1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17
18 #include "vpx_dsp/vpx_dsp_common.h"
19 #include "vpx_mem/vpx_mem.h"
20 #include "vpx_ports/mem.h"
21 #include "vpx_ports/system_state.h"
22 #include "vpx_scale/vpx_scale.h"
23 #include "vpx_scale/yv12config.h"
24
25 #include "vp9/common/vp9_entropymv.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
28 #include "vp9/encoder/vp9_aq_variance.h"
29 #include "vp9/encoder/vp9_block.h"
30 #include "vp9/encoder/vp9_encodeframe.h"
31 #include "vp9/encoder/vp9_encodemb.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_encoder.h"
34 #include "vp9/encoder/vp9_extend.h"
35 #include "vp9/encoder/vp9_firstpass.h"
36 #include "vp9/encoder/vp9_mcomp.h"
37 #include "vp9/encoder/vp9_quantize.h"
38 #include "vp9/encoder/vp9_rd.h"
39 #include "vpx_dsp/variance.h"
40
41 #define OUTPUT_FPF 0
42 #define ARF_STATS_OUTPUT 0
43
44 #define GROUP_ADAPTIVE_MAXQ 1
45
46 #define BOOST_BREAKOUT 12.5
47 #define BOOST_FACTOR 12.5
48 #define ERR_DIVISOR 128.0
49 #define FACTOR_PT_LOW 0.70
50 #define FACTOR_PT_HIGH 0.90
51 #define FIRST_PASS_Q 10.0
52 #define GF_MAX_BOOST 96.0
53 #define INTRA_MODE_PENALTY 1024
54 #define KF_MAX_BOOST 128.0
55 #define MIN_ARF_GF_BOOST 240
56 #define MIN_DECAY_FACTOR 0.01
57 #define MIN_KF_BOOST 300
58 #define NEW_MV_MODE_PENALTY 32
59 #define SVC_FACTOR_PT_LOW 0.45
60 #define DARK_THRESH 64
61 #define DEFAULT_GRP_WEIGHT 1.0
62 #define RC_FACTOR_MIN 0.75
63 #define RC_FACTOR_MAX 1.75
64
65
66 #define NCOUNT_INTRA_THRESH 8192
67 #define NCOUNT_INTRA_FACTOR 3
68 #define NCOUNT_FRAME_II_THRESH 5.0
69
70 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
71
72 #if ARF_STATS_OUTPUT
73 unsigned int arf_count = 0;
74 #endif
75
76 // Resets the first pass file to the given position using a relative seek from
77 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)78 static void reset_fpf_position(TWO_PASS *p,
79 const FIRSTPASS_STATS *position) {
80 p->stats_in = position;
81 }
82
83 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)84 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
85 if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
86 (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
87 return NULL;
88 }
89
90 return &p->stats_in[offset];
91 }
92
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)93 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
94 if (p->stats_in >= p->stats_in_end)
95 return EOF;
96
97 *fps = *p->stats_in;
98 ++p->stats_in;
99 return 1;
100 }
101
output_stats(FIRSTPASS_STATS * stats,struct vpx_codec_pkt_list * pktlist)102 static void output_stats(FIRSTPASS_STATS *stats,
103 struct vpx_codec_pkt_list *pktlist) {
104 struct vpx_codec_cx_pkt pkt;
105 pkt.kind = VPX_CODEC_STATS_PKT;
106 pkt.data.twopass_stats.buf = stats;
107 pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
108 vpx_codec_pkt_list_add(pktlist, &pkt);
109
110 // TEMP debug code
111 #if OUTPUT_FPF
112 {
113 FILE *fpfile;
114 fpfile = fopen("firstpass.stt", "a");
115
116 fprintf(fpfile, "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
117 "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
118 "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n",
119 stats->frame,
120 stats->weight,
121 stats->intra_error,
122 stats->coded_error,
123 stats->sr_coded_error,
124 stats->pcnt_inter,
125 stats->pcnt_motion,
126 stats->pcnt_second_ref,
127 stats->pcnt_neutral,
128 stats->intra_skip_pct,
129 stats->inactive_zone_rows,
130 stats->inactive_zone_cols,
131 stats->MVr,
132 stats->mvr_abs,
133 stats->MVc,
134 stats->mvc_abs,
135 stats->MVrv,
136 stats->MVcv,
137 stats->mv_in_out_count,
138 stats->new_mv_count,
139 stats->count,
140 stats->duration);
141 fclose(fpfile);
142 }
143 #endif
144 }
145
146 #if CONFIG_FP_MB_STATS
output_fpmb_stats(uint8_t * this_frame_mb_stats,VP9_COMMON * cm,struct vpx_codec_pkt_list * pktlist)147 static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm,
148 struct vpx_codec_pkt_list *pktlist) {
149 struct vpx_codec_cx_pkt pkt;
150 pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
151 pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
152 pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t);
153 vpx_codec_pkt_list_add(pktlist, &pkt);
154 }
155 #endif
156
zero_stats(FIRSTPASS_STATS * section)157 static void zero_stats(FIRSTPASS_STATS *section) {
158 section->frame = 0.0;
159 section->weight = 0.0;
160 section->intra_error = 0.0;
161 section->coded_error = 0.0;
162 section->sr_coded_error = 0.0;
163 section->pcnt_inter = 0.0;
164 section->pcnt_motion = 0.0;
165 section->pcnt_second_ref = 0.0;
166 section->pcnt_neutral = 0.0;
167 section->intra_skip_pct = 0.0;
168 section->inactive_zone_rows = 0.0;
169 section->inactive_zone_cols = 0.0;
170 section->MVr = 0.0;
171 section->mvr_abs = 0.0;
172 section->MVc = 0.0;
173 section->mvc_abs = 0.0;
174 section->MVrv = 0.0;
175 section->MVcv = 0.0;
176 section->mv_in_out_count = 0.0;
177 section->new_mv_count = 0.0;
178 section->count = 0.0;
179 section->duration = 1.0;
180 section->spatial_layer_id = 0;
181 }
182
accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)183 static void accumulate_stats(FIRSTPASS_STATS *section,
184 const FIRSTPASS_STATS *frame) {
185 section->frame += frame->frame;
186 section->weight += frame->weight;
187 section->spatial_layer_id = frame->spatial_layer_id;
188 section->intra_error += frame->intra_error;
189 section->coded_error += frame->coded_error;
190 section->sr_coded_error += frame->sr_coded_error;
191 section->pcnt_inter += frame->pcnt_inter;
192 section->pcnt_motion += frame->pcnt_motion;
193 section->pcnt_second_ref += frame->pcnt_second_ref;
194 section->pcnt_neutral += frame->pcnt_neutral;
195 section->intra_skip_pct += frame->intra_skip_pct;
196 section->inactive_zone_rows += frame->inactive_zone_rows;
197 section->inactive_zone_cols += frame->inactive_zone_cols;
198 section->MVr += frame->MVr;
199 section->mvr_abs += frame->mvr_abs;
200 section->MVc += frame->MVc;
201 section->mvc_abs += frame->mvc_abs;
202 section->MVrv += frame->MVrv;
203 section->MVcv += frame->MVcv;
204 section->mv_in_out_count += frame->mv_in_out_count;
205 section->new_mv_count += frame->new_mv_count;
206 section->count += frame->count;
207 section->duration += frame->duration;
208 }
209
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)210 static void subtract_stats(FIRSTPASS_STATS *section,
211 const FIRSTPASS_STATS *frame) {
212 section->frame -= frame->frame;
213 section->weight -= frame->weight;
214 section->intra_error -= frame->intra_error;
215 section->coded_error -= frame->coded_error;
216 section->sr_coded_error -= frame->sr_coded_error;
217 section->pcnt_inter -= frame->pcnt_inter;
218 section->pcnt_motion -= frame->pcnt_motion;
219 section->pcnt_second_ref -= frame->pcnt_second_ref;
220 section->pcnt_neutral -= frame->pcnt_neutral;
221 section->intra_skip_pct -= frame->intra_skip_pct;
222 section->inactive_zone_rows -= frame->inactive_zone_rows;
223 section->inactive_zone_cols -= frame->inactive_zone_cols;
224 section->MVr -= frame->MVr;
225 section->mvr_abs -= frame->mvr_abs;
226 section->MVc -= frame->MVc;
227 section->mvc_abs -= frame->mvc_abs;
228 section->MVrv -= frame->MVrv;
229 section->MVcv -= frame->MVcv;
230 section->mv_in_out_count -= frame->mv_in_out_count;
231 section->new_mv_count -= frame->new_mv_count;
232 section->count -= frame->count;
233 section->duration -= frame->duration;
234 }
235
236 // Calculate an active area of the image that discounts formatting
237 // bars and partially discounts other 0 energy areas.
238 #define MIN_ACTIVE_AREA 0.5
239 #define MAX_ACTIVE_AREA 1.0
calculate_active_area(const VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame)240 static double calculate_active_area(const VP9_COMP *cpi,
241 const FIRSTPASS_STATS *this_frame) {
242 double active_pct;
243
244 active_pct = 1.0 -
245 ((this_frame->intra_skip_pct / 2) +
246 ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
247 return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
248 }
249
250 // Calculate a modified Error used in distributing bits between easier and
251 // harder frames.
252 #define ACT_AREA_CORRECTION 0.5
calculate_modified_err(const VP9_COMP * cpi,const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)253 static double calculate_modified_err(const VP9_COMP *cpi,
254 const TWO_PASS *twopass,
255 const VP9EncoderConfig *oxcf,
256 const FIRSTPASS_STATS *this_frame) {
257 const FIRSTPASS_STATS *const stats = &twopass->total_stats;
258 const double av_weight = stats->weight / stats->count;
259 const double av_err = (stats->coded_error * av_weight) / stats->count;
260 double modified_error =
261 av_err * pow(this_frame->coded_error * this_frame->weight /
262 DOUBLE_DIVIDE_CHECK(av_err), oxcf->two_pass_vbrbias / 100.0);
263
264 // Correction for active area. Frames with a reduced active area
265 // (eg due to formatting bars) have a higher error per mb for the
266 // remaining active MBs. The correction here assumes that coding
267 // 0.5N blocks of complexity 2X is a little easier than coding N
268 // blocks of complexity X.
269 modified_error *=
270 pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
271
272 return fclamp(modified_error,
273 twopass->modified_error_min, twopass->modified_error_max);
274 }
275
276 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)277 static int frame_max_bits(const RATE_CONTROL *rc,
278 const VP9EncoderConfig *oxcf) {
279 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
280 (int64_t)oxcf->two_pass_vbrmax_section) / 100;
281 if (max_bits < 0)
282 max_bits = 0;
283 else if (max_bits > rc->max_frame_bandwidth)
284 max_bits = rc->max_frame_bandwidth;
285
286 return (int)max_bits;
287 }
288
vp9_init_first_pass(VP9_COMP * cpi)289 void vp9_init_first_pass(VP9_COMP *cpi) {
290 zero_stats(&cpi->twopass.total_stats);
291 }
292
vp9_end_first_pass(VP9_COMP * cpi)293 void vp9_end_first_pass(VP9_COMP *cpi) {
294 if (is_two_pass_svc(cpi)) {
295 int i;
296 for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
297 output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
298 cpi->output_pkt_list);
299 }
300 } else {
301 output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
302 }
303 }
304
get_block_variance_fn(BLOCK_SIZE bsize)305 static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
306 switch (bsize) {
307 case BLOCK_8X8:
308 return vpx_mse8x8;
309 case BLOCK_16X8:
310 return vpx_mse16x8;
311 case BLOCK_8X16:
312 return vpx_mse8x16;
313 default:
314 return vpx_mse16x16;
315 }
316 }
317
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)318 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
319 const struct buf_2d *src,
320 const struct buf_2d *ref) {
321 unsigned int sse;
322 const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
323 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
324 return sse;
325 }
326
327 #if CONFIG_VP9_HIGHBITDEPTH
highbd_get_block_variance_fn(BLOCK_SIZE bsize,int bd)328 static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
329 int bd) {
330 switch (bd) {
331 default:
332 switch (bsize) {
333 case BLOCK_8X8:
334 return vpx_highbd_8_mse8x8;
335 case BLOCK_16X8:
336 return vpx_highbd_8_mse16x8;
337 case BLOCK_8X16:
338 return vpx_highbd_8_mse8x16;
339 default:
340 return vpx_highbd_8_mse16x16;
341 }
342 break;
343 case 10:
344 switch (bsize) {
345 case BLOCK_8X8:
346 return vpx_highbd_10_mse8x8;
347 case BLOCK_16X8:
348 return vpx_highbd_10_mse16x8;
349 case BLOCK_8X16:
350 return vpx_highbd_10_mse8x16;
351 default:
352 return vpx_highbd_10_mse16x16;
353 }
354 break;
355 case 12:
356 switch (bsize) {
357 case BLOCK_8X8:
358 return vpx_highbd_12_mse8x8;
359 case BLOCK_16X8:
360 return vpx_highbd_12_mse16x8;
361 case BLOCK_8X16:
362 return vpx_highbd_12_mse8x16;
363 default:
364 return vpx_highbd_12_mse16x16;
365 }
366 break;
367 }
368 }
369
highbd_get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref,int bd)370 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
371 const struct buf_2d *src,
372 const struct buf_2d *ref,
373 int bd) {
374 unsigned int sse;
375 const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
376 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
377 return sse;
378 }
379 #endif // CONFIG_VP9_HIGHBITDEPTH
380
381 // Refine the motion search range according to the frame dimension
382 // for first pass test.
get_search_range(const VP9_COMP * cpi)383 static int get_search_range(const VP9_COMP *cpi) {
384 int sr = 0;
385 const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
386
387 while ((dim << sr) < MAX_FULL_PEL_VAL)
388 ++sr;
389 return sr;
390 }
391
first_pass_motion_search(VP9_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,MV * best_mv,int * best_motion_err)392 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
393 const MV *ref_mv, MV *best_mv,
394 int *best_motion_err) {
395 MACROBLOCKD *const xd = &x->e_mbd;
396 MV tmp_mv = {0, 0};
397 MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3};
398 int num00, tmp_err, n;
399 const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
400 vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
401 const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
402
403 int step_param = 3;
404 int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
405 const int sr = get_search_range(cpi);
406 step_param += sr;
407 further_steps -= sr;
408
409 // Override the default variance function to use MSE.
