1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkLineParameters.h"
9 #include "SkPathOpsCubic.h"
10 #include "SkPathOpsCurve.h"
11 #include "SkPathOpsQuad.h"
12 
13 /* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */
14 // Do a quick reject by rotating all points relative to a line formed by
15 // a pair of one quad's points. If the 2nd quad's points
16 // are on the line or on the opposite side from the 1st quad's 'odd man', the
17 // curves at most intersect at the endpoints.
18 /* if returning true, check contains true if quad's hull collapsed, making the cubic linear
19    if returning false, check contains true if the the quad pair have only the end point in common
20 */
hullIntersects(const SkDQuad & q2,bool * isLinear) const21 bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const {
22     bool linear = true;
23     for (int oddMan = 0; oddMan < kPointCount; ++oddMan) {
24         const SkDPoint* endPt[2];
25         this->otherPts(oddMan, endPt);
26         double origX = endPt[0]->fX;
27         double origY = endPt[0]->fY;
28         double adj = endPt[1]->fX - origX;
29         double opp = endPt[1]->fY - origY;
30         double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
31         if (approximately_zero(sign)) {
32             continue;
33         }
34         linear = false;
35         bool foundOutlier = false;
36         for (int n = 0; n < kPointCount; ++n) {
37             double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
38             if (test * sign > 0 && !precisely_zero(test)) {
39                 foundOutlier = true;
40                 break;
41             }
42         }
43         if (!foundOutlier) {
44             return false;
45         }
46     }
47     *isLinear = linear;
48     return true;
49 }
50 
hullIntersects(const SkDConic & conic,bool * isLinear) const51 bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const {
52     return conic.hullIntersects(*this, isLinear);
53 }
54 
hullIntersects(const SkDCubic & cubic,bool * isLinear) const55 bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
56     return cubic.hullIntersects(*this, isLinear);
57 }
58 
59 /* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan)
60 oddMan    opp   x=oddMan^opp  x=x-oddMan  m=x>>2   x&~m
61     0       1         1            1         0       1
62             2         2            2         0       2
63     1       1         0           -1        -1       0
64             2         3            2         0       2
65     2       1         3            1         0       1
66             2         0           -2        -1       0
67 */
otherPts(int oddMan,const SkDPoint * endPt[2]) const68 void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const {
69     for (int opp = 1; opp < kPointCount; ++opp) {
70         int end = (oddMan ^ opp) - oddMan;  // choose a value not equal to oddMan
71         end &= ~(end >> 2);  // if the value went negative, set it to zero
72         endPt[opp - 1] = &fPts[end];
73     }
74 }
75 
AddValidTs(double s[],int realRoots,double * t)76 int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
77     int foundRoots = 0;
78     for (int index = 0; index < realRoots; ++index) {
79         double tValue = s[index];
80         if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
81             if (approximately_less_than_zero(tValue)) {
82                 tValue = 0;
83             } else if (approximately_greater_than_one(tValue)) {
84                 tValue = 1;
85             }
86             for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
87                 if (approximately_equal(t[idx2], tValue)) {
88                     goto nextRoot;
89                 }
90             }
91             t[foundRoots++] = tValue;
92         }
93 nextRoot:
94         {}
95     }
96     return foundRoots;
97 }
98 
99 // note: caller expects multiple results to be sorted smaller first
