1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14 
15 #include "./vp9_rtcd.h"
16 #include "./vpx_config.h"
17 
18 #include "vpx_ports/vpx_timer.h"
19 
20 #include "vp9/common/vp9_common.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_idct.h"
24 #include "vp9/common/vp9_mvref_common.h"
25 #include "vp9/common/vp9_pred_common.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_reconintra.h"
28 #include "vp9/common/vp9_reconinter.h"
29 #include "vp9/common/vp9_seg_common.h"
30 #include "vp9/common/vp9_systemdependent.h"
31 #include "vp9/common/vp9_tile_common.h"
32 
33 #include "vp9/encoder/vp9_aq_complexity.h"
34 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
35 #include "vp9/encoder/vp9_aq_variance.h"
36 #include "vp9/encoder/vp9_encodeframe.h"
37 #include "vp9/encoder/vp9_encodemb.h"
38 #include "vp9/encoder/vp9_encodemv.h"
39 #include "vp9/encoder/vp9_extend.h"
40 #include "vp9/encoder/vp9_pickmode.h"
41 #include "vp9/encoder/vp9_rdopt.h"
42 #include "vp9/encoder/vp9_segmentation.h"
43 #include "vp9/encoder/vp9_tokenize.h"
44 
45 #define GF_ZEROMV_ZBIN_BOOST 0
46 #define LF_ZEROMV_ZBIN_BOOST 0
47 #define MV_ZBIN_BOOST        0
48 #define SPLIT_MV_ZBIN_BOOST  0
49 #define INTRA_ZBIN_BOOST     0
50 
get_sb_index(MACROBLOCK * x,BLOCK_SIZE subsize)51 static INLINE uint8_t *get_sb_index(MACROBLOCK *x, BLOCK_SIZE subsize) {
52   switch (subsize) {
53     case BLOCK_64X64:
54     case BLOCK_64X32:
55     case BLOCK_32X64:
56     case BLOCK_32X32:
57       return &x->sb_index;
58     case BLOCK_32X16:
59     case BLOCK_16X32:
60     case BLOCK_16X16:
61       return &x->mb_index;
62     case BLOCK_16X8:
63     case BLOCK_8X16:
64     case BLOCK_8X8:
65       return &x->b_index;
66     case BLOCK_8X4:
67     case BLOCK_4X8:
68     case BLOCK_4X4:
69       return &x->ab_index;
70     default:
71       assert(0);
72       return NULL;
73   }
74 }
75 
76 static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
77                               int mi_row, int mi_col, BLOCK_SIZE bsize);
78 
79 static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
80 
81 // activity_avg must be positive, or flat regions could get a zero weight
82 //  (infinite lambda), which confounds analysis.
83 // This also avoids the need for divide by zero checks in
84 //  vp9_activity_masking().
85 #define ACTIVITY_AVG_MIN 64
86 
87 // Motion vector component magnitude threshold for defining fast motion.
88 #define FAST_MOTION_MV_THRESH 24
89 
90 // This is used as a reference when computing the source variance for the
91 //  purposes of activity masking.
92 // Eventually this should be replaced by custom no-reference routines,
93 //  which will be faster.
94 static const uint8_t VP9_VAR_OFFS[64] = {
95   128, 128, 128, 128, 128, 128, 128, 128,
96   128, 128, 128, 128, 128, 128, 128, 128,
97   128, 128, 128, 128, 128, 128, 128, 128,
98   128, 128, 128, 128, 128, 128, 128, 128,
99   128, 128, 128, 128, 128, 128, 128, 128,
100   128, 128, 128, 128, 128, 128, 128, 128,
101   128, 128, 128, 128, 128, 128, 128, 128,
102   128, 128, 128, 128, 128, 128, 128, 128
103 };
104 
get_sby_perpixel_variance(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bs)105 static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi,
106                                               MACROBLOCK *x,
107                                               BLOCK_SIZE bs) {
108   unsigned int var, sse;
109   var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride,
110                            VP9_VAR_OFFS, 0, &sse);
111   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
112 }
113 
get_sby_perpixel_diff_variance(VP9_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bs)114 static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
115                                                    MACROBLOCK *x,
116                                                    int mi_row,
117                                                    int mi_col,
118                                                    BLOCK_SIZE bs) {
119   const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
120   int offset = (mi_row * MI_SIZE) * yv12->y_stride + (mi_col * MI_SIZE);
121   unsigned int var, sse;
122   var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
123                            x->plane[0].src.stride,
124                            yv12->y_buffer + offset,
125                            yv12->y_stride,
126                            &sse);
127   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
128 }
129 
get_rd_var_based_fixed_partition(VP9_COMP * cpi,int mi_row,int mi_col)130 static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi,
131                                                    int mi_row,
132                                                    int mi_col) {
133   unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb,
134                                                     mi_row, mi_col,
135                                                     BLOCK_64X64);
136   if (var < 8)
137     return BLOCK_64X64;
138   else if (var < 128)
139     return BLOCK_32X32;
140   else if (var < 2048)
141     return BLOCK_16X16;
142   else
143     return BLOCK_8X8;
144 }
145 
get_nonrd_var_based_fixed_partition(VP9_COMP * cpi,int mi_row,int mi_col)146 static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi,
147                                                       int mi_row,
148                                                       int mi_col) {
149   unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb,
150                                                     mi_row, mi_col,
151                                                     BLOCK_64X64);
152   if (var < 4)
153     return BLOCK_64X64;
154   else if (var < 10)
155     return BLOCK_32X32;
156   else
157     return BLOCK_16X16;
158 }
159 
160 // Lighter version of set_offsets that only sets the mode info
161 // pointers.
set_modeinfo_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col)162 static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm,
163                                         MACROBLOCKD *const xd,
164                                         int mi_row,
165                                         int mi_col) {
166   const int idx_str = xd->mi_stride * mi_row + mi_col;
167   xd->mi = cm->mi_grid_visible + idx_str;
168   xd->mi[0] = cm->mi + idx_str;
169 }
170 
is_block_in_mb_map(const VP9_COMP * cpi,int mi_row,int mi_col,BLOCK_SIZE bsize)171 static int is_block_in_mb_map(const VP9_COMP *cpi, int mi_row, int mi_col,
172                               BLOCK_SIZE bsize) {
173   const VP9_COMMON *const cm = &cpi->common;
174   const int mb_rows = cm->mb_rows;
175   const int mb_cols = cm->mb_cols;
176   const int mb_row = mi_row >> 1;
177   const int mb_col = mi_col >> 1;
178   const int mb_width = num_8x8_blocks_wide_lookup[bsize] >> 1;
179   const int mb_height = num_8x8_blocks_high_lookup[bsize] >> 1;
180   int r, c;
181   if (bsize <= BLOCK_16X16) {
182     return cpi->active_map[mb_row * mb_cols + mb_col];
183   }
184   for (r = 0; r < mb_height; ++r) {
185     for (c = 0; c < mb_width; ++c) {
186       int row = mb_row + r;
187       int col = mb_col + c;
188       if (row >= mb_rows || col >= mb_cols)
189         continue;
190       if (cpi->active_map[row * mb_cols + col])
191         return 1;
192     }
193   }
194   return 0;
195 }
196 
check_active_map(const VP9_COMP * cpi,const MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize)197 static int check_active_map(const VP9_COMP *cpi, const MACROBLOCK *x,
198                             int mi_row, int mi_col,
199                             BLOCK_SIZE bsize) {
200   if (cpi->active_map_enabled && !x->e_mbd.lossless) {
201     return is_block_in_mb_map(cpi, mi_row, mi_col, bsize);
202   } else {
203     return 1;
204   }
205 }
206 
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE bsize)207 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
208                         int mi_row, int mi_col, BLOCK_SIZE bsize) {
209   MACROBLOCK *const x = &cpi->mb;
210   VP9_COMMON *const cm = &cpi->common;
211   MACROBLOCKD *const xd = &x->e_mbd;
212   MB_MODE_INFO *mbmi;
213   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
214   const int mi_height = num_8x8_blocks_high_lookup[bsize];
215   const int mb_row = mi_row >> 1;
216   const int mb_col = mi_col >> 1;
217   const int idx_map = mb_row * cm->mb_cols + mb_col;
218   const struct segmentation *const seg = &cm->seg;
219 
220   set_skip_context(xd, mi_row, mi_col);
221 
222   // Activity map pointer
223   x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
224   x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
225 
226   set_modeinfo_offsets(cm, xd, mi_row, mi_col);
227 
228   mbmi = &xd->mi[0]->mbmi;
229 
230   // Set up destination pointers.
231   vp9_setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col);
232 
233   // Set up limit values for MV components.
234   // Mv beyond the range do not produce new/different prediction block.
235   x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
236   x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
237   x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
238   x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
239 
240   // Set up distance of MB to edge of frame in 1/8th pel units.
241   assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
242   set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
243                  cm->mi_rows, cm->mi_cols);
244 
245   // Set up source buffers.
246   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
247 
248   // R/D setup.
249   x->rddiv = cpi->RDDIV;
250   x->rdmult = cpi->RDMULT;
251 
252   // Setup segment ID.
253   if (seg->enabled) {
254     if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
255       const uint8_t *const map = seg->update_map ? cpi->segmentation_map
256                                                  : cm->last_frame_seg_map;
257       mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
258     }
259     vp9_init_plane_quantizers(cpi, x);
260 
261     if (seg->enabled && cpi->seg0_cnt > 0 &&
262         !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME) &&
263         vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) {
264       cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
265     } else {
266       const int y = mb_row & ~3;
267       const int x = mb_col & ~3;
268       const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
269       const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
270       const int tile_progress = tile->mi_col_start * cm->mb_rows >> 1;
271       const int mb_cols = (tile->mi_col_end - tile->mi_col_start) >> 1;
272 
273       cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress)
274           << 16) / cm->MBs;
275     }
276 
277     x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
278   } else {
279     mbmi->segment_id = 0;
280     x->encode_breakout = cpi->encode_breakout;
281   }
282 }
283 
duplicate_mode_info_in_sb(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE bsize)284 static void duplicate_mode_info_in_sb(VP9_COMMON * const cm,
285                                      MACROBLOCKD *const xd,
286                                      int mi_row,
287                                      int mi_col,
288                                      BLOCK_SIZE bsize) {
289   const int block_width = num_8x8_blocks_wide_lookup[bsize];
290   const int block_height = num_8x8_blocks_high_lookup[bsize];
291   int i, j;
292   for (j = 0; j < block_height; ++j)
293     for (i = 0; i < block_width; ++i) {
294       if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
295         xd->mi[j * xd->mi_stride + i] = xd->mi[0];
296     }
297 }
298 
set_block_size(VP9_COMP * const cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE bsize)299 static void set_block_size(VP9_COMP * const cpi,
300                            const TileInfo *const tile,
301                            int mi_row, int mi_col,
302                            BLOCK_SIZE bsize) {
303   if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
304     MACROBLOCKD *const xd = &cpi->mb.e_mbd;
305     set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col);
306     xd->mi[0]->mbmi.sb_type = bsize;
307     duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize);
308   }
309 }
310 
311 typedef struct {
312   int64_t sum_square_error;
313   int64_t sum_error;
314   int count;
315   int variance;
316 } var;
317 
318 typedef struct {
319   var none;
320   var horz[2];
321   var vert[2];
322 } partition_variance;
323 
324 typedef struct {
325   partition_variance part_variances;
326   var split[4];
327 } v8x8;
328 
329 typedef struct {
330   partition_variance part_variances;
331   v8x8 split[4];
332 } v16x16;
333 
334 typedef struct {
335   partition_variance part_variances;
336   v16x16 split[4];
337 } v32x32;
338 
339 typedef struct {
340   partition_variance part_variances;
341   v32x32 split[4];
342 } v64x64;
343 
344 typedef struct {
345   partition_variance *part_variances;
346   var *split[4];
347 } variance_node;
348 
349 typedef enum {
350   V16X16,
351   V32X32,
352   V64X64,
353 } TREE_LEVEL;
354 
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)355 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
356   int i;
357   switch (bsize) {
358     case BLOCK_64X64: {
359       v64x64 *vt = (v64x64 *) data;
360       node->part_variances = &vt->part_variances;
361       for (i = 0; i < 4; i++)
362         node->split[i] = &vt->split[i].part_variances.none;
363       break;
364     }
365     case BLOCK_32X32: {
366       v32x32 *vt = (v32x32 *) data;
367       node->part_variances = &vt->part_variances;
368       for (i = 0; i < 4; i++)
369         node->split[i] = &vt->split[i].part_variances.none;
370       break;
371     }
372     case BLOCK_16X16: {
373       v16x16 *vt = (v16x16 *) data;
374       node->part_variances = &vt->part_variances;
375       for (i = 0; i < 4; i++)
376         node->split[i] = &vt->split[i].part_variances.none;
377       break;
378     }
379     case BLOCK_8X8: {
380       v8x8 *vt = (v8x8 *) data;
381       node->part_variances = &vt->part_variances;
382       for (i = 0; i < 4; i++)
383         node->split[i] = &vt->split[i];
384       break;
385     }
386     default: {
387       assert(0);
388     }
389   }
390 }
391 
392 // Set variance values given sum square error, sum error, count.
fill_variance(int64_t s2,int64_t s,int c,var * v)393 static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
394   v->sum_square_error = s2;
395   v->sum_error = s;
396   v->count = c;
397   if (c > 0)
398     v->variance = (int)(256 *
399                         (v->sum_square_error - v->sum_error * v->sum_error /
400                          v->count) / v->count);
401   else
402     v->variance = 0;
403 }
404 
sum_2_variances(const var * a,const var * b,var * r)405 void sum_2_variances(const var *a, const var *b, var *r) {
406   fill_variance(a->sum_square_error + b->sum_square_error,
407                 a->sum_error + b->sum_error, a->count + b->count, r);
408 }
409 
fill_variance_tree(void * data,BLOCK_SIZE bsize)410 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
411   variance_node node;
412   tree_to_node(data, bsize, &node);
413   sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
414   sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
415   sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
416   sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
417   sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
418                   &node.part_variances->none);
419 }
420 
set_vt_partitioning(VP9_COMP * cpi,void * data,const TileInfo * const tile,BLOCK_SIZE bsize,int mi_row,int mi_col,int mi_size)421 static int set_vt_partitioning(VP9_COMP *cpi,
422                                void *data,
423                                const TileInfo *const tile,
424                                BLOCK_SIZE bsize,
425                                int mi_row,
426                                int mi_col,
427                                int mi_size) {
428   VP9_COMMON * const cm = &cpi->common;
429   variance_node vt;
430   const int block_width = num_8x8_blocks_wide_lookup[bsize];
431   const int block_height = num_8x8_blocks_high_lookup[bsize];
432   // TODO(debargha): Choose this more intelligently.
433   const int64_t threshold_multiplier = 25;
434   int64_t threshold = threshold_multiplier * cpi->common.base_qindex;
435   assert(block_height == block_width);
436 
437   tree_to_node(data, bsize, &vt);
438 
439   // Split none is available only if we have more than half a block size
440   // in width and height inside the visible image.
441   if (mi_col + block_width / 2 < cm->mi_cols &&
442       mi_row + block_height / 2 < cm->mi_rows &&
443       vt.part_variances->none.variance < threshold) {
444     set_block_size(cpi, tile, mi_row, mi_col, bsize);
445     return 1;
446   }
447 
448   // Vertical split is available on all but the bottom border.
449   if (mi_row + block_height / 2 < cm->mi_rows &&
450       vt.part_variances->vert[0].variance < threshold &&
451       vt.part_variances->vert[1].variance < threshold) {
452     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
453     set_block_size(cpi, tile, mi_row, mi_col, subsize);
454     set_block_size(cpi, tile, mi_row, mi_col + block_width / 2, subsize);
455     return 1;
456   }
457 
458   // Horizontal split is available on all but the right border.
