1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
6 #define BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
7 
8 #include <stddef.h>
9 
10 #include "base/base_export.h"
11 #include "base/macros.h"
12 #include "build/build_config.h"
13 
14 #if defined(OS_WIN)
15 #include "base/win/scoped_handle.h"
16 #endif
17 
18 #if defined(OS_POSIX)
19 #include <list>
20 #include <utility>
21 #include "base/memory/ref_counted.h"
22 #include "base/synchronization/lock.h"
23 #endif
24 
25 namespace base {
26 
27 class TimeDelta;
28 
29 // A WaitableEvent can be a useful thread synchronization tool when you want to
30 // allow one thread to wait for another thread to finish some work. For
31 // non-Windows systems, this can only be used from within a single address
32 // space.
33 //
34 // Use a WaitableEvent when you would otherwise use a Lock+ConditionVariable to
35 // protect a simple boolean value.  However, if you find yourself using a
36 // WaitableEvent in conjunction with a Lock to wait for a more complex state
37 // change (e.g., for an item to be added to a queue), then you should probably
38 // be using a ConditionVariable instead of a WaitableEvent.
39 //
40 // NOTE: On Windows, this class provides a subset of the functionality afforded
41 // by a Windows event object.  This is intentional.  If you are writing Windows
42 // specific code and you need other features of a Windows event, then you might
43 // be better off just using an Windows event directly.
44 class BASE_EXPORT WaitableEvent {
45  public:
46   // If manual_reset is true, then to set the event state to non-signaled, a
47   // consumer must call the Reset method.  If this parameter is false, then the
48   // system automatically resets the event state to non-signaled after a single
49   // waiting thread has been released.
50   WaitableEvent(bool manual_reset, bool initially_signaled);
51 
52 #if defined(OS_WIN)
53   // Create a WaitableEvent from an Event HANDLE which has already been
54   // created. This objects takes ownership of the HANDLE and will close it when
55   // deleted.
56   explicit WaitableEvent(win::ScopedHandle event_handle);
57 #endif
58 
59   ~WaitableEvent();
60 
61   // Put the event in the un-signaled state.
62   void Reset();
63 
64   // Put the event in the signaled state.  Causing any thread blocked on Wait
65   // to be woken up.
66   void Signal();
67 
68   // Returns true if the event is in the signaled state, else false.  If this
69   // is not a manual reset event, then this test will cause a reset.
70   bool IsSignaled();
71 
72   // Wait indefinitely for the event to be signaled. Wait's return "happens
73   // after" |Signal| has completed. This means that it's safe for a
74   // WaitableEvent to synchronise its own destruction, like this:
75   //
76   //   WaitableEvent *e = new WaitableEvent;
77   //   SendToOtherThread(e);
78   //   e->Wait();
79   //   delete e;
80   void Wait();
81 
82   // Wait up until max_time has passed for the event to be signaled.  Returns
83   // true if the event was signaled.  If this method returns false, then it
84   // does not necessarily mean that max_time was exceeded.
85   //
86   // TimedWait can synchronise its own destruction like |Wait|.
87   bool TimedWait(const TimeDelta& max_time);
88 
89 #if defined(OS_WIN)
handle()90   HANDLE handle() const { return handle_.Get(); }
91 #endif
92 
93   // Wait, synchronously, on multiple events.
94   //   waitables: an array of WaitableEvent pointers
95   //   count: the number of elements in @waitables
96   //
97   // returns: the index of a WaitableEvent which has been signaled.
98   //
99   // You MUST NOT delete any of the WaitableEvent objects while this wait is
100   // happening, however WaitMany's return "happens after" the |Signal| call
101   // that caused it has completed, like |Wait|.
102   static size_t WaitMany(WaitableEvent** waitables, size_t count);
103 
104   // For asynchronous waiting, see WaitableEventWatcher
105 
106   // This is a private helper class. It's here because it's used by friends of
107   // this class (such as WaitableEventWatcher) to be able to enqueue elements
108   // of the wait-list
109   class Waiter {
110    public:
111     // Signal the waiter to wake up.
112     //
113     // Consider the case of a Waiter which is in multiple WaitableEvent's
114     // wait-lists. Each WaitableEvent is automatic-reset and two of them are
115     // signaled at the same time. Now, each will wake only the first waiter in
116     // the wake-list before resetting. However, if those two waiters happen to
117     // be the same object (as can happen if another thread didn't have a chance
118     // to dequeue the waiter from the other wait-list in time), two auto-resets
119     // will have happened, but only one waiter has been signaled!
120     //
121     // Because of this, a Waiter may "reject" a wake by returning false. In
122     // this case, the auto-reset WaitableEvent shouldn't act as if anything has
123     // been notified.
124     virtual bool Fire(WaitableEvent* signaling_event) = 0;
125 
126     // Waiters may implement this in order to provide an extra condition for
127     // two Waiters to be considered equal. In WaitableEvent::Dequeue, if the
128     // pointers match then this function is called as a final check. See the
129     // comments in ~Handle for why.
130     virtual bool Compare(void* tag) = 0;
131 
132    protected:
~Waiter()133     virtual ~Waiter() {}
134   };
135 
136  private:
137   friend class WaitableEventWatcher;
138 
139 #if defined(OS_WIN)
140   win::ScopedHandle handle_;
141 #else
142   // On Windows, one can close a HANDLE which is currently being waited on. The
143   // MSDN documentation says that the resulting behaviour is 'undefined', but
144   // it doesn't crash. However, if we were to include the following members
145   // directly then, on POSIX, one couldn't use WaitableEventWatcher to watch an
146   // event which gets deleted. This mismatch has bitten us several times now,
147   // so we have a kernel of the WaitableEvent, which is reference counted.
148   // WaitableEventWatchers may then take a reference and thus match the Windows
149   // behaviour.
150   struct WaitableEventKernel :
151       public RefCountedThreadSafe<WaitableEventKernel> {
152    public:
153     WaitableEventKernel(bool manual_reset, bool initially_signaled);
154 
155     bool Dequeue(Waiter* waiter, void* tag);
156 
157     base::Lock lock_;
158     const bool manual_reset_;
159     bool signaled_;
160     std::list<Waiter*> waiters_;
161 
162    private:
163     friend class RefCountedThreadSafe<WaitableEventKernel>;
164     ~WaitableEventKernel();
165   };
166 
167   typedef std::pair<WaitableEvent*, size_t> WaiterAndIndex;
168 
169   // When dealing with arrays of WaitableEvent*, we want to sort by the address
170   // of the WaitableEvent in order to have a globally consistent locking order.
171   // In that case we keep them, in sorted order, in an array of pairs where the
172   // second element is the index of the WaitableEvent in the original,
173   // unsorted, array.
174   static size_t EnqueueMany(WaiterAndIndex* waitables,
175                             size_t count, Waiter* waiter);
176 
177   bool SignalAll();
178   bool SignalOne();
179   void Enqueue(Waiter* waiter);
180 
181   scoped_refptr<WaitableEventKernel> kernel_;
182 #endif
183 
184   DISALLOW_COPY_AND_ASSIGN(WaitableEvent);
185 };
186 
187 }  // namespace base
188 
189 #endif  // BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
190