1 /*
2  *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 
13 #include "error_concealment.h"
14 #include "onyxd_int.h"
15 #include "decodemv.h"
16 #include "vpx_mem/vpx_mem.h"
17 #include "vp8/common/findnearmv.h"
18 
19 #define MIN(x,y) (((x)<(y))?(x):(y))
20 #define MAX(x,y) (((x)>(y))?(x):(y))
21 
22 #define FLOOR(x,q) ((x) & -(1 << (q)))
23 
24 #define NUM_NEIGHBORS 20
25 
26 typedef struct ec_position
27 {
28     int row;
29     int col;
30 } EC_POS;
31 
32 /*
33  * Regenerate the table in Matlab with:
34  * x = meshgrid((1:4), (1:4));
35  * y = meshgrid((1:4), (1:4))';
36  * W = round((1./(sqrt(x.^2 + y.^2))*2^7));
37  * W(1,1) = 0;
38  */
39 static const int weights_q7[5][5] = {
40        {  0,   128,    64,    43,    32 },
41        {128,    91,    57,    40,    31 },
42        { 64,    57,    45,    36,    29 },
43        { 43,    40,    36,    30,    26 },
44        { 32,    31,    29,    26,    23 }
45 };
46 
vp8_alloc_overlap_lists(VP8D_COMP * pbi)47 int vp8_alloc_overlap_lists(VP8D_COMP *pbi)
48 {
49     if (pbi->overlaps != NULL)
50     {
51         vpx_free(pbi->overlaps);
52         pbi->overlaps = NULL;
53     }
54 
55     pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols,
56                                sizeof(MB_OVERLAP));
57 
58     if (pbi->overlaps == NULL)
59         return -1;
60 
61     return 0;
62 }
63 
vp8_de_alloc_overlap_lists(VP8D_COMP * pbi)64 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi)
65 {
66     vpx_free(pbi->overlaps);
67     pbi->overlaps = NULL;
68 }
69 
70 /* Inserts a new overlap area value to the list of overlaps of a block */
assign_overlap(OVERLAP_NODE * overlaps,union b_mode_info * bmi,int overlap)71 static void assign_overlap(OVERLAP_NODE* overlaps,
72                            union b_mode_info *bmi,
73                            int overlap)
74 {
75     int i;
76     if (overlap <= 0)
77         return;
78     /* Find and assign to the next empty overlap node in the list of overlaps.
79      * Empty is defined as bmi == NULL */
80     for (i = 0; i < MAX_OVERLAPS; i++)
81     {
82         if (overlaps[i].bmi == NULL)
83         {
84             overlaps[i].bmi = bmi;
85             overlaps[i].overlap = overlap;
86             break;
87         }
88     }
89 }
90 
91 /* Calculates the overlap area between two 4x4 squares, where the first
92  * square has its upper-left corner at (b1_row, b1_col) and the second
93  * square has its upper-left corner at (b2_row, b2_col). Doesn't
94  * properly handle squares which do not overlap.
95  */
block_overlap(int b1_row,int b1_col,int b2_row,int b2_col)96 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col)
97 {
98     const int int_top = MAX(b1_row, b2_row); // top
99     const int int_left = MAX(b1_col, b2_col); // left
100     /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
101      * gives us the right/bottom edge.
102      */
103     const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right
104     const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom
105     return (int_bottom - int_top) * (int_right - int_left);
106 }
107 
108 /* Calculates the overlap area for all blocks in a macroblock at position
109  * (mb_row, mb_col) in macroblocks, which are being overlapped by a given
110  * overlapping block at position (new_row, new_col) (in pixels, Q3). The
111  * first block being overlapped in the macroblock has position (first_blk_row,
112  * first_blk_col) in blocks relative the upper-left corner of the image.
113  */
calculate_overlaps_mb(B_OVERLAP * b_overlaps,union b_mode_info * bmi,int new_row,int new_col,int mb_row,int mb_col,int first_blk_row,int first_blk_col)114 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
115                                   int new_row, int new_col,
116                                   int mb_row, int mb_col,
117                                   int first_blk_row, int first_blk_col)
118 {
119     /* Find the blocks within this MB (defined by mb_row, mb_col) which are
120      * overlapped by bmi and calculate and assign overlap for each of those
121      * blocks. */
122 
123     /* Block coordinates relative the upper-left block */
124     const int rel_ol_blk_row = first_blk_row - mb_row * 4;
125     const int rel_ol_blk_col = first_blk_col - mb_col * 4;
126     /* If the block partly overlaps any previous MB, these coordinates
127      * can be < 0. We don't want to access blocks in previous MBs.
