1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10 
11 #include "../private/SkTLogic.h"
12 #include "../private/SkTemplates.h"
13 #include "SkTypes.h"
14 
15 #include <new>
16 #include <utility>
17 
18 /** When MEM_COPY is true T will be bit copied when moved.
19     When MEM_COPY is false, T will be copy constructed / destructed.
20     In all cases T will be default-initialized on allocation,
21     and its destructor will be called from this object's destructor.
22 */
23 template <typename T, bool MEM_COPY = false> class SkTArray {
24 public:
25     /**
26      * Creates an empty array with no initial storage
27      */
SkTArray()28     SkTArray() {
29         fCount = 0;
30         fReserveCount = gMIN_ALLOC_COUNT;
31         fAllocCount = 0;
32         fMemArray = NULL;
33         fPreAllocMemArray = NULL;
34     }
35 
36     /**
37      * Creates an empty array that will preallocate space for reserveCount
38      * elements.
39      */
SkTArray(int reserveCount)40     explicit SkTArray(int reserveCount) {
41         this->init(NULL, 0, NULL, reserveCount);
42     }
43 
44     /**
45      * Copies one array to another. The new array will be heap allocated.
46      */
SkTArray(const SkTArray & array)47     explicit SkTArray(const SkTArray& array) {
48         this->init(array.fItemArray, array.fCount, NULL, 0);
49     }
50 
51     /**
52      * Creates a SkTArray by copying contents of a standard C array. The new
53      * array will be heap allocated. Be careful not to use this constructor
54      * when you really want the (void*, int) version.
55      */
SkTArray(const T * array,int count)56     SkTArray(const T* array, int count) {
57         this->init(array, count, NULL, 0);
58     }
59 
60     /**
61      * assign copy of array to this
62      */
63     SkTArray& operator =(const SkTArray& array) {
64         for (int i = 0; i < fCount; ++i) {
65             fItemArray[i].~T();
66         }
67         fCount = 0;
68         this->checkRealloc((int)array.count());
69         fCount = array.count();
70         this->copy(static_cast<const T*>(array.fMemArray));
71         return *this;
72     }
73 
~SkTArray()74     ~SkTArray() {
75         for (int i = 0; i < fCount; ++i) {
76             fItemArray[i].~T();
77         }
78         if (fMemArray != fPreAllocMemArray) {
79             sk_free(fMemArray);
80         }
81     }
82 
83     /**
84      * Resets to count() == 0
85      */
reset()86     void reset() { this->pop_back_n(fCount); }
87 
88     /**
89      * Resets to count() = n newly constructed T objects.
90      */
reset(int n)91     void reset(int n) {
92         SkASSERT(n >= 0);
93         for (int i = 0; i < fCount; ++i) {
94             fItemArray[i].~T();
95         }
96         // set fCount to 0 before calling checkRealloc so that no copy cons. are called.
97         fCount = 0;
98         this->checkRealloc(n);
99         fCount = n;
100         for (int i = 0; i < fCount; ++i) {
101             new (fItemArray + i) T;
102         }
103     }
104 
105     /**
106      * Resets to a copy of a C array.
107      */
reset(const T * array,int count)108     void reset(const T* array, int count) {
109         for (int i = 0; i < fCount; ++i) {
110             fItemArray[i].~T();
111         }
112         int delta = count - fCount;
113         this->checkRealloc(delta);
114         fCount = count;
115         this->copy(array);
116     }
117 
removeShuffle(int n)118     void removeShuffle(int n) {
119         SkASSERT(n < fCount);
120         int newCount = fCount - 1;
121         fCount = newCount;
122         fItemArray[n].~T();
123         if (n != newCount) {
124             this->move(n, newCount);
125         }
126     }
127 
128     /**
129      * Number of elements in the array.
130      */
count()131     int count() const { return fCount; }
132 
133     /**
134      * Is the array empty.
135      */
empty()136     bool empty() const { return !fCount; }
137 
138     /**
139      * Adds 1 new default-initialized T value and returns it by reference. Note
140      * the reference only remains valid until the next call that adds or removes
141      * elements.
