1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Details of the algorithm:
12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Instrumentation.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/InstVisitor.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/DataTypes.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/ModuleUtils.h"
57 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
58 #include <algorithm>
59 #include <string>
60 #include <system_error>
61
62 using namespace llvm;
63
64 #define DEBUG_TYPE "asan"
65
66 static const uint64_t kDefaultShadowScale = 3;
67 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
68 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
69 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
70 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G.
71 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
72 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
73 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
74 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
75 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
76 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
77 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
78 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
79
80 static const size_t kMinStackMallocSize = 1 << 6; // 64B
81 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
82 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
83 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
84
85 static const char *const kAsanModuleCtorName = "asan.module_ctor";
86 static const char *const kAsanModuleDtorName = "asan.module_dtor";
87 static const uint64_t kAsanCtorAndDtorPriority = 1;
88 static const char *const kAsanReportErrorTemplate = "__asan_report_";
89 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
90 static const char *const kAsanUnregisterGlobalsName =
91 "__asan_unregister_globals";
92 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
93 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
94 static const char *const kAsanInitName = "__asan_init";
95 static const char *const kAsanVersionCheckName =
96 "__asan_version_mismatch_check_v6";
97 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
98 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
99 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
100 static const int kMaxAsanStackMallocSizeClass = 10;
101 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
102 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
103 static const char *const kAsanGenPrefix = "__asan_gen_";
104 static const char *const kSanCovGenPrefix = "__sancov_gen_";
105 static const char *const kAsanPoisonStackMemoryName =
106 "__asan_poison_stack_memory";
107 static const char *const kAsanUnpoisonStackMemoryName =
108 "__asan_unpoison_stack_memory";
109
110 static const char *const kAsanOptionDetectUAR =
111 "__asan_option_detect_stack_use_after_return";
112
113 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
114 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
115
116 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
117 static const size_t kNumberOfAccessSizes = 5;
118
119 static const unsigned kAllocaRzSize = 32;
120
121 // Command-line flags.
122 static cl::opt<bool> ClEnableKasan(
123 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
124 cl::Hidden, cl::init(false));
125 static cl::opt<bool> ClRecover(
126 "asan-recover",
127 cl::desc("Enable recovery mode (continue-after-error)."),
128 cl::Hidden, cl::init(false));
129
130 // This flag may need to be replaced with -f[no-]asan-reads.
131 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
132 cl::desc("instrument read instructions"),
133 cl::Hidden, cl::init(true));
134 static cl::opt<bool> ClInstrumentWrites(
135 "asan-instrument-writes", cl::desc("instrument write instructions"),
136 cl::Hidden, cl::init(true));
137 static cl::opt<bool> ClInstrumentAtomics(
138 "asan-instrument-atomics",
139 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
140 cl::init(true));
141 static cl::opt<bool> ClAlwaysSlowPath(
142 "asan-always-slow-path",
143 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
144 cl::init(false));
145 // This flag limits the number of instructions to be instrumented
146 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
147 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
148 // set it to 10000.
149 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
150 "asan-max-ins-per-bb", cl::init(10000),
151 cl::desc("maximal number of instructions to instrument in any given BB"),
152 cl::Hidden);
153 // This flag may need to be replaced with -f[no]asan-stack.
154 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
155 cl::Hidden, cl::init(true));
156 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
157 cl::desc("Check return-after-free"),
158 cl::Hidden, cl::init(true));
159 // This flag may need to be replaced with -f[no]asan-globals.
160 static cl::opt<bool> ClGlobals("asan-globals",
161 cl::desc("Handle global objects"), cl::Hidden,
162 cl::init(true));
163 static cl::opt<bool> ClInitializers("asan-initialization-order",
164 cl::desc("Handle C++ initializer order"),
165 cl::Hidden, cl::init(true));
166 static cl::opt<bool> ClInvalidPointerPairs(
167 "asan-detect-invalid-pointer-pair",
168 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
169 cl::init(false));
170 static cl::opt<unsigned> ClRealignStack(
171 "asan-realign-stack",
172 cl::desc("Realign stack to the value of this flag (power of two)"),
173 cl::Hidden, cl::init(32));
174 static cl::opt<int> ClInstrumentationWithCallsThreshold(
175 "asan-instrumentation-with-call-threshold",
176 cl::desc(
177 "If the function being instrumented contains more than "
178 "this number of memory accesses, use callbacks instead of "
179 "inline checks (-1 means never use callbacks)."),
180 cl::Hidden, cl::init(7000));
181 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
182 "asan-memory-access-callback-prefix",
183 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
184 cl::init("__asan_"));
185 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
186 cl::desc("instrument dynamic allocas"),
187 cl::Hidden, cl::init(true));
188 static cl::opt<bool> ClSkipPromotableAllocas(
189 "asan-skip-promotable-allocas",
190 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
191 cl::init(true));
192
193 // These flags allow to change the shadow mapping.
194 // The shadow mapping looks like
195 // Shadow = (Mem >> scale) + (1 << offset_log)
196 static cl::opt<int> ClMappingScale("asan-mapping-scale",
197 cl::desc("scale of asan shadow mapping"),
198 cl::Hidden, cl::init(0));
199
200 // Optimization flags. Not user visible, used mostly for testing
201 // and benchmarking the tool.
202 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
203 cl::Hidden, cl::init(true));
204 static cl::opt<bool> ClOptSameTemp(
205 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
206 cl::Hidden, cl::init(true));
207 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
208 cl::desc("Don't instrument scalar globals"),
209 cl::Hidden, cl::init(true));
210 static cl::opt<bool> ClOptStack(
211 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
212 cl::Hidden, cl::init(false));
213
214 static cl::opt<bool> ClCheckLifetime(
215 "asan-check-lifetime",
216 cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden,
217 cl::init(false));
218
219 static cl::opt<bool> ClDynamicAllocaStack(
220 "asan-stack-dynamic-alloca",
221 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
222 cl::init(true));
223
224 static cl::opt<uint32_t> ClForceExperiment(
225 "asan-force-experiment",
226 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
227 cl::init(0));
228
229 // Debug flags.
230 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
231 cl::init(0));
232 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
233 cl::Hidden, cl::init(0));
234 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
235 cl::desc("Debug func"));
236 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
237 cl::Hidden, cl::init(-1));
238 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
239 cl::Hidden, cl::init(-1));
240
241 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
242 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
243 STATISTIC(NumOptimizedAccessesToGlobalVar,
244 "Number of optimized accesses to global vars");
245 STATISTIC(NumOptimizedAccessesToStackVar,
246 "Number of optimized accesses to stack vars");
247
248 namespace {
249 /// Frontend-provided metadata for source location.
250 struct LocationMetadata {
251 StringRef Filename;
252 int LineNo;
253 int ColumnNo;
254
LocationMetadata__anone3a95e720111::LocationMetadata255 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
256
empty__anone3a95e720111::LocationMetadata257 bool empty() const { return Filename.empty(); }
258
parse__anone3a95e720111::LocationMetadata259 void parse(MDNode *MDN) {
260 assert(MDN->getNumOperands() == 3);
261 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
262 Filename = DIFilename->getString();
263 LineNo =
264 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
265 ColumnNo =
266 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
267 }
268 };
269
270 /// Frontend-provided metadata for global variables.
271 class GlobalsMetadata {
272 public:
273 struct Entry {
Entry__anone3a95e720111::GlobalsMetadata::Entry274 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
275 LocationMetadata SourceLoc;
276 StringRef Name;
277 bool IsDynInit;
278 bool IsBlacklisted;
279 };
280
GlobalsMetadata()281 GlobalsMetadata() : inited_(false) {}
282
reset()283 void reset() {
284 inited_ = false;
285 Entries.clear();
286 }
287
init(Module & M)288 void init(Module &M) {
289 assert(!inited_);
290 inited_ = true;
291 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
292 if (!Globals) return;
293 for (auto MDN : Globals->operands()) {
294 // Metadata node contains the global and the fields of "Entry".
295 assert(MDN->getNumOperands() == 5);
296 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
297 // The optimizer may optimize away a global entirely.
298 if (!GV) continue;
299 // We can already have an entry for GV if it was merged with another
300 // global.
301 Entry &E = Entries[GV];
302 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
303 E.SourceLoc.parse(Loc);
304 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
305 E.Name = Name->getString();
306 ConstantInt *IsDynInit =
307 mdconst::extract<ConstantInt>(MDN->getOperand(3));
308 E.IsDynInit |= IsDynInit->isOne();
309 ConstantInt *IsBlacklisted =
310 mdconst::extract<ConstantInt>(MDN->getOperand(4));
311 E.IsBlacklisted |= IsBlacklisted->isOne();
312 }
313 }
314
315 /// Returns metadata entry for a given global.
get(GlobalVariable * G) const316 Entry get(GlobalVariable *G) const {
317 auto Pos = Entries.find(G);
318 return (Pos != Entries.end()) ? Pos->second : Entry();
319 }
320
321 private:
322 bool inited_;
323 DenseMap<GlobalVariable *, Entry> Entries;
324 };
325
326 /// This struct defines the shadow mapping using the rule:
327 /// shadow = (mem >> Scale) ADD-or-OR Offset.