459   if (mi_col + block_width / 2 < cm->mi_cols &&
460       vt.part_variances->horz[0].variance < threshold &&
461       vt.part_variances->horz[1].variance < threshold) {
462     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
463     set_block_size(cpi, tile, mi_row, mi_col, subsize);
464     set_block_size(cpi, tile, mi_row + block_height / 2, mi_col, subsize);
465     return 1;
466   }
467   return 0;
468 }
469 
470 // TODO(debargha): Fix this function and make it work as expected.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col)471 static void choose_partitioning(VP9_COMP *cpi,
472                                 const TileInfo *const tile,
473                                 int mi_row, int mi_col) {
474   VP9_COMMON * const cm = &cpi->common;
475   MACROBLOCK *x = &cpi->mb;
476   MACROBLOCKD *xd = &cpi->mb.e_mbd;
477 
478   int i, j, k;
479   v64x64 vt;
480   uint8_t *s;
481   const uint8_t *d;
482   int sp;
483   int dp;
484   int pixels_wide = 64, pixels_high = 64;
485   int_mv nearest_mv, near_mv;
486   const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
487   const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf;
488 
489   vp9_zero(vt);
490   set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
491 
492   if (xd->mb_to_right_edge < 0)
493     pixels_wide += (xd->mb_to_right_edge >> 3);
494   if (xd->mb_to_bottom_edge < 0)
495     pixels_high += (xd->mb_to_bottom_edge >> 3);
496 
497   s = x->plane[0].src.buf;
498   sp = x->plane[0].src.stride;
499 
500   if (cm->frame_type != KEY_FRAME) {
501     vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf);
502 
503     xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
504     xd->mi[0]->mbmi.sb_type = BLOCK_64X64;
505     vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv,
506                           xd->mi[0]->mbmi.ref_mvs[LAST_FRAME],
507                           &nearest_mv, &near_mv);
508 
509     xd->mi[0]->mbmi.mv[0] = nearest_mv;
510     vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
511 
512     d = xd->plane[0].dst.buf;
513     dp = xd->plane[0].dst.stride;
514   } else {
515     d = VP9_VAR_OFFS;
516     dp = 0;
517   }
518 
519   // Fill in the entire tree of 8x8 variances for splits.
520   for (i = 0; i < 4; i++) {
521     const int x32_idx = ((i & 1) << 5);
522     const int y32_idx = ((i >> 1) << 5);
523     for (j = 0; j < 4; j++) {
524       const int x16_idx = x32_idx + ((j & 1) << 4);
525       const int y16_idx = y32_idx + ((j >> 1) << 4);
526       v16x16 *vst = &vt.split[i].split[j];
527       for (k = 0; k < 4; k++) {
528         int x_idx = x16_idx + ((k & 1) << 3);
529         int y_idx = y16_idx + ((k >> 1) << 3);
530         unsigned int sse = 0;
531         int sum = 0;
532         if (x_idx < pixels_wide && y_idx < pixels_high)
533           vp9_get_sse_sum_8x8(s + y_idx * sp + x_idx, sp,
534                               d + y_idx * dp + x_idx, dp, &sse, &sum);
535         fill_variance(sse, sum, 64, &vst->split[k].part_variances.none);
536       }
537     }
538   }
539   // Fill the rest of the variance tree by summing split partition values.
540   for (i = 0; i < 4; i++) {
541     for (j = 0; j < 4; j++) {
542       fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
543     }
544     fill_variance_tree(&vt.split[i], BLOCK_32X32);
545   }
546   fill_variance_tree(&vt, BLOCK_64X64);
547 
548   // Now go through the entire structure,  splitting every block size until
549   // we get to one that's got a variance lower than our threshold,  or we
550   // hit 8x8.
551   if (!set_vt_partitioning(cpi, &vt, tile, BLOCK_64X64,
552                            mi_row, mi_col, 8)) {
553     for (i = 0; i < 4; ++i) {
554       const int x32_idx = ((i & 1) << 2);
555       const int y32_idx = ((i >> 1) << 2);
556       if (!set_vt_partitioning(cpi, &vt.split[i], tile, BLOCK_32X32,
557                                (mi_row + y32_idx), (mi_col + x32_idx), 4)) {
558         for (j = 0; j < 4; ++j) {
559           const int x16_idx = ((j & 1) << 1);
560           const int y16_idx = ((j >> 1) << 1);
561           // NOTE: This is a temporary hack to disable 8x8 partitions,
562           // since it works really bad - possibly due to a bug
563 #define DISABLE_8X8_VAR_BASED_PARTITION
564 #ifdef DISABLE_8X8_VAR_BASED_PARTITION
565           if (mi_row + y32_idx + y16_idx + 1 < cm->mi_rows &&
566               mi_row + x32_idx + x16_idx + 1 < cm->mi_cols) {
567             set_block_size(cpi, tile,
568                            (mi_row + y32_idx + y16_idx),
569                            (mi_col + x32_idx + x16_idx),
570                            BLOCK_16X16);
571           } else {
572             for (k = 0; k < 4; ++k) {
573               const int x8_idx = (k & 1);
574               const int y8_idx = (k >> 1);
575               set_block_size(cpi, tile,
576                              (mi_row + y32_idx + y16_idx + y8_idx),
577                              (mi_col + x32_idx + x16_idx + x8_idx),
578                              BLOCK_8X8);
579             }
580           }
581 #else
582           if (!set_vt_partitioning(cpi, &vt.split[i].split[j], tile,
583                                    BLOCK_16X16,
584                                    (mi_row + y32_idx + y16_idx),
585                                    (mi_col + x32_idx + x16_idx), 2)) {
586             for (k = 0; k < 4; ++k) {
587               const int x8_idx = (k & 1);
588               const int y8_idx = (k >> 1);
589               set_block_size(cpi, tile,
590                              (mi_row + y32_idx + y16_idx + y8_idx),
591                              (mi_col + x32_idx + x16_idx + x8_idx),
592                              BLOCK_8X8);
593             }
594           }
595 #endif
596         }
597       }
598     }
599   }
600 }
601 
602 // Original activity measure from Tim T's code.
tt_activity_measure(MACROBLOCK * x)603 static unsigned int tt_activity_measure(MACROBLOCK *x) {
604   unsigned int sse;
605   // TODO: This could also be done over smaller areas (8x8), but that would
606   // require extensive changes elsewhere, as lambda is assumed to be fixed
607   // over an entire MB in most of the code.
608   // Another option is to compute four 8x8 variances, and pick a single
609   // lambda using a non-linear combination (e.g., the smallest, or second
610   // smallest, etc.).
611   const unsigned int act = vp9_variance16x16(x->plane[0].src.buf,
612                                              x->plane[0].src.stride,
613                                              VP9_VAR_OFFS, 0, &sse) << 4;
614   // If the region is flat, lower the activity some more.
615   return act < (8 << 12) ? MIN(act, 5 << 12) : act;
616 }
617 
618 // Stub for alternative experimental activity measures.
alt_activity_measure(MACROBLOCK * x,int use_dc_pred)619 static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) {
620   return vp9_encode_intra(x, use_dc_pred);
621 }
622 
623 // Measure the activity of the current macroblock
624 // What we measure here is TBD so abstracted to this function
625 #define ALT_ACT_MEASURE 1
mb_activity_measure(MACROBLOCK * x,int mb_row,int mb_col)626 static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) {
627   unsigned int mb_activity;
628 
629   if (ALT_ACT_MEASURE) {
630     const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
631 
632     // Or use and alternative.
633     mb_activity = alt_activity_measure(x, use_dc_pred);
634   } else {
635     // Original activity measure from Tim T's code.
636     mb_activity = tt_activity_measure(x);
637   }
638 
639   return MAX(mb_activity, ACTIVITY_AVG_MIN);
640 }
641 
642 // Calculate an "average" mb activity value for the frame
643 #define ACT_MEDIAN 0
calc_av_activity(VP9_COMP * cpi,int64_t activity_sum)644 static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
645 #if ACT_MEDIAN
646   // Find median: Simple n^2 algorithm for experimentation
647   {
648     unsigned int median;
649     unsigned int i, j;
650     unsigned int *sortlist;
651     unsigned int tmp;
652 
653     // Create a list to sort to
654     CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int),
655                     cpi->common.MBs));
656 
657     // Copy map to sort list
658     vpx_memcpy(sortlist, cpi->mb_activity_map,
659         sizeof(unsigned int) * cpi->common.MBs);
660 
661     // Ripple each value down to its correct position
662     for (i = 1; i < cpi->common.MBs; i ++) {
663       for (j = i; j > 0; j --) {
664         if (sortlist[j] < sortlist[j - 1]) {
665           // Swap values
666           tmp = sortlist[j - 1];
667           sortlist[j - 1] = sortlist[j];
668           sortlist[j] = tmp;
669         } else {
670           break;
671         }
672       }
673     }
674 
675     // Even number MBs so estimate median as mean of two either side.
676     median = (1 + sortlist[cpi->common.MBs >> 1] +
677         sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
678 
679     cpi->activity_avg = median;
680 
681     vpx_free(sortlist);
682   }
683 #else
684   // Simple mean for now
685   cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs);
686 #endif  // ACT_MEDIAN
687 
688   if (cpi->activity_avg < ACTIVITY_AVG_MIN)
689     cpi->activity_avg = ACTIVITY_AVG_MIN;
690 
691   // Experimental code: return fixed value normalized for several clips
692   if (ALT_ACT_MEASURE)
693     cpi->activity_avg = 100000;
694 }
695 
696 #define USE_ACT_INDEX   0
697 #define OUTPUT_NORM_ACT_STATS   0
698 
699 #if USE_ACT_INDEX
700 // Calculate an activity index for each mb
calc_activity_index(VP9_COMP * cpi,MACROBLOCK * x)701 static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
702   VP9_COMMON *const cm = &cpi->common;
703   int mb_row, mb_col;
704 
705   int64_t act;
706   int64_t a;
707   int64_t b;
708 
709 #if OUTPUT_NORM_ACT_STATS
710   FILE *f = fopen("norm_act.stt", "a");
711   fprintf(f, "\n%12d\n", cpi->activity_avg);
712 #endif
713 
714   // Reset pointers to start of activity map
715   x->mb_activity_ptr = cpi->mb_activity_map;
716 
717   // Calculate normalized mb activity number.
718   for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
719     // for each macroblock col in image
720     for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
721       // Read activity from the map
722       act = *(x->mb_activity_ptr);
723 
724       // Calculate a normalized activity number
725       a = act + 4 * cpi->activity_avg;
726       b = 4 * act + cpi->activity_avg;
727 
728       if (b >= a)
729       *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
730       else
731       *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
732 
733 #if OUTPUT_NORM_ACT_STATS
734       fprintf(f, " %6d", *(x->mb_activity_ptr));
735 #endif
736       // Increment activity map pointers
737       x->mb_activity_ptr++;
738     }
739 
740 #if OUTPUT_NORM_ACT_STATS
741     fprintf(f, "\n");
742 #endif
743   }
744 
745 #if OUTPUT_NORM_ACT_STATS
746   fclose(f);
747 #endif
748 }
749 #endif  // USE_ACT_INDEX
750 
751 // Loop through all MBs. Note activity of each, average activity and
752 // calculate a normalized activity for each
build_activity_map(VP9_COMP * cpi)753 static void build_activity_map(VP9_COMP *cpi) {
754   MACROBLOCK *const x = &cpi->mb;
755   MACROBLOCKD *xd = &x->e_mbd;
756   VP9_COMMON *const cm = &cpi->common;
757 
758 #if ALT_ACT_MEASURE
759   YV12_BUFFER_CONFIG *new_yv12 = get_frame_new_buffer(cm);
760   int recon_yoffset;
761   int recon_y_stride = new_yv12->y_stride;
762 #endif
763 
764   int mb_row, mb_col;
765   unsigned int mb_activity;
766   int64_t activity_sum = 0;
767 
768   x->mb_activity_ptr = cpi->mb_activity_map;
769 
770   // for each macroblock row in image
771   for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
772 #if ALT_ACT_MEASURE
773     // reset above block coeffs
774     xd->up_available = (mb_row != 0);
775     recon_yoffset = (mb_row * recon_y_stride * 16);
776 #endif
777     // for each macroblock col in image
778     for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
779 #if ALT_ACT_MEASURE
780       xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
781       xd->left_available = (mb_col != 0);
782       recon_yoffset += 16;
783 #endif
784 
785       // measure activity
786       mb_activity = mb_activity_measure(x, mb_row, mb_col);
787 
788       // Keep frame sum
789       activity_sum += mb_activity;
790 
791       // Store MB level activity details.
792       *x->mb_activity_ptr = mb_activity;
793 
794       // Increment activity map pointer
795       x->mb_activity_ptr++;
796 
797       // adjust to the next column of source macroblocks
798       x->plane[0].src.buf += 16;
799     }
800 
801     // adjust to the next row of mbs
802     x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
803   }
804 
805   // Calculate an "average" MB activity
806   calc_av_activity(cpi, activity_sum);
807 
808 #if USE_ACT_INDEX
809   // Calculate an activity index number of each mb
810   calc_activity_index(cpi, x);
811 #endif
812 }
813 
814 // Macroblock activity masking
activity_masking(VP9_COMP * cpi,MACROBLOCK * x)815 static void activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
816 #if USE_ACT_INDEX
817   x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
818   x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
819   x->errorperbit += (x->errorperbit == 0);
820 #else
821   const int64_t act = *(x->mb_activity_ptr);
822 
823   // Apply the masking to the RD multiplier.
824   const int64_t a = act + (2 * cpi->activity_avg);
825   const int64_t b = (2 * act) + cpi->activity_avg;
826 
827   x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a);
828   x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
829   x->errorperbit += (x->errorperbit == 0);
830 #endif
831 
832   // Activity based Zbin adjustment
833   adjust_act_zbin(cpi, x);
834 }
835 
update_state(VP9_COMP * cpi,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)836 static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
837                          int mi_row, int mi_col, BLOCK_SIZE bsize,
838                          int output_enabled) {
839   int i, x_idx, y;
840   VP9_COMMON *const cm = &cpi->common;
841   MACROBLOCK *const x = &cpi->mb;
842   MACROBLOCKD *const xd = &x->e_mbd;
843   struct macroblock_plane *const p = x->plane;
844   struct macroblockd_plane *const pd = xd->plane;
845   MODE_INFO *mi = &ctx->mic;
846   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
847   MODE_INFO *mi_addr = xd->mi[0];
848   const struct segmentation *const seg = &cm->seg;
849 
850   const int mis = cm->mi_stride;
851   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
852   const int mi_height = num_8x8_blocks_high_lookup[bsize];
853   int max_plane;
854 
855   assert(mi->mbmi.sb_type == bsize);
856 
857   *mi_addr = *mi;
858 
859   // If segmentation in use
860   if (seg->enabled && output_enabled) {
861     // For in frame complexity AQ copy the segment id from the segment map.
862     if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
863       const uint8_t *const map = seg->update_map ? cpi->segmentation_map
864                                                  : cm->last_frame_seg_map;
865       mi_addr->mbmi.segment_id =
866         vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
867     }
868     // Else for cyclic refresh mode update the segment map, set the segment id
869     // and then update the quantizer.
