1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> 6 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> 7 // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > 8 // 9 // This Source Code Form is subject to the terms of the Mozilla 10 // Public License v. 2.0. If a copy of the MPL was not distributed 11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 12 13 #ifndef EIGEN_LDLT_H 14 #define EIGEN_LDLT_H 15 16 namespace Eigen { 17 18 namespace internal { 19 template<typename MatrixType, int UpLo> struct LDLT_Traits; 20 21 // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef 22 enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; 23 } 24 25 /** \ingroup Cholesky_Module 26 * 27 * \class LDLT 28 * 29 * \brief Robust Cholesky decomposition of a matrix with pivoting 30 * 31 * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition 32 * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. 33 * The other triangular part won't be read. 34 * 35 * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite 36 * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L 37 * is lower triangular with a unit diagonal and D is a diagonal matrix. 38 * 39 * The decomposition uses pivoting to ensure stability, so that L will have 40 * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root 41 * on D also stabilizes the computation. 42 * 43 * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky 44 * decomposition to determine whether a system of equations has a solution. 45 * 46 * \sa MatrixBase::ldlt(), class LLT 47 */ 48 template<typename _MatrixType, int _UpLo> class LDLT 49 { 50 public: 51 typedef _MatrixType MatrixType; 52 enum { 53 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 54 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 55 Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! 56 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 57 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 58 UpLo = _UpLo 59 }; 60 typedef typename MatrixType::Scalar Scalar; 61 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 62 typedef typename MatrixType::Index Index; 63 typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; 64 65 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; 66 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; 67 68 typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; 69 70 /** \brief Default Constructor. 71 * 72 * The default constructor is useful in cases in which the user intends to 73 * perform decompositions via LDLT::compute(const MatrixType&). 74 */ LDLT()75 LDLT() 76 : m_matrix(), 77 m_transpositions(), 78 m_sign(internal::ZeroSign), 79 m_isInitialized(false) 80 {} 81 82 /** \brief Default Constructor with memory preallocation 83 * 84 * Like the default constructor but with preallocation of the internal data 85 * according to the specified problem \a size. 86 * \sa LDLT() 87 */ LDLT(Index size)88 LDLT(Index size) 89 : m_matrix(size, size), 90 m_transpositions(size), 91 m_temporary(size), 92 m_sign(internal::ZeroSign), 93 m_isInitialized(false) 94 {} 95 96 /** \brief Constructor with decomposition 97 * 98 * This calculates the decomposition for the input \a matrix. 99 * \sa LDLT(Index size) 100 */ LDLT(const MatrixType & matrix)101 LDLT(const MatrixType& matrix) 102 : m_matrix(matrix.rows(), matrix.cols()), 103 m_transpositions(matrix.rows()), 104 m_temporary(matrix.rows()), 105 m_sign(internal::ZeroSign), 106 m_isInitialized(false) 107 { 108 compute(matrix); 109 } 110 111 /** Clear any existing decomposition 112 * \sa rankUpdate(w,sigma) 113 */ setZero()114 void setZero() 115 { 116 m_isInitialized = false; 117 } 118 119 /** \returns a view of the upper triangular matrix U */ matrixU()120 inline typename Traits::MatrixU matrixU() const 121 { 122 eigen_assert(m_isInitialized && "LDLT is not initialized."); 123 return Traits::getU(m_matrix); 124 } 125 126 /** \returns a view of the lower triangular matrix L */ matrixL()127 inline typename Traits::MatrixL matrixL() const 128 { 129 eigen_assert(m_isInitialized && "LDLT is not initialized."); 130 return Traits::getL(m_matrix); 131 } 132 133 /** \returns the permutation matrix P as a transposition sequence. 134 */ transpositionsP()135 inline const TranspositionType& transpositionsP() const 136 { 137 eigen_assert(m_isInitialized && "LDLT is not initialized."); 138 return m_transpositions; 139 } 140 141 /** \returns the coefficients of the diagonal matrix D */ vectorD()142 inline Diagonal<const MatrixType> vectorD() const 143 { 144 eigen_assert(m_isInitialized && "LDLT is not initialized."); 145 return m_matrix.diagonal(); 146 } 147 148 /** \returns true if the matrix is positive (semidefinite) */ isPositive()149 inline bool isPositive() const 150 { 151 eigen_assert(m_isInitialized && "LDLT is not initialized."); 152 return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; 153 } 154 155 #ifdef EIGEN2_SUPPORT isPositiveDefinite()156 inline bool isPositiveDefinite() const 157 { 158 return isPositive(); 159 } 160 #endif 161 162 /** \returns true if the matrix is negative (semidefinite) */ isNegative(void)163 inline bool isNegative(void) const 164 { 165 eigen_assert(m_isInitialized && "LDLT is not initialized."); 166 return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; 167 } 168 169 /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. 