1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <math.h>
12 #include "./vpx_dsp_rtcd.h"
13 #include "vpx_dsp/ssim.h"
14 #include "vpx_ports/mem.h"
15 #include "vpx_ports/system_state.h"
16 
vpx_ssim_parms_16x16_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)17 void vpx_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r,
18                             int rp, uint32_t *sum_s, uint32_t *sum_r,
19                             uint32_t *sum_sq_s, uint32_t *sum_sq_r,
20                             uint32_t *sum_sxr) {
21   int i, j;
22   for (i = 0; i < 16; i++, s += sp, r += rp) {
23     for (j = 0; j < 16; j++) {
24       *sum_s += s[j];
25       *sum_r += r[j];
26       *sum_sq_s += s[j] * s[j];
27       *sum_sq_r += r[j] * r[j];
28       *sum_sxr += s[j] * r[j];
29     }
30   }
31 }
vpx_ssim_parms_8x8_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)32 void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
33                           uint32_t *sum_s, uint32_t *sum_r,
34                           uint32_t *sum_sq_s, uint32_t *sum_sq_r,
35                           uint32_t *sum_sxr) {
36   int i, j;
37   for (i = 0; i < 8; i++, s += sp, r += rp) {
38     for (j = 0; j < 8; j++) {
39       *sum_s += s[j];
40       *sum_r += r[j];
41       *sum_sq_s += s[j] * s[j];
42       *sum_sq_r += r[j] * r[j];
43       *sum_sxr += s[j] * r[j];
44     }
45   }
46 }
47 
48 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_ssim_parms_8x8_c(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)49 void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp,
50                                  const uint16_t *r, int rp,
51                                  uint32_t *sum_s, uint32_t *sum_r,
52                                  uint32_t *sum_sq_s, uint32_t *sum_sq_r,
53                                  uint32_t *sum_sxr) {
54   int i, j;
55   for (i = 0; i < 8; i++, s += sp, r += rp) {
56     for (j = 0; j < 8; j++) {
57       *sum_s += s[j];
58       *sum_r += r[j];
59       *sum_sq_s += s[j] * s[j];
60       *sum_sq_r += r[j] * r[j];
61       *sum_sxr += s[j] * r[j];
62     }
63   }
64 }
65 #endif  // CONFIG_VP9_HIGHBITDEPTH
66 
67 static const int64_t cc1 =  26634;  // (64^2*(.01*255)^2
68 static const int64_t cc2 = 239708;  // (64^2*(.03*255)^2
69 
similarity(uint32_t sum_s,uint32_t sum_r,uint32_t sum_sq_s,uint32_t sum_sq_r,uint32_t sum_sxr,int count)70 static double similarity(uint32_t sum_s, uint32_t sum_r,
71                          uint32_t sum_sq_s, uint32_t sum_sq_r,
72                          uint32_t sum_sxr, int count) {
73   int64_t ssim_n, ssim_d;
74   int64_t c1, c2;
75 
76   // scale the constants by number of pixels
77   c1 = (cc1 * count * count) >> 12;
78   c2 = (cc2 * count * count) >> 12;
79 
80   ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr -
81                                        (int64_t) 2 * sum_s * sum_r + c2);
82 
83   ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
84            ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
85             (int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2);
86 
87   return ssim_n * 1.0 / ssim_d;
88 }
89 
ssim_8x8(const uint8_t * s,int sp,const uint8_t * r,int rp)90 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
91   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
92   vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
93                      &sum_sxr);
94   return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64);
95 }
96 
97 #if CONFIG_VP9_HIGHBITDEPTH
highbd_ssim_8x8(const uint16_t * s,int sp,const uint16_t * r,int rp,unsigned int bd)98 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
99                               int rp, unsigned int bd) {
100   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
101   const int oshift = bd - 8;
102   vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
103                             &sum_sxr);
104   return similarity(sum_s >> oshift,
105                     sum_r >> oshift,
106                     sum_sq_s >> (2 * oshift),
107                     sum_sq_r >> (2 * oshift),
108                     sum_sxr >> (2 * oshift),
109                     64);
110 }
111 #endif  // CONFIG_VP9_HIGHBITDEPTH
112 
113 // We are using a 8x8 moving window with starting location of each 8x8 window
114 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
115 // block boundaries to penalize blocking artifacts.