142      */
push_back()143     T& push_back() {
144         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
145         new (newT) T;
146         return *newT;
147     }
148 
149     /**
150      * Version of above that uses a copy constructor to initialize the new item
151      */
push_back(const T & t)152     T& push_back(const T& t) {
153         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
154         new (newT) T(t);
155         return *newT;
156     }
157 
158     /**
159      *  Construct a new T at the back of this array.
160      */
emplace_back(Args &&...args)161     template<class... Args> T& emplace_back(Args&&... args) {
162         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
163         return *new (newT) T(std::forward<Args>(args)...);
164     }
165 
166     /**
167      * Allocates n more default-initialized T values, and returns the address of
168      * the start of that new range. Note: this address is only valid until the
169      * next API call made on the array that might add or remove elements.
170      */
push_back_n(int n)171     T* push_back_n(int n) {
172         SkASSERT(n >= 0);
173         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
174         for (int i = 0; i < n; ++i) {
175             new (newTs + i) T;
176         }
177         return newTs;
178     }
179 
180     /**
181      * Version of above that uses a copy constructor to initialize all n items
182      * to the same T.
183      */
push_back_n(int n,const T & t)184     T* push_back_n(int n, const T& t) {
185         SkASSERT(n >= 0);
186         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
187         for (int i = 0; i < n; ++i) {
188             new (newTs[i]) T(t);
189         }
190         return newTs;
191     }
192 
193     /**
194      * Version of above that uses a copy constructor to initialize the n items
195      * to separate T values.
196      */
push_back_n(int n,const T t[])197     T* push_back_n(int n, const T t[]) {
198         SkASSERT(n >= 0);
199         this->checkRealloc(n);
200         for (int i = 0; i < n; ++i) {
201             new (fItemArray + fCount + i) T(t[i]);
202         }
203         fCount += n;
204         return fItemArray + fCount - n;
205     }
206 
207     /**
208      * Removes the last element. Not safe to call when count() == 0.
209      */
pop_back()210     void pop_back() {
211         SkASSERT(fCount > 0);
212         --fCount;
213         fItemArray[fCount].~T();
214         this->checkRealloc(0);
215     }
216 
217     /**
218      * Removes the last n elements. Not safe to call when count() < n.
219      */
pop_back_n(int n)220     void pop_back_n(int n) {
221         SkASSERT(n >= 0);
222         SkASSERT(fCount >= n);
223         fCount -= n;
224         for (int i = 0; i < n; ++i) {
225             fItemArray[fCount + i].~T();
226         }
227         this->checkRealloc(0);
228     }
229 
230     /**
231      * Pushes or pops from the back to resize. Pushes will be default
232      * initialized.
233      */
resize_back(int newCount)234     void resize_back(int newCount) {
235         SkASSERT(newCount >= 0);
236 
237         if (newCount > fCount) {
238             this->push_back_n(newCount - fCount);
239         } else if (newCount < fCount) {
240             this->pop_back_n(fCount - newCount);
241         }
242     }
243 
244     /** Swaps the contents of this array with that array. Does a pointer swap if possible,
245         otherwise copies the T values. */
swap(SkTArray * that)246     void swap(SkTArray* that) {
247         if (this == that) {
248             return;
249         }
250         if (this->fPreAllocMemArray != this->fItemArray &&
251             that->fPreAllocMemArray != that->fItemArray) {
252             // If neither is using a preallocated array then just swap.
253             SkTSwap(fItemArray, that->fItemArray);
254             SkTSwap(fCount, that->fCount);
255             SkTSwap(fAllocCount, that->fAllocCount);
256         } else {
257             // This could be more optimal...
258             SkTArray copy(*that);
259             *that = *this;
260             *this = copy;
261         }
262     }
263 
begin()264     T* begin() {
265         return fItemArray;
266     }
begin()267     const T* begin() const {
268         return fItemArray;
269     }
end()270     T* end() {
271         return fItemArray ? fItemArray + fCount : NULL;
272     }
end()273     const T* end() const {
274         return fItemArray ? fItemArray + fCount : NULL;
275     }
276 
277    /**
278      * Get the i^th element.