100 // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
101 //  analysis of the quadratic equation, suggesting why the following looks at
102 //  the sign of B -- and further suggesting that the greatest loss of precision
103 //  is in b squared less two a c
RootsValidT(double A,double B,double C,double t[2])104 int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
105     double s[2];
106     int realRoots = RootsReal(A, B, C, s);
107     int foundRoots = AddValidTs(s, realRoots, t);
108     return foundRoots;
109 }
110 
111 /*
112 Numeric Solutions (5.6) suggests to solve the quadratic by computing
113        Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
114 and using the roots
115       t1 = Q / A
116       t2 = C / Q
117 */
118 // this does not discard real roots <= 0 or >= 1
RootsReal(const double A,const double B,const double C,double s[2])119 int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
120     const double p = B / (2 * A);
121     const double q = C / A;
122     if (!A || (approximately_zero(A) && (approximately_zero_inverse(p)
123             || approximately_zero_inverse(q)))) {
124         if (approximately_zero(B)) {
125             s[0] = 0;
126             return C == 0;
127         }
128         s[0] = -C / B;
129         return 1;
130     }
131     /* normal form: x^2 + px + q = 0 */
132     const double p2 = p * p;
133     if (!AlmostDequalUlps(p2, q) && p2 < q) {
134         return 0;
135     }
136     double sqrt_D = 0;
137     if (p2 > q) {
138         sqrt_D = sqrt(p2 - q);
139     }
140     s[0] = sqrt_D - p;
141     s[1] = -sqrt_D - p;
142     return 1 + !AlmostDequalUlps(s[0], s[1]);
143 }
144 
isLinear(int startIndex,int endIndex) const145 bool SkDQuad::isLinear(int startIndex, int endIndex) const {
146     SkLineParameters lineParameters;
147     lineParameters.quadEndPoints(*this, startIndex, endIndex);
148     // FIXME: maybe it's possible to avoid this and compare non-normalized
149     lineParameters.normalize();
150     double distance = lineParameters.controlPtDistance(*this);
151     double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY),
152             fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
153     double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY),
154             fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
155     largest = SkTMax(largest, -tiniest);
156     return approximately_zero_when_compared_to(distance, largest);
157 }
158 
dxdyAtT(double t) const159 SkDVector SkDQuad::dxdyAtT(double t) const {
160     double a = t - 1;
161     double b = 1 - 2 * t;
162     double c = t;
163     SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
164             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
165     if (result.fX == 0 && result.fY == 0) {
166         if (zero_or_one(t)) {
167             result = fPts[2] - fPts[0];
168         } else {
169             // incomplete
170             SkDebugf("!q");
171         }
172     }
173     return result;
174 }
175 
176 // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ?
ptAtT(double t) const177 SkDPoint SkDQuad::ptAtT(double t) const {
178     if (0 == t) {
179         return fPts[0];
180     }
181     if (1 == t) {
182         return fPts[2];
183     }
184     double one_t = 1 - t;
185     double a = one_t * one_t;
186     double b = 2 * one_t * t;
187     double c = t * t;
188     SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
189             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
190     return result;
191 }
192 
interp_quad_coords(const double * src,double t)193 static double interp_quad_coords(const double* src, double t) {
194     double ab = SkDInterp(src[0], src[2], t);
195     double bc = SkDInterp(src[2], src[4], t);
196     double abc = SkDInterp(ab, bc, t);
197     return abc;
198 }
199 
monotonicInX() const200 bool SkDQuad::monotonicInX() const {
201     return between(fPts[0].fX, fPts[1].fX, fPts[2].fX);