870     else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
871       vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
872                                         mi_row, mi_col, bsize, 1);
873       vp9_init_plane_quantizers(cpi, x);
874     }
875   }
876 
877   max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
878   for (i = 0; i < max_plane; ++i) {
879     p[i].coeff = ctx->coeff_pbuf[i][1];
880     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
881     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
882     p[i].eobs = ctx->eobs_pbuf[i][1];
883   }
884 
885   for (i = max_plane; i < MAX_MB_PLANE; ++i) {
886     p[i].coeff = ctx->coeff_pbuf[i][2];
887     p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
888     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
889     p[i].eobs = ctx->eobs_pbuf[i][2];
890   }
891 
892   // Restore the coding context of the MB to that that was in place
893   // when the mode was picked for it
894   for (y = 0; y < mi_height; y++)
895     for (x_idx = 0; x_idx < mi_width; x_idx++)
896       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
897         && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
898         xd->mi[x_idx + y * mis] = mi_addr;
899       }
900 
901   if (cpi->oxcf.aq_mode)
902     vp9_init_plane_quantizers(cpi, x);
903 
904   // FIXME(rbultje) I'm pretty sure this should go to the end of this block
905   // (i.e. after the output_enabled)
906   if (bsize < BLOCK_32X32) {
907     if (bsize < BLOCK_16X16)
908       ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
909     ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
910   }
911 
912   if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
913     mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
914     mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
915   }
916 
917   x->skip = ctx->skip;
918   vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
919              sizeof(uint8_t) * ctx->num_4x4_blk);
920 
921   if (!output_enabled)
922     return;
923 
924   if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
925     for (i = 0; i < TX_MODES; i++)
926       cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i];
927   }
928 
929 #if CONFIG_INTERNAL_STATS
930   if (frame_is_intra_only(cm)) {
931     static const int kf_mode_index[] = {
932       THR_DC        /*DC_PRED*/,
933       THR_V_PRED    /*V_PRED*/,
934       THR_H_PRED    /*H_PRED*/,
935       THR_D45_PRED  /*D45_PRED*/,
936       THR_D135_PRED /*D135_PRED*/,
937       THR_D117_PRED /*D117_PRED*/,
938       THR_D153_PRED /*D153_PRED*/,
939       THR_D207_PRED /*D207_PRED*/,
940       THR_D63_PRED  /*D63_PRED*/,
941       THR_TM        /*TM_PRED*/,
942     };
943     ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
944   } else {
945     // Note how often each mode chosen as best
946     ++cpi->mode_chosen_counts[ctx->best_mode_index];
947   }
948 #endif
949   if (!frame_is_intra_only(cm)) {
950     if (is_inter_block(mbmi)) {
951       vp9_update_mv_count(cm, xd);
952 
953       if (cm->interp_filter == SWITCHABLE) {
954         const int ctx = vp9_get_pred_context_switchable_interp(xd);
955         ++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
956       }
957     }
958 
959     cpi->rd_comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
960     cpi->rd_comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
961     cpi->rd_comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
962 
963     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
964       cpi->rd_filter_diff[i] += ctx->best_filter_diff[i];
965   }
966 }
967 
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)968 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
969                           int mi_row, int mi_col) {
970   uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
971                                src->alpha_buffer};
972   const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
973                           src->alpha_stride};
974   int i;
975 
976   // Set current frame pointer.
977   x->e_mbd.cur_buf = src;
978 
979   for (i = 0; i < MAX_MB_PLANE; i++)
980     setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
981                      NULL, x->e_mbd.plane[i].subsampling_x,
982                      x->e_mbd.plane[i].subsampling_y);
983 }
984 
rd_pick_sb_modes(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,int * totalrate,int64_t * totaldist,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int64_t best_rd)985 static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
986                              int mi_row, int mi_col,
987                              int *totalrate, int64_t *totaldist,
988                              BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
989                              int64_t best_rd) {
990   VP9_COMMON *const cm = &cpi->common;
991   MACROBLOCK *const x = &cpi->mb;
992   MACROBLOCKD *const xd = &x->e_mbd;
993   MB_MODE_INFO *mbmi;
994   struct macroblock_plane *const p = x->plane;
995   struct macroblockd_plane *const pd = xd->plane;
996   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
997   int i, orig_rdmult;
998   double rdmult_ratio;
999 
1000   vp9_clear_system_state();
1001   rdmult_ratio = 1.0;  // avoid uninitialized warnings
1002 
1003   // Use the lower precision, but faster, 32x32 fdct for mode selection.
1004   x->use_lp32x32fdct = 1;
1005 
1006   if (bsize < BLOCK_8X8) {
1007     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
1008     // there is nothing to be done.
1009     if (x->ab_index != 0) {
1010       *totalrate = 0;
1011       *totaldist = 0;
1012       return;
1013     }
1014   }
1015 
1016   set_offsets(cpi, tile, mi_row, mi_col, bsize);
1017   mbmi = &xd->mi[0]->mbmi;
1018   mbmi->sb_type = bsize;
1019 
1020   for (i = 0; i < MAX_MB_PLANE; ++i) {
1021     p[i].coeff = ctx->coeff_pbuf[i][0];
1022     p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
1023     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
1024     p[i].eobs = ctx->eobs_pbuf[i][0];
1025   }
1026   ctx->is_coded = 0;
1027   x->skip_recode = 0;
1028 
1029   // Set to zero to make sure we do not use the previous encoded frame stats
1030   mbmi->skip = 0;
1031 
1032   x->source_variance = get_sby_perpixel_variance(cpi, x, bsize);
1033 
1034   if (aq_mode == VARIANCE_AQ) {
1035     const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
1036                                             : vp9_block_energy(cpi, x, bsize);
1037 
1038     if (cm->frame_type == KEY_FRAME ||
1039         cpi->refresh_alt_ref_frame ||
1040         (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
1041       mbmi->segment_id = vp9_vaq_segment_id(energy);
1042     } else {
1043       const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
1044                                                     : cm->last_frame_seg_map;
1045       mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
1046     }
1047 
1048     rdmult_ratio = vp9_vaq_rdmult_ratio(energy);
1049     vp9_init_plane_quantizers(cpi, x);
1050   }
1051 
1052   // Save rdmult before it might be changed, so it can be restored later.
1053   orig_rdmult = x->rdmult;
1054   if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
1055     activity_masking(cpi, x);
1056 
1057   if (aq_mode == VARIANCE_AQ) {
1058     vp9_clear_system_state();
1059     x->rdmult = (int)round(x->rdmult * rdmult_ratio);
1060   } else if (aq_mode == COMPLEXITY_AQ) {
1061     const int mi_offset = mi_row * cm->mi_cols + mi_col;
1062     unsigned char complexity = cpi->complexity_map[mi_offset];
1063     const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) ||
1064                         (mi_col <= 1) || (mi_col >= (cm->mi_cols - 2));
1065     if (!is_edge && (complexity > 128))
1066       x->rdmult += ((x->rdmult * (complexity - 128)) / 256);
1067   } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
1068     const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
1069         : cm->last_frame_seg_map;
1070     // If segment 1, use rdmult for that segment.
1071     if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col))
1072       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
1073   }
1074 
1075   // Find best coding mode & reconstruct the MB so it is available
1076   // as a predictor for MBs that follow in the SB
1077   if (frame_is_intra_only(cm)) {
1078     vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
1079                               best_rd);
1080   } else {
1081     if (bsize >= BLOCK_8X8)
1082       vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col,
1083                                 totalrate, totaldist, bsize, ctx, best_rd);
1084     else
1085       vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate,
1086                                     totaldist, bsize, ctx, best_rd);
1087   }
1088 
1089   if (aq_mode == VARIANCE_AQ) {
1090     x->rdmult = orig_rdmult;
1091     if (*totalrate != INT_MAX) {
1092       vp9_clear_system_state();
1093       *totalrate = (int)round(*totalrate * rdmult_ratio);
1094     }
1095   } else if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) ||
1096       (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)) {
1097     x->rdmult = orig_rdmult;
1098   }
1099 }
1100 
update_stats(VP9_COMP * cpi)1101 static void update_stats(VP9_COMP *cpi) {
1102   VP9_COMMON *const cm = &cpi->common;
1103   const MACROBLOCK *const x = &cpi->mb;
1104   const MACROBLOCKD *const xd = &x->e_mbd;
1105   const MODE_INFO *const mi = xd->mi[0];
1106   const MB_MODE_INFO *const mbmi = &mi->mbmi;
1107 
1108   if (!frame_is_intra_only(cm)) {
1109     const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
1110                                                      SEG_LVL_REF_FRAME);
1111     if (!seg_ref_active) {
1112       FRAME_COUNTS *const counts = &cm->counts;
1113       const int inter_block = is_inter_block(mbmi);
1114 
1115       counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
1116 
1117       // If the segment reference feature is enabled we have only a single
1118       // reference frame allowed for the segment so exclude it from
1119       // the reference frame counts used to work out probabilities.
1120       if (inter_block) {
1121         const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
1122 
1123         if (cm->reference_mode == REFERENCE_MODE_SELECT)
1124           counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
1125                             [has_second_ref(mbmi)]++;
1126 
1127         if (has_second_ref(mbmi)) {
1128           counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
1129                           [ref0 == GOLDEN_FRAME]++;
1130         } else {
1131           counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
1132                             [ref0 != LAST_FRAME]++;
1133           if (ref0 != LAST_FRAME)
1134             counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
1135                               [ref0 != GOLDEN_FRAME]++;
1136         }
1137       }
1138     }
1139   }
1140 }
1141 
get_sb_partitioning(MACROBLOCK * x,BLOCK_SIZE bsize)1142 static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) {
1143   switch (bsize) {
1144     case BLOCK_64X64:
1145       return &x->sb64_partitioning;
1146     case BLOCK_32X32:
1147       return &x->sb_partitioning[x->sb_index];
1148     case BLOCK_16X16:
1149       return &x->mb_partitioning[x->sb_index][x->mb_index];
1150     case BLOCK_8X8:
1151       return &x->b_partitioning[x->sb_index][x->mb_index][x->b_index];
1152     default:
1153       assert(0);
1154       return NULL;
1155   }
1156 }
1157 
restore_context(VP9_COMP * cpi,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)1158 static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
1159                             ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
1160                             ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
1161                             PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
1162                             BLOCK_SIZE bsize) {
1163   MACROBLOCK *const x = &cpi->mb;
1164   MACROBLOCKD *const xd = &x->e_mbd;
1165   int p;
1166   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
1167   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
1168   int mi_width = num_8x8_blocks_wide_lookup[bsize];
1169   int mi_height = num_8x8_blocks_high_lookup[bsize];
1170   for (p = 0; p < MAX_MB_PLANE; p++) {
1171     vpx_memcpy(
1172         xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
1173         a + num_4x4_blocks_wide * p,
1174         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
1175         xd->plane[p].subsampling_x);
1176     vpx_memcpy(
1177         xd->left_context[p]
1178             + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
1179         l + num_4x4_blocks_high * p,
1180         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
1181         xd->plane[p].subsampling_y);
1182   }
1183   vpx_memcpy(xd->above_seg_context + mi_col, sa,
1184              sizeof(*xd->above_seg_context) * mi_width);
1185   vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
1186              sizeof(xd->left_seg_context[0]) * mi_height);
1187 }
save_context(VP9_COMP * cpi,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)1188 static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
1189                          ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
1190                          ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
1191                          PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
1192                          BLOCK_SIZE bsize) {
1193   const MACROBLOCK *const x = &cpi->mb;
1194   const MACROBLOCKD *const xd = &x->e_mbd;
1195   int p;
1196   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
1197   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
1198   int mi_width = num_8x8_blocks_wide_lookup[bsize];
1199   int mi_height = num_8x8_blocks_high_lookup[bsize];
1200 
1201   // buffer the above/left context information of the block in search.
1202   for (p = 0; p < MAX_MB_PLANE; ++p) {
1203     vpx_memcpy(
1204         a + num_4x4_blocks_wide * p,
1205         xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
1206         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
1207         xd->plane[p].subsampling_x);
1208     vpx_memcpy(
1209         l + num_4x4_blocks_high * p,
1210         xd->left_context[p]
1211             + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
1212         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
1213         xd->plane[p].subsampling_y);
1214   }
1215   vpx_memcpy(sa, xd->above_seg_context + mi_col,
1216              sizeof(*xd->above_seg_context) * mi_width);
1217   vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
1218              sizeof(xd->left_seg_context[0]) * mi_height);
1219 }
1220 
encode_b(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize)1221 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
1222                      TOKENEXTRA **tp, int mi_row, int mi_col,
1223                      int output_enabled, BLOCK_SIZE bsize) {
1224   MACROBLOCK *const x = &cpi->mb;
1225 
1226   if (bsize < BLOCK_8X8) {
1227     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
1228     // there is nothing to be done.
1229     if (x->ab_index > 0)
1230       return;
1231   }
1232   set_offsets(cpi, tile, mi_row, mi_col, bsize);
1233   update_state(cpi, get_block_context(x, bsize), mi_row, mi_col, bsize,
1234                output_enabled);
1235   encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
1236 
1237   if (output_enabled) {
1238     update_stats(cpi);
1239 
1240     (*tp)->token = EOSB_TOKEN;
1241     (*tp)++;
1242   }
1243 }
1244 
encode_sb(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize)1245 static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
1246                       TOKENEXTRA **tp, int mi_row, int mi_col,
1247                       int output_enabled, BLOCK_SIZE bsize) {
1248   VP9_COMMON *const cm = &cpi->common;
1249   MACROBLOCK *const x = &cpi->mb;
1250   MACROBLOCKD *const xd = &x->e_mbd;
1251 
1252   const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
1253   int ctx;
1254   PARTITION_TYPE partition;
1255   BLOCK_SIZE subsize;
1256 
1257   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1258     return;
1259 
1260   if (bsize >= BLOCK_8X8) {
1261     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1262     subsize = *get_sb_partitioning(x, bsize);
1263   } else {
1264     ctx = 0;
1265     subsize = BLOCK_4X4;
1266   }
1267 
1268   partition = partition_lookup[bsl][subsize];
1269 
1270   switch (partition) {
1271     case PARTITION_NONE:
1272       if (output_enabled && bsize >= BLOCK_8X8)
1273         cm->counts.partition[ctx][PARTITION_NONE]++;
1274       encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1275       break;
1276     case PARTITION_VERT:
1277       if (output_enabled)
1278         cm->counts.partition[ctx][PARTITION_VERT]++;
1279       *get_sb_index(x, subsize) = 0;
1280       encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1281       if (mi_col + hbs < cm->mi_cols) {
1282         *get_sb_index(x, subsize) = 1;
1283         encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize);
1284       }
1285       break;
1286     case PARTITION_HORZ:
1287       if (output_enabled)
1288         cm->counts.partition[ctx][PARTITION_HORZ]++;
1289       *get_sb_index(x, subsize) = 0;
1290       encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1291       if (mi_row + hbs < cm->mi_rows) {
1292         *get_sb_index(x, subsize) = 1;
1293         encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize);
1294       }
1295       break;
1296     case PARTITION_SPLIT:
1297       subsize = get_subsize(bsize, PARTITION_SPLIT);
1298       if (output_enabled)
1299         cm->counts.partition[ctx][PARTITION_SPLIT]++;
1300 
1301       *get_sb_index(x, subsize) = 0;
1302       encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1303       *get_sb_index(x, subsize) = 1;
1304       encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize);
1305       *get_sb_index(x, subsize) = 2;
1306       encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize);
1307       *get_sb_index(x, subsize) = 3;
1308       encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
1309                 subsize);
1310       break;
1311     default:
1312       assert("Invalid partition type.");
1313   }
1314 
1315   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
1316     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1317 }
1318 
1319 // Check to see if the given partition size is allowed for a specified number
1320 // of 8x8 block rows and columns remaining in the image.
1321 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)1322 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
1323                                       int rows_left, int cols_left,
1324                                       int *bh, int *bw) {
1325   if (rows_left <= 0 || cols_left <= 0) {
1326     return MIN(bsize, BLOCK_8X8);
1327   } else {
1328     for (; bsize > 0; bsize -= 3) {
1329       *bh = num_8x8_blocks_high_lookup[bsize];
1330       *bw = num_8x8_blocks_wide_lookup[bsize];
1331       if ((*bh <= rows_left) && (*bw <= cols_left)) {
1332         break;
1333       }
1334     }
1335   }
1336   return bsize;
1337 }
1338 
1339 // This function attempts to set all mode info entries in a given SB64
1340 // to the same block partition size.
