1//==--- AttrDocs.td - Attribute documentation ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===---------------------------------------------------------------------===//
9
10def GlobalDocumentation {
11  code Intro =[{..
12  -------------------------------------------------------------------
13  NOTE: This file is automatically generated by running clang-tblgen
14  -gen-attr-docs. Do not edit this file by hand!!
15  -------------------------------------------------------------------
16
17===================
18Attributes in Clang
19===================
20.. contents::
21   :local:
22
23Introduction
24============
25
26This page lists the attributes currently supported by Clang.
27}];
28}
29
30def SectionDocs : Documentation {
31  let Category = DocCatVariable;
32  let Content = [{
33The ``section`` attribute allows you to specify a specific section a
34global variable or function should be in after translation.
35  }];
36  let Heading = "section (gnu::section, __declspec(allocate))";
37}
38
39def InitSegDocs : Documentation {
40  let Category = DocCatVariable;
41  let Content = [{
42The attribute applied by ``pragma init_seg()`` controls the section into
43which global initialization function pointers are emitted.  It is only
44available with ``-fms-extensions``.  Typically, this function pointer is
45emitted into ``.CRT$XCU`` on Windows.  The user can change the order of
46initialization by using a different section name with the same
47``.CRT$XC`` prefix and a suffix that sorts lexicographically before or
48after the standard ``.CRT$XCU`` sections.  See the init_seg_
49documentation on MSDN for more information.
50
51.. _init_seg: http://msdn.microsoft.com/en-us/library/7977wcck(v=vs.110).aspx
52  }];
53}
54
55def TLSModelDocs : Documentation {
56  let Category = DocCatVariable;
57  let Content = [{
58The ``tls_model`` attribute allows you to specify which thread-local storage
59model to use. It accepts the following strings:
60
61* global-dynamic
62* local-dynamic
63* initial-exec
64* local-exec
65
66TLS models are mutually exclusive.
67  }];
68}
69
70def ThreadDocs : Documentation {
71  let Category = DocCatVariable;
72  let Content = [{
73The ``__declspec(thread)`` attribute declares a variable with thread local
74storage.  It is available under the ``-fms-extensions`` flag for MSVC
75compatibility.  See the documentation for `__declspec(thread)`_ on MSDN.
76
77.. _`__declspec(thread)`: http://msdn.microsoft.com/en-us/library/9w1sdazb.aspx
78
79In Clang, ``__declspec(thread)`` is generally equivalent in functionality to the
80GNU ``__thread`` keyword.  The variable must not have a destructor and must have
81a constant initializer, if any.  The attribute only applies to variables
82declared with static storage duration, such as globals, class static data
83members, and static locals.
84  }];
85}
86
87def CarriesDependencyDocs : Documentation {
88  let Category = DocCatFunction;
89  let Content = [{
90The ``carries_dependency`` attribute specifies dependency propagation into and
91out of functions.
92
93When specified on a function or Objective-C method, the ``carries_dependency``
94attribute means that the return value carries a dependency out of the function,
95so that the implementation need not constrain ordering upon return from that
96function. Implementations of the function and its caller may choose to preserve
97dependencies instead of emitting memory ordering instructions such as fences.
98
99Note, this attribute does not change the meaning of the program, but may result
100in generation of more efficient code.
101  }];
102}
103
104def C11NoReturnDocs : Documentation {
105  let Category = DocCatFunction;
106  let Content = [{
107A function declared as ``_Noreturn`` shall not return to its caller. The
108compiler will generate a diagnostic for a function declared as ``_Noreturn``
109that appears to be capable of returning to its caller.
110  }];
111}
112
113def CXX11NoReturnDocs : Documentation {
114  let Category = DocCatFunction;
115  let Content = [{
116A function declared as ``[[noreturn]]`` shall not return to its caller. The
117compiler will generate a diagnostic for a function declared as ``[[noreturn]]``
118that appears to be capable of returning to its caller.
119  }];
120}
121
122def AssertCapabilityDocs : Documentation {
123  let Category = DocCatFunction;
124  let Heading = "assert_capability (assert_shared_capability, clang::assert_capability, clang::assert_shared_capability)";
125  let Content = [{
126Marks a function that dynamically tests whether a capability is held, and halts
127the program if it is not held.
128  }];
129}
130
131def AcquireCapabilityDocs : Documentation {
132  let Category = DocCatFunction;
133  let Heading = "acquire_capability (acquire_shared_capability, clang::acquire_capability, clang::acquire_shared_capability)";
134  let Content = [{
135Marks a function as acquiring a capability.
136  }];
137}
138
139def TryAcquireCapabilityDocs : Documentation {
140  let Category = DocCatFunction;
141  let Heading = "try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability)";
142  let Content = [{
143Marks a function that attempts to acquire a capability. This function may fail to
144actually acquire the capability; they accept a Boolean value determining
145whether acquiring the capability means success (true), or failing to acquire
146the capability means success (false).
147  }];
148}
149
150def ReleaseCapabilityDocs : Documentation {
151  let Category = DocCatFunction;
152  let Heading = "release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability)";
153  let Content = [{
154Marks a function as releasing a capability.