170 * 171 * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . 172 * 173 * \note_about_checking_solutions 174 * 175 * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ 176 * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, 177 * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then 178 * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the 179 * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function 180 * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. 181 * 182 * \sa MatrixBase::ldlt() 183 */ 184 template<typename Rhs> 185 inline const internal::solve_retval<LDLT, Rhs> solve(const MatrixBase<Rhs> & b)186 solve(const MatrixBase<Rhs>& b) const 187 { 188 eigen_assert(m_isInitialized && "LDLT is not initialized."); 189 eigen_assert(m_matrix.rows()==b.rows() 190 && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); 191 return internal::solve_retval<LDLT, Rhs>(*this, b.derived()); 192 } 193 194 #ifdef EIGEN2_SUPPORT 195 template<typename OtherDerived, typename ResultType> solve(const MatrixBase<OtherDerived> & b,ResultType * result)196 bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const 197 { 198 *result = this->solve(b); 199 return true; 200 } 201 #endif 202 203 template<typename Derived> 204 bool solveInPlace(MatrixBase<Derived> &bAndX) const; 205 206 LDLT& compute(const MatrixType& matrix); 207 208 template <typename Derived> 209 LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); 210 211 /** \returns the internal LDLT decomposition matrix 212 * 213 * TODO: document the storage layout 214 */ matrixLDLT()215 inline const MatrixType& matrixLDLT() const 216 { 217 eigen_assert(m_isInitialized && "LDLT is not initialized."); 218 return m_matrix; 219 } 220 221 MatrixType reconstructedMatrix() const; 222 rows()223 inline Index rows() const { return m_matrix.rows(); } cols()224 inline Index cols() const { return m_matrix.cols(); } 225 226 /** \brief Reports whether previous computation was successful. 227 * 228 * \returns \c Success if computation was succesful, 229 * \c NumericalIssue if the matrix.appears to be negative. 230 */ info()231 ComputationInfo info() const 232 { 233 eigen_assert(m_isInitialized && "LDLT is not initialized."); 234 return Success; 235 } 236 237 protected: 238 check_template_parameters()239 static void check_template_parameters() 240 { 241 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 242 } 243 244 /** \internal 245 * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. 246 * The strict upper part is used during the decomposition, the strict lower 247 * part correspond to the coefficients of L (its diagonal is equal to 1 and 248 * is not stored), and the diagonal entries correspond to D. 249 */ 250 MatrixType m_matrix; 251 TranspositionType m_transpositions; 252 TmpMatrixType m_temporary; 253 internal::SignMatrix m_sign; 254 bool m_isInitialized; 255 }; 256 257 namespace internal { 258 259 template<int UpLo> struct ldlt_inplace; 260 261 template<> struct ldlt_inplace<Lower> 262 { 263 template<typename MatrixType, typename TranspositionType, typename Workspace> 264 static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) 265 { 266 using std::abs; 267 typedef typename MatrixType::Scalar Scalar; 268 typedef typename MatrixType::RealScalar RealScalar; 269 typedef typename MatrixType::Index Index; 270 eigen_assert(mat.rows()==mat.cols()); 271 const Index size = mat.rows(); 272 273 if (size <= 1) 274 { 275 transpositions.setIdentity(); 276 if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef; 277 else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef; 278 else sign = ZeroSign; 279 return true; 280 } 281 282 for (Index k = 0; k < size; ++k) 283 { 284 // Find largest diagonal element 285 Index index_of_biggest_in_corner; 286 mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); 287 index_of_biggest_in_corner += k; 288 289 transpositions.coeffRef(k) = index_of_biggest_in_corner; 290 if(k != index_of_biggest_in_corner) 291 { 292 // apply the transposition while taking care to consider only 293 // the lower triangular part 294 Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element 295 mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); 296 mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); 297 std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); 298 for(int i=k+1;i<index_of_biggest_in_corner;++i) 299 { 300 Scalar tmp = mat.coeffRef(i,k); 301 mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); 302 mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); 303 } 304 if(NumTraits<Scalar>::IsComplex) 305 mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); 306 } 307 308 // partition the matrix: 309 // A00 | - | - 310 // lu = A10 | A11 | - 311 // A20 | A21 | A22 312 Index rs = size - k - 1; 313 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); 314 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); 315 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); 316 317 if(k>0) 318 { 319 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); 320 mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); 321 if(rs>0) 322 A21.noalias() -= A20 * temp.head(k); 323 } 324 325 // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot 326 // was smaller than the cutoff value. However, soince LDLT is not rank-revealing 327 // we should only make sure we do not introduce INF or NaN values. 328 // LAPACK also uses 0 as the cutoff value. 329 RealScalar realAkk = numext::real(mat.coeffRef(k,k)); 330 if((rs>0) && (abs(realAkk) > RealScalar(0))) 331 A21 /= realAkk; 332 333 if (sign == PositiveSemiDef) { 334 if (realAkk < 0) sign = Indefinite; 335 } else if (sign == NegativeSemiDef) { 336 if (realAkk > 0) sign = Indefinite; 337 } else if (sign == ZeroSign) { 338 if (realAkk > 0) sign = PositiveSemiDef; 339 else if (realAkk < 0) sign = NegativeSemiDef; 340 } 341 } 342 343 return true; 344 } 345 346 // Reference for the algorithm: Davis and Hager, "Multiple Rank 347 // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) 348 // Trivial rearrangements of their computations (Timothy E. Holy) 349 // allow their algorithm to work for rank-1 updates even if the 350 // original matrix is not of full rank. 351 // Here only rank-1 updates are implemented, to reduce the 352 // requirement for intermediate storage and improve accuracy 353 template<typename MatrixType, typename WDerived> 354 static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) 355 { 356 using numext::isfinite; 357 typedef typename MatrixType::Scalar Scalar; 358 typedef typename MatrixType::RealScalar RealScalar; 359 typedef typename MatrixType::Index Index; 360 361 const Index size = mat.rows(); 362 eigen_assert(mat.cols() == size && w.size()==size); 363 364 RealScalar alpha = 1; 365 366 // Apply the update 367 for (Index j = 0; j < size; j++) 368 { 369 // Check for termination due to an original decomposition of low-rank 370 if (!(isfinite)(alpha)) 371 break; 372 373 // Update the diagonal terms 374 RealScalar dj = numext::real(mat.coeff(j,j)); 375 Scalar wj = w.coeff(j); 376 RealScalar swj2 = sigma*numext::abs2(wj); 377 RealScalar gamma = dj*alpha + swj2; 378 379 mat.coeffRef(j,j) += swj2/alpha; 380 alpha += swj2/dj; 381 382 383 // Update the terms of L 384 Index rs = size-j-1; 385 w.tail(rs) -= wj * mat.col(j).tail(rs); 386 if(gamma != 0) 387 mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); 388 } 389 return true; 390 } 391 392 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> 393 static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) 394 { 395 // Apply the permutation to the input w 396 tmp = transpositions * w; 397 398 return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); 399 } 400 }; 401 402 template<> struct ldlt_inplace<Upper> 403 { 404 template<typename MatrixType, typename TranspositionType, typename Workspace> 405 static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) 406 { 407 Transpose<MatrixType> matt(mat); 408 return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); 409 } 410 411 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> 412 static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) 413 { 414 Transpose<MatrixType> matt(mat); 415 return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); 416 } 417 }; 418 419 template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> 420 { 421 typedef const TriangularView<const MatrixType, UnitLower> MatrixL; 422 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; 423 static inline MatrixL getL(const MatrixType& m) { return m; } 424 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } 425 }; 426 427 template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> 428 { 429 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; 430 typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; 431 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } 432 static inline MatrixU getU(const MatrixType& m) { return m; } 433 }; 434 435 } // end namespace internal 436 437 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix 438 */ 439 template<typename MatrixType, int _UpLo> 440 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) 441 { 442 check_template_parameters(); 443 444 eigen_assert(a.rows()==a.cols()); 445 const Index size = a.rows(); 446 447 m_matrix = a; 448 449 m_transpositions.resize(size); 450 m_isInitialized = false; 451 m_temporary.resize(size); 452 m_sign = internal::ZeroSign; 453 454 internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign); 455 456 m_isInitialized = true; 457 return *this; 458 } 459 460 /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. 