1341 // However, at the bottom and right borders of the image the requested size
1342 // may not be allowed in which case this code attempts to choose the largest
1343 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)1344 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1345                                    MODE_INFO **mi_8x8, int mi_row, int mi_col,
1346                                    BLOCK_SIZE bsize) {
1347   VP9_COMMON *const cm = &cpi->common;
1348   const int mis = cm->mi_stride;
1349   int row8x8_remaining = tile->mi_row_end - mi_row;
1350   int col8x8_remaining = tile->mi_col_end - mi_col;
1351   int block_row, block_col;
1352   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
1353   int bh = num_8x8_blocks_high_lookup[bsize];
1354   int bw = num_8x8_blocks_wide_lookup[bsize];
1355 
1356   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1357 
1358   // Apply the requested partition size to the SB64 if it is all "in image"
1359   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1360       (row8x8_remaining >= MI_BLOCK_SIZE)) {
1361     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
1362       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
1363         int index = block_row * mis + block_col;
1364         mi_8x8[index] = mi_upper_left + index;
1365         mi_8x8[index]->mbmi.sb_type = bsize;
1366       }
1367     }
1368   } else {
1369     // Else this is a partial SB64.
1370     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
1371       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
1372         int index = block_row * mis + block_col;
1373         // Find a partition size that fits
1374         bsize = find_partition_size(bsize,
1375                                     (row8x8_remaining - block_row),
1376                                     (col8x8_remaining - block_col), &bh, &bw);
1377         mi_8x8[index] = mi_upper_left + index;
1378         mi_8x8[index]->mbmi.sb_type = bsize;
1379       }
1380     }
1381   }
1382 }
1383 
copy_partitioning(VP9_COMMON * cm,MODE_INFO ** mi_8x8,MODE_INFO ** prev_mi_8x8)1384 static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8,
1385                               MODE_INFO **prev_mi_8x8) {
1386   const int mis = cm->mi_stride;
1387   int block_row, block_col;
1388 
1389   for (block_row = 0; block_row < 8; ++block_row) {
1390     for (block_col = 0; block_col < 8; ++block_col) {
1391       MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col];
1392       const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
1393 
1394       if (prev_mi) {
1395         const ptrdiff_t offset = prev_mi - cm->prev_mi;
1396         mi_8x8[block_row * mis + block_col] = cm->mi + offset;
1397         mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type;
1398       }
1399     }
1400   }
1401 }
1402 
sb_has_motion(const VP9_COMMON * cm,MODE_INFO ** prev_mi_8x8)1403 static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8) {
1404   const int mis = cm->mi_stride;
1405   int block_row, block_col;
1406 
1407   if (cm->prev_mi) {
1408     for (block_row = 0; block_row < 8; ++block_row) {
1409       for (block_col = 0; block_col < 8; ++block_col) {
1410         const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col];
1411         if (prev_mi) {
1412           if (abs(prev_mi->mbmi.mv[0].as_mv.row) >= 8 ||
1413               abs(prev_mi->mbmi.mv[0].as_mv.col) >= 8)
1414             return 1;
1415         }
1416       }
1417     }
1418   }
1419   return 0;
1420 }
1421 
update_state_rt(VP9_COMP * cpi,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)1422 static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
1423                             int mi_row, int mi_col, int bsize) {
1424   VP9_COMMON *const cm = &cpi->common;
1425   MACROBLOCK *const x = &cpi->mb;
1426   MACROBLOCKD *const xd = &x->e_mbd;
1427   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
1428   const struct segmentation *const seg = &cm->seg;
1429 
1430   *(xd->mi[0]) = ctx->mic;
1431 
1432   // For in frame adaptive Q, check for reseting the segment_id and updating
1433   // the cyclic refresh map.
1434   if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) {
1435     vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
1436                                       mi_row, mi_col, bsize, 1);
1437     vp9_init_plane_quantizers(cpi, x);
1438   }
1439 
1440   if (is_inter_block(mbmi)) {
1441     vp9_update_mv_count(cm, xd);
1442 
1443     if (cm->interp_filter == SWITCHABLE) {
1444       const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
1445       ++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter];
1446     }
1447   }
1448 
1449   x->skip = ctx->skip;
1450 }
1451 
encode_b_rt(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize)1452 static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
1453                         TOKENEXTRA **tp, int mi_row, int mi_col,
1454                         int output_enabled, BLOCK_SIZE bsize) {
1455   MACROBLOCK *const x = &cpi->mb;
1456 
1457   if (bsize < BLOCK_8X8) {
1458     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
1459     // there is nothing to be done.
1460     if (x->ab_index > 0)
1461       return;
1462   }
1463 
1464   set_offsets(cpi, tile, mi_row, mi_col, bsize);
1465   update_state_rt(cpi, get_block_context(x, bsize), mi_row, mi_col, bsize);
1466 
1467   encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
1468   update_stats(cpi);
1469 
1470   (*tp)->token = EOSB_TOKEN;
1471   (*tp)++;
1472 }
1473 
encode_sb_rt(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize)1474 static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
1475                          TOKENEXTRA **tp, int mi_row, int mi_col,
1476                          int output_enabled, BLOCK_SIZE bsize) {
1477   VP9_COMMON *const cm = &cpi->common;
1478   MACROBLOCK *const x = &cpi->mb;
1479   MACROBLOCKD *const xd = &x->e_mbd;
1480 
1481   const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
1482   int ctx;
1483   PARTITION_TYPE partition;
1484   BLOCK_SIZE subsize;
1485 
1486   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1487     return;
1488 
1489   if (bsize >= BLOCK_8X8) {
1490     MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1491     const int idx_str = xd->mi_stride * mi_row + mi_col;
1492     MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
1493     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1494     subsize = mi_8x8[0]->mbmi.sb_type;
1495   } else {
1496     ctx = 0;
1497     subsize = BLOCK_4X4;
1498   }
1499 
1500   partition = partition_lookup[bsl][subsize];
1501 
1502   switch (partition) {
1503     case PARTITION_NONE:
1504       if (output_enabled && bsize >= BLOCK_8X8)
1505         cm->counts.partition[ctx][PARTITION_NONE]++;
1506       encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1507       break;
1508     case PARTITION_VERT:
1509       if (output_enabled)
1510         cm->counts.partition[ctx][PARTITION_VERT]++;
1511       *get_sb_index(x, subsize) = 0;
1512       encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1513       if (mi_col + hbs < cm->mi_cols) {
1514         *get_sb_index(x, subsize) = 1;
1515         encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
1516                     subsize);
1517       }
1518       break;
1519     case PARTITION_HORZ:
1520       if (output_enabled)
1521         cm->counts.partition[ctx][PARTITION_HORZ]++;
1522       *get_sb_index(x, subsize) = 0;
1523       encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1524       if (mi_row + hbs < cm->mi_rows) {
1525         *get_sb_index(x, subsize) = 1;
1526         encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
1527                     subsize);
1528       }
1529       break;
1530     case PARTITION_SPLIT:
1531       subsize = get_subsize(bsize, PARTITION_SPLIT);
1532       if (output_enabled)
1533         cm->counts.partition[ctx][PARTITION_SPLIT]++;
1534 
1535       *get_sb_index(x, subsize) = 0;
1536       encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize);
1537       *get_sb_index(x, subsize) = 1;
1538       encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
1539                    subsize);
1540       *get_sb_index(x, subsize) = 2;
1541       encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
1542                    subsize);
1543       *get_sb_index(x, subsize) = 3;
1544       encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
1545                    subsize);
1546       break;
1547     default:
1548       assert("Invalid partition type.");
1549   }
1550 
1551   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
1552     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1553 }
1554 
rd_use_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon)1555 static void rd_use_partition(VP9_COMP *cpi,
1556                              const TileInfo *const tile,
1557                              MODE_INFO **mi_8x8,
1558                              TOKENEXTRA **tp, int mi_row, int mi_col,
1559                              BLOCK_SIZE bsize, int *rate, int64_t *dist,
1560                              int do_recon) {
1561   VP9_COMMON *const cm = &cpi->common;
1562   MACROBLOCK *const x = &cpi->mb;
1563   MACROBLOCKD *const xd = &x->e_mbd;
1564   const int mis = cm->mi_stride;
1565   const int bsl = b_width_log2(bsize);
1566   const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
1567   const int bss = (1 << bsl) / 4;
1568   int i, pl;
1569   PARTITION_TYPE partition = PARTITION_NONE;
1570   BLOCK_SIZE subsize;
1571   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1572   PARTITION_CONTEXT sl[8], sa[8];
1573   int last_part_rate = INT_MAX;
1574   int64_t last_part_dist = INT64_MAX;
1575   int64_t last_part_rd = INT64_MAX;
1576   int none_rate = INT_MAX;
1577   int64_t none_dist = INT64_MAX;
1578   int64_t none_rd = INT64_MAX;
1579   int chosen_rate = INT_MAX;
1580   int64_t chosen_dist = INT64_MAX;
1581   int64_t chosen_rd = INT64_MAX;
1582   BLOCK_SIZE sub_subsize = BLOCK_4X4;
1583   int splits_below = 0;
1584   BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
1585   int do_partition_search = 1;
1586 
1587   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1588     return;
1589 
1590   assert(num_4x4_blocks_wide_lookup[bsize] ==
1591          num_4x4_blocks_high_lookup[bsize]);
1592 
1593   partition = partition_lookup[bsl][bs_type];
1594   subsize = get_subsize(bsize, partition);
1595 
1596   if (bsize < BLOCK_8X8) {
1597     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
1598     // there is nothing to be done.
1599     if (x->ab_index != 0) {
1600       *rate = 0;
1601       *dist = 0;
1602       return;
1603     }
1604   } else {
1605     *(get_sb_partitioning(x, bsize)) = subsize;
1606   }
1607   save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1608 
1609   if (bsize == BLOCK_16X16) {
1610     set_offsets(cpi, tile, mi_row, mi_col, bsize);
1611     x->mb_energy = vp9_block_energy(cpi, x, bsize);
1612   } else {
1613     x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
1614   }
1615 
1616   if (!x->in_active_map) {
1617     do_partition_search = 0;
1618     if (mi_row + (mi_step >> 1) < cm->mi_rows &&
1619         mi_col + (mi_step >> 1) < cm->mi_cols) {
1620       *(get_sb_partitioning(x, bsize)) = bsize;
1621       bs_type = mi_8x8[0]->mbmi.sb_type = bsize;
1622       subsize = bsize;
1623       partition = PARTITION_NONE;
1624     }
1625   }
1626   if (do_partition_search &&
1627       cpi->sf.partition_search_type == SEARCH_PARTITION &&
1628       cpi->sf.adjust_partitioning_from_last_frame) {
1629     // Check if any of the sub blocks are further split.
1630     if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
1631       sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
1632       splits_below = 1;
1633       for (i = 0; i < 4; i++) {
1634         int jj = i >> 1, ii = i & 0x01;
1635         MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss];
1636         if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
1637           splits_below = 0;
1638         }
1639       }
1640     }
1641 
1642     // If partition is not none try none unless each of the 4 splits are split
1643     // even further..
1644     if (partition != PARTITION_NONE && !splits_below &&
1645         mi_row + (mi_step >> 1) < cm->mi_rows &&
1646         mi_col + (mi_step >> 1) < cm->mi_cols) {
1647       *(get_sb_partitioning(x, bsize)) = bsize;
1648       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
1649                        get_block_context(x, bsize), INT64_MAX);
1650 
1651       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1652 
1653       if (none_rate < INT_MAX) {
1654         none_rate += x->partition_cost[pl][PARTITION_NONE];
1655         none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist);
1656       }
1657 
1658       restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1659       mi_8x8[0]->mbmi.sb_type = bs_type;
1660       *(get_sb_partitioning(x, bsize)) = subsize;
1661     }
1662   }
1663 
1664   switch (partition) {
1665     case PARTITION_NONE:
1666       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1667                        &last_part_dist, bsize,
1668                        get_block_context(x, bsize), INT64_MAX);
1669       break;
1670     case PARTITION_HORZ:
1671       *get_sb_index(x, subsize) = 0;
1672       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1673                        &last_part_dist, subsize,
1674                        get_block_context(x, subsize), INT64_MAX);
1675       if (last_part_rate != INT_MAX &&
1676           bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
1677         int rt = 0;
1678         int64_t dt = 0;
1679         update_state(cpi, get_block_context(x, subsize), mi_row, mi_col,
1680                      subsize, 0);
1681         encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
1682         *get_sb_index(x, subsize) = 1;
1683         rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt,
1684                          subsize, get_block_context(x, subsize), INT64_MAX);
1685         if (rt == INT_MAX || dt == INT64_MAX) {
1686           last_part_rate = INT_MAX;
1687           last_part_dist = INT64_MAX;
1688           break;
1689         }
1690 
1691         last_part_rate += rt;
1692         last_part_dist += dt;
1693       }
1694       break;
1695     case PARTITION_VERT:
1696       *get_sb_index(x, subsize) = 0;
1697       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1698                        &last_part_dist, subsize,
1699                        get_block_context(x, subsize), INT64_MAX);
1700       if (last_part_rate != INT_MAX &&
1701           bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
1702         int rt = 0;
1703         int64_t dt = 0;
1704         update_state(cpi, get_block_context(x, subsize), mi_row, mi_col,
1705                      subsize, 0);
1706         encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
1707         *get_sb_index(x, subsize) = 1;
1708         rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt,
1709                          subsize, get_block_context(x, subsize), INT64_MAX);
1710         if (rt == INT_MAX || dt == INT64_MAX) {
1711           last_part_rate = INT_MAX;
1712           last_part_dist = INT64_MAX;
1713           break;
1714         }
1715         last_part_rate += rt;
1716         last_part_dist += dt;
1717       }
1718       break;
1719     case PARTITION_SPLIT:
1720       // Split partition.
1721       last_part_rate = 0;
1722       last_part_dist = 0;
1723       for (i = 0; i < 4; i++) {
1724         int x_idx = (i & 1) * (mi_step >> 1);
1725         int y_idx = (i >> 1) * (mi_step >> 1);
1726         int jj = i >> 1, ii = i & 0x01;
1727         int rt;
1728         int64_t dt;
1729 
1730         if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
1731           continue;
1732 
1733         *get_sb_index(x, subsize) = i;
1734 
1735         rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
1736                          mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
1737                          i != 3);
1738         if (rt == INT_MAX || dt == INT64_MAX) {
1739           last_part_rate = INT_MAX;
1740           last_part_dist = INT64_MAX;
1741           break;
1742         }
1743         last_part_rate += rt;
1744         last_part_dist += dt;
1745       }
1746       break;
1747     default:
1748       assert(0);
1749   }
1750 
1751   pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1752   if (last_part_rate < INT_MAX) {
1753     last_part_rate += x->partition_cost[pl][partition];
1754     last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist);
1755   }
1756 
1757   if (do_partition_search
1758       && cpi->sf.adjust_partitioning_from_last_frame
1759       && cpi->sf.partition_search_type == SEARCH_PARTITION
1760       && partition != PARTITION_SPLIT && bsize > BLOCK_8X8
1761       && (mi_row + mi_step < cm->mi_rows ||
1762           mi_row + (mi_step >> 1) == cm->mi_rows)
1763       && (mi_col + mi_step < cm->mi_cols ||
1764           mi_col + (mi_step >> 1) == cm->mi_cols)) {
1765     BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
1766     chosen_rate = 0;
1767     chosen_dist = 0;
1768     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1769 
1770     // Split partition.
