1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12
13 #include "./vpx_scale_rtcd.h"
14 #include "./vpx_config.h"
15
16 #include "vpx/vpx_integer.h"
17
18 #include "vp9/common/vp9_blockd.h"
19 #include "vp9/common/vp9_filter.h"
20 #include "vp9/common/vp9_reconinter.h"
21 #include "vp9/common/vp9_reconintra.h"
22
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)23 static void build_mc_border(const uint8_t *src, int src_stride,
24 uint8_t *dst, int dst_stride,
25 int x, int y, int b_w, int b_h, int w, int h) {
26 // Get a pointer to the start of the real data for this row.
27 const uint8_t *ref_row = src - x - y * src_stride;
28
29 if (y >= h)
30 ref_row += (h - 1) * src_stride;
31 else if (y > 0)
32 ref_row += y * src_stride;
33
34 do {
35 int right = 0, copy;
36 int left = x < 0 ? -x : 0;
37
38 if (left > b_w)
39 left = b_w;
40
41 if (x + b_w > w)
42 right = x + b_w - w;
43
44 if (right > b_w)
45 right = b_w;
46
47 copy = b_w - left - right;
48
49 if (left)
50 memset(dst, ref_row[0], left);
51
52 if (copy)
53 memcpy(dst + left, ref_row + x + left, copy);
54
55 if (right)
56 memset(dst + left + copy, ref_row[w - 1], right);
57
58 dst += dst_stride;
59 ++y;
60
61 if (y > 0 && y < h)
62 ref_row += src_stride;
63 } while (--b_h);
64 }
65
inter_predictor(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,const int subpel_x,const int subpel_y,const struct scale_factors * sf,int w,int h,int ref,const InterpKernel * kernel,int xs,int ys)66 static void inter_predictor(const uint8_t *src, int src_stride,
67 uint8_t *dst, int dst_stride,
68 const int subpel_x,
69 const int subpel_y,
70 const struct scale_factors *sf,
71 int w, int h, int ref,
72 const InterpKernel *kernel,
73 int xs, int ys) {
74 sf->predict[subpel_x != 0][subpel_y != 0][ref](
75 src, src_stride, dst, dst_stride,
76 kernel[subpel_x], xs, kernel[subpel_y], ys, w, h);
77 }
78
vp9_build_inter_predictor(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,const MV * src_mv,const struct scale_factors * sf,int w,int h,int ref,const InterpKernel * kernel,enum mv_precision precision,int x,int y)79 void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
80 uint8_t *dst, int dst_stride,
81 const MV *src_mv,
82 const struct scale_factors *sf,
83 int w, int h, int ref,
84 const InterpKernel *kernel,
85 enum mv_precision precision,
86 int x, int y) {
87 const int is_q4 = precision == MV_PRECISION_Q4;
88 const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
89 is_q4 ? src_mv->col : src_mv->col * 2 };
90 MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf);
91 const int subpel_x = mv.col & SUBPEL_MASK;
92 const int subpel_y = mv.row & SUBPEL_MASK;
93
94 src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
95
96 inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
97 sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4);
98 }
99
round_mv_comp_q4(int value)100 static INLINE int round_mv_comp_q4(int value) {
101 return (value < 0 ? value - 2 : value + 2) / 4;
102 }
103
mi_mv_pred_q4(const MODE_INFO * mi,int idx)104 static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
105 MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
106 mi->bmi[1].as_mv[idx].as_mv.row +
107 mi->bmi[2].as_mv[idx].as_mv.row +
108 mi->bmi[3].as_mv[idx].as_mv.row),
109 round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
110 mi->bmi[1].as_mv[idx].as_mv.col +
111 mi->bmi[2].as_mv[idx].as_mv.col +
112 mi->bmi[3].as_mv[idx].as_mv.col) };
113 return res;
114 }
115
116 // TODO(jkoleszar): yet another mv clamping function :-(
clamp_mv_to_umv_border_sb(const MACROBLOCKD * xd,const MV * src_mv,int bw,int bh,int ss_x,int ss_y)117 MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
118 int bw, int bh, int ss_x, int ss_y) {
119 // If the MV points so far into the UMV border that no visible pixels
120 // are used for reconstruction, the subpel part of the MV can be
121 // discarded and the MV limited to 16 pixels with equivalent results.
