1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkPathOpsLine.h"
9 
cleanUpParallelLines(bool parallel)10 void SkIntersections::cleanUpParallelLines(bool parallel) {
11     while (fUsed > 2) {
12         removeOne(1);
13     }
14     if (fUsed == 2 && !parallel) {
15         bool startMatch = fT[0][0] == 0 || zero_or_one(fT[1][0]);
16         bool endMatch = fT[0][1] == 1 || zero_or_one(fT[1][1]);
17         if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) {
18             SkASSERT(startMatch || endMatch);
19             if (startMatch && endMatch && (fT[0][0] != 0 || !zero_or_one(fT[1][0]))
20                     && fT[0][1] == 1 && zero_or_one(fT[1][1])) {
21                 removeOne(0);
22             } else {
23                 removeOne(endMatch);
24             }
25         }
26     }
27     if (fUsed == 2) {
28         fIsCoincident[0] = fIsCoincident[1] = 0x03;
29     }
30 }
31 
computePoints(const SkDLine & line,int used)32 void SkIntersections::computePoints(const SkDLine& line, int used) {
33     fPt[0] = line.ptAtT(fT[0][0]);
34     if ((fUsed = used) == 2) {
35         fPt[1] = line.ptAtT(fT[0][1]);
36     }
37 }
38 
intersectRay(const SkDLine & a,const SkDLine & b)39 int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
40     fMax = 2;
41     SkDVector aLen = a[1] - a[0];
42     SkDVector bLen = b[1] - b[0];
43     /* Slopes match when denom goes to zero:
44                       axLen / ayLen ==                   bxLen / byLen
45     (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
46              byLen  * axLen         ==  ayLen          * bxLen
47              byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
48      */
49     double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX;
50     SkDVector ab0 = a[0] - b[0];
51     double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX;
52     double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX;
53     numerA /= denom;
54     numerB /= denom;
55     int used;
56     if (!approximately_zero(denom)) {
57         fT[0][0] = numerA;
58         fT[1][0] = numerB;
59         used = 1;
60     } else {
61        /* See if the axis intercepts match:
62                   ay - ax * ayLen / axLen  ==          by - bx * ayLen / axLen
63          axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
64          axLen *  ay - ax * ayLen          == axLen *  by - bx * ayLen
65         */
66         if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX,
67                 aLen.fX * b[0].fY - aLen.fY * b[0].fX)) {
68             return fUsed = 0;
69         }
70         // there's no great answer for intersection points for coincident rays, but return something
71         fT[0][0] = fT[1][0] = 0;
72         fT[1][0] = fT[1][1] = 1;
73         used = 2;
74     }
75     computePoints(a, used);
76     return fUsed;
77 }
78 
79 // note that this only works if both lines are neither horizontal nor vertical
intersect(const SkDLine & a,const SkDLine & b)80 int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
81     fMax = 3;  // note that we clean up so that there is no more than two in the end
82     // see if end points intersect the opposite line
83     double t;
84     for (int iA = 0; iA < 2; ++iA) {
85         if ((t = b.exactPoint(a[iA])) >= 0) {
86             insert(iA, t, a[iA]);
87         }
88     }
89     for (int iB = 0; iB < 2; ++iB) {
90         if ((t = a.exactPoint(b[iB])) >= 0) {
91             insert(t, iB, b[iB]);
92         }
93     }
94     /* Determine the intersection point of two line segments
95        Return FALSE if the lines don't intersect
96        from: http://paulbourke.net/geometry/lineline2d/ */
97     double axLen = a[1].fX - a[0].fX;
98     double ayLen = a[1].fY - a[0].fY;
99     double bxLen = b[1].fX - b[0].fX;
100     double byLen = b[1].fY - b[0].fY;
101     /* Slopes match when denom goes to zero:
102                       axLen / ayLen ==                   bxLen / byLen
103     (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
104              byLen  * axLen         ==  ayLen          * bxLen
105              byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
106      */
107     double axByLen = axLen * byLen;
108     double ayBxLen = ayLen * bxLen;
109     // detect parallel lines the same way here and in SkOpAngle operator <
110     // so that non-parallel means they are also sortable
111     bool unparallel = fAllowNear ? NotAlmostEqualUlps_Pin(axByLen, ayBxLen)
112             : NotAlmostDequalUlps(axByLen, ayBxLen);
113     if (unparallel && fUsed == 0) {
114         double ab0y = a[0].fY - b[0].fY;
115         double ab0x = a[0].fX - b[0].fX;
116         double numerA = ab0y * bxLen - byLen * ab0x;
117         double numerB = ab0y * axLen - ayLen * ab0x;
118         double denom = axByLen - ayBxLen;
119         if (between(0, numerA, denom) && between(0, numerB, denom)) {
120             fT[0][0] = numerA / denom;
121             fT[1][0] = numerB / denom;
122             computePoints(a, 1);
123         }
124     }
125 /* Allow tracking that both sets of end points are near each other -- the lines are entirely
126    coincident -- even when the end points are not exactly the same.