vpx_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height)116 static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2,
117                         int stride_img1, int stride_img2, int width,
118                         int height) {
119   int i, j;
120   int samples = 0;
121   double ssim_total = 0;
122 
123   // sample point start with each 4x4 location
124   for (i = 0; i <= height - 8;
125        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
126     for (j = 0; j <= width - 8; j += 4) {
127       double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
128       ssim_total += v;
129       samples++;
130     }
131   }
132   ssim_total /= samples;
133   return ssim_total;
134 }
135 
136 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height,unsigned int bd)137 static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
138                                int stride_img1, int stride_img2, int width,
139                                int height, unsigned int bd) {
140   int i, j;
141   int samples = 0;
142   double ssim_total = 0;
143 
144   // sample point start with each 4x4 location
145   for (i = 0; i <= height - 8;
146        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
147     for (j = 0; j <= width - 8; j += 4) {
148       double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
149                                  CONVERT_TO_SHORTPTR(img2 + j), stride_img2,
150                                  bd);
151       ssim_total += v;
152       samples++;
153     }
154   }
155   ssim_total /= samples;
156   return ssim_total;
157 }
158 #endif  // CONFIG_VP9_HIGHBITDEPTH
159 
vpx_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight)160 double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source,
161                      const YV12_BUFFER_CONFIG *dest,
162                      double *weight) {
163   double a, b, c;
164   double ssimv;
165 
166   a = vpx_ssim2(source->y_buffer, dest->y_buffer,
167                 source->y_stride, dest->y_stride,
168                 source->y_crop_width, source->y_crop_height);
169 
170   b = vpx_ssim2(source->u_buffer, dest->u_buffer,
171                 source->uv_stride, dest->uv_stride,
172                 source->uv_crop_width, source->uv_crop_height);
173 
174   c = vpx_ssim2(source->v_buffer, dest->v_buffer,
175                 source->uv_stride, dest->uv_stride,
176                 source->uv_crop_width, source->uv_crop_height);
177 
178   ssimv = a * .8 + .1 * (b + c);
179 
180   *weight = 1;
181 
182   return ssimv;
183 }
184 
vpx_calc_ssimg(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * ssim_y,double * ssim_u,double * ssim_v)185 double vpx_calc_ssimg(const YV12_BUFFER_CONFIG *source,
186                       const YV12_BUFFER_CONFIG *dest,
187                       double *ssim_y, double *ssim_u, double *ssim_v) {
188   double ssim_all = 0;
189   double a, b, c;
190 
191   a = vpx_ssim2(source->y_buffer, dest->y_buffer,
192                 source->y_stride, dest->y_stride,
193                 source->y_crop_width, source->y_crop_height);
194 
195   b = vpx_ssim2(source->u_buffer, dest->u_buffer,
196                 source->uv_stride, dest->uv_stride,
197                 source->uv_crop_width, source->uv_crop_height);
198 
199   c = vpx_ssim2(source->v_buffer, dest->v_buffer,
200                 source->uv_stride, dest->uv_stride,
201                 source->uv_crop_width, source->uv_crop_height);
202   *ssim_y = a;
203   *ssim_u = b;
204   *ssim_v = c;
205   ssim_all = (a * 4 + b + c) / 6;
206 
207   return ssim_all;
208 }
209 
210 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
211 //
212 // Re working out the math ->
213 //
214 // ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
215 //   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
216 //
217 // mean(x) = sum(x) / n
218 //
219 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
220 //
221 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
222 //
223 // ssim(x,y) =
224 //   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
225 //   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
226 //    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
227 //     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
228 //
229 // factoring out n*n
230 //
231 // ssim(x,y) =
232 //   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
233 //   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
234 //    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
235 //
236 // Replace c1 with n*n * c1 for the final step that leads to this code:
237 // The final step scales by 12 bits so we don't lose precision in the constants.
238 
ssimv_similarity(const Ssimv * sv,int64_t n)239 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
240   // Scale the constants by number of pixels.
241   const int64_t c1 = (cc1 * n * n) >> 12;
242   const int64_t c2 = (cc2 * n * n) >> 12;
243 
244   const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
245       (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
246 
247   // Since these variables are unsigned sums, convert to double so
248   // math is done in double arithmetic.
249   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
250       / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r
251          - sv->sum_r * sv->sum_r + c2);
252 
253   return l * v;
254 }
255 
256 // The first term of the ssim metric is a luminance factor.