1771     for (i = 0; i < 4; i++) {
1772       int x_idx = (i & 1) * (mi_step >> 1);
1773       int y_idx = (i >> 1) * (mi_step >> 1);
1774       int rt = 0;
1775       int64_t dt = 0;
1776       ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1777       PARTITION_CONTEXT sl[8], sa[8];
1778 
1779       if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
1780         continue;
1781 
1782       *get_sb_index(x, split_subsize) = i;
1783       *get_sb_partitioning(x, bsize) = split_subsize;
1784       *get_sb_partitioning(x, split_subsize) = split_subsize;
1785 
1786       save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1787 
1788       rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
1789                        split_subsize, get_block_context(x, split_subsize),
1790                        INT64_MAX);
1791 
1792       restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1793 
1794       if (rt == INT_MAX || dt == INT64_MAX) {
1795         chosen_rate = INT_MAX;
1796         chosen_dist = INT64_MAX;
1797         break;
1798       }
1799 
1800       chosen_rate += rt;
1801       chosen_dist += dt;
1802 
1803       if (i != 3)
1804         encode_sb(cpi, tile, tp,  mi_row + y_idx, mi_col + x_idx, 0,
1805                   split_subsize);
1806 
1807       pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
1808                                    split_subsize);
1809       chosen_rate += x->partition_cost[pl][PARTITION_NONE];
1810     }
1811     pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1812     if (chosen_rate < INT_MAX) {
1813       chosen_rate += x->partition_cost[pl][PARTITION_SPLIT];
1814       chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist);
1815     }
1816   }
1817 
1818   // If last_part is better set the partitioning to that...
1819   if (last_part_rd < chosen_rd) {
1820     mi_8x8[0]->mbmi.sb_type = bsize;
1821     if (bsize >= BLOCK_8X8)
1822       *(get_sb_partitioning(x, bsize)) = subsize;
1823     chosen_rate = last_part_rate;
1824     chosen_dist = last_part_dist;
1825     chosen_rd = last_part_rd;
1826   }
1827   // If none was better set the partitioning to that...
1828   if (none_rd < chosen_rd) {
1829     if (bsize >= BLOCK_8X8)
1830       *(get_sb_partitioning(x, bsize)) = bsize;
1831     chosen_rate = none_rate;
1832     chosen_dist = none_dist;
1833   }
1834 
1835   restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1836 
1837   // We must have chosen a partitioning and encoding or we'll fail later on.
1838   // No other opportunities for success.
1839   if ( bsize == BLOCK_64X64)
1840     assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX);
1841 
1842   if (do_recon) {
1843     int output_enabled = (bsize == BLOCK_64X64);
1844 
1845     // Check the projected output rate for this SB against it's target
1846     // and and if necessary apply a Q delta using segmentation to get
1847     // closer to the target.
1848     if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
1849       vp9_select_in_frame_q_segment(cpi, mi_row, mi_col,
1850                                     output_enabled, chosen_rate);
1851     }
1852 
1853     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1854       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
1855                                               chosen_rate, chosen_dist);
1856 
1857     encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize);
1858   }
1859 
1860   *rate = chosen_rate;
1861   *dist = chosen_dist;
1862 }
1863 
1864 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
1865   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,
1866   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,
1867   BLOCK_8X8,   BLOCK_8X8,   BLOCK_8X8,
1868   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
1869   BLOCK_16X16
1870 };
1871 
1872 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
1873   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16,
1874   BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
1875   BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
1876   BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
1877   BLOCK_64X64
1878 };
1879 
1880 // Look at all the mode_info entries for blocks that are part of this
1881 // partition and find the min and max values for sb_type.
1882 // At the moment this is designed to work on a 64x64 SB but could be
1883 // adjusted to use a size parameter.
1884 //
1885 // The min and max are assumed to have been initialized prior to calling this
1886 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(VP9_COMP * cpi,MODE_INFO ** mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1887 static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8,
1888                                         BLOCK_SIZE * min_block_size,
1889                                         BLOCK_SIZE * max_block_size ) {
1890   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1891   int sb_width_in_blocks = MI_BLOCK_SIZE;
1892   int sb_height_in_blocks  = MI_BLOCK_SIZE;
1893   int i, j;
1894   int index = 0;
1895 
1896   // Check the sb_type for each block that belongs to this region.
1897   for (i = 0; i < sb_height_in_blocks; ++i) {
1898     for (j = 0; j < sb_width_in_blocks; ++j) {
1899       MODE_INFO * mi = mi_8x8[index+j];
1900       BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
1901       *min_block_size = MIN(*min_block_size, sb_type);
1902       *max_block_size = MAX(*max_block_size, sb_type);
1903     }
1904     index += xd->mi_stride;
1905   }
1906 }
1907 
1908 // Next square block size less or equal than current block size.
1909 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
1910   BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
1911   BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
1912   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
1913   BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
1914   BLOCK_64X64
1915 };
1916 
1917 // Look at neighboring blocks and set a min and max partition size based on
1918 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1919 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
1920                                     int mi_row, int mi_col,
1921                                     BLOCK_SIZE *min_block_size,
1922                                     BLOCK_SIZE *max_block_size) {
1923   VP9_COMMON *const cm = &cpi->common;
1924   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1925   MODE_INFO **mi_8x8 = xd->mi;
1926   const int left_in_image = xd->left_available && mi_8x8[-1];
1927   const int above_in_image = xd->up_available &&
1928                              mi_8x8[-xd->mi_stride];
1929   MODE_INFO **above_sb64_mi_8x8;
1930   MODE_INFO **left_sb64_mi_8x8;
1931 
1932   int row8x8_remaining = tile->mi_row_end - mi_row;
1933   int col8x8_remaining = tile->mi_col_end - mi_col;
1934   int bh, bw;
1935   BLOCK_SIZE min_size = BLOCK_4X4;
1936   BLOCK_SIZE max_size = BLOCK_64X64;
1937   // Trap case where we do not have a prediction.
1938   if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
1939     // Default "min to max" and "max to min"
1940     min_size = BLOCK_64X64;
1941     max_size = BLOCK_4X4;
1942 
1943     // NOTE: each call to get_sb_partition_size_range() uses the previous
1944     // passed in values for min and max as a starting point.
1945     // Find the min and max partition used in previous frame at this location
1946     if (cm->frame_type != KEY_FRAME) {
1947       MODE_INFO **const prev_mi =
1948           &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
1949       get_sb_partition_size_range(cpi, prev_mi, &min_size, &max_size);
1950     }
1951     // Find the min and max partition sizes used in the left SB64
1952     if (left_in_image) {
1953       left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE];
1954       get_sb_partition_size_range(cpi, left_sb64_mi_8x8,
1955                                   &min_size, &max_size);
1956     }
1957     // Find the min and max partition sizes used in the above SB64.
1958     if (above_in_image) {
1959       above_sb64_mi_8x8 = &mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE];
1960       get_sb_partition_size_range(cpi, above_sb64_mi_8x8,
1961                                   &min_size, &max_size);
1962     }
1963     // adjust observed min and max
1964     if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
1965       min_size = min_partition_size[min_size];
1966       max_size = max_partition_size[max_size];
1967     }
1968   }
1969 
1970   // Check border cases where max and min from neighbors may not be legal.
1971   max_size = find_partition_size(max_size,
1972                                  row8x8_remaining, col8x8_remaining,
1973                                  &bh, &bw);
1974   min_size = MIN(min_size, max_size);
1975 
1976   // When use_square_partition_only is true, make sure at least one square
1977   // partition is allowed by selecting the next smaller square size as
1978   // *min_block_size.
1979   if (cpi->sf.use_square_partition_only &&
1980       next_square_size[max_size] < min_size) {
1981      min_size = next_square_size[max_size];
1982   }
1983   *min_block_size = min_size;
1984   *max_block_size = max_size;
1985 }
1986 
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)1987 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1988   vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
1989 }
1990 
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)1991 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1992   vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
1993 }
1994 
1995 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
1996 // unlikely to be selected depending on previous rate-distortion optimization
1997 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,int64_t best_rd)1998 static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
1999                               TOKENEXTRA **tp, int mi_row,
2000                               int mi_col, BLOCK_SIZE bsize, int *rate,
2001                               int64_t *dist, int do_recon, int64_t best_rd) {
2002   VP9_COMMON *const cm = &cpi->common;
2003   MACROBLOCK *const x = &cpi->mb;
2004   MACROBLOCKD *const xd = &x->e_mbd;
2005   const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
2006   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2007   PARTITION_CONTEXT sl[8], sa[8];
2008   TOKENEXTRA *tp_orig = *tp;
2009   PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize);
2010   int i, pl;
2011   BLOCK_SIZE subsize;
2012   int this_rate, sum_rate = 0, best_rate = INT_MAX;
2013   int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
2014   int64_t sum_rd = 0;
2015   int do_split = bsize >= BLOCK_8X8;
2016   int do_rect = 1;
2017   // Override skipping rectangular partition operations for edge blocks
2018   const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
2019   const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
2020   const int xss = x->e_mbd.plane[1].subsampling_x;
2021   const int yss = x->e_mbd.plane[1].subsampling_y;
2022 
2023   int partition_none_allowed = !force_horz_split && !force_vert_split;
2024   int partition_horz_allowed = !force_vert_split && yss <= xss &&
2025                                bsize >= BLOCK_8X8;
2026   int partition_vert_allowed = !force_horz_split && xss <= yss &&
2027                                bsize >= BLOCK_8X8;
2028   (void) *tp_orig;
2029 
2030   if (bsize < BLOCK_8X8) {
2031     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
2032     // there is nothing to be done.
2033     if (x->ab_index != 0) {
2034       *rate = 0;
2035       *dist = 0;
2036       return;
2037     }
2038   }
2039   assert(num_8x8_blocks_wide_lookup[bsize] ==
2040              num_8x8_blocks_high_lookup[bsize]);
2041 
2042   if (bsize == BLOCK_16X16) {
2043     set_offsets(cpi, tile, mi_row, mi_col, bsize);
2044     x->mb_energy = vp9_block_energy(cpi, x, bsize);
2045   } else {
2046     x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
2047   }
2048 
2049   // Determine partition types in search according to the speed features.
2050   // The threshold set here has to be of square block size.
2051   if (cpi->sf.auto_min_max_partition_size) {
2052     partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
2053                                bsize >= cpi->sf.min_partition_size);
2054     partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
2055                                 bsize >  cpi->sf.min_partition_size) ||
2056                                 force_horz_split);
2057     partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
2058                                 bsize >  cpi->sf.min_partition_size) ||
2059                                 force_vert_split);
2060     do_split &= bsize > cpi->sf.min_partition_size;
2061   }
2062   if (cpi->sf.use_square_partition_only) {
2063     partition_horz_allowed &= force_horz_split;
2064     partition_vert_allowed &= force_vert_split;
2065   }
2066 
2067   save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2068 
2069   if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
2070     unsigned int source_variancey;
2071     vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
2072     source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
2073     if (source_variancey < cpi->sf.disable_split_var_thresh) {
2074       do_split = 0;
2075       if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
2076         do_rect = 0;
2077     }
2078   }
2079 
2080   if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed))
2081     do_split = 0;
2082   // PARTITION_NONE
2083   if (partition_none_allowed) {
2084     rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
2085                      ctx, best_rd);
2086     if (this_rate != INT_MAX) {
2087       if (bsize >= BLOCK_8X8) {
2088         pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2089         this_rate += x->partition_cost[pl][PARTITION_NONE];
2090       }
2091       sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
2092       if (sum_rd < best_rd) {
2093         int64_t stop_thresh = 4096;
2094         int64_t stop_thresh_rd;
2095 
2096         best_rate = this_rate;
2097         best_dist = this_dist;
2098         best_rd = sum_rd;
2099         if (bsize >= BLOCK_8X8)
2100           *(get_sb_partitioning(x, bsize)) = bsize;
2101 
2102         // Adjust threshold according to partition size.
2103         stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
2104             b_height_log2_lookup[bsize]);
2105 
2106         stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
2107         // If obtained distortion is very small, choose current partition
2108         // and stop splitting.
2109         if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
2110           do_split = 0;
2111           do_rect = 0;
2112         }
2113       }
2114     }
2115     if (!x->in_active_map) {
2116       do_split = 0;
2117       do_rect = 0;
2118     }
2119     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2120   }
2121 
2122   // store estimated motion vector
2123   if (cpi->sf.adaptive_motion_search)
2124     store_pred_mv(x, ctx);
2125 
2126   // PARTITION_SPLIT
2127   sum_rd = 0;
2128   // TODO(jingning): use the motion vectors given by the above search as
2129   // the starting point of motion search in the following partition type check.
2130   if (do_split) {
2131     subsize = get_subsize(bsize, PARTITION_SPLIT);
2132     for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
2133       const int x_idx = (i & 1) * mi_step;
2134       const int y_idx = (i >> 1) * mi_step;
2135 
2136       if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
2137         continue;
2138 
2139       *get_sb_index(x, subsize) = i;
2140       if (cpi->sf.adaptive_motion_search)
2141         load_pred_mv(x, ctx);
2142       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2143           partition_none_allowed)
2144         get_block_context(x, subsize)->pred_interp_filter =
2145             ctx->mic.mbmi.interp_filter;
2146       rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, subsize,
2147                         &this_rate, &this_dist, i != 3, best_rd - sum_rd);
2148 
2149       if (this_rate == INT_MAX) {
2150         sum_rd = INT64_MAX;
2151       } else {
2152         sum_rate += this_rate;
2153         sum_dist += this_dist;
2154         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2155       }
2156     }
2157     if (sum_rd < best_rd && i == 4) {
2158       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2159       sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
2160       sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2161       if (sum_rd < best_rd) {
2162         best_rate = sum_rate;
2163         best_dist = sum_dist;
2164         best_rd = sum_rd;
2165         *(get_sb_partitioning(x, bsize)) = subsize;
2166       }
2167     } else {
2168       // skip rectangular partition test when larger block size
2169       // gives better rd cost
2170       if (cpi->sf.less_rectangular_check)
2171         do_rect &= !partition_none_allowed;
2172     }
2173     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2174   }
2175 
2176   // PARTITION_HORZ
2177   if (partition_horz_allowed && do_rect) {
2178     subsize = get_subsize(bsize, PARTITION_HORZ);
2179     *get_sb_index(x, subsize) = 0;
2180     if (cpi->sf.adaptive_motion_search)
2181       load_pred_mv(x, ctx);
2182     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2183         partition_none_allowed)
2184       get_block_context(x, subsize)->pred_interp_filter =
2185           ctx->mic.mbmi.interp_filter;
2186     rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2187                      get_block_context(x, subsize), best_rd);
2188     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2189 
2190     if (sum_rd < best_rd && mi_row + mi_step < cm->mi_rows) {
2191       update_state(cpi, get_block_context(x, subsize), mi_row, mi_col,
2192                    subsize, 0);
2193       encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
2194 
2195       *get_sb_index(x, subsize) = 1;
2196       if (cpi->sf.adaptive_motion_search)
2197         load_pred_mv(x, ctx);
2198       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2199           partition_none_allowed)
2200         get_block_context(x, subsize)->pred_interp_filter =
2201             ctx->mic.mbmi.interp_filter;
2202       rd_pick_sb_modes(cpi, tile, mi_row + mi_step, mi_col, &this_rate,
2203                        &this_dist, subsize, get_block_context(x, subsize),
2204                        best_rd - sum_rd);
2205       if (this_rate == INT_MAX) {
2206         sum_rd = INT64_MAX;
2207       } else {
2208         sum_rate += this_rate;
2209         sum_dist += this_dist;
2210         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2211       }
2212     }
2213     if (sum_rd < best_rd) {
2214       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2215       sum_rate += x->partition_cost[pl][PARTITION_HORZ];
2216       sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2217       if (sum_rd < best_rd) {
2218         best_rd = sum_rd;
2219         best_rate = sum_rate;
2220         best_dist = sum_dist;
2221         *(get_sb_partitioning(x, bsize)) = subsize;
2222       }
2223     }
2224     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2225   }
2226 
2227   // PARTITION_VERT
2228   if (partition_vert_allowed && do_rect) {
2229     subsize = get_subsize(bsize, PARTITION_VERT);
2230 
2231     *get_sb_index(x, subsize) = 0;
2232     if (cpi->sf.adaptive_motion_search)
2233       load_pred_mv(x, ctx);
2234     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2235         partition_none_allowed)
2236       get_block_context(x, subsize)->pred_interp_filter =
2237           ctx->mic.mbmi.interp_filter;
2238     rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2239                      get_block_context(x, subsize), best_rd);
2240     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2241     if (sum_rd < best_rd && mi_col + mi_step < cm->mi_cols) {
2242       update_state(cpi, get_block_context(x, subsize), mi_row, mi_col,
2243                    subsize, 0);
2244       encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
2245 
2246       *get_sb_index(x, subsize) = 1;
2247       if (cpi->sf.adaptive_motion_search)
2248         load_pred_mv(x, ctx);
2249       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2250           partition_none_allowed)
2251         get_block_context(x, subsize)->pred_interp_filter =
2252             ctx->mic.mbmi.interp_filter;
2253       rd_pick_sb_modes(cpi, tile, mi_row, mi_col + mi_step, &this_rate,
2254                        &this_dist, subsize, get_block_context(x, subsize),
2255                        best_rd - sum_rd);
2256       if (this_rate == INT_MAX) {
2257         sum_rd = INT64_MAX;
2258       } else {
2259         sum_rate += this_rate;
2260         sum_dist += this_dist;
2261         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2262       }
2263     }
2264     if (sum_rd < best_rd) {
2265       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2266       sum_rate += x->partition_cost[pl][PARTITION_VERT];
2267       sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2268       if (sum_rd < best_rd) {
2269         best_rate = sum_rate;
2270         best_dist = sum_dist;
2271         best_rd = sum_rd;
2272         *(get_sb_partitioning(x, bsize)) = subsize;
2273       }
2274     }
2275     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2276   }
2277 
2278   // TODO(jbb): This code added so that we avoid static analysis
2279   // warning related to the fact that best_rd isn't used after this
2280   // point.  This code should be refactored so that the duplicate
2281   // checks occur in some sub function and thus are used...