410 v_fn_ptr.vf = get_block_variance_fn(bsize);
411 #if CONFIG_VP9_HIGHBITDEPTH
412 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
413 v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
414 }
415 #endif // CONFIG_VP9_HIGHBITDEPTH
416
417 // Center the initial step/diamond search on best mv.
418 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
419 step_param,
420 x->sadperbit16, &num00, &v_fn_ptr, ref_mv);
421 if (tmp_err < INT_MAX)
422 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
423 if (tmp_err < INT_MAX - new_mv_mode_penalty)
424 tmp_err += new_mv_mode_penalty;
425
426 if (tmp_err < *best_motion_err) {
427 *best_motion_err = tmp_err;
428 *best_mv = tmp_mv;
429 }
430
431 // Carry out further step/diamond searches as necessary.
432 n = num00;
433 num00 = 0;
434
435 while (n < further_steps) {
436 ++n;
437
438 if (num00) {
439 --num00;
440 } else {
441 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
442 step_param + n, x->sadperbit16,
443 &num00, &v_fn_ptr, ref_mv);
444 if (tmp_err < INT_MAX)
445 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
446 if (tmp_err < INT_MAX - new_mv_mode_penalty)
447 tmp_err += new_mv_mode_penalty;
448
449 if (tmp_err < *best_motion_err) {
450 *best_motion_err = tmp_err;
451 *best_mv = tmp_mv;
452 }
453 }
454 }
455 }
456
get_bsize(const VP9_COMMON * cm,int mb_row,int mb_col)457 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
458 if (2 * mb_col + 1 < cm->mi_cols) {
459 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16
460 : BLOCK_16X8;
461 } else {
462 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16
463 : BLOCK_8X8;
464 }
465 }
466
find_fp_qindex(vpx_bit_depth_t bit_depth)467 static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
468 int i;
469
470 for (i = 0; i < QINDEX_RANGE; ++i)
471 if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q)
472 break;
473
474 if (i == QINDEX_RANGE)
475 i--;
476
477 return i;
478 }
479
set_first_pass_params(VP9_COMP * cpi)480 static void set_first_pass_params(VP9_COMP *cpi) {
481 VP9_COMMON *const cm = &cpi->common;
482 if (!cpi->refresh_alt_ref_frame &&
483 (cm->current_video_frame == 0 ||
484 (cpi->frame_flags & FRAMEFLAGS_KEY))) {
485 cm->frame_type = KEY_FRAME;
486 } else {
487 cm->frame_type = INTER_FRAME;
488 }
489 // Do not use periodic key frames.
490 cpi->rc.frames_to_key = INT_MAX;
491 }
492
493 #define UL_INTRA_THRESH 50
494 #define INVALID_ROW -1
vp9_first_pass(VP9_COMP * cpi,const struct lookahead_entry * source)495 void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
496 int mb_row, mb_col;
497 MACROBLOCK *const x = &cpi->td.mb;
498 VP9_COMMON *const cm = &cpi->common;
499 MACROBLOCKD *const xd = &x->e_mbd;
500 TileInfo tile;
501 struct macroblock_plane *const p = x->plane;
502 struct macroblockd_plane *const pd = xd->plane;
503 const PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
504 int i;
505
506 int recon_yoffset, recon_uvoffset;
507 int64_t intra_error = 0;
508 int64_t coded_error = 0;
509 int64_t sr_coded_error = 0;
510
511 int sum_mvr = 0, sum_mvc = 0;
512 int sum_mvr_abs = 0, sum_mvc_abs = 0;
513 int64_t sum_mvrs = 0, sum_mvcs = 0;
514 int mvcount = 0;
515 int intercount = 0;
516 int second_ref_count = 0;
517 const int intrapenalty = INTRA_MODE_PENALTY;
518 double neutral_count;
519 int intra_skip_count = 0;
520 int image_data_start_row = INVALID_ROW;
521 int new_mv_count = 0;
522 int sum_in_vectors = 0;
523 MV lastmv = {0, 0};
524 TWO_PASS *twopass = &cpi->twopass;
525 const MV zero_mv = {0, 0};
526 int recon_y_stride, recon_uv_stride, uv_mb_height;
527
528 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
529 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
530 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
531 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
532
533 LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
534 &cpi->svc.layer_context[cpi->svc.spatial_layer_id] : NULL;
535 double intra_factor;
536 double brightness_factor;
537 BufferPool *const pool = cm->buffer_pool;
538
539 // First pass code requires valid last and new frame buffers.
540 assert(new_yv12 != NULL);
541 assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
542
543 #if CONFIG_FP_MB_STATS
544 if (cpi->use_fp_mb_stats) {
545 vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs);
546 }
547 #endif
548
549 vpx_clear_system_state();
550
551 intra_factor = 0.0;
552 brightness_factor = 0.0;
553 neutral_count = 0.0;
554
555 set_first_pass_params(cpi);
556 vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
557
558 if (lc != NULL) {
559 twopass = &lc->twopass;
560
561 cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
562 cpi->ref_frame_flags = VP9_LAST_FLAG;
563
564 if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id <
565 REF_FRAMES) {
566 cpi->gld_fb_idx =
567 cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id;
568 cpi->ref_frame_flags |= VP9_GOLD_FLAG;
569 cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0);
570 } else {
571 cpi->refresh_golden_frame = 0;
572 }
573
574 if (lc->current_video_frame_in_layer == 0)
575 cpi->ref_frame_flags = 0;
576
577 vp9_scale_references(cpi);
578
579 // Use either last frame or alt frame for motion search.
580 if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
581 first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
582 if (first_ref_buf == NULL)
583 first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
584 }
585
586 if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
587 gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
588 if (gld_yv12 == NULL) {
589 gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
590 }
591 } else {
592 gld_yv12 = NULL;
593 }
594
595 set_ref_ptrs(cm, xd,
596 (cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME: NONE,
597 (cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE);
598
599 cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
600 &cpi->scaled_source, 0);
601 }
602
603 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
604
605 vp9_setup_src_planes(x, cpi->Source, 0, 0);
606 vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
607
608 if (!frame_is_intra_only(cm)) {
609 vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
610 }
611
612 xd->mi = cm->mi_grid_visible;
613 xd->mi[0] = cm->mi;
614
615 vp9_frame_init_quantizer(cpi);
616
617 for (i = 0; i < MAX_MB_PLANE; ++i) {
618 p[i].coeff = ctx->coeff_pbuf[i][1];
619 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
620 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
621 p[i].eobs = ctx->eobs_pbuf[i][1];
622 }
623 x->skip_recode = 0;
624
625 vp9_init_mv_probs(cm);
626 vp9_initialize_rd_consts(cpi);
627
628 // Tiling is ignored in the first pass.
629 vp9_tile_init(&tile, cm, 0, 0);
630
631 recon_y_stride = new_yv12->y_stride;
632 recon_uv_stride = new_yv12->uv_stride;
633 uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
634
635 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
636 MV best_ref_mv = {0, 0};
637
638 // Reset above block coeffs.
639 xd->up_available = (mb_row != 0);
640 recon_yoffset = (mb_row * recon_y_stride * 16);
641 recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
642
643 // Set up limit values for motion vectors to prevent them extending
644 // outside the UMV borders.
645 x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
646 x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
647 + BORDER_MV_PIXELS_B16;
648
649 for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
650 int this_error;
651 const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
652 const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
653 double log_intra;
654 int level_sample;
655
656 #if CONFIG_FP_MB_STATS
657 const int mb_index = mb_row * cm->mb_cols + mb_col;
658 #endif
659
660 vpx_clear_system_state();
661
662 xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
663 xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
664 xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
665 xd->left_available = (mb_col != 0);
666 xd->mi[0]->mbmi.sb_type = bsize;
667 xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
668 set_mi_row_col(xd, &tile,
669 mb_row << 1, num_8x8_blocks_high_lookup[bsize],
670 mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
671 cm->mi_rows, cm->mi_cols);
672
673 // Do intra 16x16 prediction.
674 x->skip_encode = 0;
675 xd->mi[0]->mbmi.mode = DC_PRED;
676 xd->mi[0]->mbmi.tx_size = use_dc_pred ?
677 (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
678 vp9_encode_intra_block_plane(x, bsize, 0);
679 this_error = vpx_get_mb_ss(x->plane[0].src_diff);
680
681 // Keep a record of blocks that have almost no intra error residual
682 // (i.e. are in effect completely flat and untextured in the intra
683 // domain). In natural videos this is uncommon, but it is much more
684 // common in animations, graphics and screen content, so may be used
685 // as a signal to detect these types of content.
686 if (this_error < UL_INTRA_THRESH) {
687 ++intra_skip_count;
688 } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
689 image_data_start_row = mb_row;
690 }
691
692 #if CONFIG_VP9_HIGHBITDEPTH
693 if (cm->use_highbitdepth) {
694 switch (cm->bit_depth) {
695 case VPX_BITS_8:
696 break;
697 case VPX_BITS_10:
698 this_error >>= 4;
699 break;
700 case VPX_BITS_12:
701 this_error >>= 8;
702 break;
703 default:
704 assert(0 && "cm->bit_depth should be VPX_BITS_8, "
705 "VPX_BITS_10 or VPX_BITS_12");
706 return;
707 }
708 }
709 #endif // CONFIG_VP9_HIGHBITDEPTH
710
711 vpx_clear_system_state();
712 log_intra = log(this_error + 1.0);
713 if (log_intra < 10.0)
714 intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
715 else
716 intra_factor += 1.0;
717
718 #if CONFIG_VP9_HIGHBITDEPTH
719 if (cm->use_highbitdepth)
720 level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
721 else
722 level_sample = x->plane[0].src.buf[0];
723 #else
724 level_sample = x->plane[0].src.buf[0];
725 #endif
726 if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
727 brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
728 else
729 brightness_factor += 1.0;
730
731 // Intrapenalty below deals with situations where the intra and inter
732 // error scores are very low (e.g. a plain black frame).
733 // We do not have special cases in first pass for 0,0 and nearest etc so
734 // all inter modes carry an overhead cost estimate for the mv.
735 // When the error score is very low this causes us to pick all or lots of
736 // INTRA modes and throw lots of key frames.
737 // This penalty adds a cost matching that of a 0,0 mv to the intra case.
738 this_error += intrapenalty;
739
740 // Accumulate the intra error.
741 intra_error += (int64_t)this_error;
742
743 #if CONFIG_FP_MB_STATS
744 if (cpi->use_fp_mb_stats) {
745 // initialization
746 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
747 }
748 #endif
749
750 // Set up limit values for motion vectors to prevent them extending
751 // outside the UMV borders.
752 x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
753 x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
754
755 // Other than for the first frame do a motion search.
756 if ((lc == NULL && cm->current_video_frame > 0) ||
757 (lc != NULL && lc->current_video_frame_in_layer > 0)) {
758 int tmp_err, motion_error, raw_motion_error;
759 // Assume 0,0 motion with no mv overhead.
760 MV mv = {0, 0} , tmp_mv = {0, 0};
761 struct buf_2d unscaled_last_source_buf_2d;
762
763 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
764 #if CONFIG_VP9_HIGHBITDEPTH
765 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
766 motion_error = highbd_get_prediction_error(
767 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
768 } else {
769 motion_error = get_prediction_error(
770 bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
771 }
772 #else
773 motion_error = get_prediction_error(
774 bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
775 #endif // CONFIG_VP9_HIGHBITDEPTH
776
777 // Compute the motion error of the 0,0 motion using the last source
778 // frame as the reference. Skip the further motion search on
779 // reconstructed frame if this error is small.