328 struct ShadowMapping {
329 int Scale;
330 uint64_t Offset;
331 bool OrShadowOffset;
332 };
333
getShadowMapping(Triple & TargetTriple,int LongSize,bool IsKasan)334 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
335 bool IsKasan) {
336 bool IsAndroid = TargetTriple.isAndroid();
337 bool IsIOS = TargetTriple.isiOS();
338 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
339 bool IsLinux = TargetTriple.isOSLinux();
340 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
341 TargetTriple.getArch() == llvm::Triple::ppc64le;
342 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
343 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
344 TargetTriple.getArch() == llvm::Triple::mipsel;
345 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
346 TargetTriple.getArch() == llvm::Triple::mips64el;
347 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
348 bool IsWindows = TargetTriple.isOSWindows();
349
350 ShadowMapping Mapping;
351
352 if (LongSize == 32) {
353 // Android is always PIE, which means that the beginning of the address
354 // space is always available.
355 if (IsAndroid)
356 Mapping.Offset = 0;
357 else if (IsMIPS32)
358 Mapping.Offset = kMIPS32_ShadowOffset32;
359 else if (IsFreeBSD)
360 Mapping.Offset = kFreeBSD_ShadowOffset32;
361 else if (IsIOS)
362 Mapping.Offset = kIOSShadowOffset32;
363 else if (IsWindows)
364 Mapping.Offset = kWindowsShadowOffset32;
365 else
366 Mapping.Offset = kDefaultShadowOffset32;
367 } else { // LongSize == 64
368 if (IsPPC64)
369 Mapping.Offset = kPPC64_ShadowOffset64;
370 else if (IsFreeBSD)
371 Mapping.Offset = kFreeBSD_ShadowOffset64;
372 else if (IsLinux && IsX86_64) {
373 if (IsKasan)
374 Mapping.Offset = kLinuxKasan_ShadowOffset64;
375 else
376 Mapping.Offset = kSmallX86_64ShadowOffset;
377 } else if (IsMIPS64)
378 Mapping.Offset = kMIPS64_ShadowOffset64;
379 else if (IsAArch64)
380 Mapping.Offset = kAArch64_ShadowOffset64;
381 else
382 Mapping.Offset = kDefaultShadowOffset64;
383 }
384
385 Mapping.Scale = kDefaultShadowScale;
386 if (ClMappingScale) {
387 Mapping.Scale = ClMappingScale;
388 }
389
390 // OR-ing shadow offset if more efficient (at least on x86) if the offset
391 // is a power of two, but on ppc64 we have to use add since the shadow
392 // offset is not necessary 1/8-th of the address space.
393 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64
394 && !(Mapping.Offset & (Mapping.Offset - 1));
395
396 return Mapping;
397 }
398
RedzoneSizeForScale(int MappingScale)399 static size_t RedzoneSizeForScale(int MappingScale) {
400 // Redzone used for stack and globals is at least 32 bytes.
401 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
402 return std::max(32U, 1U << MappingScale);
403 }
404
405 /// AddressSanitizer: instrument the code in module to find memory bugs.
406 struct AddressSanitizer : public FunctionPass {
AddressSanitizer__anone3a95e720111::AddressSanitizer407 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false)
408 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
409 Recover(Recover || ClRecover) {
410 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
411 }
getPassName__anone3a95e720111::AddressSanitizer412 const char *getPassName() const override {
413 return "AddressSanitizerFunctionPass";
414 }
getAnalysisUsage__anone3a95e720111::AddressSanitizer415 void getAnalysisUsage(AnalysisUsage &AU) const override {
416 AU.addRequired<DominatorTreeWrapperPass>();
417 AU.addRequired<TargetLibraryInfoWrapperPass>();
418 }
getAllocaSizeInBytes__anone3a95e720111::AddressSanitizer419 uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
420 Type *Ty = AI->getAllocatedType();
421 uint64_t SizeInBytes =
422 AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
423 return SizeInBytes;
424 }
425 /// Check if we want (and can) handle this alloca.
426 bool isInterestingAlloca(AllocaInst &AI);
427
428 // Check if we have dynamic alloca.
isDynamicAlloca__anone3a95e720111::AddressSanitizer429 bool isDynamicAlloca(AllocaInst &AI) const {
430 return AI.isArrayAllocation() || !AI.isStaticAlloca();
431 }
432
433 /// If it is an interesting memory access, return the PointerOperand
434 /// and set IsWrite/Alignment. Otherwise return nullptr.
435 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
436 uint64_t *TypeSize, unsigned *Alignment);
437 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
438 bool UseCalls, const DataLayout &DL);
439 void instrumentPointerComparisonOrSubtraction(Instruction *I);
440 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
441 Value *Addr, uint32_t TypeSize, bool IsWrite,
442 Value *SizeArgument, bool UseCalls, uint32_t Exp);
443 void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
444 uint32_t TypeSize, bool IsWrite,
445 Value *SizeArgument, bool UseCalls,
446 uint32_t Exp);
447 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
448 Value *ShadowValue, uint32_t TypeSize);
449 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
450 bool IsWrite, size_t AccessSizeIndex,
451 Value *SizeArgument, uint32_t Exp);
452 void instrumentMemIntrinsic(MemIntrinsic *MI);
453 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
454 bool runOnFunction(Function &F) override;
455 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
456 void markEscapedLocalAllocas(Function &F);
457 bool doInitialization(Module &M) override;
458 bool doFinalization(Module &M) override;
459 static char ID; // Pass identification, replacement for typeid
460
getDominatorTree__anone3a95e720111::AddressSanitizer461 DominatorTree &getDominatorTree() const { return *DT; }
462
463 private:
464 void initializeCallbacks(Module &M);
465
466 bool LooksLikeCodeInBug11395(Instruction *I);
467 bool GlobalIsLinkerInitialized(GlobalVariable *G);
468 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
469 uint64_t TypeSize) const;
470
471 /// Helper to cleanup per-function state.
472 struct FunctionStateRAII {
473 AddressSanitizer *Pass;
FunctionStateRAII__anone3a95e720111::AddressSanitizer::FunctionStateRAII474 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
475 assert(Pass->ProcessedAllocas.empty() &&
476 "last pass forgot to clear cache");
477 }
~FunctionStateRAII__anone3a95e720111::AddressSanitizer::FunctionStateRAII478 ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); }
479 };
480
481 LLVMContext *C;
482 Triple TargetTriple;
483 int LongSize;
484 bool CompileKernel;
485 bool Recover;
486 Type *IntptrTy;
487 ShadowMapping Mapping;
488 DominatorTree *DT;
489 Function *AsanCtorFunction = nullptr;
490 Function *AsanInitFunction = nullptr;
491 Function *AsanHandleNoReturnFunc;
492 Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
493 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
494 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
495 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
496 // This array is indexed by AccessIsWrite and Experiment.
497 Function *AsanErrorCallbackSized[2][2];
498 Function *AsanMemoryAccessCallbackSized[2][2];
499 Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
500 InlineAsm *EmptyAsm;
501 GlobalsMetadata GlobalsMD;
502 DenseMap<AllocaInst *, bool> ProcessedAllocas;
503
504 friend struct FunctionStackPoisoner;
505 };
506
507 class AddressSanitizerModule : public ModulePass {
508 public:
AddressSanitizerModule(bool CompileKernel=false,bool Recover=false)509 explicit AddressSanitizerModule(bool CompileKernel = false,
510 bool Recover = false)
511 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
512 Recover(Recover || ClRecover) {}
513 bool runOnModule(Module &M) override;
514 static char ID; // Pass identification, replacement for typeid
getPassName() const515 const char *getPassName() const override { return "AddressSanitizerModule"; }
516
517 private:
518 void initializeCallbacks(Module &M);
519
520 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
521 bool ShouldInstrumentGlobal(GlobalVariable *G);
522 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
523 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
MinRedzoneSizeForGlobal() const524 size_t MinRedzoneSizeForGlobal() const {
525 return RedzoneSizeForScale(Mapping.Scale);
526 }
527
528 GlobalsMetadata GlobalsMD;
529 bool CompileKernel;
530 bool Recover;
531 Type *IntptrTy;
532 LLVMContext *C;
533 Triple TargetTriple;
534 ShadowMapping Mapping;
535 Function *AsanPoisonGlobals;
536 Function *AsanUnpoisonGlobals;
537 Function *AsanRegisterGlobals;
538 Function *AsanUnregisterGlobals;
539 };
540
541 // Stack poisoning does not play well with exception handling.
542 // When an exception is thrown, we essentially bypass the code
543 // that unpoisones the stack. This is why the run-time library has
544 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
545 // stack in the interceptor. This however does not work inside the
546 // actual function which catches the exception. Most likely because the
547 // compiler hoists the load of the shadow value somewhere too high.
548 // This causes asan to report a non-existing bug on 453.povray.
549 // It sounds like an LLVM bug.