257 //
258 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
259 //
260 // This luminance factor is super sensitive to the dark side of luminance
261 // values and completely insensitive on the white side.  check out 2 sets
262 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
263 // 2*250*252/ (250^2+252^2) => .99999997
264 //
265 // As a result in this tweaked version of the calculation in which the
266 // luminance is taken as percentage off from peak possible.
267 //
268 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
269 //
ssimv_similarity2(const Ssimv * sv,int64_t n)270 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
271   // Scale the constants by number of pixels.
272   const int64_t c1 = (cc1 * n * n) >> 12;
273   const int64_t c2 = (cc2 * n * n) >> 12;
274 
275   const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
276   const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
277 
278   // Since these variables are unsigned, sums convert to double so
279   // math is done in double arithmetic.
280   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
281       / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
282          n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
283 
284   return l * v;
285 }
ssimv_parms(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,Ssimv * sv)286 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
287                         int img2_pitch, Ssimv *sv) {
288   vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch,
289                      &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r,
290                      &sv->sum_sxr);
291 }
292 
vpx_get_ssim_metrics(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,int width,int height,Ssimv * sv2,Metrics * m,int do_inconsistency)293 double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch,
294                             uint8_t *img2, int img2_pitch,
295                             int width, int height,
296                             Ssimv *sv2, Metrics *m,
297                             int do_inconsistency) {
298   double dssim_total = 0;
299   double ssim_total = 0;
300   double ssim2_total = 0;
301   double inconsistency_total = 0;
302   int i, j;
303   int c = 0;
304   double norm;
305   double old_ssim_total = 0;
306   vpx_clear_system_state();
307   // We can sample points as frequently as we like start with 1 per 4x4.
308   for (i = 0; i < height; i += 4,
309        img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
310     for (j = 0; j < width; j += 4, ++c) {
311       Ssimv sv = {0};
312       double ssim;
313       double ssim2;
314       double dssim;
315       uint32_t var_new;
316       uint32_t var_old;
317       uint32_t mean_new;
318       uint32_t mean_old;
319       double ssim_new;
320       double ssim_old;
321 
322       // Not sure there's a great way to handle the edge pixels
323       // in ssim when using a window. Seems biased against edge pixels
324       // however you handle this. This uses only samples that are
325       // fully in the frame.
326       if (j + 8 <= width && i + 8 <= height) {
327         ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
328       }
329 
330       ssim = ssimv_similarity(&sv, 64);
331       ssim2 = ssimv_similarity2(&sv, 64);
332 
333       sv.ssim = ssim2;
334 
335       // dssim is calculated to use as an actual error metric and
336       // is scaled up to the same range as sum square error.
337       // Since we are subsampling every 16th point maybe this should be
338       // *16 ?
339       dssim = 255 * 255 * (1 - ssim2) / 2;
340 
341       // Here I introduce a new error metric: consistency-weighted
342       // SSIM-inconsistency.  This metric isolates frames where the
343       // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
344       // sharper or blurrier than the others. Higher values indicate a
345       // temporally inconsistent SSIM. There are two ideas at work:
346       //
347       // 1) 'SSIM-inconsistency': the total inconsistency value
348       // reflects how much SSIM values are changing between this
349       // source / reference frame pair and the previous pair.
350       //
351       // 2) 'consistency-weighted': weights de-emphasize areas in the
352       // frame where the scene content has changed. Changes in scene
353       // content are detected via changes in local variance and local
354       // mean.
355       //
356       // Thus the overall measure reflects how inconsistent the SSIM
357       // values are, over consistent regions of the frame.
358       //
359       // The metric has three terms:
360       //
361       // term 1 -> uses change in scene Variance to weight error score
362       //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
363       //  larger changes from one frame to the next mean we care
364       //  less about consistency.
365       //
366       // term 2 -> uses change in local scene luminance to weight error
367       //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
368       //  larger changes from one frame to the next mean we care
369       //  less about consistency.
370       //
371       // term3 -> measures inconsistency in ssim scores between frames
372       //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
373       //
374       // This term compares the ssim score for the same location in 2
375       // subsequent frames.
376       var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
377       var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
378       mean_new = sv.sum_s;
379       mean_old = sv2[c].sum_s;
380       ssim_new = sv.ssim;
381       ssim_old = sv2[c].ssim;
382 
383       if (do_inconsistency) {
384         // We do the metric once for every 4x4 block in the image. Since
385         // we are scaling the error to SSE for use in a psnr calculation
386         // 1.0 = 4x4x255x255 the worst error we can possibly have.