122 const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
123 const int spel_right = spel_left - SUBPEL_SHIFTS;
124 const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
125 const int spel_bottom = spel_top - SUBPEL_SHIFTS;
126 MV clamped_mv = {
127 src_mv->row * (1 << (1 - ss_y)),
128 src_mv->col * (1 << (1 - ss_x))
129 };
130 assert(ss_x <= 1);
131 assert(ss_y <= 1);
132
133 clamp_mv(&clamped_mv,
134 xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
135 xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
136 xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
137 xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
138
139 return clamped_mv;
140 }
141
build_inter_predictors(MACROBLOCKD * xd,int plane,int block,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y)142 static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
143 int bw, int bh,
144 int x, int y, int w, int h,
145 int mi_x, int mi_y) {
146 struct macroblockd_plane *const pd = &xd->plane[plane];
147 const MODE_INFO *mi = xd->mi[0];
148 const int is_compound = has_second_ref(&mi->mbmi);
149 const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
150 int ref;
151
152 for (ref = 0; ref < 1 + is_compound; ++ref) {
153 const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
154 struct buf_2d *const pre_buf = &pd->pre[ref];
155 struct buf_2d *const dst_buf = &pd->dst;
156 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
157
158 // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
159 // same MV (the average of the 4 luma MVs) but we could do something
160 // smarter for non-4:2:0. Just punt for now, pending the changes to get
161 // rid of SPLITMV mode entirely.
162 const MV mv = mi->mbmi.sb_type < BLOCK_8X8
163 ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
164 : mi_mv_pred_q4(mi, ref))
165 : mi->mbmi.mv[ref].as_mv;
166
167 // TODO(jkoleszar): This clamping is done in the incorrect place for the
168 // scaling case. It needs to be done on the scaled MV, not the pre-scaling
169 // MV. Note however that it performs the subsampling aware scaling so
170 // that the result is always q4.
171 // mv_precision precision is MV_PRECISION_Q4.
172 const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
173 pd->subsampling_x,
174 pd->subsampling_y);
175
176 uint8_t *pre;
177 MV32 scaled_mv;
178 int xs, ys, subpel_x, subpel_y;
179
180 if (vp9_is_scaled(sf)) {
181 pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
182 scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
183 xs = sf->x_step_q4;
184 ys = sf->y_step_q4;
185 } else {
186 pre = pre_buf->buf + (y * pre_buf->stride + x);
187 scaled_mv.row = mv_q4.row;
188 scaled_mv.col = mv_q4.col;
189 xs = ys = 16;
190 }
191 subpel_x = scaled_mv.col & SUBPEL_MASK;
192 subpel_y = scaled_mv.row & SUBPEL_MASK;
193 pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
194 + (scaled_mv.col >> SUBPEL_BITS);
195
196 inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
197 subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys);
198 }
199 }
200
build_inter_predictors_for_planes(MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int plane_from,int plane_to)201 static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
202 int mi_row, int mi_col,
203 int plane_from, int plane_to) {
204 int plane;
205 const int mi_x = mi_col * MI_SIZE;
206 const int mi_y = mi_row * MI_SIZE;
207 for (plane = plane_from; plane <= plane_to; ++plane) {
208 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
209 &xd->plane[plane]);
210 const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
211 const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
212 const int bw = 4 * num_4x4_w;
213 const int bh = 4 * num_4x4_h;
214
215 if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
216 int i = 0, x, y;
217 assert(bsize == BLOCK_8X8);
218 for (y = 0; y < num_4x4_h; ++y)
219 for (x = 0; x < num_4x4_w; ++x)
220 build_inter_predictors(xd, plane, i++, bw, bh,
221 4 * x, 4 * y, 4, 4, mi_x, mi_y);
222 } else {
223 build_inter_predictors(xd, plane, 0, bw, bh,
224 0, 0, bw, bh, mi_x, mi_y);
225 }
226 }
227 }
228
vp9_build_inter_predictors_sby(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)229 void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
230 BLOCK_SIZE bsize) {
231 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
232 }
vp9_build_inter_predictors_sbuv(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)233 void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
234 BLOCK_SIZE bsize) {
235 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
236 MAX_MB_PLANE - 1);
237 }
vp9_build_inter_predictors_sb(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)238 void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
239 BLOCK_SIZE bsize) {
240 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
241 MAX_MB_PLANE - 1);
242 }
243
244 // TODO(jingning): This function serves as a placeholder for decoder prediction
245 // using on demand border extension. It should be moved to /decoder/ directory.