202 }
203 
monotonicInY() const204 bool SkDQuad::monotonicInY() const {
205     return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
206 }
207 
208 /*
209 Given a quadratic q, t1, and t2, find a small quadratic segment.
210 
211 The new quadratic is defined by A, B, and C, where
212  A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
213  C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
214 
215 To find B, compute the point halfway between t1 and t2:
216 
217 q(at (t1 + t2)/2) == D
218 
219 Next, compute where D must be if we know the value of B:
220 
221 _12 = A/2 + B/2
222 12_ = B/2 + C/2
223 123 = A/4 + B/2 + C/4
224     = D
225 
226 Group the known values on one side:
227 
228 B   = D*2 - A/2 - C/2
229 */
230 
231 // OPTIMIZE : special case either or both of t1 = 0, t2 = 1
subDivide(double t1,double t2) const232 SkDQuad SkDQuad::subDivide(double t1, double t2) const {
233     SkDQuad dst;
234     double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
235     double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
236     double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
237     double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
238     double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
239     double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
240     /* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2;
241     /* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2;
242     return dst;
243 }
244 
align(int endIndex,SkDPoint * dstPt) const245 void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
246     if (fPts[endIndex].fX == fPts[1].fX) {
247         dstPt->fX = fPts[endIndex].fX;
248     }
249     if (fPts[endIndex].fY == fPts[1].fY) {
250         dstPt->fY = fPts[endIndex].fY;
251     }
252 }
253 
subDivide(const SkDPoint & a,const SkDPoint & c,double t1,double t2) const254 SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
255     SkASSERT(t1 != t2);
256     SkDPoint b;
257     SkDQuad sub = subDivide(t1, t2);
258     SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
259     SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
260     SkIntersections i;
261     i.intersectRay(b0, b1);
262     if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) {
263         b = i.pt(0);
264     } else {
265         SkASSERT(i.used() <= 2);
266         b = SkDPoint::Mid(b0[1], b1[1]);
267     }
268     if (t1 == 0 || t2 == 0) {
269         align(0, &b);
270     }
271     if (t1 == 1 || t2 == 1) {
272         align(2, &b);
273     }
274     if (AlmostBequalUlps(b.fX, a.fX)) {
275         b.fX = a.fX;
276     } else if (AlmostBequalUlps(b.fX, c.fX)) {
277         b.fX = c.fX;
278     }
279     if (AlmostBequalUlps(b.fY, a.fY)) {
280         b.fY = a.fY;
281     } else if (AlmostBequalUlps(b.fY, c.fY)) {
282         b.fY = c.fY;
283     }
284     return b;
285 }
286 
287 /* classic one t subdivision */
interp_quad_coords(const double * src,double * dst,double t)288 static void interp_quad_coords(const double* src, double* dst, double t) {
289     double ab = SkDInterp(src[0], src[2], t);
290     double bc = SkDInterp(src[2], src[4], t);
291     dst[0] = src[0];
292     dst[2] = ab;
293     dst[4] = SkDInterp(ab, bc, t);
294     dst[6] = bc;
295     dst[8] = src[4];
296 }
297 
chopAt(double t) const298 SkDQuadPair SkDQuad::chopAt(double t) const
299 {
300     SkDQuadPair dst;
301     interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
302     interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
303     return dst;
304 }
305 
valid_unit_divide(double numer,double denom,double * ratio)306 static int valid_unit_divide(double numer, double denom, double* ratio)
307 {
308     if (numer < 0) {
309         numer = -numer;
310         denom = -denom;
311     }
312     if (denom == 0 || numer == 0 || numer >= denom) {
313         return 0;
314     }
315     double r = numer / denom;
316     if (r == 0) {  // catch underflow if numer <<<< denom
317         return 0;
318     }
319     *ratio = r;
320     return 1;
321 }
322 
323 /** Quad'(t) = At + B, where
324     A = 2(a - 2b + c)
325     B = 2(b - a)
326     Solve for t, only if it fits between 0 < t < 1
327 */
FindExtrema(const double src[],double tValue[1])328 int SkDQuad::FindExtrema(const double src[], double tValue[1]) {
329     /*  At + B == 0
330         t = -B / A
331     */
332     double a = src[0];
333     double b = src[2];
334     double c = src[4];
335     return valid_unit_divide(a - b, a - b - b + c, tValue);
336 }
337 
338 /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
339  *
340  * a = A - 2*B +   C
341  * b =     2*B - 2*C
342  * c =             C
343  */
SetABC(const double * quad,double * a,double * b,double * c)344 void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
345     *a = quad[0];      // a = A
346     *b = 2 * quad[2];  // b =     2*B
347     *c = quad[4];      // c =             C
348     *b -= *c;          // b =     2*B -   C
349     *a -= *b;          // a = A - 2*B +   C
350     *b -= *c;          // b =     2*B - 2*C
351 }
352