127    Mark this as a 'wild card' for the end points, so that either point is considered totally
128    coincident. Then, avoid folding the lines over each other, but allow either end to mate
129    to the next set of lines.
130  */
131     if (fAllowNear || !unparallel) {
132         double aNearB[2];
133         double bNearA[2];
134         bool aNotB[2] = {false, false};
135         bool bNotA[2] = {false, false};
136         int nearCount = 0;
137         for (int index = 0; index < 2; ++index) {
138             aNearB[index] = t = b.nearPoint(a[index], &aNotB[index]);
139             nearCount += t >= 0;
140             bNearA[index] = t = a.nearPoint(b[index], &bNotA[index]);
141             nearCount += t >= 0;
142         }
143         if (nearCount > 0) {
144             // Skip if each segment contributes to one end point.
145             if (nearCount != 2 || aNotB[0] == aNotB[1]) {
146                 for (int iA = 0; iA < 2; ++iA) {
147                     if (!aNotB[iA]) {
148                         continue;
149                     }
150                     int nearer = aNearB[iA] > 0.5;
151                     if (!bNotA[nearer]) {
152                         continue;
153                     }
154                     SkASSERT(a[iA] != b[nearer]);
155                     SkASSERT(iA == (bNearA[nearer] > 0.5));
156                     insertNear(iA, nearer, a[iA], b[nearer]);
157                     aNearB[iA] = -1;
158                     bNearA[nearer] = -1;
159                     nearCount -= 2;
160                 }
161             }
162             if (nearCount > 0) {
163                 for (int iA = 0; iA < 2; ++iA) {
164                     if (aNearB[iA] >= 0) {
165                         insert(iA, aNearB[iA], a[iA]);
166                     }
167                 }
168                 for (int iB = 0; iB < 2; ++iB) {
169                     if (bNearA[iB] >= 0) {
170                         insert(bNearA[iB], iB, b[iB]);
171                     }
172                 }
173             }
174         }
175     }
176     cleanUpParallelLines(!unparallel);
177     SkASSERT(fUsed <= 2);
178     return fUsed;
179 }
180 
horizontal_coincident(const SkDLine & line,double y)181 static int horizontal_coincident(const SkDLine& line, double y) {
182     double min = line[0].fY;
183     double max = line[1].fY;
184     if (min > max) {
185         SkTSwap(min, max);
186     }
187     if (min > y || max < y) {
188         return 0;
189     }
190     if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
191         return 2;
192     }
193     return 1;
194 }
195 
HorizontalIntercept(const SkDLine & line,double y)196 double SkIntersections::HorizontalIntercept(const SkDLine& line, double y) {
197      return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY));
198 }
199 
horizontal(const SkDLine & line,double left,double right,double y,bool flipped)200 int SkIntersections::horizontal(const SkDLine& line, double left, double right,
201                                 double y, bool flipped) {
202     fMax = 3;  // clean up parallel at the end will limit the result to 2 at the most
203     // see if end points intersect the opposite line
204     double t;
205     const SkDPoint leftPt = { left, y };
206     if ((t = line.exactPoint(leftPt)) >= 0) {
207         insert(t, (double) flipped, leftPt);
208     }
209     if (left != right) {
210         const SkDPoint rightPt = { right, y };
211         if ((t = line.exactPoint(rightPt)) >= 0) {
212             insert(t, (double) !flipped, rightPt);
213         }
214         for (int index = 0; index < 2; ++index) {
215             if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) {
216                 insert((double) index, flipped ? 1 - t : t, line[index]);
217             }
218         }
219     }
220     int result = horizontal_coincident(line, y);
221     if (result == 1 && fUsed == 0) {
222         fT[0][0] = HorizontalIntercept(line, y);
223         double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
224         if (between(left, xIntercept, right)) {
225             fT[1][0] = (xIntercept - left) / (right - left);
226             if (flipped) {