128      */
129     const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0);
130     /* Upper left overlapping block */
131     B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
132 
133     /* Calculate and assign overlaps for all blocks in this MB
134      * which the motion compensated block overlaps
135      */
136     /* Avoid calculating overlaps for blocks in later MBs */
137     int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2);
138     int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2);
139     int row, col;
140 
141     /* Check if new_row and new_col are evenly divisible by 4 (Q3),
142      * and if so we shouldn't check neighboring blocks
143      */
144     if (new_row >= 0 && (new_row & 0x1F) == 0)
145         end_row = 1;
146     if (new_col >= 0 && (new_col & 0x1F) == 0)
147         end_col = 1;
148 
149     /* Check if the overlapping block partly overlaps a previous MB
150      * and if so, we're overlapping fewer blocks in this MB.
151      */
152     if (new_row < (mb_row*16)<<3)
153         end_row = 1;
154     if (new_col < (mb_col*16)<<3)
155         end_col = 1;
156 
157     for (row = 0; row < end_row; ++row)
158     {
159         for (col = 0; col < end_col; ++col)
160         {
161             /* input in Q3, result in Q6 */
162             const int overlap = block_overlap(new_row, new_col,
163                                                   (((first_blk_row + row) *
164                                                       4) << 3),
165                                                   (((first_blk_col + col) *
166                                                       4) << 3));
167             assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
168         }
169     }
170 }
171 
vp8_calculate_overlaps(MB_OVERLAP * overlap_ul,int mb_rows,int mb_cols,union b_mode_info * bmi,int b_row,int b_col)172 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul,
173                             int mb_rows, int mb_cols,
174                             union b_mode_info *bmi,
175                             int b_row, int b_col)
176 {
177     MB_OVERLAP *mb_overlap;
178     int row, col, rel_row, rel_col;
179     int new_row, new_col;
180     int end_row, end_col;
181     int overlap_b_row, overlap_b_col;
182     int overlap_mb_row, overlap_mb_col;
183 
184     /* mb subpixel position */
185     row = (4 * b_row) << 3; /* Q3 */
186     col = (4 * b_col) << 3; /* Q3 */
187 
188     /* reverse compensate for motion */
189     new_row = row - bmi->mv.as_mv.row;
190     new_col = col - bmi->mv.as_mv.col;
191 
192     if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3))
193     {
194         /* the new block ended up outside the frame */
195         return;
196     }
197 
198     if (new_row <= (-4 << 3) || new_col <= (-4 << 3))
199     {
200         /* outside the frame */
201         return;
202     }
203     /* overlapping block's position in blocks */
204     overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
205     overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
206 
207     /* overlapping block's MB position in MBs
208      * operations are done in Q3
209      */
210     overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
211     overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
212 
213     end_row = MIN(mb_rows - overlap_mb_row, 2);
214     end_col = MIN(mb_cols - overlap_mb_col, 2);
215 
216     /* Don't calculate overlap for MBs we don't overlap */
217     /* Check if the new block row starts at the last block row of the MB */
218     if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3))
219         end_row = 1;
220     /* Check if the new block col starts at the last block col of the MB */
221     if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3))
222         end_col = 1;
223 
224     /* find the MB(s) this block is overlapping */
225     for (rel_row = 0; rel_row < end_row; ++rel_row)
226     {
227         for (rel_col = 0; rel_col < end_col; ++rel_col)
228         {
229             if (overlap_mb_row + rel_row < 0 ||
230                 overlap_mb_col + rel_col < 0)
231                 continue;
232             mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
233                  overlap_mb_col + rel_col;
234 
235             calculate_overlaps_mb(mb_overlap->overlaps, bmi,
236                                   new_row, new_col,
237                                   overlap_mb_row + rel_row,
238                                   overlap_mb_col + rel_col,
239                                   overlap_b_row + rel_row,
240                                   overlap_b_col + rel_col);
241         }
242     }
243 }
244 
245 /* Estimates a motion vector given the overlapping blocks' motion vectors.
246  * Filters out all overlapping blocks which do not refer to the correct
247  * reference frame type.