780 unscaled_last_source_buf_2d.buf =
781 cpi->unscaled_last_source->y_buffer + recon_yoffset;
782 unscaled_last_source_buf_2d.stride =
783 cpi->unscaled_last_source->y_stride;
784 #if CONFIG_VP9_HIGHBITDEPTH
785 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
786 raw_motion_error = highbd_get_prediction_error(
787 bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
788 } else {
789 raw_motion_error = get_prediction_error(
790 bsize, &x->plane[0].src, &unscaled_last_source_buf_2d);
791 }
792 #else
793 raw_motion_error = get_prediction_error(
794 bsize, &x->plane[0].src, &unscaled_last_source_buf_2d);
795 #endif // CONFIG_VP9_HIGHBITDEPTH
796
797 // TODO(pengchong): Replace the hard-coded threshold
798 if (raw_motion_error > 25 || lc != NULL) {
799 // Test last reference frame using the previous best mv as the
800 // starting point (best reference) for the search.
801 first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
802
803 // If the current best reference mv is not centered on 0,0 then do a
804 // 0,0 based search as well.
805 if (!is_zero_mv(&best_ref_mv)) {
806 tmp_err = INT_MAX;
807 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
808
809 if (tmp_err < motion_error) {
810 motion_error = tmp_err;
811 mv = tmp_mv;
812 }
813 }
814
815 // Search in an older reference frame.
816 if (((lc == NULL && cm->current_video_frame > 1) ||
817 (lc != NULL && lc->current_video_frame_in_layer > 1))
818 && gld_yv12 != NULL) {
819 // Assume 0,0 motion with no mv overhead.
820 int gf_motion_error;
821
822 xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
823 #if CONFIG_VP9_HIGHBITDEPTH
824 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
825 gf_motion_error = highbd_get_prediction_error(
826 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
827 } else {
828 gf_motion_error = get_prediction_error(
829 bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
830 }
831 #else
832 gf_motion_error = get_prediction_error(
833 bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
834 #endif // CONFIG_VP9_HIGHBITDEPTH
835
836 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv,
837 &gf_motion_error);
838
839 if (gf_motion_error < motion_error && gf_motion_error < this_error)
840 ++second_ref_count;
841
842 // Reset to last frame as reference buffer.
843 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
844 xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
845 xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
846
847 // In accumulating a score for the older reference frame take the
848 // best of the motion predicted score and the intra coded error
849 // (just as will be done for) accumulation of "coded_error" for
850 // the last frame.
851 if (gf_motion_error < this_error)
852 sr_coded_error += gf_motion_error;
853 else
854 sr_coded_error += this_error;
855 } else {
856 sr_coded_error += motion_error;
857 }
858 } else {
859 sr_coded_error += motion_error;
860 }
861
862 // Start by assuming that intra mode is best.
863 best_ref_mv.row = 0;
864 best_ref_mv.col = 0;
865
866 #if CONFIG_FP_MB_STATS
867 if (cpi->use_fp_mb_stats) {
868 // intra predication statistics
869 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
870 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
871 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
872 if (this_error > FPMB_ERROR_LARGE_TH) {
873 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
874 } else if (this_error < FPMB_ERROR_SMALL_TH) {
875 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
876 }
877 }
878 #endif
879
880 if (motion_error <= this_error) {
881 vpx_clear_system_state();
882
883 // Keep a count of cases where the inter and intra were very close
884 // and very low. This helps with scene cut detection for example in
885 // cropped clips with black bars at the sides or top and bottom.
886 if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
887 (this_error < (2 * intrapenalty))) {
888 neutral_count += 1.0;
889 // Also track cases where the intra is not much worse than the inter
890 // and use this in limiting the GF/arf group length.
891 } else if ((this_error > NCOUNT_INTRA_THRESH) &&
892 (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
893 neutral_count += (double)motion_error /
894 DOUBLE_DIVIDE_CHECK((double)this_error);
895 }
896
897 mv.row *= 8;
898 mv.col *= 8;
899 this_error = motion_error;
900 xd->mi[0]->mbmi.mode = NEWMV;
901 xd->mi[0]->mbmi.mv[0].as_mv = mv;
902 xd->mi[0]->mbmi.tx_size = TX_4X4;
903 xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
904 xd->mi[0]->mbmi.ref_frame[1] = NONE;
905 vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
906 vp9_encode_sby_pass1(x, bsize);
907 sum_mvr += mv.row;
908 sum_mvr_abs += abs(mv.row);
909 sum_mvc += mv.col;
910 sum_mvc_abs += abs(mv.col);
911 sum_mvrs += mv.row * mv.row;
912 sum_mvcs += mv.col * mv.col;
913 ++intercount;
914
915 best_ref_mv = mv;
916
917 #if CONFIG_FP_MB_STATS
918 if (cpi->use_fp_mb_stats) {
919 // inter predication statistics
920 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
921 cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
922 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
923 if (this_error > FPMB_ERROR_LARGE_TH) {
924 cpi->twopass.frame_mb_stats_buf[mb_index] |=
925 FPMB_ERROR_LARGE_MASK;
926 } else if (this_error < FPMB_ERROR_SMALL_TH) {
927 cpi->twopass.frame_mb_stats_buf[mb_index] |=
928 FPMB_ERROR_SMALL_MASK;
929 }
930 }
931 #endif
932
933 if (!is_zero_mv(&mv)) {
934 ++mvcount;
935
936 #if CONFIG_FP_MB_STATS
937 if (cpi->use_fp_mb_stats) {
938 cpi->twopass.frame_mb_stats_buf[mb_index] &=
939 ~FPMB_MOTION_ZERO_MASK;
940 // check estimated motion direction
941 if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
942 // right direction
943 cpi->twopass.frame_mb_stats_buf[mb_index] |=
944 FPMB_MOTION_RIGHT_MASK;
945 } else if (mv.as_mv.row < 0 &&
946 abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
947 // up direction
948 cpi->twopass.frame_mb_stats_buf[mb_index] |=
949 FPMB_MOTION_UP_MASK;
950 } else if (mv.as_mv.col < 0 &&
951 abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
952 // left direction
953 cpi->twopass.frame_mb_stats_buf[mb_index] |=
954 FPMB_MOTION_LEFT_MASK;
955 } else {
956 // down direction
957 cpi->twopass.frame_mb_stats_buf[mb_index] |=
958 FPMB_MOTION_DOWN_MASK;
959 }
960 }
961 #endif
962
963 // Non-zero vector, was it different from the last non zero vector?
964 if (!is_equal_mv(&mv, &lastmv))
965 ++new_mv_count;
966 lastmv = mv;
967
968 // Does the row vector point inwards or outwards?
969 if (mb_row < cm->mb_rows / 2) {
970 if (mv.row > 0)
971 --sum_in_vectors;
972 else if (mv.row < 0)
973 ++sum_in_vectors;
974 } else if (mb_row > cm->mb_rows / 2) {
975 if (mv.row > 0)
976 ++sum_in_vectors;
977 else if (mv.row < 0)
978 --sum_in_vectors;
979 }
980
981 // Does the col vector point inwards or outwards?
982 if (mb_col < cm->mb_cols / 2) {
983 if (mv.col > 0)
984 --sum_in_vectors;
985 else if (mv.col < 0)
986 ++sum_in_vectors;
987 } else if (mb_col > cm->mb_cols / 2) {
988 if (mv.col > 0)
989 ++sum_in_vectors;
990 else if (mv.col < 0)
991 --sum_in_vectors;
992 }
993 }
994 }
995 } else {
996 sr_coded_error += (int64_t)this_error;
997 }
998 coded_error += (int64_t)this_error;
999
1000 // Adjust to the next column of MBs.
1001 x->plane[0].src.buf += 16;
1002 x->plane[1].src.buf += uv_mb_height;
1003 x->plane[2].src.buf += uv_mb_height;
1004
1005 recon_yoffset += 16;
1006 recon_uvoffset += uv_mb_height;
1007 }
1008
1009 // Adjust to the next row of MBs.
1010 x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
1011 x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride -
1012 uv_mb_height * cm->mb_cols;
1013 x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride -
1014 uv_mb_height * cm->mb_cols;
1015
1016 vpx_clear_system_state();
1017 }
1018
1019 // Clamp the image start to rows/2. This number of rows is discarded top
1020 // and bottom as dead data so rows / 2 means the frame is blank.
1021 if ((image_data_start_row > cm->mb_rows / 2) ||
1022 (image_data_start_row == INVALID_ROW)) {
1023 image_data_start_row = cm->mb_rows / 2;
1024 }
1025 // Exclude any image dead zone
1026 if (image_data_start_row > 0) {
1027 intra_skip_count =
1028 VPXMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
1029 }
1030
1031 {
1032 FIRSTPASS_STATS fps;
1033 // The minimum error here insures some bit allocation to frames even
1034 // in static regions. The allocation per MB declines for larger formats
1035 // where the typical "real" energy per MB also falls.
1036 // Initial estimate here uses sqrt(mbs) to define the min_err, where the
1037 // number of mbs is proportional to the image area.
1038 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1039 ? cpi->initial_mbs : cpi->common.MBs;
1040 const double min_err = 200 * sqrt(num_mbs);
1041
1042 intra_factor = intra_factor / (double)num_mbs;
1043 brightness_factor = brightness_factor / (double)num_mbs;
1044 fps.weight = intra_factor * brightness_factor;
1045
1046 fps.frame = cm->current_video_frame;
1047 fps.spatial_layer_id = cpi->svc.spatial_layer_id;
1048 fps.coded_error = (double)(coded_error >> 8) + min_err;
1049 fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
1050 fps.intra_error = (double)(intra_error >> 8) + min_err;
1051 fps.count = 1.0;
1052 fps.pcnt_inter = (double)intercount / num_mbs;
1053 fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
1054 fps.pcnt_neutral = (double)neutral_count / num_mbs;
1055 fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
1056 fps.inactive_zone_rows = (double)image_data_start_row;
1057 fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix
1058
1059 if (mvcount > 0) {
1060 fps.MVr = (double)sum_mvr / mvcount;
1061 fps.mvr_abs = (double)sum_mvr_abs / mvcount;
1062 fps.MVc = (double)sum_mvc / mvcount;
1063 fps.mvc_abs = (double)sum_mvc_abs / mvcount;
1064 fps.MVrv = ((double)sum_mvrs -
1065 ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
1066 fps.MVcv = ((double)sum_mvcs -
1067 ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
1068 fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
1069 fps.new_mv_count = new_mv_count;
1070 fps.pcnt_motion = (double)mvcount / num_mbs;
1071 } else {
1072 fps.MVr = 0.0;
1073 fps.mvr_abs = 0.0;
1074 fps.MVc = 0.0;
1075 fps.mvc_abs = 0.0;
1076 fps.MVrv = 0.0;
1077 fps.MVcv = 0.0;
1078 fps.mv_in_out_count = 0.0;
1079 fps.new_mv_count = 0.0;
1080 fps.pcnt_motion = 0.0;
1081 }
1082
1083 // TODO(paulwilkins): Handle the case when duration is set to 0, or
1084 // something less than the full time between subsequent values of
1085 // cpi->source_time_stamp.
1086 fps.duration = (double)(source->ts_end - source->ts_start);
1087
1088 // Don't want to do output stats with a stack variable!
1089 twopass->this_frame_stats = fps;
1090 output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
1091 accumulate_stats(&twopass->total_stats, &fps);
1092
1093 #if CONFIG_FP_MB_STATS
1094 if (cpi->use_fp_mb_stats) {
1095 output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
1096 }
1097 #endif
1098 }
1099
1100 // Copy the previous Last Frame back into gf and and arf buffers if
1101 // the prediction is good enough... but also don't allow it to lag too far.
1102 if ((twopass->sr_update_lag > 3) ||
1103 ((cm->current_video_frame > 0) &&
1104 (twopass->this_frame_stats.pcnt_inter > 0.20) &&
1105 ((twopass->this_frame_stats.intra_error /
1106 DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
1107 if (gld_yv12 != NULL) {
1108 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1109 cm->ref_frame_map[cpi->lst_fb_idx]);
1110 }
1111 twopass->sr_update_lag = 1;
1112 } else {
1113 ++twopass->sr_update_lag;
1114 }
1115
1116 vpx_extend_frame_borders(new_yv12);
1117
1118 if (lc != NULL) {
1119 vp9_update_reference_frames(cpi);
1120 } else {
1121 // The frame we just compressed now becomes the last frame.
1122 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
1123 cm->new_fb_idx);
1124 }
1125
1126 // Special case for the first frame. Copy into the GF buffer as a second
1127 // reference.
1128 if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX &&
1129 lc == NULL) {
1130 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1131 cm->ref_frame_map[cpi->lst_fb_idx]);
1132 }
1133
1134 // Use this to see what the first pass reconstruction looks like.