227                 // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
228                 for (int index = 0; index < result; ++index) {
229                     fT[1][index] = 1 - fT[1][index];
230                 }
231             }
232             fPt[0].fX = xIntercept;
233             fPt[0].fY = y;
234             fUsed = 1;
235         }
236     }
237     if (fAllowNear || result == 2) {
238         if ((t = line.nearPoint(leftPt, nullptr)) >= 0) {
239             insert(t, (double) flipped, leftPt);
240         }
241         if (left != right) {
242             const SkDPoint rightPt = { right, y };
243             if ((t = line.nearPoint(rightPt, nullptr)) >= 0) {
244                 insert(t, (double) !flipped, rightPt);
245             }
246             for (int index = 0; index < 2; ++index) {
247                 if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) {
248                     insert((double) index, flipped ? 1 - t : t, line[index]);
249                 }
250             }
251         }
252     }
253     cleanUpParallelLines(result == 2);
254     return fUsed;
255 }
256 
vertical_coincident(const SkDLine & line,double x)257 static int vertical_coincident(const SkDLine& line, double x) {
258     double min = line[0].fX;
259     double max = line[1].fX;
260     if (min > max) {
261         SkTSwap(min, max);
262     }
263     if (!precisely_between(min, x, max)) {
264         return 0;
265     }
266     if (AlmostEqualUlps(min, max)) {
267         return 2;
268     }
269     return 1;
270 }
271 
VerticalIntercept(const SkDLine & line,double x)272 double SkIntersections::VerticalIntercept(const SkDLine& line, double x) {
273     return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX));
274 }
275 
vertical(const SkDLine & line,double top,double bottom,double x,bool flipped)276 int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
277                               double x, bool flipped) {
278     fMax = 3;  // cleanup parallel lines will bring this back line
279     // see if end points intersect the opposite line
280     double t;
281     SkDPoint topPt = { x, top };
282     if ((t = line.exactPoint(topPt)) >= 0) {
283         insert(t, (double) flipped, topPt);
284     }
285     if (top != bottom) {
286         SkDPoint bottomPt = { x, bottom };
287         if ((t = line.exactPoint(bottomPt)) >= 0) {
288             insert(t, (double) !flipped, bottomPt);
289         }
290         for (int index = 0; index < 2; ++index) {
291             if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) {
292                 insert((double) index, flipped ? 1 - t : t, line[index]);
293             }
294         }
295     }
296     int result = vertical_coincident(line, x);
297     if (result == 1 && fUsed == 0) {
298         fT[0][0] = VerticalIntercept(line, x);
299         double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
300         if (between(top, yIntercept, bottom)) {
301             fT[1][0] = (yIntercept - top) / (bottom - top);
302             if (flipped) {
303                 // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
304                 for (int index = 0; index < result; ++index) {
305                     fT[1][index] = 1 - fT[1][index];
306                 }
307             }
308             fPt[0].fX = x;
309             fPt[0].fY = yIntercept;
310             fUsed = 1;
311         }
312     }
313     if (fAllowNear || result == 2) {
314         if ((t = line.nearPoint(topPt, nullptr)) >= 0) {
315             insert(t, (double) flipped, topPt);
316         }
317         if (top != bottom) {
318             SkDPoint bottomPt = { x, bottom };
319             if ((t = line.nearPoint(bottomPt, nullptr)) >= 0) {
320                 insert(t, (double) !flipped, bottomPt);
321             }
322             for (int index = 0; index < 2; ++index) {
323                 if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) {
324                     insert((double) index, flipped ? 1 - t : t, line[index]);
325                 }
326             }
327         }
328     }
329     cleanUpParallelLines(result == 2);
330     SkASSERT(fUsed <= 2);
331     return fUsed;
332 }
333 
334