248  */
estimate_mv(const OVERLAP_NODE * overlaps,union b_mode_info * bmi)249 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi)
250 {
251     int i;
252     int overlap_sum = 0;
253     int row_acc = 0;
254     int col_acc = 0;
255 
256     bmi->mv.as_int = 0;
257     for (i=0; i < MAX_OVERLAPS; ++i)
258     {
259         if (overlaps[i].bmi == NULL)
260             break;
261         col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
262         row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
263         overlap_sum += overlaps[i].overlap;
264     }
265     if (overlap_sum > 0)
266     {
267         /* Q9 / Q6 = Q3 */
268         bmi->mv.as_mv.col = col_acc / overlap_sum;
269         bmi->mv.as_mv.row = row_acc / overlap_sum;
270     }
271     else
272     {
273         bmi->mv.as_mv.col = 0;
274         bmi->mv.as_mv.row = 0;
275     }
276 }
277 
278 /* Estimates all motion vectors for a macroblock given the lists of
279  * overlaps for each block. Decides whether or not the MVs must be clamped.
280  */
estimate_mb_mvs(const B_OVERLAP * block_overlaps,MODE_INFO * mi,int mb_to_left_edge,int mb_to_right_edge,int mb_to_top_edge,int mb_to_bottom_edge)281 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps,
282                             MODE_INFO *mi,
283                             int mb_to_left_edge,
284                             int mb_to_right_edge,
285                             int mb_to_top_edge,
286                             int mb_to_bottom_edge)
287 {
288     int row, col;
289     int non_zero_count = 0;
290     MV * const filtered_mv = &(mi->mbmi.mv.as_mv);
291     union b_mode_info * const bmi = mi->bmi;
292     filtered_mv->col = 0;
293     filtered_mv->row = 0;
294     mi->mbmi.need_to_clamp_mvs = 0;
295     for (row = 0; row < 4; ++row)
296     {
297         int this_b_to_top_edge = mb_to_top_edge + ((row*4)<<3);
298         int this_b_to_bottom_edge = mb_to_bottom_edge - ((row*4)<<3);
299         for (col = 0; col < 4; ++col)
300         {
301             int i = row * 4 + col;
302             int this_b_to_left_edge = mb_to_left_edge + ((col*4)<<3);
303             int this_b_to_right_edge = mb_to_right_edge - ((col*4)<<3);
304             /* Estimate vectors for all blocks which are overlapped by this */
305             /* type. Interpolate/extrapolate the rest of the block's MVs */
306             estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
307             mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
308                                                          &bmi[i].mv,
309                                                          this_b_to_left_edge,
310                                                          this_b_to_right_edge,
311                                                          this_b_to_top_edge,
312                                                          this_b_to_bottom_edge);
313             if (bmi[i].mv.as_int != 0)
314             {
315                 ++non_zero_count;
316                 filtered_mv->col += bmi[i].mv.as_mv.col;
317                 filtered_mv->row += bmi[i].mv.as_mv.row;
318             }
319         }
320     }
321     if (non_zero_count > 0)
322     {
323         filtered_mv->col /= non_zero_count;
324         filtered_mv->row /= non_zero_count;
325     }
326 }
327 
calc_prev_mb_overlaps(MB_OVERLAP * overlaps,MODE_INFO * prev_mi,int mb_row,int mb_col,int mb_rows,int mb_cols)328 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
329                                     int mb_row, int mb_col,
330                                     int mb_rows, int mb_cols)
331 {
332     int sub_row;
333     int sub_col;
334     for (sub_row = 0; sub_row < 4; ++sub_row)
335     {
336         for (sub_col = 0; sub_col < 4; ++sub_col)
337         {
338             vp8_calculate_overlaps(
339                                 overlaps, mb_rows, mb_cols,
340                                 &(prev_mi->bmi[sub_row * 4 + sub_col]),
341                                 4 * mb_row + sub_row,
342                                 4 * mb_col + sub_col);
343         }
344     }
345 }
346 
347 /* Estimate all missing motion vectors. This function does the same as the one
348  * above, but has different input arguments. */
estimate_missing_mvs(MB_OVERLAP * overlaps,MODE_INFO * mi,MODE_INFO * prev_mi,int mb_rows,int mb_cols,unsigned int first_corrupt)349 static void estimate_missing_mvs(MB_OVERLAP *overlaps,
350                                  MODE_INFO *mi, MODE_INFO *prev_mi,
351                                  int mb_rows, int mb_cols,
352                                  unsigned int first_corrupt)
353 {
354     int mb_row, mb_col;
355     vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
356     /* First calculate the overlaps for all blocks */
357     for (mb_row = 0; mb_row < mb_rows; ++mb_row)
358     {
359         for (mb_col = 0; mb_col < mb_cols; ++mb_col)
360         {
361             /* We're only able to use blocks referring to the last frame
362              * when extrapolating new vectors.