550 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
551 Function &F;
552 AddressSanitizer &ASan;
553 DIBuilder DIB;
554 LLVMContext *C;
555 Type *IntptrTy;
556 Type *IntptrPtrTy;
557 ShadowMapping Mapping;
558
559 SmallVector<AllocaInst *, 16> AllocaVec;
560 SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec;
561 SmallVector<Instruction *, 8> RetVec;
562 unsigned StackAlignment;
563
564 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
565 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
566 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
567 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
568
569 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
570 struct AllocaPoisonCall {
571 IntrinsicInst *InsBefore;
572 AllocaInst *AI;
573 uint64_t Size;
574 bool DoPoison;
575 };
576 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
577
578 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
579 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
580 AllocaInst *DynamicAllocaLayout = nullptr;
581 IntrinsicInst *LocalEscapeCall = nullptr;
582
583 // Maps Value to an AllocaInst from which the Value is originated.
584 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
585 AllocaForValueMapTy AllocaForValue;
586
587 bool HasNonEmptyInlineAsm = false;
588 bool HasReturnsTwiceCall = false;
589 std::unique_ptr<CallInst> EmptyInlineAsm;
590
FunctionStackPoisoner__anone3a95e720111::FunctionStackPoisoner591 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
592 : F(F),
593 ASan(ASan),
594 DIB(*F.getParent(), /*AllowUnresolved*/ false),
595 C(ASan.C),
596 IntptrTy(ASan.IntptrTy),
597 IntptrPtrTy(PointerType::get(IntptrTy, 0)),
598 Mapping(ASan.Mapping),
599 StackAlignment(1 << Mapping.Scale),
600 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
601
runOnFunction__anone3a95e720111::FunctionStackPoisoner602 bool runOnFunction() {
603 if (!ClStack) return false;
604 // Collect alloca, ret, lifetime instructions etc.
605 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
606
607 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
608
609 initializeCallbacks(*F.getParent());
610
611 poisonStack();
612
613 if (ClDebugStack) {
614 DEBUG(dbgs() << F);
615 }
616 return true;
617 }
618
619 // Finds all Alloca instructions and puts
620 // poisoned red zones around all of them.
621 // Then unpoison everything back before the function returns.
622 void poisonStack();
623
624 void createDynamicAllocasInitStorage();
625
626 // ----------------------- Visitors.
627 /// \brief Collect all Ret instructions.
visitReturnInst__anone3a95e720111::FunctionStackPoisoner628 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
629
unpoisonDynamicAllocasBeforeInst__anone3a95e720111::FunctionStackPoisoner630 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
631 Value *SavedStack) {
632 IRBuilder<> IRB(InstBefore);
633 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
634 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
635 // need to adjust extracted SP to compute the address of the most recent
636 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
637 // this purpose.
638 if (!isa<ReturnInst>(InstBefore)) {
639 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
640 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
641 {IntptrTy});
642
643 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
644
645 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
646 DynamicAreaOffset);
647 }
648
649 IRB.CreateCall(AsanAllocasUnpoisonFunc,
650 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
651 }
652
653 // Unpoison dynamic allocas redzones.
unpoisonDynamicAllocas__anone3a95e720111::FunctionStackPoisoner654 void unpoisonDynamicAllocas() {
655 for (auto &Ret : RetVec)
656 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
657
658 for (auto &StackRestoreInst : StackRestoreVec)
659 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
660 StackRestoreInst->getOperand(0));
661 }
662
663 // Deploy and poison redzones around dynamic alloca call. To do this, we
664 // should replace this call with another one with changed parameters and
665 // replace all its uses with new address, so
666 // addr = alloca type, old_size, align
667 // is replaced by
668 // new_size = (old_size + additional_size) * sizeof(type)
669 // tmp = alloca i8, new_size, max(align, 32)
670 // addr = tmp + 32 (first 32 bytes are for the left redzone).
671 // Additional_size is added to make new memory allocation contain not only
672 // requested memory, but also left, partial and right redzones.
673 void handleDynamicAllocaCall(AllocaInst *AI);
674
675 /// \brief Collect Alloca instructions we want (and can) handle.
visitAllocaInst__anone3a95e720111::FunctionStackPoisoner676 void visitAllocaInst(AllocaInst &AI) {
677 if (!ASan.isInterestingAlloca(AI)) {
678 if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI);
679 return;
680 }
681
682 StackAlignment = std::max(StackAlignment, AI.getAlignment());
683 if (ASan.isDynamicAlloca(AI))
684 DynamicAllocaVec.push_back(&AI);
685 else
686 AllocaVec.push_back(&AI);
687 }
688
689 /// \brief Collect lifetime intrinsic calls to check for use-after-scope
690 /// errors.
visitIntrinsicInst__anone3a95e720111::FunctionStackPoisoner691 void visitIntrinsicInst(IntrinsicInst &II) {
692 Intrinsic::ID ID = II.getIntrinsicID();
693 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
694 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
695 if (!ClCheckLifetime) return;
696 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
697 return;
698 // Found lifetime intrinsic, add ASan instrumentation if necessary.
699 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
700 // If size argument is undefined, don't do anything.
701 if (Size->isMinusOne()) return;
702 // Check that size doesn't saturate uint64_t and can
703 // be stored in IntptrTy.
704 const uint64_t SizeValue = Size->getValue().getLimitedValue();
705 if (SizeValue == ~0ULL ||
706 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
707 return;
708 // Find alloca instruction that corresponds to llvm.lifetime argument.
709 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
710 if (!AI) return;
711 bool DoPoison = (ID == Intrinsic::lifetime_end);
712 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
713 AllocaPoisonCallVec.push_back(APC);
714 }
715
visitCallSite__anone3a95e720111::FunctionStackPoisoner716 void visitCallSite(CallSite CS) {
717 Instruction *I = CS.getInstruction();
718 if (CallInst *CI = dyn_cast<CallInst>(I)) {
719 HasNonEmptyInlineAsm |=
720 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
721 HasReturnsTwiceCall |= CI->canReturnTwice();
722 }
723 }
724
725 // ---------------------- Helpers.
726 void initializeCallbacks(Module &M);
727
doesDominateAllExits__anone3a95e720111::FunctionStackPoisoner728 bool doesDominateAllExits(const Instruction *I) const {
729 for (auto Ret : RetVec) {
730 if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
731 }
732 return true;
733 }
734
735 /// Finds alloca where the value comes from.
736 AllocaInst *findAllocaForValue(Value *V);
737 void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
738 Value *ShadowBase, bool DoPoison);
739 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
740
741 void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
742 int Size);
743 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
744 bool Dynamic);
745 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
746 Instruction *ThenTerm, Value *ValueIfFalse);
747 };
748
749 } // anonymous namespace
750
751 char AddressSanitizer::ID = 0;
752 INITIALIZE_PASS_BEGIN(
753 AddressSanitizer, "asan",
754 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
755 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)756 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
757 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
758 INITIALIZE_PASS_END(
759 AddressSanitizer, "asan",
760 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
761 false)
762 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
763 bool Recover) {
764 assert(!CompileKernel || Recover);
765 return new AddressSanitizer(CompileKernel, Recover);
766 }
767
768 char AddressSanitizerModule::ID = 0;
769 INITIALIZE_PASS(
770 AddressSanitizerModule, "asan-module",
771 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
772 "ModulePass",
773 false, false)
createAddressSanitizerModulePass(bool CompileKernel,bool Recover)774 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
775 bool Recover) {
776 assert(!CompileKernel || Recover);
777 return new AddressSanitizerModule(CompileKernel, Recover);
778 }
779
TypeSizeToSizeIndex(uint32_t TypeSize)780 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
781 size_t Res = countTrailingZeros(TypeSize / 8);
782 assert(Res < kNumberOfAccessSizes);
783 return Res;
784 }
785
786 // \brief Create a constant for Str so that we can pass it to the run-time lib.
createPrivateGlobalForString(Module & M,StringRef Str,bool AllowMerging)787 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
788 bool AllowMerging) {
789 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
790 // We use private linkage for module-local strings. If they can be merged
791 // with another one, we set the unnamed_addr attribute.
792 GlobalVariable *GV =
793 new GlobalVariable(M, StrConst->getType(), true,
794 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
795 if (AllowMerging) GV->setUnnamedAddr(true);
796 GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
797 return GV;
798 }
799
800 /// \brief Create a global describing a source location.
createPrivateGlobalForSourceLoc(Module & M,LocationMetadata MD)801 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
802 LocationMetadata MD) {
803 Constant *LocData[] = {
804 createPrivateGlobalForString(M, MD.Filename, true),
805 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
806 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
807 };
808 auto LocStruct = ConstantStruct::getAnon(LocData);
809 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
810 GlobalValue::PrivateLinkage, LocStruct,
811 kAsanGenPrefix);
812 GV->setUnnamedAddr(true);
813 return GV;
814 }
815
GlobalWasGeneratedByAsan(GlobalVariable * G)816 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
817 return G->getName().find(kAsanGenPrefix) == 0 ||
818 G->getName().find(kSanCovGenPrefix) == 0;
819 }
820
memToShadow(Value * Shadow,IRBuilder<> & IRB)821 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
822 // Shadow >> scale
823 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
824 if (Mapping.Offset == 0) return Shadow;
825 // (Shadow >> scale) | offset
826 if (Mapping.OrShadowOffset)
827 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
828 else
829 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
830 }
831
832 // Instrument memset/memmove/memcpy
instrumentMemIntrinsic(MemIntrinsic * MI)833 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
834 IRBuilder<> IRB(MI);
835 if (isa<MemTransferInst>(MI)) {
836 IRB.CreateCall(
837 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
838 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
839 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
840 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
841 } else if (isa<MemSetInst>(MI)) {
842 IRB.CreateCall(
843 AsanMemset,
844 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
845 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
846 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
847 }
848 MI->eraseFromParent();
849 }
850
851 /// Check if we want (and can) handle this alloca.
isInterestingAlloca(AllocaInst & AI)852 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
853 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
854
855 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
856 return PreviouslySeenAllocaInfo->getSecond();
857
858 bool IsInteresting =
859 (AI.getAllocatedType()->isSized() &&
860 // alloca() may be called with 0 size, ignore it.
