1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 // Set Load/Store Alignments From Assumptions
3 //
4 // The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file implements a ScalarEvolution-based transformation to set
12 // the alignments of load, stores and memory intrinsics based on the truth
13 // expressions of assume intrinsics. The primary motivation is to handle
14 // complex alignment assumptions that apply to vector loads and stores that
15 // appear after vectorization and unrolling.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40
41 STATISTIC(NumLoadAlignChanged,
42 "Number of loads changed by alignment assumptions");
43 STATISTIC(NumStoreAlignChanged,
44 "Number of stores changed by alignment assumptions");
45 STATISTIC(NumMemIntAlignChanged,
46 "Number of memory intrinsics changed by alignment assumptions");
47
48 namespace {
49 struct AlignmentFromAssumptions : public FunctionPass {
50 static char ID; // Pass identification, replacement for typeid
AlignmentFromAssumptions__anon5fd9a46e0111::AlignmentFromAssumptions51 AlignmentFromAssumptions() : FunctionPass(ID) {
52 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
53 }
54
55 bool runOnFunction(Function &F) override;
56
getAnalysisUsage__anon5fd9a46e0111::AlignmentFromAssumptions57 void getAnalysisUsage(AnalysisUsage &AU) const override {
58 AU.addRequired<AssumptionCacheTracker>();
59 AU.addRequired<ScalarEvolutionWrapperPass>();
60 AU.addRequired<DominatorTreeWrapperPass>();
61
62 AU.setPreservesCFG();
63 AU.addPreserved<AAResultsWrapperPass>();
64 AU.addPreserved<GlobalsAAWrapperPass>();
65 AU.addPreserved<LoopInfoWrapperPass>();
66 AU.addPreserved<DominatorTreeWrapperPass>();
67 AU.addPreserved<ScalarEvolutionWrapperPass>();
68 }
69
70 // For memory transfers, we need a common alignment for both the source and
71 // destination. If we have a new alignment for only one operand of a transfer
72 // instruction, save it in these maps. If we reach the other operand through
73 // another assumption later, then we may change the alignment at that point.
74 DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
75
76 ScalarEvolution *SE;
77 DominatorTree *DT;
78
79 bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
80 const SCEV *&OffSCEV);
81 bool processAssumption(CallInst *I);
82 };
83 }
84
85 char AlignmentFromAssumptions::ID = 0;
86 static const char aip_name[] = "Alignment from assumptions";
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions,AA_NAME,aip_name,false,false)87 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
88 aip_name, false, false)
89 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
90 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
91 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
92 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
93 aip_name, false, false)
94
95 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
96 return new AlignmentFromAssumptions();
97 }
98
99 // Given an expression for the (constant) alignment, AlignSCEV, and an
100 // expression for the displacement between a pointer and the aligned address,
101 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
102 // to a constant. Using SCEV to compute alignment handles the case where
103 // DiffSCEV is a recurrence with constant start such that the aligned offset
104 // is constant. e.g. {16,+,32} % 32 -> 16.
getNewAlignmentDiff(const SCEV * DiffSCEV,const SCEV * AlignSCEV,ScalarEvolution * SE)105 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
106 const SCEV *AlignSCEV,
107 ScalarEvolution *SE) {
108 // DiffUnits = Diff % int64_t(Alignment)
109 const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
110 const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
111 const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
112
113 DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
114 *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
115
116 if (const SCEVConstant *ConstDUSCEV =
117 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
118 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
119
120 // If the displacement is an exact multiple of the alignment, then the
121 // displaced pointer has the same alignment as the aligned pointer, so
122 // return the alignment value.
123 if (!DiffUnits)
124 return (unsigned)
125 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
126
127 // If the displacement is not an exact multiple, but the remainder is a
128 // constant, then return this remainder (but only if it is a power of 2).
129 uint64_t DiffUnitsAbs = std::abs(DiffUnits);
130 if (isPowerOf2_64(DiffUnitsAbs))
131 return (unsigned) DiffUnitsAbs;
132 }
133
134 return 0;
135 }
136
137 // There is an address given by an offset OffSCEV from AASCEV which has an
138 // alignment AlignSCEV. Use that information, if possible, to compute a new
139 // alignment for Ptr.
getNewAlignment(const SCEV * AASCEV,const SCEV * AlignSCEV,const SCEV * OffSCEV,Value * Ptr,ScalarEvolution * SE)140 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
141 const SCEV *OffSCEV, Value *Ptr,
142 ScalarEvolution *SE) {
143 const SCEV *PtrSCEV = SE->getSCEV(Ptr);
144 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
145
146 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
147 // sign-extended OffSCEV to i64, so make sure they agree again.