363              */
364             if (prev_mi->mbmi.ref_frame == LAST_FRAME)
365             {
366                 calc_prev_mb_overlaps(overlaps, prev_mi,
367                                       mb_row, mb_col,
368                                       mb_rows, mb_cols);
369             }
370             ++prev_mi;
371         }
372         ++prev_mi;
373     }
374 
375     mb_row = first_corrupt / mb_cols;
376     mb_col = first_corrupt - mb_row * mb_cols;
377     mi += mb_row*(mb_cols + 1) + mb_col;
378     /* Go through all macroblocks in the current image with missing MVs
379      * and calculate new MVs using the overlaps.
380      */
381     for (; mb_row < mb_rows; ++mb_row)
382     {
383         int mb_to_top_edge = -((mb_row * 16)) << 3;
384         int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
385         for (; mb_col < mb_cols; ++mb_col)
386         {
387             int mb_to_left_edge = -((mb_col * 16) << 3);
388             int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
389             const B_OVERLAP *block_overlaps =
390                     overlaps[mb_row*mb_cols + mb_col].overlaps;
391             mi->mbmi.ref_frame = LAST_FRAME;
392             mi->mbmi.mode = SPLITMV;
393             mi->mbmi.uv_mode = DC_PRED;
394             mi->mbmi.partitioning = 3;
395             mi->mbmi.segment_id = 0;
396             estimate_mb_mvs(block_overlaps,
397                             mi,
398                             mb_to_left_edge,
399                             mb_to_right_edge,
400                             mb_to_top_edge,
401                             mb_to_bottom_edge);
402             ++mi;
403         }
404         mb_col = 0;
405         ++mi;
406     }
407 }
408 
vp8_estimate_missing_mvs(VP8D_COMP * pbi)409 void vp8_estimate_missing_mvs(VP8D_COMP *pbi)
410 {
411     VP8_COMMON * const pc = &pbi->common;
412     estimate_missing_mvs(pbi->overlaps,
413                          pc->mi, pc->prev_mi,
414                          pc->mb_rows, pc->mb_cols,
415                          pbi->mvs_corrupt_from_mb);
416 }
417 
assign_neighbor(EC_BLOCK * neighbor,MODE_INFO * mi,int block_idx)418 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx)
419 {
420     assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
421     neighbor->ref_frame = mi->mbmi.ref_frame;
422     neighbor->mv = mi->bmi[block_idx].mv.as_mv;
423 }
424 
425 /* Finds the neighboring blocks of a macroblocks. In the general case
426  * 20 blocks are found. If a fewer number of blocks are found due to
427  * image boundaries, those positions in the EC_BLOCK array are left "empty".
428  * The neighbors are enumerated with the upper-left neighbor as the first
429  * element, the second element refers to the neighbor to right of the previous
430  * neighbor, and so on. The last element refers to the neighbor below the first
431  * neighbor.
432  */
find_neighboring_blocks(MODE_INFO * mi,EC_BLOCK * neighbors,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)433 static void find_neighboring_blocks(MODE_INFO *mi,
434                                     EC_BLOCK *neighbors,
435                                     int mb_row, int mb_col,
436                                     int mb_rows, int mb_cols,
437                                     int mi_stride)
438 {
439     int i = 0;
440     int j;
441     if (mb_row > 0)
442     {
443         /* upper left */
444         if (mb_col > 0)
445             assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
446         ++i;
447         /* above */
448         for (j = 12; j < 16; ++j, ++i)
449             assign_neighbor(&neighbors[i], mi - mi_stride, j);
450     }
451     else
452         i += 5;
453     if (mb_col < mb_cols - 1)
454     {
455         /* upper right */
456         if (mb_row > 0)
457             assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
458         ++i;
459         /* right */
460         for (j = 0; j <= 12; j += 4, ++i)
461             assign_neighbor(&neighbors[i], mi + 1, j);
462     }
463     else
464         i += 5;
465     if (mb_row < mb_rows - 1)
466     {
467         /* lower right */
468         if (mb_col < mb_cols - 1)
469             assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
470         ++i;
471         /* below */
472         for (j = 0; j < 4; ++j, ++i)
473             assign_neighbor(&neighbors[i], mi + mi_stride, j);
474     }
475     else
476         i += 5;
477     if (mb_col > 0)
478     {
479         /* lower left */
480         if (mb_row < mb_rows - 1)
481             assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
482         ++i;
483         /* left */
484         for (j = 3; j < 16; j += 4, ++i)
485         {
486             assign_neighbor(&neighbors[i], mi - 1, j);
487         }
488     }
489     else
490         i += 5;
491     assert(i == 20);
492 }
493 
494 /* Interpolates all motion vectors for a macroblock from the neighboring blocks'
495  * motion vectors.