861 getAllocaSizeInBytes(&AI) > 0 &&
862 // We are only interested in allocas not promotable to registers.
863 // Promotable allocas are common under -O0.
864 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
865 // inalloca allocas are not treated as static, and we don't want
866 // dynamic alloca instrumentation for them as well.
867 !AI.isUsedWithInAlloca());
868
869 ProcessedAllocas[&AI] = IsInteresting;
870 return IsInteresting;
871 }
872
873 /// If I is an interesting memory access, return the PointerOperand
874 /// and set IsWrite/Alignment. Otherwise return nullptr.
isInterestingMemoryAccess(Instruction * I,bool * IsWrite,uint64_t * TypeSize,unsigned * Alignment)875 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
876 bool *IsWrite,
877 uint64_t *TypeSize,
878 unsigned *Alignment) {
879 // Skip memory accesses inserted by another instrumentation.
880 if (I->getMetadata("nosanitize")) return nullptr;
881
882 Value *PtrOperand = nullptr;
883 const DataLayout &DL = I->getModule()->getDataLayout();
884 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
885 if (!ClInstrumentReads) return nullptr;
886 *IsWrite = false;
887 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
888 *Alignment = LI->getAlignment();
889 PtrOperand = LI->getPointerOperand();
890 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
891 if (!ClInstrumentWrites) return nullptr;
892 *IsWrite = true;
893 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
894 *Alignment = SI->getAlignment();
895 PtrOperand = SI->getPointerOperand();
896 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
897 if (!ClInstrumentAtomics) return nullptr;
898 *IsWrite = true;
899 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
900 *Alignment = 0;
901 PtrOperand = RMW->getPointerOperand();
902 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
903 if (!ClInstrumentAtomics) return nullptr;
904 *IsWrite = true;
905 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
906 *Alignment = 0;
907 PtrOperand = XCHG->getPointerOperand();
908 }
909
910 // Treat memory accesses to promotable allocas as non-interesting since they
911 // will not cause memory violations. This greatly speeds up the instrumented
912 // executable at -O0.
913 if (ClSkipPromotableAllocas)
914 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
915 return isInterestingAlloca(*AI) ? AI : nullptr;
916
917 return PtrOperand;
918 }
919
isPointerOperand(Value * V)920 static bool isPointerOperand(Value *V) {
921 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
922 }
923
924 // This is a rough heuristic; it may cause both false positives and
925 // false negatives. The proper implementation requires cooperation with
926 // the frontend.
isInterestingPointerComparisonOrSubtraction(Instruction * I)927 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
928 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
929 if (!Cmp->isRelational()) return false;
930 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
931 if (BO->getOpcode() != Instruction::Sub) return false;
932 } else {
933 return false;
934 }
935 return isPointerOperand(I->getOperand(0)) &&
936 isPointerOperand(I->getOperand(1));
937 }
938
GlobalIsLinkerInitialized(GlobalVariable * G)939 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
940 // If a global variable does not have dynamic initialization we don't
941 // have to instrument it. However, if a global does not have initializer
942 // at all, we assume it has dynamic initializer (in other TU).
943 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
944 }
945
instrumentPointerComparisonOrSubtraction(Instruction * I)946 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
947 Instruction *I) {
948 IRBuilder<> IRB(I);
949 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
950 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
951 for (int i = 0; i < 2; i++) {
952 if (Param[i]->getType()->isPointerTy())
953 Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
954 }
955 IRB.CreateCall(F, Param);
956 }
957
instrumentMop(ObjectSizeOffsetVisitor & ObjSizeVis,Instruction * I,bool UseCalls,const DataLayout & DL)958 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
959 Instruction *I, bool UseCalls,
960 const DataLayout &DL) {
961 bool IsWrite = false;
962 unsigned Alignment = 0;
963 uint64_t TypeSize = 0;
964 Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
965 assert(Addr);
966
967 // Optimization experiments.
968 // The experiments can be used to evaluate potential optimizations that remove
969 // instrumentation (assess false negatives). Instead of completely removing
970 // some instrumentation, you set Exp to a non-zero value (mask of optimization
971 // experiments that want to remove instrumentation of this instruction).
972 // If Exp is non-zero, this pass will emit special calls into runtime
973 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
974 // make runtime terminate the program in a special way (with a different
975 // exit status). Then you run the new compiler on a buggy corpus, collect
976 // the special terminations (ideally, you don't see them at all -- no false
977 // negatives) and make the decision on the optimization.
978 uint32_t Exp = ClForceExperiment;
979
980 if (ClOpt && ClOptGlobals) {
981 // If initialization order checking is disabled, a simple access to a
982 // dynamically initialized global is always valid.
983 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
984 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
985 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
986 NumOptimizedAccessesToGlobalVar++;
987 return;
988 }
989 }
990
991 if (ClOpt && ClOptStack) {
992 // A direct inbounds access to a stack variable is always valid.
993 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
994 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
995 NumOptimizedAccessesToStackVar++;
996 return;
997 }
998 }
999
1000 if (IsWrite)
1001 NumInstrumentedWrites++;
1002 else
1003 NumInstrumentedReads++;
1004
1005 unsigned Granularity = 1 << Mapping.Scale;
1006 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1007 // if the data is properly aligned.
1008 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1009 TypeSize == 128) &&
1010 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1011 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
1012 Exp);
1013 instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
1014 UseCalls, Exp);
1015 }
1016
generateCrashCode(Instruction * InsertBefore,Value * Addr,bool IsWrite,size_t AccessSizeIndex,Value * SizeArgument,uint32_t Exp)1017 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1018 Value *Addr, bool IsWrite,
1019 size_t AccessSizeIndex,
1020 Value *SizeArgument,
1021 uint32_t Exp) {
1022 IRBuilder<> IRB(InsertBefore);
1023 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1024 CallInst *Call = nullptr;
1025 if (SizeArgument) {
1026 if (Exp == 0)
1027 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1028 {Addr, SizeArgument});
1029 else
1030 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1031 {Addr, SizeArgument, ExpVal});
1032 } else {
1033 if (Exp == 0)
1034 Call =
1035 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1036 else
1037 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1038 {Addr, ExpVal});
1039 }
1040
1041 // We don't do Call->setDoesNotReturn() because the BB already has
1042 // UnreachableInst at the end.
1043 // This EmptyAsm is required to avoid callback merge.
1044 IRB.CreateCall(EmptyAsm, {});
1045 return Call;
1046 }
1047
createSlowPathCmp(IRBuilder<> & IRB,Value * AddrLong,Value * ShadowValue,uint32_t TypeSize)1048 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1049 Value *ShadowValue,
1050 uint32_t TypeSize) {
1051 size_t Granularity = 1 << Mapping.Scale;
1052 // Addr & (Granularity - 1)
1053 Value *LastAccessedByte =
1054 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1055 // (Addr & (Granularity - 1)) + size - 1
1056 if (TypeSize / 8 > 1)
1057 LastAccessedByte = IRB.CreateAdd(
1058 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1059 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1060 LastAccessedByte =
1061 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1062 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1063 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1064 }
1065
instrumentAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1066 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1067 Instruction *InsertBefore, Value *Addr,
1068 uint32_t TypeSize, bool IsWrite,
1069 Value *SizeArgument, bool UseCalls,
1070 uint32_t Exp) {
1071 IRBuilder<> IRB(InsertBefore);
1072 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1073 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1074
1075 if (UseCalls) {
1076 if (Exp == 0)
1077 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1078 AddrLong);
1079 else
1080 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1081 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1082 return;
1083 }
1084
1085 Type *ShadowTy =
1086 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1087 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1088 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1089 Value *CmpVal = Constant::getNullValue(ShadowTy);
1090 Value *ShadowValue =
1091 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1092
1093 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1094 size_t Granularity = 1 << Mapping.Scale;
1095 TerminatorInst *CrashTerm = nullptr;
1096
1097 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1098 // We use branch weights for the slow path check, to indicate that the slow
1099 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1100 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1101 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1102 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1103 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1104 IRB.SetInsertPoint(CheckTerm);
1105 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1106 if (Recover) {
1107 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1108 } else {
1109 BasicBlock *CrashBlock =
1110 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1111 CrashTerm = new UnreachableInst(*C, CrashBlock);
1112 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1113 ReplaceInstWithInst(CheckTerm, NewTerm);
1114 }
1115 } else {
1116 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1117 }
1118
1119 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1120 AccessSizeIndex, SizeArgument, Exp);
1121 Crash->setDebugLoc(OrigIns->getDebugLoc());
1122 }
1123
1124 // Instrument unusual size or unusual alignment.
