1 /*
2  * written by Colin Plumb in 1993, no copyright is claimed.
3  * This code is in the public domain; do with it what you wish.
4  *
5  * Equivalent code is available from RSA Data Security, Inc.
6  * This code has been tested against that, and is equivalent,
7  * except that you don't need to include two pages of legalese
8  * with every copy.
9  *
10  * To compute the message digest of a chunk of bytes, declare an
11  * MD5Context structure, pass it to MD5Init, call MD5Update as
12  * needed on buffers full of bytes, and then call MD5Final, which
13  * will fill a supplied 16-byte array with the digest.
14  */
15 
16 #include <string.h>
17 
18 #include "common/md5.h"
19 
20 namespace google_breakpad {
21 
22 #ifndef WORDS_BIGENDIAN
23 #define byteReverse(buf, len)   /* Nothing */
24 #else
25 /*
26  * Note: this code is harmless on little-endian machines.
27  */
28 static void byteReverse(unsigned char *buf, unsigned longs)
29 {
30   u32 t;
31   do {
32     t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
33       ((unsigned) buf[1] << 8 | buf[0]);
34     *(u32 *) buf = t;
35     buf += 4;
36   } while (--longs);
37 }
38 #endif
39 
40 static void MD5Transform(u32 buf[4], u32 const in[16]);
41 
42 /*
43  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
44  * initialization constants.
45  */
MD5Init(struct MD5Context * ctx)46 void MD5Init(struct MD5Context *ctx)
47 {
48   ctx->buf[0] = 0x67452301;
49   ctx->buf[1] = 0xefcdab89;
50   ctx->buf[2] = 0x98badcfe;
51   ctx->buf[3] = 0x10325476;
52 
53   ctx->bits[0] = 0;
54   ctx->bits[1] = 0;
55 }
56 
57 /*
58  * Update context to reflect the concatenation of another buffer full
59  * of bytes.
60  */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,size_t len)61 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, size_t len)
62 {
63   u32 t;
64 
65   /* Update bitcount */
66 
67   t = ctx->bits[0];
68   if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
69     ctx->bits[1]++;         /* Carry from low to high */
70   ctx->bits[1] += len >> 29;
71 
72   t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
73 
74   /* Handle any leading odd-sized chunks */
75 
76   if (t) {
77     unsigned char *p = (unsigned char *) ctx->in + t;
78 
79     t = 64 - t;
80     if (len < t) {
81       memcpy(p, buf, len);
82       return;
83     }
84     memcpy(p, buf, t);
85     byteReverse(ctx->in, 16);
86     MD5Transform(ctx->buf, (u32 *) ctx->in);
87     buf += t;
88     len -= t;
89   }
90   /* Process data in 64-byte chunks */
91 
92   while (len >= 64) {
93     memcpy(ctx->in, buf, 64);
94     byteReverse(ctx->in, 16);
95     MD5Transform(ctx->buf, (u32 *) ctx->in);
96     buf += 64;
97     len -= 64;
98   }
99 
100   /* Handle any remaining bytes of data. */
101 
102   memcpy(ctx->in, buf, len);
103 }
104 
105 /*
106  * Final wrapup - pad to 64-byte boundary with the bit pattern
107  * 1 0* (64-bit count of bits processed, MSB-first)
108  */
MD5Final(unsigned char digest[16],struct MD5Context * ctx)109 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
110 {
111   unsigned count;
112   unsigned char *p;
113 
114   /* Compute number of bytes mod 64 */
115   count = (ctx->bits[0] >> 3) & 0x3F;
116 
117   /* Set the first char of padding to 0x80.  This is safe since there is
118      always at least one byte free */
119   p = ctx->in + count;
120   *p++ = 0x80;
121 
122   /* Bytes of padding needed to make 64 bytes */
123   count = 64 - 1 - count;
124 
125   /* Pad out to 56 mod 64 */
126   if (count < 8) {
127     /* Two lots of padding:  Pad the first block to 64 bytes */
128     memset(p, 0, count);
129     byteReverse(ctx->in, 16);
130     MD5Transform(ctx->buf, (u32 *) ctx->in);
131 
132     /* Now fill the next block with 56 bytes */
133     memset(ctx->in, 0, 56);
134   } else {
135     /* Pad block to 56 bytes */
136     memset(p, 0, count - 8);
137   }
138   byteReverse(ctx->in, 14);
139 
140   /* Append length in bits and transform */
141   ((u32 *) ctx->in)[14] = ctx->bits[0];
142   ((u32 *) ctx->in)[15] = ctx->bits[1];
143 
144   MD5Transform(ctx->buf, (u32 *) ctx->in);
145   byteReverse((unsigned char *) ctx->buf, 4);
146   memcpy(digest, ctx->buf, 16);
147   memset(ctx, 0, sizeof(*ctx));        /* In case it's sensitive */
148 }
149 
150 /* The four core functions - F1 is optimized somewhat */
151 
152 /* #define F1(x, y, z) (x & y | ~x & z) */
153 #define F1(x, y, z) (z ^ (x & (y ^ z)))
154 #define F2(x, y, z) F1(z, x, y)
155 #define F3(x, y, z) (x ^ y ^ z)
156 #define F4(x, y, z) (y ^ (x | ~z))
157 
158 /* This is the central step in the MD5 algorithm. */
159 #define MD5STEP(f, w, x, y, z, data, s) \
160   ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
161 
162 /*
163  * The core of the MD5 algorithm, this alters an existing MD5 hash to
164  * reflect the addition of 16 longwords of new data.  MD5Update blocks
165  * the data and converts bytes into longwords for this routine.
166  */
MD5Transform(u32 buf[4],u32 const in[16])167 static void MD5Transform(u32 buf[4], u32 const in[16])
168 {
169   u32 a, b, c, d;
170 
171   a = buf[0];
172   b = buf[1];
173   c = buf[2];
174   d = buf[3];
175 
176   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
177   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
178   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
179   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
180   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
181   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
182   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
183   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
184   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
185   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
186   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
187   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
188   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
189   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
190   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
191   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
192 
193   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
194   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
195   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
196   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
197   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
198   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
199   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
200   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
201   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
202   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
203   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
204   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
205   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
206   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
207   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
208   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
209 
210   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
211   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
212   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
213   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
214   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
215   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
216   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
217   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
218   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
219   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
220   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
221   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
222   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
223   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
224   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
225   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
226 
227   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
228   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
229   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
230   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
231   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
232   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
233   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
234   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
235   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
236   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
237   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
238   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
239   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
240   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
241   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
242   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
243 
244   buf[0] += a;
245   buf[1] += b;
246   buf[2] += c;
247   buf[3] += d;
248 }
249 
250 }  // namespace google_breakpad
251 
252