1135 if (0) {
1136 char filename[512];
1137 FILE *recon_file;
1138 snprintf(filename, sizeof(filename), "enc%04d.yuv",
1139 (int)cm->current_video_frame);
1140
1141 if (cm->current_video_frame == 0)
1142 recon_file = fopen(filename, "wb");
1143 else
1144 recon_file = fopen(filename, "ab");
1145
1146 (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
1147 fclose(recon_file);
1148 }
1149
1150 ++cm->current_video_frame;
1151 if (cpi->use_svc)
1152 vp9_inc_frame_in_layer(cpi);
1153 }
1154
calc_correction_factor(double err_per_mb,double err_divisor,double pt_low,double pt_high,int q,vpx_bit_depth_t bit_depth)1155 static double calc_correction_factor(double err_per_mb,
1156 double err_divisor,
1157 double pt_low,
1158 double pt_high,
1159 int q,
1160 vpx_bit_depth_t bit_depth) {
1161 const double error_term = err_per_mb / err_divisor;
1162
1163 // Adjustment based on actual quantizer to power term.
1164 const double power_term =
1165 VPXMIN(vp9_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
1166
1167 // Calculate correction factor.
1168 if (power_term < 1.0)
1169 assert(error_term >= 0.0);
1170
1171 return fclamp(pow(error_term, power_term), 0.05, 5.0);
1172 }
1173
1174 // Larger image formats are expected to be a little harder to code relatively
1175 // given the same prediction error score. This in part at least relates to the
1176 // increased size and hence coding cost of motion vectors.
1177 #define EDIV_SIZE_FACTOR 800
1178
get_twopass_worst_quality(const VP9_COMP * cpi,const double section_err,double inactive_zone,int section_target_bandwidth,double group_weight_factor)1179 static int get_twopass_worst_quality(const VP9_COMP *cpi,
1180 const double section_err,
1181 double inactive_zone,
1182 int section_target_bandwidth,
1183 double group_weight_factor) {
1184 const RATE_CONTROL *const rc = &cpi->rc;
1185 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1186 // Clamp the target rate to VBR min / max limts.
1187 const int target_rate =
1188 vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth);
1189
1190 inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
1191
1192 if (target_rate <= 0) {
1193 return rc->worst_quality; // Highest value allowed
1194 } else {
1195 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1196 ? cpi->initial_mbs : cpi->common.MBs;
1197 const int active_mbs = VPXMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
1198 const double av_err_per_mb = section_err / active_mbs;
1199 const double speed_term = 1.0 + 0.04 * oxcf->speed;
1200 const double ediv_size_correction = (double)num_mbs / EDIV_SIZE_FACTOR;
1201 const int target_norm_bits_per_mb = ((uint64_t)target_rate <<
1202 BPER_MB_NORMBITS) / active_mbs;
1203
1204 int q;
1205 int is_svc_upper_layer = 0;
1206
1207 if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0)
1208 is_svc_upper_layer = 1;
1209
1210
1211 // Try and pick a max Q that will be high enough to encode the
1212 // content at the given rate.
1213 for (q = rc->best_quality; q < rc->worst_quality; ++q) {
1214 const double factor =
1215 calc_correction_factor(av_err_per_mb,
1216 ERR_DIVISOR - ediv_size_correction,
1217 is_svc_upper_layer ? SVC_FACTOR_PT_LOW :
1218 FACTOR_PT_LOW, FACTOR_PT_HIGH, q,
1219 cpi->common.bit_depth);
1220 const int bits_per_mb =
1221 vp9_rc_bits_per_mb(INTER_FRAME, q,
1222 factor * speed_term * group_weight_factor,
1223 cpi->common.bit_depth);
1224 if (bits_per_mb <= target_norm_bits_per_mb)
1225 break;
1226 }
1227
1228 // Restriction on active max q for constrained quality mode.
1229 if (cpi->oxcf.rc_mode == VPX_CQ)
1230 q = VPXMAX(q, oxcf->cq_level);
1231 return q;
1232 }
1233 }
1234
setup_rf_level_maxq(VP9_COMP * cpi)1235 static void setup_rf_level_maxq(VP9_COMP *cpi) {
1236 int i;
1237 RATE_CONTROL *const rc = &cpi->rc;
1238 for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
1239 int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
1240 rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
1241 }
1242 }
1243
init_subsampling(VP9_COMP * cpi)1244 static void init_subsampling(VP9_COMP *cpi) {
1245 const VP9_COMMON *const cm = &cpi->common;
1246 RATE_CONTROL *const rc = &cpi->rc;
1247 const int w = cm->width;
1248 const int h = cm->height;
1249 int i;
1250
1251 for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
1252 // Note: Frames with odd-sized dimensions may result from this scaling.
1253 rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
1254 rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
1255 }
1256
1257 setup_rf_level_maxq(cpi);
1258 }
1259
calculate_coded_size(VP9_COMP * cpi,int * scaled_frame_width,int * scaled_frame_height)1260 void calculate_coded_size(VP9_COMP *cpi,
1261 int *scaled_frame_width,
1262 int *scaled_frame_height) {
1263 RATE_CONTROL *const rc = &cpi->rc;
1264 *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
1265 *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
1266 }
1267
vp9_init_second_pass(VP9_COMP * cpi)1268 void vp9_init_second_pass(VP9_COMP *cpi) {
1269 SVC *const svc = &cpi->svc;
1270 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1271 const int is_two_pass_svc = (svc->number_spatial_layers > 1) ||
1272 (svc->number_temporal_layers > 1);
1273 TWO_PASS *const twopass = is_two_pass_svc ?
1274 &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
1275 double frame_rate;
1276 FIRSTPASS_STATS *stats;
1277
1278 zero_stats(&twopass->total_stats);
1279 zero_stats(&twopass->total_left_stats);
1280
1281 if (!twopass->stats_in_end)
1282 return;
1283
1284 stats = &twopass->total_stats;
1285
1286 *stats = *twopass->stats_in_end;
1287 twopass->total_left_stats = *stats;
1288
1289 frame_rate = 10000000.0 * stats->count / stats->duration;
1290 // Each frame can have a different duration, as the frame rate in the source
1291 // isn't guaranteed to be constant. The frame rate prior to the first frame
1292 // encoded in the second pass is a guess. However, the sum duration is not.
1293 // It is calculated based on the actual durations of all frames from the
1294 // first pass.
1295
1296 if (is_two_pass_svc) {
1297 vp9_update_spatial_layer_framerate(cpi, frame_rate);
1298 twopass->bits_left = (int64_t)(stats->duration *
1299 svc->layer_context[svc->spatial_layer_id].target_bandwidth /
1300 10000000.0);
1301 } else {
1302 vp9_new_framerate(cpi, frame_rate);
1303 twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
1304 10000000.0);
1305 }
1306
1307 // This variable monitors how far behind the second ref update is lagging.
1308 twopass->sr_update_lag = 1;
1309
1310 // Scan the first pass file and calculate a modified total error based upon
1311 // the bias/power function used to allocate bits.
1312 {
1313 const double avg_error = stats->coded_error /
1314 DOUBLE_DIVIDE_CHECK(stats->count);
1315 const FIRSTPASS_STATS *s = twopass->stats_in;
1316 double modified_error_total = 0.0;
1317 twopass->modified_error_min = (avg_error *
1318 oxcf->two_pass_vbrmin_section) / 100;
1319 twopass->modified_error_max = (avg_error *
1320 oxcf->two_pass_vbrmax_section) / 100;
1321 while (s < twopass->stats_in_end) {
1322 modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
1323 ++s;
1324 }
1325 twopass->modified_error_left = modified_error_total;
1326 }
1327
1328 // Reset the vbr bits off target counters
1329 cpi->rc.vbr_bits_off_target = 0;
1330 cpi->rc.vbr_bits_off_target_fast = 0;
1331
1332 cpi->rc.rate_error_estimate = 0;
1333
1334 // Static sequence monitor variables.
1335 twopass->kf_zeromotion_pct = 100;
1336 twopass->last_kfgroup_zeromotion_pct = 100;
1337
1338 if (oxcf->resize_mode != RESIZE_NONE) {
1339 init_subsampling(cpi);
1340 }
1341 }
1342
1343 #define SR_DIFF_PART 0.0015
1344 #define MOTION_AMP_PART 0.003
1345 #define INTRA_PART 0.005
1346 #define DEFAULT_DECAY_LIMIT 0.75
1347 #define LOW_SR_DIFF_TRHESH 0.1
1348 #define SR_DIFF_MAX 128.0
1349
get_sr_decay_rate(const VP9_COMP * cpi,const FIRSTPASS_STATS * frame)1350 static double get_sr_decay_rate(const VP9_COMP *cpi,
1351 const FIRSTPASS_STATS *frame) {
1352 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1353 ? cpi->initial_mbs : cpi->common.MBs;
1354 double sr_diff =
1355 (frame->sr_coded_error - frame->coded_error) / num_mbs;
1356 double sr_decay = 1.0;
1357 double modified_pct_inter;
1358 double modified_pcnt_intra;
1359 const double motion_amplitude_factor =
1360 frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
1361
1362 modified_pct_inter = frame->pcnt_inter;
1363 if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
1364 (double)NCOUNT_FRAME_II_THRESH) {
1365 modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
1366 }
1367 modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
1368
1369
1370 if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
1371 sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
1372 sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
1373 (MOTION_AMP_PART * motion_amplitude_factor) -
1374 (INTRA_PART * modified_pcnt_intra);
1375 }
1376 return VPXMAX(sr_decay, VPXMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
1377 }
1378
1379 // This function gives an estimate of how badly we believe the prediction
1380 // quality is decaying from frame to frame.
get_zero_motion_factor(const VP9_COMP * cpi,const FIRSTPASS_STATS * frame)1381 static double get_zero_motion_factor(const VP9_COMP *cpi,
1382 const FIRSTPASS_STATS *frame) {
1383 const double zero_motion_pct = frame->pcnt_inter -
1384 frame->pcnt_motion;
1385 double sr_decay = get_sr_decay_rate(cpi, frame);
1386 return VPXMIN(sr_decay, zero_motion_pct);
1387 }
1388
1389 #define ZM_POWER_FACTOR 0.75
1390
get_prediction_decay_rate(const VP9_COMP * cpi,const FIRSTPASS_STATS * next_frame)1391 static double get_prediction_decay_rate(const VP9_COMP *cpi,
1392 const FIRSTPASS_STATS *next_frame) {
1393 const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
1394 const double zero_motion_factor =
1395 (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
1396 ZM_POWER_FACTOR));
1397
1398 return VPXMAX(zero_motion_factor,
1399 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
1400 }
1401
1402 // Function to test for a condition where a complex transition is followed
1403 // by a static section. For example in slide shows where there is a fade
1404 // between slides. This is to help with more optimal kf and gf positioning.
detect_transition_to_still(VP9_COMP * cpi,int frame_interval,int still_interval,double loop_decay_rate,double last_decay_rate)1405 static int detect_transition_to_still(VP9_COMP *cpi,
1406 int frame_interval, int still_interval,
1407 double loop_decay_rate,
1408 double last_decay_rate) {
1409 TWO_PASS *const twopass = &cpi->twopass;
1410 RATE_CONTROL *const rc = &cpi->rc;
1411
1412 // Break clause to detect very still sections after motion
1413 // For example a static image after a fade or other transition
1414 // instead of a clean scene cut.
1415 if (frame_interval > rc->min_gf_interval &&
1416 loop_decay_rate >= 0.999 &&
1417 last_decay_rate < 0.9) {
1418 int j;
1419
1420 // Look ahead a few frames to see if static condition persists...
1421 for (j = 0; j < still_interval; ++j) {
1422 const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
1423 if (stats >= twopass->stats_in_end)
1424 break;
1425
1426 if (stats->pcnt_inter - stats->pcnt_motion < 0.999)
1427 break;
1428 }
1429
1430 // Only if it does do we signal a transition to still.
1431 return j == still_interval;
1432 }
1433
1434 return 0;
1435 }
1436
1437 // This function detects a flash through the high relative pcnt_second_ref
1438 // score in the frame following a flash frame. The offset passed in should
1439 // reflect this.
detect_flash(const TWO_PASS * twopass,int offset)1440 static int detect_flash(const TWO_PASS *twopass, int offset) {
1441 const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
1442
1443 // What we are looking for here is a situation where there is a
1444 // brief break in prediction (such as a flash) but subsequent frames
1445 // are reasonably well predicted by an earlier (pre flash) frame.
1446 // The recovery after a flash is indicated by a high pcnt_second_ref
1447 // compared to pcnt_inter.
1448 return next_frame != NULL &&
1449 next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
1450 next_frame->pcnt_second_ref >= 0.5;
1451 }
1452
1453 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)1454 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
1455 double *mv_in_out,
1456 double *mv_in_out_accumulator,
1457 double *abs_mv_in_out_accumulator,
1458 double *mv_ratio_accumulator) {
1459 const double pct = stats->pcnt_motion;
1460
1461 // Accumulate Motion In/Out of frame stats.
1462 *mv_in_out = stats->mv_in_out_count * pct;
1463 *mv_in_out_accumulator += *mv_in_out;
1464 *abs_mv_in_out_accumulator += fabs(*mv_in_out);
1465
1466 // Accumulate a measure of how uniform (or conversely how random) the motion
1467 // field is (a ratio of abs(mv) / mv).