1125 // We can not do it with a single check, so we do 1-byte check for the first
1126 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1127 // to report the actual access size.
instrumentUnusualSizeOrAlignment(Instruction * I,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1128 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1129 Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
1130 Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1131 IRBuilder<> IRB(I);
1132 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1133 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1134 if (UseCalls) {
1135 if (Exp == 0)
1136 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1137 {AddrLong, Size});
1138 else
1139 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1140 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1141 } else {
1142 Value *LastByte = IRB.CreateIntToPtr(
1143 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1144 Addr->getType());
1145 instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
1146 instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
1147 }
1148 }
1149
poisonOneInitializer(Function & GlobalInit,GlobalValue * ModuleName)1150 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1151 GlobalValue *ModuleName) {
1152 // Set up the arguments to our poison/unpoison functions.
1153 IRBuilder<> IRB(&GlobalInit.front(),
1154 GlobalInit.front().getFirstInsertionPt());
1155
1156 // Add a call to poison all external globals before the given function starts.
1157 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1158 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1159
1160 // Add calls to unpoison all globals before each return instruction.
1161 for (auto &BB : GlobalInit.getBasicBlockList())
1162 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1163 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1164 }
1165
createInitializerPoisonCalls(Module & M,GlobalValue * ModuleName)1166 void AddressSanitizerModule::createInitializerPoisonCalls(
1167 Module &M, GlobalValue *ModuleName) {
1168 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1169
1170 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1171 for (Use &OP : CA->operands()) {
1172 if (isa<ConstantAggregateZero>(OP)) continue;
1173 ConstantStruct *CS = cast<ConstantStruct>(OP);
1174
1175 // Must have a function or null ptr.
1176 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1177 if (F->getName() == kAsanModuleCtorName) continue;
1178 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1179 // Don't instrument CTORs that will run before asan.module_ctor.
1180 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1181 poisonOneInitializer(*F, ModuleName);
1182 }
1183 }
1184 }
1185
ShouldInstrumentGlobal(GlobalVariable * G)1186 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1187 Type *Ty = cast<PointerType>(G->getType())->getElementType();
1188 DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1189
1190 if (GlobalsMD.get(G).IsBlacklisted) return false;
1191 if (!Ty->isSized()) return false;
1192 if (!G->hasInitializer()) return false;
1193 if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
1194 // Touch only those globals that will not be defined in other modules.
1195 // Don't handle ODR linkage types and COMDATs since other modules may be built
1196 // without ASan.
1197 if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1198 G->getLinkage() != GlobalVariable::PrivateLinkage &&
1199 G->getLinkage() != GlobalVariable::InternalLinkage)
1200 return false;
1201 if (G->hasComdat()) return false;
1202 // Two problems with thread-locals:
1203 // - The address of the main thread's copy can't be computed at link-time.
1204 // - Need to poison all copies, not just the main thread's one.
1205 if (G->isThreadLocal()) return false;
1206 // For now, just ignore this Global if the alignment is large.
1207 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1208
1209 if (G->hasSection()) {
1210 StringRef Section(G->getSection());
1211
1212 // Globals from llvm.metadata aren't emitted, do not instrument them.
1213 if (Section == "llvm.metadata") return false;
1214 // Do not instrument globals from special LLVM sections.
1215 if (Section.find("__llvm") != StringRef::npos) return false;
1216
1217 // Do not instrument function pointers to initialization and termination
1218 // routines: dynamic linker will not properly handle redzones.
1219 if (Section.startswith(".preinit_array") ||
1220 Section.startswith(".init_array") ||
1221 Section.startswith(".fini_array")) {
1222 return false;
1223 }
1224
1225 // Callbacks put into the CRT initializer/terminator sections
1226 // should not be instrumented.
1227 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
1228 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1229 if (Section.startswith(".CRT")) {
1230 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
1231 return false;
1232 }
1233
1234 if (TargetTriple.isOSBinFormatMachO()) {
1235 StringRef ParsedSegment, ParsedSection;
1236 unsigned TAA = 0, StubSize = 0;
1237 bool TAAParsed;
1238 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1239 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1240 assert(ErrorCode.empty() && "Invalid section specifier.");
1241
1242 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1243 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1244 // them.
1245 if (ParsedSegment == "__OBJC" ||
1246 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1247 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1248 return false;
1249 }
1250 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
1251 // Constant CFString instances are compiled in the following way:
1252 // -- the string buffer is emitted into
1253 // __TEXT,__cstring,cstring_literals
1254 // -- the constant NSConstantString structure referencing that buffer
1255 // is placed into __DATA,__cfstring
1256 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1257 // Moreover, it causes the linker to crash on OS X 10.7
1258 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1259 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1260 return false;
1261 }
1262 // The linker merges the contents of cstring_literals and removes the
1263 // trailing zeroes.
1264 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1265 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1266 return false;
1267 }
1268 }
1269 }
1270
1271 return true;
1272 }
1273
initializeCallbacks(Module & M)1274 void AddressSanitizerModule::initializeCallbacks(Module &M) {
1275 IRBuilder<> IRB(*C);
1276 // Declare our poisoning and unpoisoning functions.
1277 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1278 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1279 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1280 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1281 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
1282 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1283 // Declare functions that register/unregister globals.
1284 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1285 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1286 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1287 AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1288 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1289 IntptrTy, IntptrTy, nullptr));
1290 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1291 }
1292
1293 // This function replaces all global variables with new variables that have
1294 // trailing redzones. It also creates a function that poisons
1295 // redzones and inserts this function into llvm.global_ctors.
InstrumentGlobals(IRBuilder<> & IRB,Module & M)1296 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
1297 GlobalsMD.init(M);
1298
1299 SmallVector<GlobalVariable *, 16> GlobalsToChange;
1300
1301 for (auto &G : M.globals()) {
1302 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
1303 }
1304
1305 size_t n = GlobalsToChange.size();
1306 if (n == 0) return false;
1307
1308 // A global is described by a structure
1309 // size_t beg;
1310 // size_t size;
1311 // size_t size_with_redzone;
1312 // const char *name;
1313 // const char *module_name;
1314 // size_t has_dynamic_init;
1315 // void *source_location;
1316 // We initialize an array of such structures and pass it to a run-time call.
1317 StructType *GlobalStructTy =
1318 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
1319 IntptrTy, IntptrTy, nullptr);
1320 SmallVector<Constant *, 16> Initializers(n);
1321
1322 bool HasDynamicallyInitializedGlobals = false;
1323
1324 // We shouldn't merge same module names, as this string serves as unique
1325 // module ID in runtime.
1326 GlobalVariable *ModuleName = createPrivateGlobalForString(
1327 M, M.getModuleIdentifier(), /*AllowMerging*/ false);
1328
1329 auto &DL = M.getDataLayout();
1330 for (size_t i = 0; i < n; i++) {
1331 static const uint64_t kMaxGlobalRedzone = 1 << 18;
1332 GlobalVariable *G = GlobalsToChange[i];
1333
1334 auto MD = GlobalsMD.get(G);
1335 // Create string holding the global name (use global name from metadata
1336 // if it's available, otherwise just write the name of global variable).
1337 GlobalVariable *Name = createPrivateGlobalForString(
1338 M, MD.Name.empty() ? G->getName() : MD.Name,
1339 /*AllowMerging*/ true);
1340
1341 PointerType *PtrTy = cast<PointerType>(G->getType());
1342 Type *Ty = PtrTy->getElementType();
1343 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
1344 uint64_t MinRZ = MinRedzoneSizeForGlobal();
1345 // MinRZ <= RZ <= kMaxGlobalRedzone
1346 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
1347 uint64_t RZ = std::max(
1348 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
1349 uint64_t RightRedzoneSize = RZ;
1350 // Round up to MinRZ
1351 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
1352 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
1353 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
1354
1355 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
1356 Constant *NewInitializer =
1357 ConstantStruct::get(NewTy, G->getInitializer(),
1358 Constant::getNullValue(RightRedZoneTy), nullptr);
1359
1360 // Create a new global variable with enough space for a redzone.