2282   (void) best_rd;
2283   *rate = best_rate;
2284   *dist = best_dist;
2285 
2286   if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
2287     int output_enabled = (bsize == BLOCK_64X64);
2288 
2289     // Check the projected output rate for this SB against it's target
2290     // and and if necessary apply a Q delta using segmentation to get
2291     // closer to the target.
2292     if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
2293       vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
2294                                     best_rate);
2295     }
2296 
2297     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2298       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
2299                                               best_rate, best_dist);
2300 
2301     encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize);
2302   }
2303   if (bsize == BLOCK_64X64) {
2304     assert(tp_orig < *tp);
2305     assert(best_rate < INT_MAX);
2306     assert(best_dist < INT64_MAX);
2307   } else {
2308     assert(tp_orig == *tp);
2309   }
2310 }
2311 
encode_rd_sb_row(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,TOKENEXTRA ** tp)2312 static void encode_rd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
2313                              int mi_row, TOKENEXTRA **tp) {
2314   VP9_COMMON *const cm = &cpi->common;
2315   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
2316   int mi_col;
2317 
2318   // Initialize the left context for the new SB row
2319   vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
2320   vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
2321 
2322   // Code each SB in the row
2323   for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
2324        mi_col += MI_BLOCK_SIZE) {
2325     int dummy_rate;
2326     int64_t dummy_dist;
2327 
2328     BLOCK_SIZE i;
2329     MACROBLOCK *x = &cpi->mb;
2330 
2331     if (cpi->sf.adaptive_pred_interp_filter) {
2332       for (i = BLOCK_4X4; i < BLOCK_8X8; ++i) {
2333         const int num_4x4_w = num_4x4_blocks_wide_lookup[i];
2334         const int num_4x4_h = num_4x4_blocks_high_lookup[i];
2335         const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h);
2336         for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index)
2337           for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index)
2338             for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index)
2339               get_block_context(x, i)->pred_interp_filter = SWITCHABLE;
2340       }
2341     }
2342 
2343     vp9_zero(cpi->mb.pred_mv);
2344 
2345     if ((cpi->sf.partition_search_type == SEARCH_PARTITION &&
2346          cpi->sf.use_lastframe_partitioning) ||
2347         cpi->sf.partition_search_type == FIXED_PARTITION ||
2348         cpi->sf.partition_search_type == VAR_BASED_PARTITION ||
2349         cpi->sf.partition_search_type == VAR_BASED_FIXED_PARTITION) {
2350       const int idx_str = cm->mi_stride * mi_row + mi_col;
2351       MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
2352       MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
2353       cpi->mb.source_variance = UINT_MAX;
2354       if (cpi->sf.partition_search_type == FIXED_PARTITION) {
2355         set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2356         set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col,
2357                                cpi->sf.always_this_block_size);
2358         rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
2359                          &dummy_rate, &dummy_dist, 1);
2360       } else if (cpi->sf.partition_search_type == VAR_BASED_FIXED_PARTITION) {
2361         BLOCK_SIZE bsize;
2362         set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2363         bsize = get_rd_var_based_fixed_partition(cpi, mi_row, mi_col);
2364         set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, bsize);
2365         rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
2366                          &dummy_rate, &dummy_dist, 1);
2367       } else if (cpi->sf.partition_search_type == VAR_BASED_PARTITION) {
2368         choose_partitioning(cpi, tile, mi_row, mi_col);
2369         rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
2370                          &dummy_rate, &dummy_dist, 1);
2371       } else {
2372         if ((cm->current_video_frame
2373             % cpi->sf.last_partitioning_redo_frequency) == 0
2374             || cm->prev_mi == 0
2375             || cm->show_frame == 0
2376             || cm->frame_type == KEY_FRAME
2377             || cpi->rc.is_src_frame_alt_ref
2378             || ((cpi->sf.use_lastframe_partitioning ==
2379                  LAST_FRAME_PARTITION_LOW_MOTION) &&
2380                  sb_has_motion(cm, prev_mi_8x8))) {
2381           // If required set upper and lower partition size limits
2382           if (cpi->sf.auto_min_max_partition_size) {
2383             set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2384             rd_auto_partition_range(cpi, tile, mi_row, mi_col,
2385                                     &cpi->sf.min_partition_size,
2386                                     &cpi->sf.max_partition_size);
2387           }
2388           rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
2389                             &dummy_rate, &dummy_dist, 1, INT64_MAX);
2390         } else {
2391           copy_partitioning(cm, mi_8x8, prev_mi_8x8);
2392           rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
2393                            &dummy_rate, &dummy_dist, 1);
2394         }
2395       }
2396     } else {
2397       // If required set upper and lower partition size limits
2398       if (cpi->sf.auto_min_max_partition_size) {
2399         set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2400         rd_auto_partition_range(cpi, tile, mi_row, mi_col,
2401                                 &cpi->sf.min_partition_size,
2402                                 &cpi->sf.max_partition_size);
2403       }
2404       rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
2405                         &dummy_rate, &dummy_dist, 1, INT64_MAX);
2406     }
2407   }
2408 }
2409 
init_encode_frame_mb_context(VP9_COMP * cpi)2410 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
2411   MACROBLOCK *const x = &cpi->mb;
2412   VP9_COMMON *const cm = &cpi->common;
2413   MACROBLOCKD *const xd = &x->e_mbd;
2414   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2415 
2416   x->act_zbin_adj = 0;
2417   cpi->seg0_idx = 0;
2418 
2419   // Copy data over into macro block data structures.
2420   vp9_setup_src_planes(x, cpi->Source, 0, 0);
2421 
2422   // TODO(jkoleszar): are these initializations required?
2423   vp9_setup_pre_planes(xd, 0, get_ref_frame_buffer(cpi, LAST_FRAME), 0, 0,
2424                        NULL);
2425   vp9_setup_dst_planes(xd, get_frame_new_buffer(cm), 0, 0);
2426 
2427   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
2428 
2429   xd->mi[0]->mbmi.mode = DC_PRED;
2430   xd->mi[0]->mbmi.uv_mode = DC_PRED;
2431 
2432   // Note: this memset assumes above_context[0], [1] and [2]
2433   // are allocated as part of the same buffer.
2434   vpx_memset(xd->above_context[0], 0,
2435              sizeof(*xd->above_context[0]) *
2436              2 * aligned_mi_cols * MAX_MB_PLANE);
2437   vpx_memset(xd->above_seg_context, 0,
2438              sizeof(*xd->above_seg_context) * aligned_mi_cols);
2439 }
2440 
switch_lossless_mode(VP9_COMP * cpi,int lossless)2441 static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
2442   if (lossless) {
2443     // printf("Switching to lossless\n");
2444     cpi->mb.fwd_txm4x4 = vp9_fwht4x4;
2445     cpi->mb.e_mbd.itxm_add = vp9_iwht4x4_add;
2446     cpi->mb.optimize = 0;
2447     cpi->common.lf.filter_level = 0;
2448     cpi->zbin_mode_boost_enabled = 0;
2449     cpi->common.tx_mode = ONLY_4X4;
2450   } else {
2451     // printf("Not lossless\n");
2452     cpi->mb.fwd_txm4x4 = vp9_fdct4x4;
2453     cpi->mb.e_mbd.itxm_add = vp9_idct4x4_add;
2454   }
2455 }
2456 
check_dual_ref_flags(VP9_COMP * cpi)2457 static int check_dual_ref_flags(VP9_COMP *cpi) {
2458   const int ref_flags = cpi->ref_frame_flags;
2459 
2460   if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
2461     return 0;
2462   } else {
2463     return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
2464         + !!(ref_flags & VP9_ALT_FLAG)) >= 2;
2465   }
2466 }
2467 
get_skip_flag(MODE_INFO ** mi_8x8,int mis,int ymbs,int xmbs)2468 static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) {
2469   int x, y;
2470 
2471   for (y = 0; y < ymbs; y++) {
2472     for (x = 0; x < xmbs; x++) {
2473       if (!mi_8x8[y * mis + x]->mbmi.skip)
2474         return 0;
2475     }
2476   }
2477 
2478   return 1;
2479 }
2480 
reset_skip_txfm_size(VP9_COMMON * cm,TX_SIZE txfm_max)2481 static void reset_skip_txfm_size(VP9_COMMON *cm, TX_SIZE txfm_max) {
2482   int mi_row, mi_col;
2483   const int mis = cm->mi_stride;
2484   MODE_INFO **mi_ptr = cm->mi_grid_visible;
2485 
2486   for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
2487     for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
2488       if (mi_ptr[mi_col]->mbmi.tx_size > txfm_max)
2489         mi_ptr[mi_col]->mbmi.tx_size = txfm_max;
2490     }
2491   }
2492 }
2493 
get_frame_type(const VP9_COMP * cpi)2494 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
2495   if (frame_is_intra_only(&cpi->common))
2496     return INTRA_FRAME;
2497   else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
2498     return ALTREF_FRAME;
2499   else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
2500     return LAST_FRAME;
2501   else
2502     return GOLDEN_FRAME;
2503 }
2504 
select_tx_mode(const VP9_COMP * cpi)2505 static TX_MODE select_tx_mode(const VP9_COMP *cpi) {
2506   if (cpi->oxcf.lossless) {
2507     return ONLY_4X4;
2508   } else if (cpi->common.current_video_frame == 0) {
2509     return TX_MODE_SELECT;
2510   } else {
2511     if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
2512       return ALLOW_32X32;
2513     } else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
2514       const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
2515       return cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >
2516                  cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
2517                      ALLOW_32X32 : TX_MODE_SELECT;
2518     } else {
2519       unsigned int total = 0;
2520       int i;
2521       for (i = 0; i < TX_SIZES; ++i)
2522         total += cpi->tx_stepdown_count[i];
2523 
2524       if (total) {
2525         const double fraction = (double)cpi->tx_stepdown_count[0] / total;
2526         return fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
2527       } else {
2528         return cpi->common.tx_mode;
2529       }
2530     }
2531   }
2532 }
2533 
2534 // Start RTC Exploration
2535 typedef enum {
2536   BOTH_ZERO = 0,
2537   ZERO_PLUS_PREDICTED = 1,
2538   BOTH_PREDICTED = 2,
2539   NEW_PLUS_NON_INTRA = 3,
2540   BOTH_NEW = 4,
2541   INTRA_PLUS_NON_INTRA = 5,
2542   BOTH_INTRA = 6,
2543   INVALID_CASE = 9
2544 } motion_vector_context;
2545 
set_mode_info(MB_MODE_INFO * mbmi,BLOCK_SIZE bsize,MB_PREDICTION_MODE mode)2546 static void set_mode_info(MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
2547                           MB_PREDICTION_MODE mode) {
2548   mbmi->mode = mode;
2549   mbmi->uv_mode = mode;
2550   mbmi->mv[0].as_int = 0;
2551   mbmi->mv[1].as_int = 0;
2552   mbmi->ref_frame[0] = INTRA_FRAME;
2553   mbmi->ref_frame[1] = NONE;
2554   mbmi->tx_size = max_txsize_lookup[bsize];
2555   mbmi->skip = 0;
2556   mbmi->sb_type = bsize;
2557   mbmi->segment_id = 0;
2558 }
2559 
nonrd_pick_sb_modes(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,int * rate,int64_t * dist,BLOCK_SIZE bsize)2560 static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
2561                                 int mi_row, int mi_col,
2562                                 int *rate, int64_t *dist,
2563                                 BLOCK_SIZE bsize) {
2564   VP9_COMMON *const cm = &cpi->common;
2565   MACROBLOCK *const x = &cpi->mb;
2566   MACROBLOCKD *const xd = &x->e_mbd;
2567   set_offsets(cpi, tile, mi_row, mi_col, bsize);
2568   xd->mi[0]->mbmi.sb_type = bsize;
2569 
2570   if (!frame_is_intra_only(cm)) {
2571     vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col,
2572                         rate, dist, bsize);
2573   } else {
2574     MB_PREDICTION_MODE intramode = DC_PRED;
2575     set_mode_info(&xd->mi[0]->mbmi, bsize, intramode);
2576   }
2577   duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2578 }
2579 
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE subsize)2580 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
2581                               int mi_row, int mi_col,
2582                               BLOCK_SIZE bsize, BLOCK_SIZE subsize) {
2583   MACROBLOCKD *xd = &x->e_mbd;
2584   int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
2585   PARTITION_TYPE partition = partition_lookup[bsl][subsize];
2586 
2587   assert(bsize >= BLOCK_8X8);
2588 
2589   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
2590     return;
2591 
2592   switch (partition) {
2593     case PARTITION_NONE:
2594       set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2595       *(xd->mi[0]) = get_block_context(x, subsize)->mic;
2596       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2597       break;
2598     case PARTITION_VERT:
2599       *get_sb_index(x, subsize) = 0;
2600       set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2601       *(xd->mi[0]) = get_block_context(x, subsize)->mic;
2602       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2603 
2604       if (mi_col + hbs < cm->mi_cols) {
2605         *get_sb_index(x, subsize) = 1;
2606         set_modeinfo_offsets(cm, xd, mi_row, mi_col + hbs);
2607         *(xd->mi[0]) = get_block_context(x, subsize)->mic;
2608         duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, bsize);
2609       }
2610       break;
2611     case PARTITION_HORZ:
2612       *get_sb_index(x, subsize) = 0;
2613       set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2614       *(xd->mi[0]) = get_block_context(x, subsize)->mic;
2615       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2616       if (mi_row + hbs < cm->mi_rows) {
2617         *get_sb_index(x, subsize) = 1;
2618         set_modeinfo_offsets(cm, xd, mi_row + hbs, mi_col);
2619         *(xd->mi[0]) = get_block_context(x, subsize)->mic;
2620         duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, bsize);
2621       }
2622       break;
2623     case PARTITION_SPLIT:
2624       *get_sb_index(x, subsize) = 0;
2625       fill_mode_info_sb(cm, x, mi_row, mi_col, subsize,
2626                         *(get_sb_partitioning(x, subsize)));
2627       *get_sb_index(x, subsize) = 1;
2628       fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
2629                         *(get_sb_partitioning(x, subsize)));
2630       *get_sb_index(x, subsize) = 2;
2631       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
2632                         *(get_sb_partitioning(x, subsize)));
2633       *get_sb_index(x, subsize) = 3;
2634       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
2635                         *(get_sb_partitioning(x, subsize)));
2636       break;
2637     default:
2638       break;
2639   }
2640 }
2641 
nonrd_pick_partition(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,int64_t best_rd)2642 static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
2643                                  TOKENEXTRA **tp, int mi_row,
2644                                  int mi_col, BLOCK_SIZE bsize, int *rate,
2645                                  int64_t *dist, int do_recon, int64_t best_rd) {
2646   VP9_COMMON *const cm = &cpi->common;
2647   MACROBLOCK *const x = &cpi->mb;
2648   MACROBLOCKD *const xd = &x->e_mbd;
2649   const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
2650   TOKENEXTRA *tp_orig = *tp;
2651   PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize);
2652   int i;
2653   BLOCK_SIZE subsize;
2654   int this_rate, sum_rate = 0, best_rate = INT_MAX;
2655   int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
2656   int64_t sum_rd = 0;
2657   int do_split = bsize >= BLOCK_8X8;
2658   int do_rect = 1;
2659   // Override skipping rectangular partition operations for edge blocks
2660   const int force_horz_split = (mi_row + ms >= cm->mi_rows);
2661   const int force_vert_split = (mi_col + ms >= cm->mi_cols);
2662   const int xss = x->e_mbd.plane[1].subsampling_x;
2663   const int yss = x->e_mbd.plane[1].subsampling_y;
2664 
2665   int partition_none_allowed = !force_horz_split && !force_vert_split;
2666   int partition_horz_allowed = !force_vert_split && yss <= xss &&
2667                                bsize >= BLOCK_8X8;
2668   int partition_vert_allowed = !force_horz_split && xss <= yss &&
2669                                bsize >= BLOCK_8X8;
2670   (void) *tp_orig;
2671 
2672   if (bsize < BLOCK_8X8) {
2673     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
2674     // there is nothing to be done.