461 * \param w a vector to be incorporated into the decomposition. 462 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. 463 * \sa setZero() 464 */ 465 template<typename MatrixType, int _UpLo> 466 template<typename Derived> 467 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma) 468 { 469 const Index size = w.rows(); 470 if (m_isInitialized) 471 { 472 eigen_assert(m_matrix.rows()==size); 473 } 474 else 475 { 476 m_matrix.resize(size,size); 477 m_matrix.setZero(); 478 m_transpositions.resize(size); 479 for (Index i = 0; i < size; i++) 480 m_transpositions.coeffRef(i) = i; 481 m_temporary.resize(size); 482 m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; 483 m_isInitialized = true; 484 } 485 486 internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); 487 488 return *this; 489 } 490 491 namespace internal { 492 template<typename _MatrixType, int _UpLo, typename Rhs> 493 struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> 494 : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> 495 { 496 typedef LDLT<_MatrixType,_UpLo> LDLTType; 497 EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) 498 499 template<typename Dest> void evalTo(Dest& dst) const 500 { 501 eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); 502 // dst = P b 503 dst = dec().transpositionsP() * rhs(); 504 505 // dst = L^-1 (P b) 506 dec().matrixL().solveInPlace(dst); 507 508 // dst = D^-1 (L^-1 P b) 509 // more precisely, use pseudo-inverse of D (see bug 241) 510 using std::abs; 511 using std::max; 512 typedef typename LDLTType::MatrixType MatrixType; 513 typedef typename LDLTType::RealScalar RealScalar; 514 const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD()); 515 // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon 516 // as motivated by LAPACK's xGELSS: 517 // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); 518 // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest 519 // diagonal element is not well justified and to numerical issues in some cases. 520 // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. 521 RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); 522 523 for (Index i = 0; i < vectorD.size(); ++i) { 524 if(abs(vectorD(i)) > tolerance) 525 dst.row(i) /= vectorD(i); 526 else 527 dst.row(i).setZero(); 528 } 529 530 // dst = L^-T (D^-1 L^-1 P b) 531 dec().matrixU().solveInPlace(dst); 532 533 // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b 534 dst = dec().transpositionsP().transpose() * dst; 535 } 536 }; 537 } 538 539 /** \internal use x = ldlt_object.solve(x); 540 * 541 * This is the \em in-place version of solve(). 542 * 543 * \param bAndX represents both the right-hand side matrix b and result x. 544 * 545 * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. 546 * 547 * This version avoids a copy when the right hand side matrix b is not 548 * needed anymore. 549 * 550 * \sa LDLT::solve(), MatrixBase::ldlt() 551 */ 552 template<typename MatrixType,int _UpLo> 553 template<typename Derived> 554 bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const 555 { 556 eigen_assert(m_isInitialized && "LDLT is not initialized."); 557 eigen_assert(m_matrix.rows() == bAndX.rows()); 558 559 bAndX = this->solve(bAndX); 560 561 return true; 562 } 563 564 /** \returns the matrix represented by the decomposition, 565 * i.e., it returns the product: P^T L D L^* P. 566 * This function is provided for debug purpose. */ 567 template<typename MatrixType, int _UpLo> 568 MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const 569 { 570 eigen_assert(m_isInitialized && "LDLT is not initialized."); 571 const Index size = m_matrix.rows(); 572 MatrixType res(size,size); 573 574 // P 575 res.setIdentity(); 576 res = transpositionsP() * res; 577 // L^* P 578 res = matrixU() * res; 579 // D(L^*P) 580 res = vectorD().real().asDiagonal() * res; 581 // L(DL^*P) 582 res = matrixL() * res; 583 // P^T (LDL^*P) 584 res = transpositionsP().transpose() * res; 585 586 return res; 587 } 588 589 /** \cholesky_module 590 * \returns the Cholesky decomposition with full pivoting without square root of \c *this 591 */ 592 template<typename MatrixType, unsigned int UpLo> 593 inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> 594 SelfAdjointView<MatrixType, UpLo>::ldlt() const 595 { 596 return LDLT<PlainObject,UpLo>(m_matrix); 597 } 598 599 /** \cholesky_module 600 * \returns the Cholesky decomposition with full pivoting without square root of \c *this 601 */ 602 template<typename Derived> 603 inline const LDLT<typename MatrixBase<Derived>::PlainObject> 604 MatrixBase<Derived>::ldlt() const 605 { 606 return LDLT<PlainObject>(derived()); 607 } 608 609 } // end namespace Eigen 610 611 #endif // EIGEN_LDLT_H 612