1 /*
2  *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "./vp9_rtcd.h"
12 #include "vp9/common/vp9_filter.h"
13 #include "vp9/common/vp9_scale.h"
14 
scaled_x(int val,const struct scale_factors * sf)15 static INLINE int scaled_x(int val, const struct scale_factors *sf) {
16   return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT);
17 }
18 
scaled_y(int val,const struct scale_factors * sf)19 static INLINE int scaled_y(int val, const struct scale_factors *sf) {
20   return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT);
21 }
22 
unscaled_value(int val,const struct scale_factors * sf)23 static int unscaled_value(int val, const struct scale_factors *sf) {
24   (void) sf;
25   return val;
26 }
27 
get_fixed_point_scale_factor(int other_size,int this_size)28 static int get_fixed_point_scale_factor(int other_size, int this_size) {
29   // Calculate scaling factor once for each reference frame
30   // and use fixed point scaling factors in decoding and encoding routines.
31   // Hardware implementations can calculate scale factor in device driver
32   // and use multiplication and shifting on hardware instead of division.
33   return (other_size << REF_SCALE_SHIFT) / this_size;
34 }
35 
check_scale_factors(int other_w,int other_h,int this_w,int this_h)36 static int check_scale_factors(int other_w, int other_h,
37                                int this_w, int this_h) {
38   return 2 * this_w >= other_w &&
39          2 * this_h >= other_h &&
40          this_w <= 16 * other_w &&
41          this_h <= 16 * other_h;
42 }
43 
vp9_scale_mv(const MV * mv,int x,int y,const struct scale_factors * sf)44 MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) {
45   const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK;
46   const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK;
47   const MV32 res = {
48     scaled_y(mv->row, sf) + y_off_q4,
49     scaled_x(mv->col, sf) + x_off_q4
50   };
51   return res;
52 }
53 
vp9_setup_scale_factors_for_frame(struct scale_factors * sf,int other_w,int other_h,int this_w,int this_h)54 void vp9_setup_scale_factors_for_frame(struct scale_factors *sf,
55                                        int other_w, int other_h,
56                                        int this_w, int this_h) {
57   if (!check_scale_factors(other_w, other_h, this_w, this_h)) {
58     sf->x_scale_fp = REF_INVALID_SCALE;
59     sf->y_scale_fp = REF_INVALID_SCALE;
60     return;
61   }
62 
63   sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
64   sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
65   sf->x_step_q4 = scaled_x(16, sf);
66   sf->y_step_q4 = scaled_y(16, sf);
67 
68   if (vp9_is_scaled(sf)) {
69     sf->scale_value_x = scaled_x;
70     sf->scale_value_y = scaled_y;
71   } else {
72     sf->scale_value_x = unscaled_value;
73     sf->scale_value_y = unscaled_value;
74   }
75 
76   // TODO(agrange): Investigate the best choice of functions to use here
77   // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
78   // to do at full-pel offsets. The current selection, where the filter is
79   // applied in one direction only, and not at all for 0,0, seems to give the
80   // best quality, but it may be worth trying an additional mode that does
81   // do the filtering on full-pel.
82   if (sf->x_step_q4 == 16) {
83     if (sf->y_step_q4 == 16) {
84       // No scaling in either direction.
85       sf->predict[0][0][0] = vp9_convolve_copy;
86       sf->predict[0][0][1] = vp9_convolve_avg;
87       sf->predict[0][1][0] = vp9_convolve8_vert;
88       sf->predict[0][1][1] = vp9_convolve8_avg_vert;
89       sf->predict[1][0][0] = vp9_convolve8_horiz;
90       sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
91     } else {
92       // No scaling in x direction. Must always scale in the y direction.
93       sf->predict[0][0][0] = vp9_convolve8_vert;
94       sf->predict[0][0][1] = vp9_convolve8_avg_vert;
95       sf->predict[0][1][0] = vp9_convolve8_vert;
96       sf->predict[0][1][1] = vp9_convolve8_avg_vert;
97       sf->predict[1][0][0] = vp9_convolve8;
98       sf->predict[1][0][1] = vp9_convolve8_avg;
99     }
100   } else {
101     if (sf->y_step_q4 == 16) {
102       // No scaling in the y direction. Must always scale in the x direction.
103       sf->predict[0][0][0] = vp9_convolve8_horiz;
104       sf->predict[0][0][1] = vp9_convolve8_avg_horiz;
105       sf->predict[0][1][0] = vp9_convolve8;
106       sf->predict[0][1][1] = vp9_convolve8_avg;
107       sf->predict[1][0][0] = vp9_convolve8_horiz;
108       sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
109     } else {
110       // Must always scale in both directions.
111       sf->predict[0][0][0] = vp9_convolve8;
112       sf->predict[0][0][1] = vp9_convolve8_avg;
113       sf->predict[0][1][0] = vp9_convolve8;
114       sf->predict[0][1][1] = vp9_convolve8_avg;
115       sf->predict[1][0][0] = vp9_convolve8;
116       sf->predict[1][0][1] = vp9_convolve8_avg;
117     }
118   }
119   // 2D subpel motion always gets filtered in both directions
120   sf->predict[1][1][0] = vp9_convolve8;
121   sf->predict[1][1][1] = vp9_convolve8_avg;
122 }
123