dec_build_inter_predictors(MACROBLOCKD * xd,int plane,int block,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y)246 static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
247 int bw, int bh,
248 int x, int y, int w, int h,
249 int mi_x, int mi_y) {
250 struct macroblockd_plane *const pd = &xd->plane[plane];
251 const MODE_INFO *mi = xd->mi[0];
252 const int is_compound = has_second_ref(&mi->mbmi);
253 const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
254 int ref;
255
256 for (ref = 0; ref < 1 + is_compound; ++ref) {
257 const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
258 struct buf_2d *const pre_buf = &pd->pre[ref];
259 struct buf_2d *const dst_buf = &pd->dst;
260 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
261
262 // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
263 // same MV (the average of the 4 luma MVs) but we could do something
264 // smarter for non-4:2:0. Just punt for now, pending the changes to get
265 // rid of SPLITMV mode entirely.
266 const MV mv = mi->mbmi.sb_type < BLOCK_8X8
267 ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
268 : mi_mv_pred_q4(mi, ref))
269 : mi->mbmi.mv[ref].as_mv;
270
271 // TODO(jkoleszar): This clamping is done in the incorrect place for the
272 // scaling case. It needs to be done on the scaled MV, not the pre-scaling
273 // MV. Note however that it performs the subsampling aware scaling so
274 // that the result is always q4.
275 // mv_precision precision is MV_PRECISION_Q4.
276 const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
277 pd->subsampling_x,
278 pd->subsampling_y);
279
280 MV32 scaled_mv;
281 int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
282 subpel_x, subpel_y;
283 uint8_t *ref_frame, *buf_ptr;
284 const YV12_BUFFER_CONFIG *ref_buf = xd->block_refs[ref]->buf;
285
286 // Get reference frame pointer, width and height.
287 if (plane == 0) {
288 frame_width = ref_buf->y_crop_width;
289 frame_height = ref_buf->y_crop_height;
290 ref_frame = ref_buf->y_buffer;
291 } else {
292 frame_width = ref_buf->uv_crop_width;
293 frame_height = ref_buf->uv_crop_height;
294 ref_frame = plane == 1 ? ref_buf->u_buffer : ref_buf->v_buffer;
295 }
296
297 if (vp9_is_scaled(sf)) {
298 // Co-ordinate of containing block to pixel precision.
299 int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
300 int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
301
302 // Co-ordinate of the block to 1/16th pixel precision.
303 x0_16 = (x_start + x) << SUBPEL_BITS;
304 y0_16 = (y_start + y) << SUBPEL_BITS;
305
306 // Co-ordinate of current block in reference frame
307 // to 1/16th pixel precision.
308 x0_16 = sf->scale_value_x(x0_16, sf);
309 y0_16 = sf->scale_value_y(y0_16, sf);
310
311 // Map the top left corner of the block into the reference frame.
312 x0 = sf->scale_value_x(x_start + x, sf);
313 y0 = sf->scale_value_y(y_start + y, sf);
314
315 // Scale the MV and incorporate the sub-pixel offset of the block
316 // in the reference frame.
317 scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
318 xs = sf->x_step_q4;
319 ys = sf->y_step_q4;
320 } else {
321 // Co-ordinate of containing block to pixel precision.
322 x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
323 y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
324
325 // Co-ordinate of the block to 1/16th pixel precision.
326 x0_16 = x0 << SUBPEL_BITS;
327 y0_16 = y0 << SUBPEL_BITS;
328
329 scaled_mv.row = mv_q4.row;
330 scaled_mv.col = mv_q4.col;
331 xs = ys = 16;
332 }
333 subpel_x = scaled_mv.col & SUBPEL_MASK;
334 subpel_y = scaled_mv.row & SUBPEL_MASK;
335
336 // Calculate the top left corner of the best matching block in the reference frame.