1361 GlobalValue::LinkageTypes Linkage = G->getLinkage();
1362 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
1363 Linkage = GlobalValue::InternalLinkage;
1364 GlobalVariable *NewGlobal =
1365 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
1366 "", G, G->getThreadLocalMode());
1367 NewGlobal->copyAttributesFrom(G);
1368 NewGlobal->setAlignment(MinRZ);
1369
1370 Value *Indices2[2];
1371 Indices2[0] = IRB.getInt32(0);
1372 Indices2[1] = IRB.getInt32(0);
1373
1374 G->replaceAllUsesWith(
1375 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
1376 NewGlobal->takeName(G);
1377 G->eraseFromParent();
1378
1379 Constant *SourceLoc;
1380 if (!MD.SourceLoc.empty()) {
1381 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
1382 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
1383 } else {
1384 SourceLoc = ConstantInt::get(IntptrTy, 0);
1385 }
1386
1387 Initializers[i] = ConstantStruct::get(
1388 GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
1389 ConstantInt::get(IntptrTy, SizeInBytes),
1390 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
1391 ConstantExpr::getPointerCast(Name, IntptrTy),
1392 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
1393 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);
1394
1395 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
1396
1397 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
1398 }
1399
1400 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
1401 GlobalVariable *AllGlobals = new GlobalVariable(
1402 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
1403 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
1404
1405 // Create calls for poisoning before initializers run and unpoisoning after.
1406 if (HasDynamicallyInitializedGlobals)
1407 createInitializerPoisonCalls(M, ModuleName);
1408 IRB.CreateCall(AsanRegisterGlobals,
1409 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1410 ConstantInt::get(IntptrTy, n)});
1411
1412 // We also need to unregister globals at the end, e.g. when a shared library
1413 // gets closed.
1414 Function *AsanDtorFunction =
1415 Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1416 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1417 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1418 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
1419 IRB_Dtor.CreateCall(AsanUnregisterGlobals,
1420 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1421 ConstantInt::get(IntptrTy, n)});
1422 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
1423
1424 DEBUG(dbgs() << M);
1425 return true;
1426 }
1427
runOnModule(Module & M)1428 bool AddressSanitizerModule::runOnModule(Module &M) {
1429 C = &(M.getContext());
1430 int LongSize = M.getDataLayout().getPointerSizeInBits();
1431 IntptrTy = Type::getIntNTy(*C, LongSize);
1432 TargetTriple = Triple(M.getTargetTriple());
1433 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1434 initializeCallbacks(M);
1435
1436 bool Changed = false;
1437
1438 // TODO(glider): temporarily disabled globals instrumentation for KASan.
1439 if (ClGlobals && !CompileKernel) {
1440 Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
1441 assert(CtorFunc);
1442 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
1443 Changed |= InstrumentGlobals(IRB, M);
1444 }
1445
1446 return Changed;
1447 }
1448
initializeCallbacks(Module & M)1449 void AddressSanitizer::initializeCallbacks(Module &M) {
1450 IRBuilder<> IRB(*C);
1451 // Create __asan_report* callbacks.
1452 // IsWrite, TypeSize and Exp are encoded in the function name.
1453 for (int Exp = 0; Exp < 2; Exp++) {
1454 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
1455 const std::string TypeStr = AccessIsWrite ? "store" : "load";
1456 const std::string ExpStr = Exp ? "exp_" : "";
1457 const std::string SuffixStr = CompileKernel ? "N" : "_n";
1458 const std::string EndingStr = Recover ? "_noabort" : "";
1459 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
1460 AsanErrorCallbackSized[AccessIsWrite][Exp] =
1461 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1462 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
1463 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1464 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
1465 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1466 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
1467 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1468 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
1469 AccessSizeIndex++) {
1470 const std::string Suffix = TypeStr + itostr(1 << AccessSizeIndex);
1471 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1472 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1473 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
1474 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1475 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1476 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1477 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
1478 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1479 }
1480 }
1481 }
1482
1483 const std::string MemIntrinCallbackPrefix =
1484 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
1485 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1486 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
1487 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1488 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1489 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
1490 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1491 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1492 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
1493 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
1494
1495 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
1496 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
1497
1498 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1499 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1500 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1501 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1502 // We insert an empty inline asm after __asan_report* to avoid callback merge.
1503 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
1504 StringRef(""), StringRef(""),
1505 /*hasSideEffects=*/true);
1506 }
1507
1508 // virtual
doInitialization(Module & M)1509 bool AddressSanitizer::doInitialization(Module &M) {
1510 // Initialize the private fields. No one has accessed them before.
1511
1512 GlobalsMD.init(M);
1513
1514 C = &(M.getContext());
1515 LongSize = M.getDataLayout().getPointerSizeInBits();
1516 IntptrTy = Type::getIntNTy(*C, LongSize);
1517 TargetTriple = Triple(M.getTargetTriple());
1518
1519 if (!CompileKernel) {
1520 std::tie(AsanCtorFunction, AsanInitFunction) =
1521 createSanitizerCtorAndInitFunctions(
1522 M, kAsanModuleCtorName, kAsanInitName,
1523 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
1524 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
1525 }
1526 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1527 return true;
1528 }
1529
doFinalization(Module & M)1530 bool AddressSanitizer::doFinalization(Module &M) {
1531 GlobalsMD.reset();
1532 return false;
1533 }
1534
maybeInsertAsanInitAtFunctionEntry(Function & F)1535 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
1536 // For each NSObject descendant having a +load method, this method is invoked
1537 // by the ObjC runtime before any of the static constructors is called.
1538 // Therefore we need to instrument such methods with a call to __asan_init
1539 // at the beginning in order to initialize our runtime before any access to
1540 // the shadow memory.
1541 // We cannot just ignore these methods, because they may call other
1542 // instrumented functions.
1543 if (F.getName().find(" load]") != std::string::npos) {
1544 IRBuilder<> IRB(&F.front(), F.front().begin());
1545 IRB.CreateCall(AsanInitFunction, {});
1546 return true;
1547 }
1548 return false;
1549 }
1550
markEscapedLocalAllocas(Function & F)1551 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
1552 // Find the one possible call to llvm.localescape and pre-mark allocas passed
1553 // to it as uninteresting. This assumes we haven't started processing allocas
1554 // yet. This check is done up front because iterating the use list in
1555 // isInterestingAlloca would be algorithmically slower.
1556 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
1557
1558 // Try to get the declaration of llvm.localescape. If it's not in the module,
1559 // we can exit early.
1560 if (!F.getParent()->getFunction("llvm.localescape")) return;
1561
1562 // Look for a call to llvm.localescape call in the entry block. It can't be in
1563 // any other block.
1564 for (Instruction &I : F.getEntryBlock()) {
1565 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
1566 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
1567 // We found a call. Mark all the allocas passed in as uninteresting.
1568 for (Value *Arg : II->arg_operands()) {
1569 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
1570 assert(AI && AI->isStaticAlloca() &&
1571 "non-static alloca arg to localescape");
1572 ProcessedAllocas[AI] = false;
1573 }
1574 break;
1575 }
1576 }
1577 }
1578
runOnFunction(Function & F)1579 bool AddressSanitizer::runOnFunction(Function &F) {
1580 if (&F == AsanCtorFunction) return false;
1581 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
1582 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
1583 initializeCallbacks(*F.getParent());
1584
1585 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1586
1587 // If needed, insert __asan_init before checking for SanitizeAddress attr.
1588 maybeInsertAsanInitAtFunctionEntry(F);
1589
1590 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
1591
1592 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
1593
1594 FunctionStateRAII CleanupObj(this);
1595
1596 // We can't instrument allocas used with llvm.localescape. Only static allocas
1597 // can be passed to that intrinsic.
1598 markEscapedLocalAllocas(F);
1599
1600 // We want to instrument every address only once per basic block (unless there
1601 // are calls between uses).
1602 SmallSet<Value *, 16> TempsToInstrument;
1603 SmallVector<Instruction *, 16> ToInstrument;
1604 SmallVector<Instruction *, 8> NoReturnCalls;
1605 SmallVector<BasicBlock *, 16> AllBlocks;
1606 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
1607 int NumAllocas = 0;
1608 bool IsWrite;
1609 unsigned Alignment;
1610 uint64_t TypeSize;
1611
1612 // Fill the set of memory operations to instrument.
1613 for (auto &BB : F) {
1614 AllBlocks.push_back(&BB);
1615 TempsToInstrument.clear();
1616 int NumInsnsPerBB = 0;
1617 for (auto &Inst : BB) {
1618 if (LooksLikeCodeInBug11395(&Inst)) return false;
1619 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
1620 &Alignment)) {
1621 if (ClOpt && ClOptSameTemp) {
1622 if (!TempsToInstrument.insert(Addr).second)
1623 continue; // We've seen this temp in the current BB.
1624 }
1625 } else if (ClInvalidPointerPairs &&
1626 isInterestingPointerComparisonOrSubtraction(&Inst)) {
1627 PointerComparisonsOrSubtracts.push_back(&Inst);
1628 continue;
1629 } else if (isa<MemIntrinsic>(Inst)) {
1630 // ok, take it.
1631 } else {
1632 if (isa<AllocaInst>(Inst)) NumAllocas++;
1633 CallSite CS(&Inst);
1634 if (CS) {
1635 // A call inside BB.
1636 TempsToInstrument.clear();
1637 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
1638 }
1639 continue;
1640 }
1641 ToInstrument.push_back(&Inst);
1642 NumInsnsPerBB++;
1643 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
1644 }
1645 }
1646
1647 bool UseCalls =
1648 CompileKernel ||
1649 (ClInstrumentationWithCallsThreshold >= 0 &&
1650 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
1651 const TargetLibraryInfo *TLI =
1652 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1653 const DataLayout &DL = F.getParent()->getDataLayout();
1654 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
1655 /*RoundToAlign=*/true);
1656
1657 // Instrument.