1468 if (pct > 0.05) {
1469 const double mvr_ratio = fabs(stats->mvr_abs) /
1470 DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
1471 const double mvc_ratio = fabs(stats->mvc_abs) /
1472 DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
1473
1474 *mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ?
1475 mvr_ratio : stats->mvr_abs);
1476 *mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ?
1477 mvc_ratio : stats->mvc_abs);
1478 }
1479 }
1480
1481 #define BASELINE_ERR_PER_MB 1000.0
calc_frame_boost(VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame,double this_frame_mv_in_out,double max_boost)1482 static double calc_frame_boost(VP9_COMP *cpi,
1483 const FIRSTPASS_STATS *this_frame,
1484 double this_frame_mv_in_out,
1485 double max_boost) {
1486 double frame_boost;
1487 const double lq =
1488 vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
1489 cpi->common.bit_depth);
1490 const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
1491 int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1492 ? cpi->initial_mbs : cpi->common.MBs;
1493
1494 // Correct for any inactive region in the image
1495 num_mbs = (int)VPXMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
1496
1497 // Underlying boost factor is based on inter error ratio.
1498 frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
1499 DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
1500 frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
1501
1502 // Increase boost for frames where new data coming into frame (e.g. zoom out).
1503 // Slightly reduce boost if there is a net balance of motion out of the frame
1504 // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
1505 if (this_frame_mv_in_out > 0.0)
1506 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1507 // In the extreme case the boost is halved.
1508 else
1509 frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
1510
1511 return VPXMIN(frame_boost, max_boost * boost_q_correction);
1512 }
1513
calc_arf_boost(VP9_COMP * cpi,int offset,int f_frames,int b_frames,int * f_boost,int * b_boost)1514 static int calc_arf_boost(VP9_COMP *cpi, int offset,
1515 int f_frames, int b_frames,
1516 int *f_boost, int *b_boost) {
1517 TWO_PASS *const twopass = &cpi->twopass;
1518 int i;
1519 double boost_score = 0.0;
1520 double mv_ratio_accumulator = 0.0;
1521 double decay_accumulator = 1.0;
1522 double this_frame_mv_in_out = 0.0;
1523 double mv_in_out_accumulator = 0.0;
1524 double abs_mv_in_out_accumulator = 0.0;
1525 int arf_boost;
1526 int flash_detected = 0;
1527
1528 // Search forward from the proposed arf/next gf position.
1529 for (i = 0; i < f_frames; ++i) {
1530 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1531 if (this_frame == NULL)
1532 break;
1533
1534 // Update the motion related elements to the boost calculation.
1535 accumulate_frame_motion_stats(this_frame,
1536 &this_frame_mv_in_out, &mv_in_out_accumulator,
1537 &abs_mv_in_out_accumulator,
1538 &mv_ratio_accumulator);
1539
1540 // We want to discount the flash frame itself and the recovery
1541 // frame that follows as both will have poor scores.
1542 flash_detected = detect_flash(twopass, i + offset) ||
1543 detect_flash(twopass, i + offset + 1);
1544
1545 // Accumulate the effect of prediction quality decay.
1546 if (!flash_detected) {
1547 decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
1548 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1549 ? MIN_DECAY_FACTOR : decay_accumulator;
1550 }
1551
1552 boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
1553 this_frame_mv_in_out,
1554 GF_MAX_BOOST);
1555 }
1556
1557 *f_boost = (int)boost_score;
1558
1559 // Reset for backward looking loop.
1560 boost_score = 0.0;
1561 mv_ratio_accumulator = 0.0;
1562 decay_accumulator = 1.0;
1563 this_frame_mv_in_out = 0.0;
1564 mv_in_out_accumulator = 0.0;
1565 abs_mv_in_out_accumulator = 0.0;
1566
1567 // Search backward towards last gf position.
1568 for (i = -1; i >= -b_frames; --i) {
1569 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1570 if (this_frame == NULL)
1571 break;
1572
1573 // Update the motion related elements to the boost calculation.
1574 accumulate_frame_motion_stats(this_frame,
1575 &this_frame_mv_in_out, &mv_in_out_accumulator,
1576 &abs_mv_in_out_accumulator,
1577 &mv_ratio_accumulator);
1578
1579 // We want to discount the the flash frame itself and the recovery
1580 // frame that follows as both will have poor scores.
1581 flash_detected = detect_flash(twopass, i + offset) ||
1582 detect_flash(twopass, i + offset + 1);
1583
1584 // Cumulative effect of prediction quality decay.
1585 if (!flash_detected) {
1586 decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
1587 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1588 ? MIN_DECAY_FACTOR : decay_accumulator;
1589 }
1590
1591 boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
1592 this_frame_mv_in_out,
1593 GF_MAX_BOOST);
1594 }
1595 *b_boost = (int)boost_score;
1596
1597 arf_boost = (*f_boost + *b_boost);
1598 if (arf_boost < ((b_frames + f_frames) * 20))
1599 arf_boost = ((b_frames + f_frames) * 20);
1600 arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
1601
1602 return arf_boost;
1603 }
1604
1605 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)1606 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
1607 const FIRSTPASS_STATS *end,
1608 int section_length) {
1609 const FIRSTPASS_STATS *s = begin;
1610 double intra_error = 0.0;
1611 double coded_error = 0.0;
1612 int i = 0;
1613
1614 while (s < end && i < section_length) {
1615 intra_error += s->intra_error;
1616 coded_error += s->coded_error;
1617 ++s;
1618 ++i;
1619 }
1620
1621 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
1622 }
1623
1624 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(VP9_COMP * cpi,double gf_group_err)1625 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
1626 double gf_group_err) {
1627 const RATE_CONTROL *const rc = &cpi->rc;
1628 const TWO_PASS *const twopass = &cpi->twopass;
1629 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
1630 int64_t total_group_bits;
1631
1632 // Calculate the bits to be allocated to the group as a whole.
1633 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
1634 total_group_bits = (int64_t)(twopass->kf_group_bits *
1635 (gf_group_err / twopass->kf_group_error_left));
1636 } else {
1637 total_group_bits = 0;
1638 }
1639
1640 // Clamp odd edge cases.
1641 total_group_bits = (total_group_bits < 0) ?
1642 0 : (total_group_bits > twopass->kf_group_bits) ?
1643 twopass->kf_group_bits : total_group_bits;
1644
1645 // Clip based on user supplied data rate variability limit.
1646 if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
1647 total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
1648
1649 return total_group_bits;
1650 }
1651
1652 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)1653 static int calculate_boost_bits(int frame_count,
1654 int boost, int64_t total_group_bits) {
1655 int allocation_chunks;
1656
1657 // return 0 for invalid inputs (could arise e.g. through rounding errors)
1658 if (!boost || (total_group_bits <= 0) || (frame_count <= 0) )
1659 return 0;
1660
1661 allocation_chunks = (frame_count * 100) + boost;
1662
1663 // Prevent overflow.
1664 if (boost > 1023) {
1665 int divisor = boost >> 10;
1666 boost /= divisor;
1667 allocation_chunks /= divisor;
1668 }
1669
1670 // Calculate the number of extra bits for use in the boosted frame or frames.
1671 return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
1672 0);
1673 }
1674
1675 // Current limit on maximum number of active arfs in a GF/ARF group.
1676 #define MAX_ACTIVE_ARFS 2
1677 #define ARF_SLOT1 2
1678 #define ARF_SLOT2 3
1679 // This function indirects the choice of buffers for arfs.
1680 // At the moment the values are fixed but this may change as part of
1681 // the integration process with other codec features that swap buffers around.
get_arf_buffer_indices(unsigned char * arf_buffer_indices)1682 static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
1683 arf_buffer_indices[0] = ARF_SLOT1;
1684 arf_buffer_indices[1] = ARF_SLOT2;
1685 }
1686
allocate_gf_group_bits(VP9_COMP * cpi,int64_t gf_group_bits,double group_error,int gf_arf_bits)1687 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
1688 double group_error, int gf_arf_bits) {
1689 RATE_CONTROL *const rc = &cpi->rc;
1690 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1691 TWO_PASS *const twopass = &cpi->twopass;
1692 GF_GROUP *const gf_group = &twopass->gf_group;
1693 FIRSTPASS_STATS frame_stats;
1694 int i;
1695 int frame_index = 1;
1696 int target_frame_size;
1697 int key_frame;
1698 const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
1699 int64_t total_group_bits = gf_group_bits;
1700 double modified_err = 0.0;
1701 double err_fraction;
1702 int mid_boost_bits = 0;
1703 int mid_frame_idx;
1704 unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
1705 int alt_frame_index = frame_index;
1706 int has_temporal_layers = is_two_pass_svc(cpi) &&
1707 cpi->svc.number_temporal_layers > 1;
1708
1709 // Only encode alt reference frame in temporal base layer.
1710 if (has_temporal_layers)
1711 alt_frame_index = cpi->svc.number_temporal_layers;
1712
1713 key_frame = cpi->common.frame_type == KEY_FRAME ||
1714 vp9_is_upper_layer_key_frame(cpi);
1715
1716 get_arf_buffer_indices(arf_buffer_indices);
1717
1718 // For key frames the frame target rate is already set and it
1719 // is also the golden frame.
1720 if (!key_frame) {
1721 if (rc->source_alt_ref_active) {
1722 gf_group->update_type[0] = OVERLAY_UPDATE;
1723 gf_group->rf_level[0] = INTER_NORMAL;
1724 gf_group->bit_allocation[0] = 0;
1725 gf_group->arf_update_idx[0] = arf_buffer_indices[0];
1726 gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
1727 } else {
1728 gf_group->update_type[0] = GF_UPDATE;
1729 gf_group->rf_level[0] = GF_ARF_STD;
1730 gf_group->bit_allocation[0] = gf_arf_bits;
1731 gf_group->arf_update_idx[0] = arf_buffer_indices[0];
1732 gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
1733 }
1734
1735 // Step over the golden frame / overlay frame
1736 if (EOF == input_stats(twopass, &frame_stats))
1737 return;
1738 }
1739
1740 // Deduct the boost bits for arf (or gf if it is not a key frame)
1741 // from the group total.
1742 if (rc->source_alt_ref_pending || !key_frame)
1743 total_group_bits -= gf_arf_bits;
1744
1745 // Store the bits to spend on the ARF if there is one.
1746 if (rc->source_alt_ref_pending) {
1747 gf_group->update_type[alt_frame_index] = ARF_UPDATE;
1748 gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
1749 gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
1750
1751 if (has_temporal_layers)
1752 gf_group->arf_src_offset[alt_frame_index] =
1753 (unsigned char)(rc->baseline_gf_interval -
1754 cpi->svc.number_temporal_layers);
1755 else
1756 gf_group->arf_src_offset[alt_frame_index] =
1757 (unsigned char)(rc->baseline_gf_interval - 1);
1758
1759 gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
1760 gf_group->arf_ref_idx[alt_frame_index] =
1761 arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
1762 rc->source_alt_ref_active];
1763 if (!has_temporal_layers)
1764 ++frame_index;
1765
1766 if (cpi->multi_arf_enabled) {
1767 // Set aside a slot for a level 1 arf.
1768 gf_group->update_type[frame_index] = ARF_UPDATE;
1769 gf_group->rf_level[frame_index] = GF_ARF_LOW;
1770 gf_group->arf_src_offset[frame_index] =
1771 (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
1772 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
1773 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
1774 ++frame_index;
1775 }
1776 }
1777
1778 // Define middle frame
1779 mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
1780
1781 // Allocate bits to the other frames in the group.
1782 for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
1783 int arf_idx = 0;
1784 if (EOF == input_stats(twopass, &frame_stats))
1785 break;
1786
1787 if (has_temporal_layers && frame_index == alt_frame_index) {
1788 ++frame_index;
1789 }
1790
1791 modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
1792
1793 if (group_error > 0)
1794 err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
1795 else
1796 err_fraction = 0.0;
1797
1798 target_frame_size = (int)((double)total_group_bits * err_fraction);
1799
1800 if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
1801 mid_boost_bits += (target_frame_size >> 4);
1802 target_frame_size -= (target_frame_size >> 4);
1803
1804 if (frame_index <= mid_frame_idx)
1805 arf_idx = 1;
1806 }
1807 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
1808 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
1809
1810 target_frame_size = clamp(target_frame_size, 0,
1811 VPXMIN(max_bits, (int)total_group_bits));
1812
1813 gf_group->update_type[frame_index] = LF_UPDATE;
1814 gf_group->rf_level[frame_index] = INTER_NORMAL;
1815
1816 gf_group->bit_allocation[frame_index] = target_frame_size;
1817 ++frame_index;
1818 }
1819
1820 // Note:
1821 // We need to configure the frame at the end of the sequence + 1 that will be
1822 // the start frame for the next group. Otherwise prior to the call to
1823 // vp9_rc_get_second_pass_params() the data will be undefined.
1824 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
1825 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
1826
1827 if (rc->source_alt_ref_pending) {
1828 gf_group->update_type[frame_index] = OVERLAY_UPDATE;
1829 gf_group->rf_level[frame_index] = INTER_NORMAL;
1830
1831 // Final setup for second arf and its overlay.