2675     if (x->ab_index != 0) {
2676       *rate = 0;
2677       *dist = 0;
2678       return;
2679     }
2680   }
2681 
2682   assert(num_8x8_blocks_wide_lookup[bsize] ==
2683              num_8x8_blocks_high_lookup[bsize]);
2684 
2685   x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
2686 
2687   // Determine partition types in search according to the speed features.
2688   // The threshold set here has to be of square block size.
2689   if (cpi->sf.auto_min_max_partition_size) {
2690     partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
2691                                bsize >= cpi->sf.min_partition_size);
2692     partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
2693                                 bsize >  cpi->sf.min_partition_size) ||
2694                                 force_horz_split);
2695     partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
2696                                 bsize >  cpi->sf.min_partition_size) ||
2697                                 force_vert_split);
2698     do_split &= bsize > cpi->sf.min_partition_size;
2699   }
2700   if (cpi->sf.use_square_partition_only) {
2701     partition_horz_allowed &= force_horz_split;
2702     partition_vert_allowed &= force_vert_split;
2703   }
2704 
2705   if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed))
2706     do_split = 0;
2707 
2708   // PARTITION_NONE
2709   if (partition_none_allowed) {
2710     nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2711                         &this_rate, &this_dist, bsize);
2712     ctx->mic.mbmi = xd->mi[0]->mbmi;
2713 
2714     if (this_rate != INT_MAX) {
2715       int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2716       this_rate += x->partition_cost[pl][PARTITION_NONE];
2717       sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
2718       if (sum_rd < best_rd) {
2719         int64_t stop_thresh = 4096;
2720         int64_t stop_thresh_rd;
2721 
2722         best_rate = this_rate;
2723         best_dist = this_dist;
2724         best_rd = sum_rd;
2725         if (bsize >= BLOCK_8X8)
2726           *(get_sb_partitioning(x, bsize)) = bsize;
2727 
2728         // Adjust threshold according to partition size.
2729         stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
2730             b_height_log2_lookup[bsize]);
2731 
2732         stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
2733         // If obtained distortion is very small, choose current partition
2734         // and stop splitting.
2735         if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
2736           do_split = 0;
2737           do_rect = 0;
2738         }
2739       }
2740     }
2741     if (!x->in_active_map) {
2742       do_split = 0;
2743       do_rect = 0;
2744     }
2745   }
2746 
2747   // store estimated motion vector
2748   store_pred_mv(x, ctx);
2749 
2750   // PARTITION_SPLIT
2751   sum_rd = 0;
2752   if (do_split) {
2753     int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2754     sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
2755     subsize = get_subsize(bsize, PARTITION_SPLIT);
2756     for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
2757       const int x_idx = (i & 1) * ms;
2758       const int y_idx = (i >> 1) * ms;
2759 
2760       if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
2761         continue;
2762 
2763       *get_sb_index(x, subsize) = i;
2764       load_pred_mv(x, ctx);
2765 
2766       nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
2767                            subsize, &this_rate, &this_dist, 0,
2768                            best_rd - sum_rd);
2769 
2770       if (this_rate == INT_MAX) {
2771         sum_rd = INT64_MAX;
2772       } else {
2773         sum_rate += this_rate;
2774         sum_dist += this_dist;
2775         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2776       }
2777     }
2778 
2779     if (sum_rd < best_rd) {
2780       best_rate = sum_rate;
2781       best_dist = sum_dist;
2782       best_rd = sum_rd;
2783       *(get_sb_partitioning(x, bsize)) = subsize;
2784     } else {
2785       // skip rectangular partition test when larger block size
2786       // gives better rd cost
2787       if (cpi->sf.less_rectangular_check)
2788         do_rect &= !partition_none_allowed;
2789     }
2790   }
2791 
2792   // PARTITION_HORZ
2793   if (partition_horz_allowed && do_rect) {
2794     subsize = get_subsize(bsize, PARTITION_HORZ);
2795     *get_sb_index(x, subsize) = 0;
2796     if (cpi->sf.adaptive_motion_search)
2797       load_pred_mv(x, ctx);
2798 
2799     nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2800                         &this_rate, &this_dist, subsize);
2801 
2802     get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2803 
2804     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2805 
2806     if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
2807       *get_sb_index(x, subsize) = 1;
2808 
2809       load_pred_mv(x, ctx);
2810 
2811       nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col,
2812                           &this_rate, &this_dist, subsize);
2813 
2814       get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2815 
2816       if (this_rate == INT_MAX) {
2817         sum_rd = INT64_MAX;
2818       } else {
2819         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2820         this_rate += x->partition_cost[pl][PARTITION_HORZ];
2821         sum_rate += this_rate;
2822         sum_dist += this_dist;
2823         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2824       }
2825     }
2826     if (sum_rd < best_rd) {
2827       best_rd = sum_rd;
2828       best_rate = sum_rate;
2829       best_dist = sum_dist;
2830       *(get_sb_partitioning(x, bsize)) = subsize;
2831     }
2832   }
2833 
2834   // PARTITION_VERT
2835   if (partition_vert_allowed && do_rect) {
2836     subsize = get_subsize(bsize, PARTITION_VERT);
2837 
2838     *get_sb_index(x, subsize) = 0;
2839     if (cpi->sf.adaptive_motion_search)
2840       load_pred_mv(x, ctx);
2841 
2842     nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2843                         &this_rate, &this_dist, subsize);
2844     get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2845     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2846     if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
2847       *get_sb_index(x, subsize) = 1;
2848 
2849       load_pred_mv(x, ctx);
2850 
2851       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms,
2852                           &this_rate, &this_dist, subsize);
2853 
2854       get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2855 
2856       if (this_rate == INT_MAX) {
2857         sum_rd = INT64_MAX;
2858       } else {
2859         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2860         this_rate += x->partition_cost[pl][PARTITION_VERT];
2861         sum_rate += this_rate;
2862         sum_dist += this_dist;
2863         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2864       }
2865     }
2866     if (sum_rd < best_rd) {
2867       best_rate = sum_rate;
2868       best_dist = sum_dist;
2869       best_rd = sum_rd;
2870       *(get_sb_partitioning(x, bsize)) = subsize;
2871     }
2872   }
2873 
2874   *rate = best_rate;
2875   *dist = best_dist;
2876 
2877   if (best_rate == INT_MAX)
2878     return;
2879 
2880   // update mode info array
2881   fill_mode_info_sb(cm, x, mi_row, mi_col, bsize,
2882                     *(get_sb_partitioning(x, bsize)));
2883 
2884   if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
2885     int output_enabled = (bsize == BLOCK_64X64);
2886 
2887     // Check the projected output rate for this SB against it's target
2888     // and and if necessary apply a Q delta using segmentation to get
2889     // closer to the target.
2890     if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
2891       vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
2892                                     best_rate);
2893     }
2894 
2895     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2896       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
2897                                               best_rate, best_dist);
2898 
2899     encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize);
2900   }
2901 
2902   if (bsize == BLOCK_64X64) {
2903     assert(tp_orig < *tp);
2904     assert(best_rate < INT_MAX);
2905     assert(best_dist < INT64_MAX);
2906   } else {
2907     assert(tp_orig == *tp);
2908   }
2909 }
2910 
nonrd_use_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,int * totrate,int64_t * totdist)2911 static void nonrd_use_partition(VP9_COMP *cpi,
2912                                 const TileInfo *const tile,
2913                                 MODE_INFO **mi_8x8,
2914                                 TOKENEXTRA **tp,
2915                                 int mi_row, int mi_col,
2916                                 BLOCK_SIZE bsize, int output_enabled,
2917                                 int *totrate, int64_t *totdist) {
2918   VP9_COMMON *const cm = &cpi->common;
2919   MACROBLOCK *const x = &cpi->mb;
2920   MACROBLOCKD *const xd = &x->e_mbd;
2921   const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
2922   const int mis = cm->mi_stride;
2923   PARTITION_TYPE partition;
2924   BLOCK_SIZE subsize;
2925   int rate = INT_MAX;
2926   int64_t dist = INT64_MAX;
2927 
2928   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
2929     return;
2930 
2931   if (bsize >= BLOCK_8X8) {
2932     subsize = mi_8x8[0]->mbmi.sb_type;
2933   } else {
2934     subsize = BLOCK_4X4;
2935   }
2936 
2937   partition = partition_lookup[bsl][subsize];
2938 
2939   switch (partition) {
2940     case PARTITION_NONE:
2941       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
2942       get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2943       break;
2944     case PARTITION_VERT:
2945       *get_sb_index(x, subsize) = 0;
2946       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
2947       get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2948       if (mi_col + hbs < cm->mi_cols) {
2949         *get_sb_index(x, subsize) = 1;
2950         nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
2951                             &rate, &dist, subsize);
2952         get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2953         if (rate != INT_MAX && dist != INT64_MAX &&
2954             *totrate != INT_MAX && *totdist != INT64_MAX) {
2955           *totrate += rate;
2956           *totdist += dist;
2957         }
2958       }
2959       break;
2960     case PARTITION_HORZ:
2961       *get_sb_index(x, subsize) = 0;
2962       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
2963       get_block_context(x, subsize)->mic.mbmi = xd->mi[0]->mbmi;
2964       if (mi_row + hbs < cm->mi_rows) {
2965         *get_sb_index(x, subsize) = 1;
2966         nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
2967                             &rate, &dist, subsize);
2968         get_block_context(x, subsize)->mic.mbmi = mi_8x8[0]->mbmi;
2969         if (rate != INT_MAX && dist != INT64_MAX &&
2970             *totrate != INT_MAX && *totdist != INT64_MAX) {
2971           *totrate += rate;
2972           *totdist += dist;
2973         }
2974       }
2975       break;
2976     case PARTITION_SPLIT:
2977       subsize = get_subsize(bsize, PARTITION_SPLIT);
2978       *get_sb_index(x, subsize) = 0;
2979       nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col,
2980                           subsize, output_enabled, totrate, totdist);
2981       *get_sb_index(x, subsize) = 1;
2982       nonrd_use_partition(cpi, tile, mi_8x8 + hbs, tp,
2983                           mi_row, mi_col + hbs, subsize, output_enabled,
2984                           &rate, &dist);
2985       if (rate != INT_MAX && dist != INT64_MAX &&
2986           *totrate != INT_MAX && *totdist != INT64_MAX) {
2987         *totrate += rate;
2988         *totdist += dist;
2989       }
2990       *get_sb_index(x, subsize) = 2;
2991       nonrd_use_partition(cpi, tile, mi_8x8 + hbs * mis, tp,
2992                           mi_row + hbs, mi_col, subsize, output_enabled,
2993                           &rate, &dist);
2994       if (rate != INT_MAX && dist != INT64_MAX &&
2995           *totrate != INT_MAX && *totdist != INT64_MAX) {
2996         *totrate += rate;
2997         *totdist += dist;
2998       }
2999       *get_sb_index(x, subsize) = 3;
3000       nonrd_use_partition(cpi, tile, mi_8x8 + hbs * mis + hbs, tp,
3001                           mi_row + hbs, mi_col + hbs, subsize, output_enabled,
3002                           &rate, &dist);
3003       if (rate != INT_MAX && dist != INT64_MAX &&
3004           *totrate != INT_MAX && *totdist != INT64_MAX) {
3005         *totrate += rate;
3006         *totdist += dist;
3007       }
3008       break;
3009     default:
3010       assert("Invalid partition type.");
3011   }
3012 
3013   if (bsize == BLOCK_64X64 && output_enabled) {
3014     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
3015       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
3016                                               *totrate, *totdist);
3017     encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize);
3018   }
3019 }
3020 
encode_nonrd_sb_row(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,TOKENEXTRA ** tp)3021 static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
3022                                 int mi_row, TOKENEXTRA **tp) {
3023   VP9_COMMON *cm = &cpi->common;
3024   MACROBLOCKD *xd = &cpi->mb.e_mbd;
3025   int mi_col;
3026 
3027   // Initialize the left context for the new SB row
3028   vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
3029   vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
3030 
3031   // Code each SB in the row
3032   for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
3033        mi_col += MI_BLOCK_SIZE) {
3034     int dummy_rate = 0;
3035     int64_t dummy_dist = 0;
3036     const int idx_str = cm->mi_stride * mi_row + mi_col;
3037     MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
3038     MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
3039 
3040     BLOCK_SIZE bsize = cpi->sf.partition_search_type == FIXED_PARTITION ?
3041         cpi->sf.always_this_block_size :
3042         get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
3043 
3044     cpi->mb.source_variance = UINT_MAX;
3045     vp9_zero(cpi->mb.pred_mv);
3046 
3047     // Set the partition type of the 64X64 block
3048     switch (cpi->sf.partition_search_type) {
3049       case VAR_BASED_PARTITION:
3050         choose_partitioning(cpi, tile, mi_row, mi_col);
3051         nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
3052                             1, &dummy_rate, &dummy_dist);
3053         break;
3054       case VAR_BASED_FIXED_PARTITION:
3055       case FIXED_PARTITION:
3056         set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, bsize);
3057         nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
3058                             1, &dummy_rate, &dummy_dist);
3059         break;
3060       case REFERENCE_PARTITION:
3061         if (cpi->sf.partition_check || sb_has_motion(cm, prev_mi_8x8)) {
3062           nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
3063                                &dummy_rate, &dummy_dist, 1, INT64_MAX);
3064         } else {
3065           copy_partitioning(cm, mi_8x8, prev_mi_8x8);
3066           nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col,
3067                               BLOCK_64X64, 1, &dummy_rate, &dummy_dist);
3068         }
3069         break;
3070       default:
3071         assert(0);
3072     }
3073   }
3074 }
3075 // end RTC play code
3076 
encode_frame_internal(VP9_COMP * cpi)3077 static void encode_frame_internal(VP9_COMP *cpi) {
3078   int mi_row;
3079   MACROBLOCK *const x = &cpi->mb;
3080   VP9_COMMON *const cm = &cpi->common;
3081   MACROBLOCKD *const xd = &x->e_mbd;
3082 
3083 //  fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
3084 //           cpi->common.current_video_frame, cpi->common.show_frame,
3085 //           cm->frame_type);
3086 
3087   xd->mi = cm->mi_grid_visible;
3088   xd->mi[0] = cm->mi;
3089 
3090   vp9_zero(cm->counts);
3091   vp9_zero(cpi->coef_counts);
3092   vp9_zero(cpi->tx_stepdown_count);
3093 
3094   // Set frame level transform size use case
3095   cm->tx_mode = select_tx_mode(cpi);
3096 
3097   cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
3098       && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
3099   switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
3100 
3101   vp9_frame_init_quantizer(cpi);
3102 
3103   vp9_initialize_rd_consts(cpi);
3104   vp9_initialize_me_consts(cpi, cm->base_qindex);
3105 
3106   if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
3107     // Initialize encode frame context.