1658 int NumInstrumented = 0;
1659 for (auto Inst : ToInstrument) {
1660 if (ClDebugMin < 0 || ClDebugMax < 0 ||
1661 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
1662 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
1663 instrumentMop(ObjSizeVis, Inst, UseCalls,
1664 F.getParent()->getDataLayout());
1665 else
1666 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
1667 }
1668 NumInstrumented++;
1669 }
1670
1671 FunctionStackPoisoner FSP(F, *this);
1672 bool ChangedStack = FSP.runOnFunction();
1673
1674 // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
1675 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
1676 for (auto CI : NoReturnCalls) {
1677 IRBuilder<> IRB(CI);
1678 IRB.CreateCall(AsanHandleNoReturnFunc, {});
1679 }
1680
1681 for (auto Inst : PointerComparisonsOrSubtracts) {
1682 instrumentPointerComparisonOrSubtraction(Inst);
1683 NumInstrumented++;
1684 }
1685
1686 bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
1687
1688 DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
1689
1690 return res;
1691 }
1692
1693 // Workaround for bug 11395: we don't want to instrument stack in functions
1694 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
1695 // FIXME: remove once the bug 11395 is fixed.
LooksLikeCodeInBug11395(Instruction * I)1696 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
1697 if (LongSize != 32) return false;
1698 CallInst *CI = dyn_cast<CallInst>(I);
1699 if (!CI || !CI->isInlineAsm()) return false;
1700 if (CI->getNumArgOperands() <= 5) return false;
1701 // We have inline assembly with quite a few arguments.
1702 return true;
1703 }
1704
initializeCallbacks(Module & M)1705 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
1706 IRBuilder<> IRB(*C);
1707 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
1708 std::string Suffix = itostr(i);
1709 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
1710 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
1711 IntptrTy, nullptr));
1712 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
1713 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
1714 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1715 }
1716 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1717 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
1718 IntptrTy, IntptrTy, nullptr));
1719 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1720 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
1721 IntptrTy, IntptrTy, nullptr));
1722 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1723 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1724 AsanAllocasUnpoisonFunc =
1725 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1726 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1727 }
1728
poisonRedZones(ArrayRef<uint8_t> ShadowBytes,IRBuilder<> & IRB,Value * ShadowBase,bool DoPoison)1729 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
1730 IRBuilder<> &IRB, Value *ShadowBase,
1731 bool DoPoison) {
1732 size_t n = ShadowBytes.size();
1733 size_t i = 0;
1734 // We need to (un)poison n bytes of stack shadow. Poison as many as we can
1735 // using 64-bit stores (if we are on 64-bit arch), then poison the rest
1736 // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
1737 for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
1738 LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
1739 for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
1740 uint64_t Val = 0;
1741 for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
1742 if (F.getParent()->getDataLayout().isLittleEndian())
1743 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
1744 else
1745 Val = (Val << 8) | ShadowBytes[i + j];
1746 }
1747 if (!Val) continue;
1748 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1749 Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
1750 Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
1751 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
1752 }
1753 }
1754 }
1755
1756 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
1757 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
StackMallocSizeClass(uint64_t LocalStackSize)1758 static int StackMallocSizeClass(uint64_t LocalStackSize) {
1759 assert(LocalStackSize <= kMaxStackMallocSize);
1760 uint64_t MaxSize = kMinStackMallocSize;
1761 for (int i = 0;; i++, MaxSize *= 2)
1762 if (LocalStackSize <= MaxSize) return i;
1763 llvm_unreachable("impossible LocalStackSize");
1764 }
1765
1766 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
1767 // We can not use MemSet intrinsic because it may end up calling the actual
1768 // memset. Size is a multiple of 8.
1769 // Currently this generates 8-byte stores on x86_64; it may be better to
1770 // generate wider stores.
SetShadowToStackAfterReturnInlined(IRBuilder<> & IRB,Value * ShadowBase,int Size)1771 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
1772 IRBuilder<> &IRB, Value *ShadowBase, int Size) {
1773 assert(!(Size % 8));
1774
1775 // kAsanStackAfterReturnMagic is 0xf5.
1776 const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
1777
1778 for (int i = 0; i < Size; i += 8) {
1779 Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1780 IRB.CreateStore(
1781 ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
1782 IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
1783 }
1784 }
1785
createPHI(IRBuilder<> & IRB,Value * Cond,Value * ValueIfTrue,Instruction * ThenTerm,Value * ValueIfFalse)1786 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
1787 Value *ValueIfTrue,
1788 Instruction *ThenTerm,
1789 Value *ValueIfFalse) {
1790 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
1791 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
1792 PHI->addIncoming(ValueIfFalse, CondBlock);
1793 BasicBlock *ThenBlock = ThenTerm->getParent();
1794 PHI->addIncoming(ValueIfTrue, ThenBlock);
1795 return PHI;
1796 }
1797
createAllocaForLayout(IRBuilder<> & IRB,const ASanStackFrameLayout & L,bool Dynamic)1798 Value *FunctionStackPoisoner::createAllocaForLayout(
1799 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
1800 AllocaInst *Alloca;
1801 if (Dynamic) {
1802 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
1803 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
1804 "MyAlloca");
1805 } else {
1806 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
1807 nullptr, "MyAlloca");
1808 assert(Alloca->isStaticAlloca());
1809 }
1810 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
1811 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
1812 Alloca->setAlignment(FrameAlignment);
1813 return IRB.CreatePointerCast(Alloca, IntptrTy);
1814 }
1815
createDynamicAllocasInitStorage()1816 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
1817 BasicBlock &FirstBB = *F.begin();
1818 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
1819 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
1820 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
1821 DynamicAllocaLayout->setAlignment(32);
1822 }
1823
poisonStack()1824 void FunctionStackPoisoner::poisonStack() {
1825 assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
1826
1827 // Insert poison calls for lifetime intrinsics for alloca.
1828 bool HavePoisonedAllocas = false;
1829 for (const auto &APC : AllocaPoisonCallVec) {
1830 assert(APC.InsBefore);
1831 assert(APC.AI);
1832 IRBuilder<> IRB(APC.InsBefore);
1833 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
1834 HavePoisonedAllocas |= APC.DoPoison;
1835 }
1836
1837 if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) {
1838 // Handle dynamic allocas.
1839 createDynamicAllocasInitStorage();
1840 for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI);
1841
1842 unpoisonDynamicAllocas();
1843 }
1844
1845 if (AllocaVec.empty()) return;
1846
1847 int StackMallocIdx = -1;
1848 DebugLoc EntryDebugLocation;
1849 if (auto SP = getDISubprogram(&F))
1850 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
1851
1852 Instruction *InsBefore = AllocaVec[0];
1853 IRBuilder<> IRB(InsBefore);
1854 IRB.SetCurrentDebugLocation(EntryDebugLocation);
1855
1856 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
1857 // debug info is broken, because only entry-block allocas are treated as
1858 // regular stack slots.
1859 auto InsBeforeB = InsBefore->getParent();
1860 assert(InsBeforeB == &F.getEntryBlock());
1861 for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I)
1862 if (auto *AI = dyn_cast<AllocaInst>(I))
1863 if (NonInstrumentedStaticAllocaVec.count(AI) > 0)
1864 AI->moveBefore(InsBefore);
1865
1866 // If we have a call to llvm.localescape, keep it in the entry block.
1867 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
1868
1869 SmallVector<ASanStackVariableDescription, 16> SVD;
1870 SVD.reserve(AllocaVec.size());
1871 for (AllocaInst *AI : AllocaVec) {
1872 ASanStackVariableDescription D = {AI->getName().data(),
1873 ASan.getAllocaSizeInBytes(AI),
1874 AI->getAlignment(), AI, 0};
1875 SVD.push_back(D);
1876 }
1877 // Minimal header size (left redzone) is 4 pointers,
1878 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
1879 size_t MinHeaderSize = ASan.LongSize / 2;
1880 ASanStackFrameLayout L;
1881 ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
1882 DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
1883 uint64_t LocalStackSize = L.FrameSize;
1884 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
1885 LocalStackSize <= kMaxStackMallocSize;
1886 bool DoDynamicAlloca = ClDynamicAllocaStack;
1887 // Don't do dynamic alloca or stack malloc if:
1888 // 1) There is inline asm: too often it makes assumptions on which registers
1889 // are available.
1890 // 2) There is a returns_twice call (typically setjmp), which is
1891 // optimization-hostile, and doesn't play well with introduced indirect
1892 // register-relative calculation of local variable addresses.