1832 if (cpi->multi_arf_enabled) {
1833 gf_group->bit_allocation[2] =
1834 gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
1835 gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
1836 gf_group->bit_allocation[mid_frame_idx] = 0;
1837 }
1838 } else {
1839 gf_group->update_type[frame_index] = GF_UPDATE;
1840 gf_group->rf_level[frame_index] = GF_ARF_STD;
1841 }
1842
1843 // Note whether multi-arf was enabled this group for next time.
1844 cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
1845 }
1846
1847 // Analyse and define a gf/arf group.
define_gf_group(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)1848 static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
1849 VP9_COMMON *const cm = &cpi->common;
1850 RATE_CONTROL *const rc = &cpi->rc;
1851 VP9EncoderConfig *const oxcf = &cpi->oxcf;
1852 TWO_PASS *const twopass = &cpi->twopass;
1853 FIRSTPASS_STATS next_frame;
1854 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
1855 int i;
1856
1857 double boost_score = 0.0;
1858 double old_boost_score = 0.0;
1859 double gf_group_err = 0.0;
1860 #if GROUP_ADAPTIVE_MAXQ
1861 double gf_group_raw_error = 0.0;
1862 #endif
1863 double gf_group_skip_pct = 0.0;
1864 double gf_group_inactive_zone_rows = 0.0;
1865 double gf_first_frame_err = 0.0;
1866 double mod_frame_err = 0.0;
1867
1868 double mv_ratio_accumulator = 0.0;
1869 double decay_accumulator = 1.0;
1870 double zero_motion_accumulator = 1.0;
1871
1872 double loop_decay_rate = 1.00;
1873 double last_loop_decay_rate = 1.00;
1874
1875 double this_frame_mv_in_out = 0.0;
1876 double mv_in_out_accumulator = 0.0;
1877 double abs_mv_in_out_accumulator = 0.0;
1878 double mv_ratio_accumulator_thresh;
1879 unsigned int allow_alt_ref = is_altref_enabled(cpi);
1880
1881 int f_boost = 0;
1882 int b_boost = 0;
1883 int flash_detected;
1884 int active_max_gf_interval;
1885 int active_min_gf_interval;
1886 int64_t gf_group_bits;
1887 double gf_group_error_left;
1888 int gf_arf_bits;
1889 const int is_key_frame = frame_is_intra_only(cm);
1890 const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
1891
1892 // Reset the GF group data structures unless this is a key
1893 // frame in which case it will already have been done.
1894 if (is_key_frame == 0) {
1895 vp9_zero(twopass->gf_group);
1896 }
1897
1898 vpx_clear_system_state();
1899 vp9_zero(next_frame);
1900
1901 // Load stats for the current frame.
1902 mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
1903
1904 // Note the error of the frame at the start of the group. This will be
1905 // the GF frame error if we code a normal gf.
1906 gf_first_frame_err = mod_frame_err;
1907
1908 // If this is a key frame or the overlay from a previous arf then
1909 // the error score / cost of this frame has already been accounted for.
1910 if (arf_active_or_kf) {
1911 gf_group_err -= gf_first_frame_err;
1912 #if GROUP_ADAPTIVE_MAXQ
1913 gf_group_raw_error -= this_frame->coded_error;
1914 #endif
1915 gf_group_skip_pct -= this_frame->intra_skip_pct;
1916 gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
1917 }
1918
1919 // Motion breakout threshold for loop below depends on image size.
1920 mv_ratio_accumulator_thresh =
1921 (cpi->initial_height + cpi->initial_width) / 4.0;
1922
1923 // Set a maximum and minimum interval for the GF group.
1924 // If the image appears almost completely static we can extend beyond this.
1925 {
1926 int int_max_q =
1927 (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality,
1928 cpi->common.bit_depth));
1929 int int_lbq =
1930 (int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex,
1931 cpi->common.bit_depth));
1932 active_min_gf_interval = rc->min_gf_interval + VPXMIN(2, int_max_q / 200);
1933 if (active_min_gf_interval > rc->max_gf_interval)
1934 active_min_gf_interval = rc->max_gf_interval;
1935
1936 if (cpi->multi_arf_allowed) {
1937 active_max_gf_interval = rc->max_gf_interval;
1938 } else {
1939 // The value chosen depends on the active Q range. At low Q we have
1940 // bits to spare and are better with a smaller interval and smaller boost.
1941 // At high Q when there are few bits to spare we are better with a longer
1942 // interval to spread the cost of the GF.
1943 active_max_gf_interval = 12 + VPXMIN(4, (int_lbq / 6));
1944 if (active_max_gf_interval < active_min_gf_interval)
1945 active_max_gf_interval = active_min_gf_interval;
1946
1947 if (active_max_gf_interval > rc->max_gf_interval)
1948 active_max_gf_interval = rc->max_gf_interval;
1949 if (active_max_gf_interval < active_min_gf_interval)
1950 active_max_gf_interval = active_min_gf_interval;
1951 }
1952 }
1953
1954 i = 0;
1955 while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
1956 ++i;
1957
1958 // Accumulate error score of frames in this gf group.
1959 mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
1960 gf_group_err += mod_frame_err;
1961 #if GROUP_ADAPTIVE_MAXQ
1962 gf_group_raw_error += this_frame->coded_error;
1963 #endif
1964 gf_group_skip_pct += this_frame->intra_skip_pct;
1965 gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
1966
1967 if (EOF == input_stats(twopass, &next_frame))
1968 break;
1969
1970 // Test for the case where there is a brief flash but the prediction
1971 // quality back to an earlier frame is then restored.
1972 flash_detected = detect_flash(twopass, 0);
1973
1974 // Update the motion related elements to the boost calculation.
1975 accumulate_frame_motion_stats(&next_frame,
1976 &this_frame_mv_in_out, &mv_in_out_accumulator,
1977 &abs_mv_in_out_accumulator,
1978 &mv_ratio_accumulator);
1979
1980 // Accumulate the effect of prediction quality decay.
1981 if (!flash_detected) {
1982 last_loop_decay_rate = loop_decay_rate;
1983 loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
1984
1985 decay_accumulator = decay_accumulator * loop_decay_rate;
1986
1987 // Monitor for static sections.
1988 zero_motion_accumulator = VPXMIN(
1989 zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
1990
1991 // Break clause to detect very still sections after motion. For example,
1992 // a static image after a fade or other transition.
1993 if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
1994 last_loop_decay_rate)) {
1995 allow_alt_ref = 0;
1996 break;
1997 }
1998 }
1999
2000 // Calculate a boost number for this frame.
2001 boost_score += decay_accumulator * calc_frame_boost(cpi, &next_frame,
2002 this_frame_mv_in_out,
2003 GF_MAX_BOOST);
2004
2005 // Break out conditions.
2006 if (
2007 // Break at active_max_gf_interval unless almost totally static.
2008 (i >= (active_max_gf_interval + arf_active_or_kf) &&
2009 zero_motion_accumulator < 0.995) ||
2010 (
2011 // Don't break out with a very short interval.
2012 (i >= active_min_gf_interval + arf_active_or_kf) &&
2013 (!flash_detected) &&
2014 ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
2015 (abs_mv_in_out_accumulator > 3.0) ||
2016 (mv_in_out_accumulator < -2.0) ||
2017 ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
2018 boost_score = old_boost_score;
2019 break;
2020 }
2021
2022 *this_frame = next_frame;
2023 old_boost_score = boost_score;
2024 }
2025
2026 twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
2027
2028 // Was the group length constrained by the requirement for a new KF?
2029 rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
2030
2031 // Should we use the alternate reference frame.
2032 if (allow_alt_ref &&
2033 (i < cpi->oxcf.lag_in_frames) &&
2034 (i >= rc->min_gf_interval)) {
2035 // Calculate the boost for alt ref.
2036 rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
2037 &b_boost);
2038 rc->source_alt_ref_pending = 1;
2039
2040 // Test to see if multi arf is appropriate.
2041 cpi->multi_arf_enabled =
2042 (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
2043 (zero_motion_accumulator < 0.995)) ? 1 : 0;
2044 } else {
2045 rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
2046 rc->source_alt_ref_pending = 0;
2047 }
2048
2049 // Set the interval until the next gf.
2050 rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
2051
2052 // Only encode alt reference frame in temporal base layer. So
2053 // baseline_gf_interval should be multiple of a temporal layer group
2054 // (typically the frame distance between two base layer frames)
2055 if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
2056 int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
2057 int new_gf_interval = (rc->baseline_gf_interval + count) & (~count);
2058 int j;
2059 for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) {
2060 if (EOF == input_stats(twopass, this_frame))
2061 break;
2062 gf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
2063 #if GROUP_ADAPTIVE_MAXQ
2064 gf_group_raw_error += this_frame->coded_error;
2065 #endif
2066 gf_group_skip_pct += this_frame->intra_skip_pct;
2067 gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
2068 }
2069 rc->baseline_gf_interval = new_gf_interval;
2070 }
2071
2072 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2073
2074 // Reset the file position.
2075 reset_fpf_position(twopass, start_pos);
2076
2077 // Calculate the bits to be allocated to the gf/arf group as a whole
2078 gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
2079
2080 #if GROUP_ADAPTIVE_MAXQ
2081 // Calculate an estimate of the maxq needed for the group.
2082 // We are more agressive about correcting for sections
2083 // where there could be significant overshoot than for easier
2084 // sections where we do not wish to risk creating an overshoot
2085 // of the allocated bit budget.
2086 if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
2087 const int vbr_group_bits_per_frame =
2088 (int)(gf_group_bits / rc->baseline_gf_interval);
2089 const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
2090 const double group_av_skip_pct =
2091 gf_group_skip_pct / rc->baseline_gf_interval;
2092 const double group_av_inactive_zone =
2093 ((gf_group_inactive_zone_rows * 2) /
2094 (rc->baseline_gf_interval * (double)cm->mb_rows));
2095
2096 int tmp_q;
2097 // rc factor is a weight factor that corrects for local rate control drift.
2098 double rc_factor = 1.0;
2099 if (rc->rate_error_estimate > 0) {
2100 rc_factor = VPXMAX(RC_FACTOR_MIN,
2101 (double)(100 - rc->rate_error_estimate) / 100.0);
2102 } else {
2103 rc_factor = VPXMIN(RC_FACTOR_MAX,
2104 (double)(100 - rc->rate_error_estimate) / 100.0);
2105 }
2106 tmp_q =
2107 get_twopass_worst_quality(cpi, group_av_err,
2108 (group_av_skip_pct + group_av_inactive_zone),
2109 vbr_group_bits_per_frame,
2110 twopass->kfgroup_inter_fraction * rc_factor);
2111 twopass->active_worst_quality =
2112 VPXMAX(tmp_q, twopass->active_worst_quality >> 1);
2113 }
2114 #endif
2115
2116 // Calculate the extra bits to be used for boosted frame(s)
2117 gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval,
2118 rc->gfu_boost, gf_group_bits);
2119
2120 // Adjust KF group bits and error remaining.
2121 twopass->kf_group_error_left -= (int64_t)gf_group_err;
2122
2123 // If this is an arf update we want to remove the score for the overlay
2124 // frame at the end which will usually be very cheap to code.
2125 // The overlay frame has already, in effect, been coded so we want to spread
2126 // the remaining bits among the other frames.
2127 // For normal GFs remove the score for the GF itself unless this is
2128 // also a key frame in which case it has already been accounted for.
2129 if (rc->source_alt_ref_pending) {
2130 gf_group_error_left = gf_group_err - mod_frame_err;
2131 } else if (is_key_frame == 0) {
2132 gf_group_error_left = gf_group_err - gf_first_frame_err;
2133 } else {
2134 gf_group_error_left = gf_group_err;
2135 }
2136
2137 // Allocate bits to each of the frames in the GF group.
2138 allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
2139
2140 // Reset the file position.
2141 reset_fpf_position(twopass, start_pos);
2142
2143 // Calculate a section intra ratio used in setting max loop filter.
2144 if (cpi->common.frame_type != KEY_FRAME) {
2145 twopass->section_intra_rating =
2146 calculate_section_intra_ratio(start_pos, twopass->stats_in_end,
2147 rc->baseline_gf_interval);
2148 }
2149
2150 if (oxcf->resize_mode == RESIZE_DYNAMIC) {
2151 // Default to starting GF groups at normal frame size.
2152 cpi->rc.next_frame_size_selector = UNSCALED;
2153 }
2154 }
2155
2156 // Threshold for use of the lagging second reference frame. High second ref
2157 // usage may point to a transient event like a flash or occlusion rather than
2158 // a real scene cut.
2159 #define SECOND_REF_USEAGE_THRESH 0.1
2160 // Minimum % intra coding observed in first pass (1.0 = 100%)
2161 #define MIN_INTRA_LEVEL 0.25
2162 // Minimum ratio between the % of intra coding and inter coding in the first
2163 // pass after discounting neutral blocks (discounting neutral blocks in this
2164 // way helps catch scene cuts in clips with very flat areas or letter box
2165 // format clips with image padding.