3108     init_encode_frame_mb_context(cpi);
3109 
3110     // Build a frame level activity map
3111     build_activity_map(cpi);
3112   }
3113 
3114   // Re-initialize encode frame context.
3115   init_encode_frame_mb_context(cpi);
3116 
3117   vp9_zero(cpi->rd_comp_pred_diff);
3118   vp9_zero(cpi->rd_filter_diff);
3119   vp9_zero(cpi->rd_tx_select_diff);
3120   vp9_zero(cpi->rd_tx_select_threshes);
3121 
3122   set_prev_mi(cm);
3123 
3124   if (cpi->sf.use_nonrd_pick_mode) {
3125     // Initialize internal buffer pointers for rtc coding, where non-RD
3126     // mode decision is used and hence no buffer pointer swap needed.
3127     int i;
3128     struct macroblock_plane *const p = x->plane;
3129     struct macroblockd_plane *const pd = xd->plane;
3130     PICK_MODE_CONTEXT *ctx = &cpi->mb.sb64_context;
3131 
3132     for (i = 0; i < MAX_MB_PLANE; ++i) {
3133       p[i].coeff = ctx->coeff_pbuf[i][0];
3134       p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
3135       pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
3136       p[i].eobs = ctx->eobs_pbuf[i][0];
3137     }
3138     vp9_zero(x->zcoeff_blk);
3139   }
3140 
3141   {
3142     struct vpx_usec_timer emr_timer;
3143     vpx_usec_timer_start(&emr_timer);
3144 
3145     {
3146       // Take tiles into account and give start/end MB
3147       int tile_col, tile_row;
3148       TOKENEXTRA *tp = cpi->tok;
3149       const int tile_cols = 1 << cm->log2_tile_cols;
3150       const int tile_rows = 1 << cm->log2_tile_rows;
3151 
3152       for (tile_row = 0; tile_row < tile_rows; tile_row++) {
3153         for (tile_col = 0; tile_col < tile_cols; tile_col++) {
3154           TileInfo tile;
3155           TOKENEXTRA *tp_old = tp;
3156 
3157           // For each row of SBs in the frame
3158           vp9_tile_init(&tile, cm, tile_row, tile_col);
3159           for (mi_row = tile.mi_row_start;
3160                mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) {
3161             if (cpi->sf.use_nonrd_pick_mode && cm->frame_type != KEY_FRAME)
3162               encode_nonrd_sb_row(cpi, &tile, mi_row, &tp);
3163             else
3164               encode_rd_sb_row(cpi, &tile, mi_row, &tp);
3165           }
3166           cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
3167           assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
3168         }
3169       }
3170     }
3171 
3172     vpx_usec_timer_mark(&emr_timer);
3173     cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
3174   }
3175 
3176   if (cpi->sf.skip_encode_sb) {
3177     int j;
3178     unsigned int intra_count = 0, inter_count = 0;
3179     for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
3180       intra_count += cm->counts.intra_inter[j][0];
3181       inter_count += cm->counts.intra_inter[j][1];
3182     }
3183     cpi->sf.skip_encode_frame = (intra_count << 2) < inter_count &&
3184                                 cm->frame_type != KEY_FRAME &&
3185                                 cm->show_frame;
3186   } else {
3187     cpi->sf.skip_encode_frame = 0;
3188   }
3189 
3190 #if 0
3191   // Keep record of the total distortion this time around for future use
3192   cpi->last_frame_distortion = cpi->frame_distortion;
3193 #endif
3194 }
3195 
vp9_encode_frame(VP9_COMP * cpi)3196 void vp9_encode_frame(VP9_COMP *cpi) {
3197   VP9_COMMON *const cm = &cpi->common;
3198 
3199   // In the longer term the encoder should be generalized to match the
3200   // decoder such that we allow compound where one of the 3 buffers has a
3201   // different sign bias and that buffer is then the fixed ref. However, this
3202   // requires further work in the rd loop. For now the only supported encoder
3203   // side behavior is where the ALT ref buffer has opposite sign bias to
3204   // the other two.
3205   if (!frame_is_intra_only(cm)) {
3206     if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
3207              cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
3208         (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
3209              cm->ref_frame_sign_bias[LAST_FRAME])) {
3210       cm->allow_comp_inter_inter = 0;
3211     } else {
3212       cm->allow_comp_inter_inter = 1;
3213       cm->comp_fixed_ref = ALTREF_FRAME;
3214       cm->comp_var_ref[0] = LAST_FRAME;
3215       cm->comp_var_ref[1] = GOLDEN_FRAME;
3216     }
3217   }
3218 
3219   if (cpi->sf.frame_parameter_update) {
3220     int i;
3221     REFERENCE_MODE reference_mode;
3222     /*
3223      * This code does a single RD pass over the whole frame assuming
3224      * either compound, single or hybrid prediction as per whatever has
3225      * worked best for that type of frame in the past.
3226      * It also predicts whether another coding mode would have worked
3227      * better that this coding mode. If that is the case, it remembers
3228      * that for subsequent frames.
3229      * It does the same analysis for transform size selection also.
3230      */
3231     const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
3232     const int64_t *mode_thresh = cpi->rd_prediction_type_threshes[frame_type];
3233     const int64_t *filter_thresh = cpi->rd_filter_threshes[frame_type];
3234 
3235     /* prediction (compound, single or hybrid) mode selection */
3236     if (frame_type == 3 || !cm->allow_comp_inter_inter)
3237       reference_mode = SINGLE_REFERENCE;
3238     else if (mode_thresh[COMPOUND_REFERENCE] > mode_thresh[SINGLE_REFERENCE] &&
3239              mode_thresh[COMPOUND_REFERENCE] >
3240                  mode_thresh[REFERENCE_MODE_SELECT] &&
3241              check_dual_ref_flags(cpi) &&
3242              cpi->static_mb_pct == 100)
3243       reference_mode = COMPOUND_REFERENCE;
3244     else if (mode_thresh[SINGLE_REFERENCE] > mode_thresh[REFERENCE_MODE_SELECT])
3245       reference_mode = SINGLE_REFERENCE;
3246     else
3247       reference_mode = REFERENCE_MODE_SELECT;
3248 
3249     if (cm->interp_filter == SWITCHABLE) {
3250       if (frame_type != ALTREF_FRAME &&
3251           filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP] &&
3252           filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP_SHARP] &&
3253           filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[SWITCHABLE - 1]) {
3254         cm->interp_filter = EIGHTTAP_SMOOTH;
3255       } else if (filter_thresh[EIGHTTAP_SHARP] > filter_thresh[EIGHTTAP] &&
3256           filter_thresh[EIGHTTAP_SHARP] > filter_thresh[SWITCHABLE - 1]) {
3257         cm->interp_filter = EIGHTTAP_SHARP;
3258       } else if (filter_thresh[EIGHTTAP] > filter_thresh[SWITCHABLE - 1]) {
3259         cm->interp_filter = EIGHTTAP;
3260       }
3261     }
3262 
3263     cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
3264     cm->reference_mode = reference_mode;
3265 
3266     encode_frame_internal(cpi);
3267 
3268     for (i = 0; i < REFERENCE_MODES; ++i) {
3269       const int diff = (int) (cpi->rd_comp_pred_diff[i] / cm->MBs);
3270       cpi->rd_prediction_type_threshes[frame_type][i] += diff;
3271       cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
3272     }
3273 
3274     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
3275       const int64_t diff = cpi->rd_filter_diff[i] / cm->MBs;
3276       cpi->rd_filter_threshes[frame_type][i] =
3277           (cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
3278     }
3279 
3280     for (i = 0; i < TX_MODES; ++i) {
3281       int64_t pd = cpi->rd_tx_select_diff[i];
3282       int diff;
3283       if (i == TX_MODE_SELECT)
3284         pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
3285       diff = (int) (pd / cm->MBs);
3286       cpi->rd_tx_select_threshes[frame_type][i] += diff;
3287       cpi->rd_tx_select_threshes[frame_type][i] /= 2;
3288     }
3289 
3290     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
3291       int single_count_zero = 0;
3292       int comp_count_zero = 0;
3293 
3294       for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
3295         single_count_zero += cm->counts.comp_inter[i][0];
3296         comp_count_zero += cm->counts.comp_inter[i][1];
3297       }
3298 
3299       if (comp_count_zero == 0) {
3300         cm->reference_mode = SINGLE_REFERENCE;
3301         vp9_zero(cm->counts.comp_inter);
3302       } else if (single_count_zero == 0) {
3303         cm->reference_mode = COMPOUND_REFERENCE;
3304         vp9_zero(cm->counts.comp_inter);
3305       }
3306     }
3307 
3308     if (cm->tx_mode == TX_MODE_SELECT) {
3309       int count4x4 = 0;
3310       int count8x8_lp = 0, count8x8_8x8p = 0;
3311       int count16x16_16x16p = 0, count16x16_lp = 0;
3312       int count32x32 = 0;
3313 
3314       for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
3315         count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
3316         count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
3317         count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
3318 
3319         count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
3320         count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
3321         count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
3322 
3323         count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
3324         count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
3325         count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
3326       }
3327 
3328       if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
3329           count32x32 == 0) {
3330         cm->tx_mode = ALLOW_8X8;
3331         reset_skip_txfm_size(cm, TX_8X8);
3332       } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
3333                  count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
3334         cm->tx_mode = ONLY_4X4;
3335         reset_skip_txfm_size(cm, TX_4X4);
3336       } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
3337         cm->tx_mode = ALLOW_32X32;
3338       } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
3339         cm->tx_mode = ALLOW_16X16;
3340         reset_skip_txfm_size(cm, TX_16X16);
3341       }
3342     }
3343   } else {
3344     cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
3345     cm->reference_mode = SINGLE_REFERENCE;
3346     // Force the usage of the BILINEAR interp_filter.
3347     cm->interp_filter = BILINEAR;
3348     encode_frame_internal(cpi);
3349   }
3350 }
3351 
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)3352 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
3353   const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
3354   const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
3355   const BLOCK_SIZE bsize = mi->mbmi.sb_type;
3356 
3357   if (bsize < BLOCK_8X8) {
3358     int idx, idy;
3359     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
3360     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
3361     for (idy = 0; idy < 2; idy += num_4x4_h)
3362       for (idx = 0; idx < 2; idx += num_4x4_w)
3363         ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
3364   } else {
3365     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
3366   }
3367 
3368   ++counts->uv_mode[y_mode][uv_mode];
3369 }
3370 
3371 // Experimental stub function to create a per MB zbin adjustment based on
3372 // some previously calculated measure of MB activity.
adjust_act_zbin(VP9_COMP * cpi,MACROBLOCK * x)3373 static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
3374 #if USE_ACT_INDEX
3375   x->act_zbin_adj = *(x->mb_activity_ptr);
3376 #else
3377   // Apply the masking to the RD multiplier.
3378   const int64_t act = *(x->mb_activity_ptr);
3379   const int64_t a = act + 4 * cpi->activity_avg;
3380   const int64_t b = 4 * act + cpi->activity_avg;
3381 
3382   if (act > cpi->activity_avg)
3383     x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
3384   else
3385     x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
3386 #endif
3387 }
3388 
get_zbin_mode_boost(const MB_MODE_INFO * mbmi,int enabled)3389 static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
3390   if (enabled) {
3391     if (is_inter_block(mbmi)) {
3392       if (mbmi->mode == ZEROMV) {
3393         return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
3394                                                 : LF_ZEROMV_ZBIN_BOOST;
3395       } else {
3396         return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
3397                                          : MV_ZBIN_BOOST;
3398       }
3399     } else {
3400       return INTRA_ZBIN_BOOST;
3401     }
3402   } else {
3403     return 0;
3404   }
3405 }
3406 
encode_superblock(VP9_COMP * cpi,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize)3407 static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
3408                               int mi_row, int mi_col, BLOCK_SIZE bsize) {
3409   VP9_COMMON *const cm = &cpi->common;
3410   MACROBLOCK *const x = &cpi->mb;
3411   MACROBLOCKD *const xd = &x->e_mbd;
3412   MODE_INFO **mi_8x8 = xd->mi;
3413   MODE_INFO *mi = mi_8x8[0];
3414   MB_MODE_INFO *mbmi = &mi->mbmi;
3415   PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize);
3416   unsigned int segment_id = mbmi->segment_id;
3417   const int mis = cm->mi_stride;
3418   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
3419   const int mi_height = num_8x8_blocks_high_lookup[bsize];
3420 
3421   x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 &&
3422                    cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
3423                    cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
3424                    cpi->sf.allow_skip_recode;
3425 
3426   x->skip_optimize = ctx->is_coded;
3427   ctx->is_coded = 1;
3428   x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
3429   x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
3430                     x->q_index < QIDX_SKIP_THRESH);
3431 
3432   if (x->skip_encode)
3433     return;
3434 
3435   if (cm->frame_type == KEY_FRAME) {
3436     if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
3437       adjust_act_zbin(cpi, x);
3438       vp9_update_zbin_extra(cpi, x);
3439     }
3440   } else {
3441     set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
3442 
3443     if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
3444       // Adjust the zbin based on this MB rate.
3445       adjust_act_zbin(cpi, x);
3446     }
3447 
3448     // Experimental code. Special case for gf and arf zeromv modes.
3449     // Increase zbin size to suppress noise
3450     cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
3451                                                cpi->zbin_mode_boost_enabled);
3452     vp9_update_zbin_extra(cpi, x);
3453   }
3454 
3455   if (!is_inter_block(mbmi)) {
3456     int plane;
3457     mbmi->skip = 1;
3458     for (plane = 0; plane < MAX_MB_PLANE; ++plane)
3459       vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
3460     if (output_enabled)
3461       sum_intra_stats(&cm->counts, mi);
3462     vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
3463   } else {
3464     int ref;
3465     const int is_compound = has_second_ref(mbmi);
3466     for (ref = 0; ref < 1 + is_compound; ++ref) {
3467       YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
3468                                                      mbmi->ref_frame[ref]);
3469       vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
3470                            &xd->block_refs[ref]->sf);
3471     }
3472     vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
3473 
3474     if (!x->skip) {
3475       mbmi->skip = 1;
3476       vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
3477       vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
3478     } else {
3479       mbmi->skip = 1;
3480       if (output_enabled)
3481         cm->counts.skip[vp9_get_skip_context(xd)][1]++;
3482       reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
3483     }
3484   }
3485 
3486   if (output_enabled) {
3487     if (cm->tx_mode == TX_MODE_SELECT &&
3488         mbmi->sb_type >= BLOCK_8X8  &&
3489         !(is_inter_block(mbmi) &&
3490             (mbmi->skip ||
3491              vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
3492       ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
3493                       &cm->counts.tx)[mbmi->tx_size];
3494     } else {
3495       int x, y;
3496       TX_SIZE tx_size;
3497       // The new intra coding scheme requires no change of transform size
3498       if (is_inter_block(&mi->mbmi)) {
3499         tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
3500                       max_txsize_lookup[bsize]);
3501       } else {
3502         tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
3503       }
3504 
3505       for (y = 0; y < mi_height; y++)
3506         for (x = 0; x < mi_width; x++)
3507           if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
3508             mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
3509     }
3510   }
3511 }
3512