279      */
280     T& operator[] (int i) {
281         SkASSERT(i < fCount);
282         SkASSERT(i >= 0);
283         return fItemArray[i];
284     }
285 
286     const T& operator[] (int i) const {
287         SkASSERT(i < fCount);
288         SkASSERT(i >= 0);
289         return fItemArray[i];
290     }
291 
292     /**
293      * equivalent to operator[](0)
294      */
front()295     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
296 
front()297     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
298 
299     /**
300      * equivalent to operator[](count() - 1)
301      */
back()302     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
303 
back()304     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
305 
306     /**
307      * equivalent to operator[](count()-1-i)
308      */
fromBack(int i)309     T& fromBack(int i) {
310         SkASSERT(i >= 0);
311         SkASSERT(i < fCount);
312         return fItemArray[fCount - i - 1];
313     }
314 
fromBack(int i)315     const T& fromBack(int i) const {
316         SkASSERT(i >= 0);
317         SkASSERT(i < fCount);
318         return fItemArray[fCount - i - 1];
319     }
320 
321     bool operator==(const SkTArray<T, MEM_COPY>& right) const {
322         int leftCount = this->count();
323         if (leftCount != right.count()) {
324             return false;
325         }
326         for (int index = 0; index < leftCount; ++index) {
327             if (fItemArray[index] != right.fItemArray[index]) {
328                 return false;
329             }
330         }
331         return true;
332     }
333 
334     bool operator!=(const SkTArray<T, MEM_COPY>& right) const {
335         return !(*this == right);
336     }
337 
338 protected:
339     /**
340      * Creates an empty array that will use the passed storage block until it
341      * is insufficiently large to hold the entire array.
342      */
343     template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)344     SkTArray(SkAlignedSTStorage<N,T>* storage) {
345         this->init(NULL, 0, storage->get(), N);
346     }
347 
348     /**
349      * Copy another array, using preallocated storage if preAllocCount >=
350      * array.count(). Otherwise storage will only be used when array shrinks
351      * to fit.
352      */
353     template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)354     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
355         this->init(array.fItemArray, array.fCount, storage->get(), N);
356     }
357 
358     /**
359      * Copy a C array, using preallocated storage if preAllocCount >=
360      * count. Otherwise storage will only be used when array shrinks
361      * to fit.
362      */
363     template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)364     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
365         this->init(array, count, storage->get(), N);
366     }
367 
init(const T * array,int count,void * preAllocStorage,int preAllocOrReserveCount)368     void init(const T* array, int count,
369               void* preAllocStorage, int preAllocOrReserveCount) {
370         SkASSERT(count >= 0);
371         SkASSERT(preAllocOrReserveCount >= 0);
372         fCount              = count;
373         fReserveCount       = (preAllocOrReserveCount > 0) ?