496  */
interpolate_mvs(MACROBLOCKD * mb,EC_BLOCK * neighbors,MV_REFERENCE_FRAME dom_ref_frame)497 static void interpolate_mvs(MACROBLOCKD *mb,
498                          EC_BLOCK *neighbors,
499                          MV_REFERENCE_FRAME dom_ref_frame)
500 {
501     int row, col, i;
502     MODE_INFO * const mi = mb->mode_info_context;
503     /* Table with the position of the neighboring blocks relative the position
504      * of the upper left block of the current MB. Starting with the upper left
505      * neighbor and going to the right.
506      */
507     const EC_POS neigh_pos[NUM_NEIGHBORS] = {
508                                         {-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3},
509                                         {-1,4}, {0,4}, {1,4}, {2,4}, {3,4},
510                                         {4,4}, {4,3}, {4,2}, {4,1}, {4,0},
511                                         {4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1}
512                                       };
513     mi->mbmi.need_to_clamp_mvs = 0;
514     for (row = 0; row < 4; ++row)
515     {
516         int mb_to_top_edge = mb->mb_to_top_edge + ((row*4)<<3);
517         int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row*4)<<3);
518         for (col = 0; col < 4; ++col)
519         {
520             int mb_to_left_edge = mb->mb_to_left_edge + ((col*4)<<3);
521             int mb_to_right_edge = mb->mb_to_right_edge - ((col*4)<<3);
522             int w_sum = 0;
523             int mv_row_sum = 0;
524             int mv_col_sum = 0;
525             int_mv * const mv = &(mi->bmi[row*4 + col].mv);
526             mv->as_int = 0;
527             for (i = 0; i < NUM_NEIGHBORS; ++i)
528             {
529                 /* Calculate the weighted sum of neighboring MVs referring
530                  * to the dominant frame type.
531                  */
532                 const int w = weights_q7[abs(row - neigh_pos[i].row)]
533                                         [abs(col - neigh_pos[i].col)];
534                 if (neighbors[i].ref_frame != dom_ref_frame)
535                     continue;
536                 w_sum += w;
537                 /* Q7 * Q3 = Q10 */
538                 mv_row_sum += w*neighbors[i].mv.row;
539                 mv_col_sum += w*neighbors[i].mv.col;
540             }
541             if (w_sum > 0)
542             {
543                 /* Avoid division by zero.
544                  * Normalize with the sum of the coefficients
545                  * Q3 = Q10 / Q7
546                  */
547                 mv->as_mv.row = mv_row_sum / w_sum;
548                 mv->as_mv.col = mv_col_sum / w_sum;
549                 mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
550                                                             mv,
551                                                             mb_to_left_edge,
552                                                             mb_to_right_edge,
553                                                             mb_to_top_edge,
554                                                             mb_to_bottom_edge);
555             }
556         }
557     }
558 }
559 
vp8_interpolate_motion(MACROBLOCKD * mb,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)560 void vp8_interpolate_motion(MACROBLOCKD *mb,
561                         int mb_row, int mb_col,
562                         int mb_rows, int mb_cols,
563                         int mi_stride)
564 {
565     /* Find relevant neighboring blocks */
566     EC_BLOCK neighbors[NUM_NEIGHBORS];
567     int i;
568     /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
569     for (i = 0; i < NUM_NEIGHBORS; ++i)
570     {
571         neighbors[i].ref_frame = MAX_REF_FRAMES;
572         neighbors[i].mv.row = neighbors[i].mv.col = 0;
573     }
574     find_neighboring_blocks(mb->mode_info_context,
575                                 neighbors,
576                                 mb_row, mb_col,
577                                 mb_rows, mb_cols,
578                                 mb->mode_info_stride);
579     /* Interpolate MVs for the missing blocks from the surrounding
580      * blocks which refer to the last frame. */
581     interpolate_mvs(mb, neighbors, LAST_FRAME);
582 
583     mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
584     mb->mode_info_context->mbmi.mode = SPLITMV;
585     mb->mode_info_context->mbmi.uv_mode = DC_PRED;
586     mb->mode_info_context->mbmi.partitioning = 3;
587     mb->mode_info_context->mbmi.segment_id = 0;
588 }
589 
vp8_conceal_corrupt_mb(MACROBLOCKD * xd)590 void vp8_conceal_corrupt_mb(MACROBLOCKD *xd)
591 {
592     /* This macroblock has corrupt residual, use the motion compensated
593        image (predictor) for concealment */
594 
595     /* The build predictor functions now output directly into the dst buffer,
596      * so the copies are no longer necessary */
597 
598 }
599