337 x0 += scaled_mv.col >> SUBPEL_BITS;
338 y0 += scaled_mv.row >> SUBPEL_BITS;
339 x0_16 += scaled_mv.col;
340 y0_16 += scaled_mv.row;
341
342 // Get reference block pointer.
343 buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
344 buf_stride = pre_buf->stride;
345
346 // Do border extension if there is motion or the
347 // width/height is not a multiple of 8 pixels.
348 if (scaled_mv.col || scaled_mv.row ||
349 (frame_width & 0x7) || (frame_height & 0x7)) {
350 // Get reference block bottom right coordinate.
351 int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
352 int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
353 int x_pad = 0, y_pad = 0;
354
355 if (subpel_x || (sf->x_step_q4 & SUBPEL_MASK)) {
356 x0 -= VP9_INTERP_EXTEND - 1;
357 x1 += VP9_INTERP_EXTEND;
358 x_pad = 1;
359 }
360
361 if (subpel_y || (sf->y_step_q4 & SUBPEL_MASK)) {
362 y0 -= VP9_INTERP_EXTEND - 1;
363 y1 += VP9_INTERP_EXTEND;
364 y_pad = 1;
365 }
366
367 // Skip border extension if block is inside the frame.
368 if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width ||
369 y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
370 uint8_t *buf_ptr1 = ref_frame + y0 * pre_buf->stride + x0;
371 // Extend the border.
372 build_mc_border(buf_ptr1, pre_buf->stride, xd->mc_buf, x1 - x0 + 1,
373 x0, y0, x1 - x0 + 1, y1 - y0 + 1, frame_width,
374 frame_height);
375 buf_stride = x1 - x0 + 1;
376 buf_ptr = xd->mc_buf + y_pad * 3 * buf_stride + x_pad * 3;
377 }
378 }
379
380 inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
381 subpel_y, sf, w, h, ref, kernel, xs, ys);
382 }
383 }
384
vp9_dec_build_inter_predictors_sb(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)385 void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
386 BLOCK_SIZE bsize) {
387 int plane;
388 const int mi_x = mi_col * MI_SIZE;
389 const int mi_y = mi_row * MI_SIZE;
390 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
391 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
392 &xd->plane[plane]);
393 const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
394 const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
395 const int bw = 4 * num_4x4_w;
396 const int bh = 4 * num_4x4_h;
397
398 if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
399 int i = 0, x, y;
400 assert(bsize == BLOCK_8X8);
401 for (y = 0; y < num_4x4_h; ++y)
402 for (x = 0; x < num_4x4_w; ++x)
403 dec_build_inter_predictors(xd, plane, i++, bw, bh,
404 4 * x, 4 * y, 4, 4, mi_x, mi_y);
405 } else {
406 dec_build_inter_predictors(xd, plane, 0, bw, bh,
407 0, 0, bw, bh, mi_x, mi_y);
408 }
409 }
410 }
411
vp9_setup_dst_planes(MACROBLOCKD * xd,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)412 void vp9_setup_dst_planes(MACROBLOCKD *xd,
413 const YV12_BUFFER_CONFIG *src,
414 int mi_row, int mi_col) {
415 uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
416 src->alpha_buffer};
417 const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
418 src->alpha_stride};
419 int i;
420
421 for (i = 0; i < MAX_MB_PLANE; ++i) {
422 struct macroblockd_plane *const pd = &xd->plane[i];
423 setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL,
424 pd->subsampling_x, pd->subsampling_y);
425 }
426 }
427
vp9_setup_pre_planes(MACROBLOCKD * xd,int idx,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col,const struct scale_factors * sf)428 void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx,
429 const YV12_BUFFER_CONFIG *src,
430 int mi_row, int mi_col,
431 const struct scale_factors *sf) {
432 if (src != NULL) {
433 int i;
434 uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
435 src->alpha_buffer};
436 const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
437 src->alpha_stride};
438
439 for (i = 0; i < MAX_MB_PLANE; ++i) {
440 struct macroblockd_plane *const pd = &xd->plane[i];
441 setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col,
442 sf, pd->subsampling_x, pd->subsampling_y);
443 }
444 }
445 }
446