148 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
149
150 // What we really want to know is the overall offset to the aligned
151 // address. This address is displaced by the provided offset.
152 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
153
154 DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
155 *AlignSCEV << " and offset " << *OffSCEV <<
156 " using diff " << *DiffSCEV << "\n");
157
158 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
159 DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
160
161 if (NewAlignment) {
162 return NewAlignment;
163 } else if (const SCEVAddRecExpr *DiffARSCEV =
164 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
165 // The relative offset to the alignment assumption did not yield a constant,
166 // but we should try harder: if we assume that a is 32-byte aligned, then in
167 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
168 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
169 // As a result, the new alignment will not be a constant, but can still
170 // be improved over the default (of 4) to 16.
171
172 const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
173 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
174
175 DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
176 *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
177
178 // Now compute the new alignment using the displacement to the value in the
179 // first iteration, and also the alignment using the per-iteration delta.
180 // If these are the same, then use that answer. Otherwise, use the smaller
181 // one, but only if it divides the larger one.
182 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
183 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
184
185 DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
186 DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
187
188 if (!NewAlignment || !NewIncAlignment) {
189 return 0;
190 } else if (NewAlignment > NewIncAlignment) {
191 if (NewAlignment % NewIncAlignment == 0) {
192 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
193 NewIncAlignment << "\n");
194 return NewIncAlignment;
195 }
196 } else if (NewIncAlignment > NewAlignment) {
197 if (NewIncAlignment % NewAlignment == 0) {
198 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
199 NewAlignment << "\n");
200 return NewAlignment;
201 }
202 } else if (NewIncAlignment == NewAlignment) {
203 DEBUG(dbgs() << "\tnew start/inc alignment: " <<
204 NewAlignment << "\n");
205 return NewAlignment;
206 }
207 }
208
209 return 0;
210 }
211
extractAlignmentInfo(CallInst * I,Value * & AAPtr,const SCEV * & AlignSCEV,const SCEV * & OffSCEV)212 bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
213 Value *&AAPtr, const SCEV *&AlignSCEV,
214 const SCEV *&OffSCEV) {
215 // An alignment assume must be a statement about the least-significant
216 // bits of the pointer being zero, possibly with some offset.
217 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
218 if (!ICI)
219 return false;
220
221 // This must be an expression of the form: x & m == 0.
222 if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
223 return false;
224
225 // Swap things around so that the RHS is 0.
226 Value *CmpLHS = ICI->getOperand(0);
227 Value *CmpRHS = ICI->getOperand(1);
228 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
229 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
230 if (CmpLHSSCEV->isZero())
231 std::swap(CmpLHS, CmpRHS);
232 else if (!CmpRHSSCEV->isZero())
233 return false;
234
235 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
236 if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
237 return false;
238
239 // Swap things around so that the right operand of the and is a constant
240 // (the mask); we cannot deal with variable masks.
241 Value *AndLHS = CmpBO->getOperand(0);
242 Value *AndRHS = CmpBO->getOperand(1);
243 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
244 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
245 if (isa<SCEVConstant>(AndLHSSCEV)) {
246 std::swap(AndLHS, AndRHS);
247 std::swap(AndLHSSCEV, AndRHSSCEV);
248 }
249
250 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
251 if (!MaskSCEV)
252 return false;
253
254 // The mask must have some trailing ones (otherwise the condition is
255 // trivial and tells us nothing about the alignment of the left operand).
256 unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
257 if (!TrailingOnes)
258 return false;
259
260 // Cap the alignment at the maximum with which LLVM can deal (and make sure
261 // we don't overflow the shift).
262 uint64_t Alignment;
263 TrailingOnes = std::min(TrailingOnes,
264 unsigned(sizeof(unsigned) * CHAR_BIT - 1));
265 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
266
267 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
268 AlignSCEV = SE->getConstant(Int64Ty, Alignment);
269
270 // The LHS might be a ptrtoint instruction, or it might be the pointer
271 // with an offset.
272 AAPtr = nullptr;
273 OffSCEV = nullptr;
274 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
275 AAPtr = PToI->getPointerOperand();
276 OffSCEV = SE->getZero(Int64Ty);
277 } else if (const SCEVAddExpr* AndLHSAddSCEV =
278 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
279 // Try to find the ptrtoint; subtract it and the rest is the offset.