374                                     preAllocOrReserveCount :
375                                     gMIN_ALLOC_COUNT;
376         fPreAllocMemArray   = preAllocStorage;
377         if (fReserveCount >= fCount &&
378             preAllocStorage) {
379             fAllocCount = fReserveCount;
380             fMemArray = preAllocStorage;
381         } else {
382             fAllocCount = SkMax32(fCount, fReserveCount);
383             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
384         }
385 
386         this->copy(array);
387     }
388 
389 private:
390     /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
391      *  In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
392      */
SK_WHEN(E,void)393     template <bool E = MEM_COPY> SK_WHEN(E, void) copy(const T* src) {
394         sk_careful_memcpy(fMemArray, src, fCount * sizeof(T));
395     }
SK_WHEN(E,void)396     template <bool E = MEM_COPY> SK_WHEN(E, void) move(int dst, int src) {
397         memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T));
398     }
SK_WHEN(E,void)399     template <bool E = MEM_COPY> SK_WHEN(E, void) move(char* dst) {
400         sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T));
401     }
402 
copy(const T * src)403     template <bool E = MEM_COPY> SK_WHEN(!E, void) copy(const T* src) {
404         for (int i = 0; i < fCount; ++i) {
405             new (fItemArray + i) T(src[i]);
406         }
407     }
move(int dst,int src)408     template <bool E = MEM_COPY> SK_WHEN(!E, void) move(int dst, int src) {
409         new (&fItemArray[dst]) T(std::move(fItemArray[src]));
410         fItemArray[src].~T();
411     }
move(char * dst)412     template <bool E = MEM_COPY> SK_WHEN(!E, void) move(char* dst) {
413         for (int i = 0; i < fCount; ++i) {
414             new (dst + sizeof(T) * i) T(std::move(fItemArray[i]));
415             fItemArray[i].~T();
416         }
417     }
418 
419     static const int gMIN_ALLOC_COUNT = 8;
420 
421     // Helper function that makes space for n objects, adjusts the count, but does not initialize
422     // the new objects.
push_back_raw(int n)423     void* push_back_raw(int n) {
424         this->checkRealloc(n);
425         void* ptr = fItemArray + fCount;
426         fCount += n;
427         return ptr;
428     }
429 
checkRealloc(int delta)430     inline void checkRealloc(int delta) {
431         SkASSERT(fCount >= 0);
432         SkASSERT(fAllocCount >= 0);
433 
434         SkASSERT(-delta <= fCount);
435 
436         int newCount = fCount + delta;
437         int newAllocCount = fAllocCount;
438 
439         if (newCount > fAllocCount || newCount < (fAllocCount / 3)) {
440             // whether we're growing or shrinking, we leave at least 50% extra space for future
441             // growth (clamped to the reserve count).
442             newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount);
443         }
444         if (newAllocCount != fAllocCount) {
445 
446             fAllocCount = newAllocCount;
447             char* newMemArray;
448 
449             if (fAllocCount == fReserveCount && fPreAllocMemArray) {
450                 newMemArray = (char*) fPreAllocMemArray;
451             } else {
452                 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
453             }
454 
455             this->move(newMemArray);
456 
457             if (fMemArray != fPreAllocMemArray) {
458                 sk_free(fMemArray);
459             }
460             fMemArray = newMemArray;
461         }
462     }
463 
464     int     fReserveCount;
465     int     fCount;
466     int     fAllocCount;
467     void*   fPreAllocMemArray;
468     union {
469         T*       fItemArray;
470         void*    fMemArray;
471     };
472 };
473 
474 /**
475  * Subclass of SkTArray that contains a preallocated memory block for the array.
476  */
477 template <int N, typename T, bool MEM_COPY = false>
478 class SkSTArray : public SkTArray<T, MEM_COPY> {
479 private:
480     typedef SkTArray<T, MEM_COPY> INHERITED;
481 
482 public:
SkSTArray()483     SkSTArray() : INHERITED(&fStorage) {
484     }
485 
SkSTArray(const SkSTArray & array)486     SkSTArray(const SkSTArray& array)
487         : INHERITED(array, &fStorage) {
488     }
489 
SkSTArray(const INHERITED & array)490     explicit SkSTArray(const INHERITED& array)
491         : INHERITED(array, &fStorage) {
492     }
493 
SkSTArray(int reserveCount)494     explicit SkSTArray(int reserveCount)
495         : INHERITED(reserveCount) {
496     }
497 
SkSTArray(const T * array,int count)498     SkSTArray(const T* array, int count)
499         : INHERITED(array, count, &fStorage) {
500     }
501 
502     SkSTArray& operator= (const SkSTArray& array) {
503         return *this = *(const INHERITED*)&array;
504     }
505 
506     SkSTArray& operator= (const INHERITED& array) {
507         INHERITED::operator=(array);
508         return *this;
509     }
510 
511 private:
512     SkAlignedSTStorage<N,T> fStorage;
513 };
514 
515 #endif
516