1893 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
1894 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
1895
1896 Value *StaticAlloca =
1897 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
1898
1899 Value *FakeStack;
1900 Value *LocalStackBase;
1901
1902 if (DoStackMalloc) {
1903 // void *FakeStack = __asan_option_detect_stack_use_after_return
1904 // ? __asan_stack_malloc_N(LocalStackSize)
1905 // : nullptr;
1906 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
1907 Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
1908 kAsanOptionDetectUAR, IRB.getInt32Ty());
1909 Value *UARIsEnabled =
1910 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
1911 Constant::getNullValue(IRB.getInt32Ty()));
1912 Instruction *Term =
1913 SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
1914 IRBuilder<> IRBIf(Term);
1915 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
1916 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
1917 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
1918 Value *FakeStackValue =
1919 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
1920 ConstantInt::get(IntptrTy, LocalStackSize));
1921 IRB.SetInsertPoint(InsBefore);
1922 IRB.SetCurrentDebugLocation(EntryDebugLocation);
1923 FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
1924 ConstantInt::get(IntptrTy, 0));
1925
1926 Value *NoFakeStack =
1927 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
1928 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
1929 IRBIf.SetInsertPoint(Term);
1930 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
1931 Value *AllocaValue =
1932 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
1933 IRB.SetInsertPoint(InsBefore);
1934 IRB.SetCurrentDebugLocation(EntryDebugLocation);
1935 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
1936 } else {
1937 // void *FakeStack = nullptr;
1938 // void *LocalStackBase = alloca(LocalStackSize);
1939 FakeStack = ConstantInt::get(IntptrTy, 0);
1940 LocalStackBase =
1941 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
1942 }
1943
1944 // Replace Alloca instructions with base+offset.
1945 for (const auto &Desc : SVD) {
1946 AllocaInst *AI = Desc.AI;
1947 Value *NewAllocaPtr = IRB.CreateIntToPtr(
1948 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
1949 AI->getType());
1950 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
1951 AI->replaceAllUsesWith(NewAllocaPtr);
1952 }
1953
1954 // The left-most redzone has enough space for at least 4 pointers.
1955 // Write the Magic value to redzone[0].
1956 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
1957 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
1958 BasePlus0);
1959 // Write the frame description constant to redzone[1].
1960 Value *BasePlus1 = IRB.CreateIntToPtr(
1961 IRB.CreateAdd(LocalStackBase,
1962 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
1963 IntptrPtrTy);
1964 GlobalVariable *StackDescriptionGlobal =
1965 createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
1966 /*AllowMerging*/ true);
1967 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
1968 IRB.CreateStore(Description, BasePlus1);
1969 // Write the PC to redzone[2].
1970 Value *BasePlus2 = IRB.CreateIntToPtr(
1971 IRB.CreateAdd(LocalStackBase,
1972 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
1973 IntptrPtrTy);
1974 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
1975
1976 // Poison the stack redzones at the entry.
1977 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
1978 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
1979
1980 // (Un)poison the stack before all ret instructions.
1981 for (auto Ret : RetVec) {
1982 IRBuilder<> IRBRet(Ret);
1983 // Mark the current frame as retired.
1984 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
1985 BasePlus0);
1986 if (DoStackMalloc) {
1987 assert(StackMallocIdx >= 0);
1988 // if FakeStack != 0 // LocalStackBase == FakeStack
1989 // // In use-after-return mode, poison the whole stack frame.
1990 // if StackMallocIdx <= 4
1991 // // For small sizes inline the whole thing:
1992 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
1993 // **SavedFlagPtr(FakeStack) = 0
1994 // else
1995 // __asan_stack_free_N(FakeStack, LocalStackSize)
1996 // else
1997 // <This is not a fake stack; unpoison the redzones>
1998 Value *Cmp =
1999 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
2000 TerminatorInst *ThenTerm, *ElseTerm;
2001 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
2002
2003 IRBuilder<> IRBPoison(ThenTerm);
2004 if (StackMallocIdx <= 4) {
2005 int ClassSize = kMinStackMallocSize << StackMallocIdx;
2006 SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
2007 ClassSize >> Mapping.Scale);
2008 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
2009 FakeStack,
2010 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
2011 Value *SavedFlagPtr = IRBPoison.CreateLoad(
2012 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
2013 IRBPoison.CreateStore(
2014 Constant::getNullValue(IRBPoison.getInt8Ty()),
2015 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
2016 } else {
2017 // For larger frames call __asan_stack_free_*.
2018 IRBPoison.CreateCall(
2019 AsanStackFreeFunc[StackMallocIdx],
2020 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
2021 }
2022
2023 IRBuilder<> IRBElse(ElseTerm);
2024 poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
2025 } else if (HavePoisonedAllocas) {
2026 // If we poisoned some allocas in llvm.lifetime analysis,
2027 // unpoison whole stack frame now.
2028 poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
2029 } else {
2030 poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
2031 }
2032 }
2033
2034 // We are done. Remove the old unused alloca instructions.
2035 for (auto AI : AllocaVec) AI->eraseFromParent();
2036 }
2037
poisonAlloca(Value * V,uint64_t Size,IRBuilder<> & IRB,bool DoPoison)2038 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
2039 IRBuilder<> &IRB, bool DoPoison) {
2040 // For now just insert the call to ASan runtime.
2041 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
2042 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
2043 IRB.CreateCall(
2044 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
2045 {AddrArg, SizeArg});
2046 }
2047
2048 // Handling llvm.lifetime intrinsics for a given %alloca:
2049 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
2050 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
2051 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
2052 // could be poisoned by previous llvm.lifetime.end instruction, as the
2053 // variable may go in and out of scope several times, e.g. in loops).
2054 // (3) if we poisoned at least one %alloca in a function,
2055 // unpoison the whole stack frame at function exit.
2056
findAllocaForValue(Value * V)2057 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
2058 if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2059 // We're intested only in allocas we can handle.
2060 return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
2061 // See if we've already calculated (or started to calculate) alloca for a
2062 // given value.
2063 AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2064 if (I != AllocaForValue.end()) return I->second;
2065 // Store 0 while we're calculating alloca for value V to avoid
2066 // infinite recursion if the value references itself.
2067 AllocaForValue[V] = nullptr;
2068 AllocaInst *Res = nullptr;
2069 if (CastInst *CI = dyn_cast<CastInst>(V))
2070 Res = findAllocaForValue(CI->getOperand(0));
2071 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2072 for (Value *IncValue : PN->incoming_values()) {
2073 // Allow self-referencing phi-nodes.
2074 if (IncValue == PN) continue;
2075 AllocaInst *IncValueAI = findAllocaForValue(IncValue);
2076 // AI for incoming values should exist and should all be equal.
2077 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2078 return nullptr;
2079 Res = IncValueAI;
2080 }
2081 }
2082 if (Res) AllocaForValue[V] = Res;
2083 return Res;
2084 }
2085
handleDynamicAllocaCall(AllocaInst * AI)2086 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
2087 IRBuilder<> IRB(AI);
2088
2089 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
2090 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
2091
2092 Value *Zero = Constant::getNullValue(IntptrTy);
2093 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
2094 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
2095
2096 // Since we need to extend alloca with additional memory to locate
2097 // redzones, and OldSize is number of allocated blocks with
2098 // ElementSize size, get allocated memory size in bytes by
2099 // OldSize * ElementSize.
2100 const unsigned ElementSize =
2101 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
2102 Value *OldSize =
2103 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
2104 ConstantInt::get(IntptrTy, ElementSize));
2105
2106 // PartialSize = OldSize % 32
2107 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
2108
2109 // Misalign = kAllocaRzSize - PartialSize;
2110 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
2111
2112 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
2113 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
2114 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
2115
2116 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
2117 // Align is added to locate left redzone, PartialPadding for possible
2118 // partial redzone and kAllocaRzSize for right redzone respectively.
2119 Value *AdditionalChunkSize = IRB.CreateAdd(
2120 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
2121
2122 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
2123
2124 // Insert new alloca with new NewSize and Align params.
2125 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
2126 NewAlloca->setAlignment(Align);
2127
2128 // NewAddress = Address + Align
2129 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
2130 ConstantInt::get(IntptrTy, Align));
2131
2132 // Insert __asan_alloca_poison call for new created alloca.
2133 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
2134
2135 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
2136 // for unpoisoning stuff.
2137 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
2138
2139 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
2140
2141 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
2142 AI->replaceAllUsesWith(NewAddressPtr);
2143
2144 // We are done. Erase old alloca from parent.
2145 AI->eraseFromParent();
2146 }
2147
2148 // isSafeAccess returns true if Addr is always inbounds with respect to its
2149 // base object. For example, it is a field access or an array access with
2150 // constant inbounds index.
isSafeAccess(ObjectSizeOffsetVisitor & ObjSizeVis,Value * Addr,uint64_t TypeSize) const2151 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
2152 Value *Addr, uint64_t TypeSize) const {
2153 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
2154 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
2155 uint64_t Size = SizeOffset.first.getZExtValue();
2156 int64_t Offset = SizeOffset.second.getSExtValue();
2157 // Three checks are required to ensure safety:
2158 // . Offset >= 0 (since the offset is given from the base ptr)
2159 // . Size >= Offset (unsigned)
2160 // . Size - Offset >= NeededSize (unsigned)
2161 return Offset >= 0 && Size >= uint64_t(Offset) &&
2162 Size - uint64_t(Offset) >= TypeSize / 8;
2163 }
2164