2166 #define INTRA_VS_INTER_THRESH 2.0
2167 // Hard threshold where the first pass chooses intra for almost all blocks.
2168 // In such a case even if the frame is not a scene cut coding a key frame
2169 // may be a good option.
2170 #define VERY_LOW_INTER_THRESH 0.05
2171 // Maximum threshold for the relative ratio of intra error score vs best
2172 // inter error score.
2173 #define KF_II_ERR_THRESHOLD 2.5
2174 // In real scene cuts there is almost always a sharp change in the intra
2175 // or inter error score.
2176 #define ERR_CHANGE_THRESHOLD 0.4
2177 // For real scene cuts we expect an improvment in the intra inter error
2178 // ratio in the next frame.
2179 #define II_IMPROVEMENT_THRESHOLD 3.5
2180 #define KF_II_MAX 128.0
2181
test_candidate_kf(TWO_PASS * twopass,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * next_frame)2182 static int test_candidate_kf(TWO_PASS *twopass,
2183 const FIRSTPASS_STATS *last_frame,
2184 const FIRSTPASS_STATS *this_frame,
2185 const FIRSTPASS_STATS *next_frame) {
2186 int is_viable_kf = 0;
2187 double pcnt_intra = 1.0 - this_frame->pcnt_inter;
2188 double modified_pcnt_inter =
2189 this_frame->pcnt_inter - this_frame->pcnt_neutral;
2190
2191 // Does the frame satisfy the primary criteria of a key frame?
2192 // See above for an explanation of the test criteria.
2193 // If so, then examine how well it predicts subsequent frames.
2194 if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
2195 (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
2196 ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
2197 ((pcnt_intra > MIN_INTRA_LEVEL) &&
2198 (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
2199 ((this_frame->intra_error /
2200 DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
2201 KF_II_ERR_THRESHOLD) &&
2202 ((fabs(last_frame->coded_error - this_frame->coded_error) /
2203 DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
2204 ERR_CHANGE_THRESHOLD) ||
2205 (fabs(last_frame->intra_error - this_frame->intra_error) /
2206 DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
2207 ERR_CHANGE_THRESHOLD) ||
2208 ((next_frame->intra_error /
2209 DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
2210 II_IMPROVEMENT_THRESHOLD))))) {
2211 int i;
2212 const FIRSTPASS_STATS *start_pos = twopass->stats_in;
2213 FIRSTPASS_STATS local_next_frame = *next_frame;
2214 double boost_score = 0.0;
2215 double old_boost_score = 0.0;
2216 double decay_accumulator = 1.0;
2217
2218 // Examine how well the key frame predicts subsequent frames.
2219 for (i = 0; i < 16; ++i) {
2220 double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
2221 DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
2222
2223 if (next_iiratio > KF_II_MAX)
2224 next_iiratio = KF_II_MAX;
2225
2226 // Cumulative effect of decay in prediction quality.
2227 if (local_next_frame.pcnt_inter > 0.85)
2228 decay_accumulator *= local_next_frame.pcnt_inter;
2229 else
2230 decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
2231
2232 // Keep a running total.
2233 boost_score += (decay_accumulator * next_iiratio);
2234
2235 // Test various breakout clauses.
2236 if ((local_next_frame.pcnt_inter < 0.05) ||
2237 (next_iiratio < 1.5) ||
2238 (((local_next_frame.pcnt_inter -
2239 local_next_frame.pcnt_neutral) < 0.20) &&
2240 (next_iiratio < 3.0)) ||
2241 ((boost_score - old_boost_score) < 3.0) ||
2242 (local_next_frame.intra_error < 200)) {
2243 break;
2244 }
2245
2246 old_boost_score = boost_score;
2247
2248 // Get the next frame details
2249 if (EOF == input_stats(twopass, &local_next_frame))
2250 break;
2251 }
2252
2253 // If there is tolerable prediction for at least the next 3 frames then
2254 // break out else discard this potential key frame and move on
2255 if (boost_score > 30.0 && (i > 3)) {
2256 is_viable_kf = 1;
2257 } else {
2258 // Reset the file position
2259 reset_fpf_position(twopass, start_pos);
2260
2261 is_viable_kf = 0;
2262 }
2263 }
2264
2265 return is_viable_kf;
2266 }
2267
find_next_key_frame(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)2268 static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
2269 int i, j;
2270 RATE_CONTROL *const rc = &cpi->rc;
2271 TWO_PASS *const twopass = &cpi->twopass;
2272 GF_GROUP *const gf_group = &twopass->gf_group;
2273 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2274 const FIRSTPASS_STATS first_frame = *this_frame;
2275 const FIRSTPASS_STATS *const start_position = twopass->stats_in;
2276 FIRSTPASS_STATS next_frame;
2277 FIRSTPASS_STATS last_frame;
2278 int kf_bits = 0;
2279 int loop_decay_counter = 0;
2280 double decay_accumulator = 1.0;
2281 double av_decay_accumulator = 0.0;
2282 double zero_motion_accumulator = 1.0;
2283 double boost_score = 0.0;
2284 double kf_mod_err = 0.0;
2285 double kf_group_err = 0.0;
2286 double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
2287
2288 vp9_zero(next_frame);
2289
2290 cpi->common.frame_type = KEY_FRAME;
2291
2292 // Reset the GF group data structures.
2293 vp9_zero(*gf_group);
2294
2295 // Is this a forced key frame by interval.
2296 rc->this_key_frame_forced = rc->next_key_frame_forced;
2297
2298 // Clear the alt ref active flag and last group multi arf flags as they
2299 // can never be set for a key frame.
2300 rc->source_alt_ref_active = 0;
2301 cpi->multi_arf_last_grp_enabled = 0;
2302
2303 // KF is always a GF so clear frames till next gf counter.
2304 rc->frames_till_gf_update_due = 0;
2305
2306 rc->frames_to_key = 1;
2307
2308 twopass->kf_group_bits = 0; // Total bits available to kf group
2309 twopass->kf_group_error_left = 0; // Group modified error score.
2310
2311 kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
2312
2313 // Find the next keyframe.
2314 i = 0;
2315 while (twopass->stats_in < twopass->stats_in_end &&
2316 rc->frames_to_key < cpi->oxcf.key_freq) {
2317 // Accumulate kf group error.
2318 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
2319
2320 // Load the next frame's stats.
2321 last_frame = *this_frame;
2322 input_stats(twopass, this_frame);
2323
2324 // Provided that we are not at the end of the file...
2325 if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
2326 double loop_decay_rate;
2327
2328 // Check for a scene cut.
2329 if (test_candidate_kf(twopass, &last_frame, this_frame,
2330 twopass->stats_in))
2331 break;
2332
2333 // How fast is the prediction quality decaying?
2334 loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
2335
2336 // We want to know something about the recent past... rather than
2337 // as used elsewhere where we are concerned with decay in prediction
2338 // quality since the last GF or KF.
2339 recent_loop_decay[i % 8] = loop_decay_rate;
2340 decay_accumulator = 1.0;
2341 for (j = 0; j < 8; ++j)
2342 decay_accumulator *= recent_loop_decay[j];
2343
2344 // Special check for transition or high motion followed by a
2345 // static scene.
2346 if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
2347 loop_decay_rate, decay_accumulator))
2348 break;
2349
2350 // Step on to the next frame.
2351 ++rc->frames_to_key;
2352
2353 // If we don't have a real key frame within the next two
2354 // key_freq intervals then break out of the loop.
2355 if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq)
2356 break;
2357 } else {
2358 ++rc->frames_to_key;
2359 }
2360 ++i;
2361 }
2362
2363 // If there is a max kf interval set by the user we must obey it.
2364 // We already breakout of the loop above at 2x max.
2365 // This code centers the extra kf if the actual natural interval
2366 // is between 1x and 2x.
2367 if (cpi->oxcf.auto_key &&
2368 rc->frames_to_key > cpi->oxcf.key_freq) {
2369 FIRSTPASS_STATS tmp_frame = first_frame;
2370
2371 rc->frames_to_key /= 2;
2372
2373 // Reset to the start of the group.
2374 reset_fpf_position(twopass, start_position);
2375
2376 kf_group_err = 0.0;
2377
2378 // Rescan to get the correct error data for the forced kf group.
2379 for (i = 0; i < rc->frames_to_key; ++i) {
2380 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
2381 input_stats(twopass, &tmp_frame);
2382 }
2383 rc->next_key_frame_forced = 1;
2384 } else if (twopass->stats_in == twopass->stats_in_end ||
2385 rc->frames_to_key >= cpi->oxcf.key_freq) {
2386 rc->next_key_frame_forced = 1;
2387 } else {
2388 rc->next_key_frame_forced = 0;
2389 }
2390
2391 if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
2392 int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
2393 int new_frame_to_key = (rc->frames_to_key + count) & (~count);
2394 int j;
2395 for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) {
2396 if (EOF == input_stats(twopass, this_frame))
2397 break;
2398 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
2399 }
2400 rc->frames_to_key = new_frame_to_key;
2401 }
2402
2403 // Special case for the last key frame of the file.
2404 if (twopass->stats_in >= twopass->stats_in_end) {
2405 // Accumulate kf group error.
2406 kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
2407 }
2408
2409 // Calculate the number of bits that should be assigned to the kf group.
2410 if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
2411 // Maximum number of bits for a single normal frame (not key frame).
2412 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
2413
2414 // Maximum number of bits allocated to the key frame group.
2415 int64_t max_grp_bits;
2416
2417 // Default allocation based on bits left and relative
2418 // complexity of the section.
2419 twopass->kf_group_bits = (int64_t)(twopass->bits_left *
2420 (kf_group_err / twopass->modified_error_left));
2421
2422 // Clip based on maximum per frame rate defined by the user.
2423 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
2424 if (twopass->kf_group_bits > max_grp_bits)
2425 twopass->kf_group_bits = max_grp_bits;
2426 } else {
2427 twopass->kf_group_bits = 0;
2428 }
2429 twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
2430
2431 // Reset the first pass file position.
2432 reset_fpf_position(twopass, start_position);
2433
2434 // Scan through the kf group collating various stats used to determine
2435 // how many bits to spend on it.
2436 decay_accumulator = 1.0;
2437 boost_score = 0.0;
2438 for (i = 0; i < (rc->frames_to_key - 1); ++i) {
2439 if (EOF == input_stats(twopass, &next_frame))
2440 break;
2441
2442 // Monitor for static sections.
2443 zero_motion_accumulator = VPXMIN(
2444 zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
2445
2446 // Not all frames in the group are necessarily used in calculating boost.
2447 if ((i <= rc->max_gf_interval) ||
2448 ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
2449 const double frame_boost =
2450 calc_frame_boost(cpi, &next_frame, 0, KF_MAX_BOOST);
2451
2452 // How fast is prediction quality decaying.
2453 if (!detect_flash(twopass, 0)) {
2454 const double loop_decay_rate =
2455 get_prediction_decay_rate(cpi, &next_frame);
2456 decay_accumulator *= loop_decay_rate;
2457 decay_accumulator = VPXMAX(decay_accumulator, MIN_DECAY_FACTOR);
2458 av_decay_accumulator += decay_accumulator;
2459 ++loop_decay_counter;
2460 }
2461 boost_score += (decay_accumulator * frame_boost);
2462 }
2463 }
2464 av_decay_accumulator /= (double)loop_decay_counter;
2465
2466 reset_fpf_position(twopass, start_position);
2467
2468 // Store the zero motion percentage
2469 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
2470
2471 // Calculate a section intra ratio used in setting max loop filter.
2472 twopass->section_intra_rating =
2473 calculate_section_intra_ratio(start_position, twopass->stats_in_end,
2474 rc->frames_to_key);
2475
2476 // Apply various clamps for min and max boost
2477 rc->kf_boost = (int)(av_decay_accumulator * boost_score);
2478 rc->kf_boost = VPXMAX(rc->kf_boost, (rc->frames_to_key * 3));
2479 rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_BOOST);
2480
2481 // Work out how many bits to allocate for the key frame itself.
2482 kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
2483 rc->kf_boost, twopass->kf_group_bits);
2484
2485 // Work out the fraction of the kf group bits reserved for the inter frames
2486 // within the group after discounting the bits for the kf itself.
2487 if (twopass->kf_group_bits) {
2488 twopass->kfgroup_inter_fraction =
2489 (double)(twopass->kf_group_bits - kf_bits) /
2490 (double)twopass->kf_group_bits;
2491 } else {
2492 twopass->kfgroup_inter_fraction = 1.0;
2493 }
2494
2495 twopass->kf_group_bits -= kf_bits;
2496
2497 // Save the bits to spend on the key frame.
2498 gf_group->bit_allocation[0] = kf_bits;
2499 gf_group->update_type[0] = KF_UPDATE;
2500 gf_group->rf_level[0] = KF_STD;
2501
2502 // Note the total error score of the kf group minus the key frame itself.
