2); /* attribs/vert */
1698 
1699          /* need to signal that the texture has changed _after_ rendering to it */
1700          pipe_surface_reference( &surf, NULL );
1701       }
1702    }
1703 
1704    /* restore state we changed */
1705    cso_restore_blend(ctx->cso);
1706    cso_restore_depth_stencil_alpha(ctx->cso);
1707    cso_restore_rasterizer(ctx->cso);
1708    cso_restore_sample_mask(ctx->cso);
1709    cso_restore_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
1710    cso_restore_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
1711    cso_restore_framebuffer(ctx->cso);
1712    cso_restore_fragment_shader(ctx->cso);
1713    cso_restore_vertex_shader(ctx->cso);
1714    cso_restore_geometry_shader(ctx->cso);
1715    cso_restore_viewport(ctx->cso);
1716    cso_restore_vertex_elements(ctx->cso);
1717    cso_restore_stream_outputs(ctx->cso);
1718    cso_restore_vertex_buffers(ctx->cso);
1719 }
1720