387         static const double kScaling = 4. * 4 * 255 * 255;
388 
389         // The constants have to be non 0 to avoid potential divide by 0
390         // issues other than that they affect kind of a weighting between
391         // the terms.  No testing of what the right terms should be has been
392         // done.
393         static const double c1 = 1, c2 = 1, c3 = 1;
394 
395         // This measures how much consistent variance is in two consecutive
396         // source frames. 1.0 means they have exactly the same variance.
397         const double variance_term = (2.0 * var_old * var_new + c1) /
398             (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
399 
400         // This measures how consistent the local mean are between two
401         // consecutive frames. 1.0 means they have exactly the same mean.
402         const double mean_term = (2.0 * mean_old * mean_new + c2) /
403             (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
404 
405         // This measures how consistent the ssims of two
406         // consecutive frames is. 1.0 means they are exactly the same.
407         double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) /
408                                (ssim_old * ssim_old + ssim_new * ssim_new + c3),
409                                5);
410 
411         double this_inconsistency;
412 
413         // Floating point math sometimes makes this > 1 by a tiny bit.
414         // We want the metric to scale between 0 and 1.0 so we can convert
415         // it to an snr scaled value.
416         if (ssim_term > 1)
417           ssim_term = 1;
418 
419         // This converts the consistency metric to an inconsistency metric
420         // ( so we can scale it like psnr to something like sum square error.
421         // The reason for the variance and mean terms is the assumption that
422         // if there are big changes in the source we shouldn't penalize
423         // inconsistency in ssim scores a bit less as it will be less visible
424         // to the user.
425         this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
426 
427         this_inconsistency *= kScaling;
428         inconsistency_total += this_inconsistency;
429       }
430       sv2[c] = sv;
431       ssim_total += ssim;
432       ssim2_total += ssim2;
433       dssim_total += dssim;
434 
435       old_ssim_total += ssim_old;
436     }
437     old_ssim_total += 0;
438   }
439 
440   norm = 1. / (width / 4) / (height / 4);
441   ssim_total *= norm;
442   ssim2_total *= norm;
443   m->ssim2 = ssim2_total;
444   m->ssim = ssim_total;
445   if (old_ssim_total == 0)
446     inconsistency_total = 0;
447 
448   m->ssimc = inconsistency_total;
449 
450   m->dssim = dssim_total;
451   return inconsistency_total;
452 }
453 
454 
455 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight,unsigned int bd)456 double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
457                             const YV12_BUFFER_CONFIG *dest,
458                             double *weight, unsigned int bd) {
459   double a, b, c;
460   double ssimv;
461 
462   a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer,
463                        source->y_stride, dest->y_stride,
464                        source->y_crop_width, source->y_crop_height, bd);
465 
466   b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer,
467                        source->uv_stride, dest->uv_stride,
468                        source->uv_crop_width, source->uv_crop_height, bd);
469 
470   c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer,
471                        source->uv_stride, dest->uv_stride,
472                        source->uv_crop_width, source->uv_crop_height, bd);
473 
474   ssimv = a * .8 + .1 * (b + c);
475 
476   *weight = 1;
477 
478   return ssimv;
479 }
480 
vpx_highbd_calc_ssimg(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * ssim_y,double * ssim_u,double * ssim_v,unsigned int bd)481 double vpx_highbd_calc_ssimg(const YV12_BUFFER_CONFIG *source,
482                              const YV12_BUFFER_CONFIG *dest, double *ssim_y,
483                              double *ssim_u, double *ssim_v, unsigned int bd) {
484   double ssim_all = 0;
485   double a, b, c;
486 
487   a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer,
488                        source->y_stride, dest->y_stride,
489                        source->y_crop_width, source->y_crop_height, bd);
490 
491   b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer,
492                        source->uv_stride, dest->uv_stride,
493                        source->uv_crop_width, source->uv_crop_height, bd);
494 
495   c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer,
496                        source->uv_stride, dest->uv_stride,
497                        source->uv_crop_width, source->uv_crop_height, bd);
498   *ssim_y = a;
499   *ssim_u = b;
500   *ssim_v = c;
501   ssim_all = (a * 4 + b + c) / 6;
502 
503   return ssim_all;
504 }
505 #endif  // CONFIG_VP9_HIGHBITDEPTH
506