280 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
281 JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
282 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
283 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
284 AAPtr = PToI->getPointerOperand();
285 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
286 break;
287 }
288 }
289
290 if (!AAPtr)
291 return false;
292
293 // Sign extend the offset to 64 bits (so that it is like all of the other
294 // expressions).
295 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
296 if (OffSCEVBits < 64)
297 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
298 else if (OffSCEVBits > 64)
299 return false;
300
301 AAPtr = AAPtr->stripPointerCasts();
302 return true;
303 }
304
processAssumption(CallInst * ACall)305 bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
306 Value *AAPtr;
307 const SCEV *AlignSCEV, *OffSCEV;
308 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
309 return false;
310
311 const SCEV *AASCEV = SE->getSCEV(AAPtr);
312
313 // Apply the assumption to all other users of the specified pointer.
314 SmallPtrSet<Instruction *, 32> Visited;
315 SmallVector<Instruction*, 16> WorkList;
316 for (User *J : AAPtr->users()) {
317 if (J == ACall)
318 continue;
319
320 if (Instruction *K = dyn_cast<Instruction>(J))
321 if (isValidAssumeForContext(ACall, K, DT))
322 WorkList.push_back(K);
323 }
324
325 while (!WorkList.empty()) {
326 Instruction *J = WorkList.pop_back_val();
327
328 if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
329 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
330 LI->getPointerOperand(), SE);
331
332 if (NewAlignment > LI->getAlignment()) {
333 LI->setAlignment(NewAlignment);
334 ++NumLoadAlignChanged;
335 }
336 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
337 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
338 SI->getPointerOperand(), SE);
339
340 if (NewAlignment > SI->getAlignment()) {
341 SI->setAlignment(NewAlignment);
342 ++NumStoreAlignChanged;
343 }
344 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
345 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
346 MI->getDest(), SE);
347
348 // For memory transfers, we need a common alignment for both the
349 // source and destination. If we have a new alignment for this
350 // instruction, but only for one operand, save it. If we reach the
351 // other operand through another assumption later, then we may
352 // change the alignment at that point.
353 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
354 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
355 MTI->getSource(), SE);
356
357 DenseMap<MemTransferInst *, unsigned>::iterator DI =
358 NewDestAlignments.find(MTI);
359 unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
360 0 : DI->second;
361
362 DenseMap<MemTransferInst *, unsigned>::iterator SI =
363 NewSrcAlignments.find(MTI);
364 unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
365 0 : SI->second;
366
367 DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
368 AltDestAlignment << " " << NewSrcAlignment <<
369 " " << AltSrcAlignment << "\n");
370
371 // Of these four alignments, pick the largest possible...
372 unsigned NewAlignment = 0;
373 if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
374 NewAlignment = std::max(NewAlignment, NewDestAlignment);
375 if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
376 NewAlignment = std::max(NewAlignment, AltDestAlignment);
377 if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
378 NewAlignment = std::max(NewAlignment, NewSrcAlignment);
379 if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
380 NewAlignment = std::max(NewAlignment, AltSrcAlignment);
381
382 if (NewAlignment > MI->getAlignment()) {
383 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
384 MI->getParent()->getContext()), NewAlignment));
385 ++NumMemIntAlignChanged;
386 }
387
388 NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
389 NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
390 } else if (NewDestAlignment > MI->getAlignment()) {
391 assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
392 "Unknown memory intrinsic");
393
394 MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
395 MI->getParent()->getContext()), NewDestAlignment));
396 ++NumMemIntAlignChanged;
397 }
398 }
399
400 // Now that we've updated that use of the pointer, look for other uses of
401 // the pointer to update.
402 Visited.insert(J);
403 for (User *UJ : J->users()) {
404 Instruction *K = cast<Instruction>(UJ);
405 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
406 WorkList.push_back(K);
407 }
408 }
409
410 return true;
411 }
412
runOnFunction(Function & F)413 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
414 bool Changed = false;
415 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
416 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
417 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
418
419 NewDestAlignments.clear();
420 NewSrcAlignments.clear();
421
422 for (auto &AssumeVH : AC.assumptions())
423 if (AssumeVH)
424 Changed |= processAssumption(cast<CallInst>(AssumeVH));
425
426 return Changed;
427 }
428
429