2503 twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
2504
2505 // Adjust the count of total modified error left.
2506 // The count of bits left is adjusted elsewhere based on real coded frame
2507 // sizes.
2508 twopass->modified_error_left -= kf_group_err;
2509
2510 if (oxcf->resize_mode == RESIZE_DYNAMIC) {
2511 // Default to normal-sized frame on keyframes.
2512 cpi->rc.next_frame_size_selector = UNSCALED;
2513 }
2514 }
2515
2516 // Define the reference buffers that will be updated post encode.
configure_buffer_updates(VP9_COMP * cpi)2517 static void configure_buffer_updates(VP9_COMP *cpi) {
2518 TWO_PASS *const twopass = &cpi->twopass;
2519
2520 cpi->rc.is_src_frame_alt_ref = 0;
2521 switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
2522 case KF_UPDATE:
2523 cpi->refresh_last_frame = 1;
2524 cpi->refresh_golden_frame = 1;
2525 cpi->refresh_alt_ref_frame = 1;
2526 break;
2527 case LF_UPDATE:
2528 cpi->refresh_last_frame = 1;
2529 cpi->refresh_golden_frame = 0;
2530 cpi->refresh_alt_ref_frame = 0;
2531 break;
2532 case GF_UPDATE:
2533 cpi->refresh_last_frame = 1;
2534 cpi->refresh_golden_frame = 1;
2535 cpi->refresh_alt_ref_frame = 0;
2536 break;
2537 case OVERLAY_UPDATE:
2538 cpi->refresh_last_frame = 0;
2539 cpi->refresh_golden_frame = 1;
2540 cpi->refresh_alt_ref_frame = 0;
2541 cpi->rc.is_src_frame_alt_ref = 1;
2542 break;
2543 case ARF_UPDATE:
2544 cpi->refresh_last_frame = 0;
2545 cpi->refresh_golden_frame = 0;
2546 cpi->refresh_alt_ref_frame = 1;
2547 break;
2548 default:
2549 assert(0);
2550 break;
2551 }
2552 if (is_two_pass_svc(cpi)) {
2553 if (cpi->svc.temporal_layer_id > 0) {
2554 cpi->refresh_last_frame = 0;
2555 cpi->refresh_golden_frame = 0;
2556 }
2557 if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
2558 cpi->refresh_golden_frame = 0;
2559 if (cpi->alt_ref_source == NULL)
2560 cpi->refresh_alt_ref_frame = 0;
2561 }
2562 }
2563
is_skippable_frame(const VP9_COMP * cpi)2564 static int is_skippable_frame(const VP9_COMP *cpi) {
2565 // If the current frame does not have non-zero motion vector detected in the
2566 // first pass, and so do its previous and forward frames, then this frame
2567 // can be skipped for partition check, and the partition size is assigned
2568 // according to the variance
2569 const SVC *const svc = &cpi->svc;
2570 const TWO_PASS *const twopass = is_two_pass_svc(cpi) ?
2571 &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
2572
2573 return (!frame_is_intra_only(&cpi->common) &&
2574 twopass->stats_in - 2 > twopass->stats_in_start &&
2575 twopass->stats_in < twopass->stats_in_end &&
2576 (twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion
2577 == 1 &&
2578 (twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion
2579 == 1 &&
2580 twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
2581 }
2582
vp9_rc_get_second_pass_params(VP9_COMP * cpi)2583 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
2584 VP9_COMMON *const cm = &cpi->common;
2585 RATE_CONTROL *const rc = &cpi->rc;
2586 TWO_PASS *const twopass = &cpi->twopass;
2587 GF_GROUP *const gf_group = &twopass->gf_group;
2588 int frames_left;
2589 FIRSTPASS_STATS this_frame;
2590
2591 int target_rate;
2592 LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
2593 &cpi->svc.layer_context[cpi->svc.spatial_layer_id] : 0;
2594
2595 if (lc != NULL) {
2596 frames_left = (int)(twopass->total_stats.count -
2597 lc->current_video_frame_in_layer);
2598 } else {
2599 frames_left = (int)(twopass->total_stats.count -
2600 cm->current_video_frame);
2601 }
2602
2603 if (!twopass->stats_in)
2604 return;
2605
2606 // If this is an arf frame then we dont want to read the stats file or
2607 // advance the input pointer as we already have what we need.
2608 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
2609 int target_rate;
2610 configure_buffer_updates(cpi);
2611 target_rate = gf_group->bit_allocation[gf_group->index];
2612 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2613 rc->base_frame_target = target_rate;
2614
2615 cm->frame_type = INTER_FRAME;
2616
2617 if (lc != NULL) {
2618 if (cpi->svc.spatial_layer_id == 0) {
2619 lc->is_key_frame = 0;
2620 } else {
2621 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
2622
2623 if (lc->is_key_frame)
2624 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
2625 }
2626 }
2627
2628 // Do the firstpass stats indicate that this frame is skippable for the
2629 // partition search?
2630 if (cpi->sf.allow_partition_search_skip &&
2631 cpi->oxcf.pass == 2 && (!cpi->use_svc || is_two_pass_svc(cpi))) {
2632 cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
2633 }
2634
2635 return;
2636 }
2637
2638 vpx_clear_system_state();
2639
2640 if (cpi->oxcf.rc_mode == VPX_Q) {
2641 twopass->active_worst_quality = cpi->oxcf.cq_level;
2642 } else if (cm->current_video_frame == 0 ||
2643 (lc != NULL && lc->current_video_frame_in_layer == 0)) {
2644 // Special case code for first frame.
2645 const int section_target_bandwidth = (int)(twopass->bits_left /
2646 frames_left);
2647 const double section_length = twopass->total_left_stats.count;
2648 const double section_error =
2649 twopass->total_left_stats.coded_error / section_length;
2650 const double section_intra_skip =
2651 twopass->total_left_stats.intra_skip_pct / section_length;
2652 const double section_inactive_zone =
2653 (twopass->total_left_stats.inactive_zone_rows * 2) /
2654 ((double)cm->mb_rows * section_length);
2655 const int tmp_q =
2656 get_twopass_worst_quality(cpi, section_error,
2657 section_intra_skip + section_inactive_zone,
2658 section_target_bandwidth, DEFAULT_GRP_WEIGHT);
2659
2660 twopass->active_worst_quality = tmp_q;
2661 twopass->baseline_active_worst_quality = tmp_q;
2662 rc->ni_av_qi = tmp_q;
2663 rc->last_q[INTER_FRAME] = tmp_q;
2664 rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
2665 rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
2666 rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
2667 rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
2668 }
2669 vp9_zero(this_frame);
2670 if (EOF == input_stats(twopass, &this_frame))
2671 return;
2672
2673 // Set the frame content type flag.
2674 if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
2675 twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
2676 else
2677 twopass->fr_content_type = FC_NORMAL;
2678
2679 // Keyframe and section processing.
2680 if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
2681 FIRSTPASS_STATS this_frame_copy;
2682 this_frame_copy = this_frame;
2683 // Define next KF group and assign bits to it.
2684 find_next_key_frame(cpi, &this_frame);
2685 this_frame = this_frame_copy;
2686 } else {
2687 cm->frame_type = INTER_FRAME;
2688 }
2689
2690 if (lc != NULL) {
2691 if (cpi->svc.spatial_layer_id == 0) {
2692 lc->is_key_frame = (cm->frame_type == KEY_FRAME);
2693 if (lc->is_key_frame) {
2694 cpi->ref_frame_flags &=
2695 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2696 lc->frames_from_key_frame = 0;
2697 // Encode an intra only empty frame since we have a key frame.
2698 cpi->svc.encode_intra_empty_frame = 1;
2699 }
2700 } else {
2701 cm->frame_type = INTER_FRAME;
2702 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
2703
2704 if (lc->is_key_frame) {
2705 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
2706 lc->frames_from_key_frame = 0;
2707 }
2708 }
2709 }
2710
2711 // Define a new GF/ARF group. (Should always enter here for key frames).
2712 if (rc->frames_till_gf_update_due == 0) {
2713 define_gf_group(cpi, &this_frame);
2714
2715 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2716 if (lc != NULL)
2717 cpi->refresh_golden_frame = 1;
2718
2719 #if ARF_STATS_OUTPUT
2720 {
2721 FILE *fpfile;
2722 fpfile = fopen("arf.stt", "a");
2723 ++arf_count;
2724 fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n",
2725 cm->current_video_frame, rc->frames_till_gf_update_due,
2726 rc->kf_boost, arf_count, rc->gfu_boost);
2727
2728 fclose(fpfile);
2729 }
2730 #endif
2731 }
2732
2733 configure_buffer_updates(cpi);
2734
2735 // Do the firstpass stats indicate that this frame is skippable for the
2736 // partition search?
2737 if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
2738 (!cpi->use_svc || is_two_pass_svc(cpi))) {
2739 cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
2740 }
2741
2742 target_rate = gf_group->bit_allocation[gf_group->index];
2743 rc->base_frame_target = target_rate;
2744
2745 {
2746 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
2747 ? cpi->initial_mbs : cpi->common.MBs;
2748 // The multiplication by 256 reverses a scaling factor of (>> 8)
2749 // applied when combining MB error values for the frame.
2750 twopass->mb_av_energy =
2751 log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0);
2752 }
2753
2754 // Update the total stats remaining structure.
2755 subtract_stats(&twopass->total_left_stats, &this_frame);
2756 }
2757
2758 #define MINQ_ADJ_LIMIT 48
2759 #define MINQ_ADJ_LIMIT_CQ 20
2760 #define HIGH_UNDERSHOOT_RATIO 2
vp9_twopass_postencode_update(VP9_COMP * cpi)2761 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
2762 TWO_PASS *const twopass = &cpi->twopass;
2763 RATE_CONTROL *const rc = &cpi->rc;
2764 const int bits_used = rc->base_frame_target;
2765
2766 // VBR correction is done through rc->vbr_bits_off_target. Based on the
2767 // sign of this value, a limited % adjustment is made to the target rate
2768 // of subsequent frames, to try and push it back towards 0. This method
2769 // is designed to prevent extreme behaviour at the end of a clip
2770 // or group of frames.
2771 rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
2772 twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
2773
2774 // Calculate the pct rc error.
2775 if (rc->total_actual_bits) {
2776 rc->rate_error_estimate =
2777 (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
2778 rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
2779 } else {
2780 rc->rate_error_estimate = 0;
2781 }
2782
2783 if (cpi->common.frame_type != KEY_FRAME &&
2784 !vp9_is_upper_layer_key_frame(cpi)) {
2785 twopass->kf_group_bits -= bits_used;
2786 twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
2787 }
2788 twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
2789
2790 // Increment the gf group index ready for the next frame.
2791 ++twopass->gf_group.index;
2792
2793 // If the rate control is drifting consider adjustment to min or maxq.
2794 if ((cpi->oxcf.rc_mode != VPX_Q) &&
2795 (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
2796 !cpi->rc.is_src_frame_alt_ref) {
2797 const int maxq_adj_limit =
2798 rc->worst_quality - twopass->active_worst_quality;
2799 const int minq_adj_limit =
2800 (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
2801
2802 // Undershoot.
2803 if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
2804 --twopass->extend_maxq;
2805 if (rc->rolling_target_bits >= rc->rolling_actual_bits)
2806 ++twopass->extend_minq;
2807 // Overshoot.
2808 } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
2809 --twopass->extend_minq;
2810 if (rc->rolling_target_bits < rc->rolling_actual_bits)
2811 ++twopass->extend_maxq;
2812 } else {
2813 // Adjustment for extreme local overshoot.
2814 if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
2815 rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
2816 ++twopass->extend_maxq;
2817
2818 // Unwind undershoot or overshoot adjustment.
2819 if (rc->rolling_target_bits < rc->rolling_actual_bits)
2820 --twopass->extend_minq;
2821 else if (rc->rolling_target_bits > rc->rolling_actual_bits)
2822 --twopass->extend_maxq;
2823 }
2824
2825 twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
2826 twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
2827
2828 // If there is a big and undexpected undershoot then feed the extra
2829 // bits back in quickly. One situation where this may happen is if a
2830 // frame is unexpectedly almost perfectly predicted by the ARF or GF
2831 // but not very well predcited by the previous frame.
2832 if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
2833 int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
2834 if (rc->projected_frame_size < fast_extra_thresh) {
2835 rc->vbr_bits_off_target_fast +=
2836 fast_extra_thresh - rc->projected_frame_size;
2837 rc->vbr_bits_off_target_fast =
2838 VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
2839
2840 // Fast adaptation of minQ if necessary to use up the extra bits.
2841 if (rc->avg_frame_bandwidth) {
2842 twopass->extend_minq_fast =
2843 (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
2844 }
2845 twopass->extend_minq_fast = VPXMIN(
2846 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
2847 } else if (rc->vbr_bits_off_target_fast) {
2848 twopass->extend_minq_fast = VPXMIN(
2849 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
2850 } else {
2851 twopass->extend_minq_fast = 0;
2852 }
2853 }
2854 }
2855 }
2856