155  }];
156}
157
158def AssumeAlignedDocs : Documentation {
159  let Category = DocCatFunction;
160  let Content = [{
161Use ``__attribute__((assume_aligned(<alignment>[,<offset>]))`` on a function
162declaration to specify that the return value of the function (which must be a
163pointer type) has the specified offset, in bytes, from an address with the
164specified alignment. The offset is taken to be zero if omitted.
165
166.. code-block:: c++
167
168  // The returned pointer value has 32-byte alignment.
169  void *a() __attribute__((assume_aligned (32)));
170
171  // The returned pointer value is 4 bytes greater than an address having
172  // 32-byte alignment.
173  void *b() __attribute__((assume_aligned (32, 4)));
174
175Note that this attribute provides information to the compiler regarding a
176condition that the code already ensures is true. It does not cause the compiler
177to enforce the provided alignment assumption.
178  }];
179}
180
181def EnableIfDocs : Documentation {
182  let Category = DocCatFunction;
183  let Content = [{
184.. Note:: Some features of this attribute are experimental. The meaning of
185  multiple enable_if attributes on a single declaration is subject to change in
186  a future version of clang. Also, the ABI is not standardized and the name
187  mangling may change in future versions. To avoid that, use asm labels.
188
189The ``enable_if`` attribute can be placed on function declarations to control
190which overload is selected based on the values of the function's arguments.
191When combined with the ``overloadable`` attribute, this feature is also
192available in C.
193
194.. code-block:: c++
195
196  int isdigit(int c);
197  int isdigit(int c) __attribute__((enable_if(c <= -1 || c > 255, "chosen when 'c' is out of range"))) __attribute__((unavailable("'c' must have the value of an unsigned char or EOF")));
198
199  void foo(char c) {
200    isdigit(c);
201    isdigit(10);
202    isdigit(-10);  // results in a compile-time error.
203  }
204
205The enable_if attribute takes two arguments, the first is an expression written
206in terms of the function parameters, the second is a string explaining why this
207overload candidate could not be selected to be displayed in diagnostics. The
208expression is part of the function signature for the purposes of determining
209whether it is a redeclaration (following the rules used when determining
210whether a C++ template specialization is ODR-equivalent), but is not part of
211the type.
212
213The enable_if expression is evaluated as if it were the body of a
214bool-returning constexpr function declared with the arguments of the function
215it is being applied to, then called with the parameters at the call site. If the
216result is false or could not be determined through constant expression
217evaluation, then this overload will not be chosen and the provided string may
218be used in a diagnostic if the compile fails as a result.
219
220Because the enable_if expression is an unevaluated context, there are no global
221state changes, nor the ability to pass information from the enable_if
222expression to the function body. For example, suppose we want calls to
223strnlen(strbuf, maxlen) to resolve to strnlen_chk(strbuf, maxlen, size of
224strbuf) only if the size of strbuf can be determined:
225
226.. code-block:: c++
227
228  __attribute__((always_inline))
229  static inline size_t strnlen(const char *s, size_t maxlen)
230    __attribute__((overloadable))
231    __attribute__((enable_if(__builtin_object_size(s, 0) != -1))),
232                             "chosen when the buffer size is known but 'maxlen' is not")))
233  {
234    return strnlen_chk(s, maxlen, __builtin_object_size(s, 0));
235  }
236
237Multiple enable_if attributes may be applied to a single declaration. In this
238case, the enable_if expressions are evaluated from left to right in the
239following manner. First, the candidates whose enable_if expressions evaluate to
240false or cannot be evaluated are discarded. If the remaining candidates do not
241share ODR-equivalent enable_if expressions, the overload resolution is
242ambiguous. Otherwise, enable_if overload resolution continues with the next
243enable_if attribute on the candidates that have not been discarded and have
244remaining enable_if attributes. In this way, we pick the most specific
245overload out of a number of viable overloads using enable_if.
246
247.. code-block:: c++
248
249  void f() __attribute__((enable_if(true, "")));  // #1
250  void f() __attribute__((enable_if(true, ""))) __attribute__((enable_if(true, "")));  // #2
251
252  void g(int i, int j) __attribute__((enable_if(i, "")));  // #1
253  void g(int i, int j) __attribute__((enable_if(j, ""))) __attribute__((enable_if(true)));  // #2
254
255In this example, a call to f() is always resolved to #2, as the first enable_if
256expression is ODR-equivalent for both declarations, but #1 does not have another
257enable_if expression to continue evaluating, so the next round of evaluation has
258only a single candidate. In a call to g(1, 1), the call is ambiguous even though
259#2 has more enable_if attributes, because the first enable_if expressions are
260not ODR-equivalent.
261
262Query for this feature with ``__has_attribute(enable_if)``.
263  }];
264}
265
266def PassObjectSizeDocs : Documentation {
267  let Category = DocCatVariable; // Technically it's a parameter doc, but eh.
268  let Content = [{
269.. Note:: The mangling of functions with parameters that are annotated with
270  ``pass_object_size`` is subject to change. You can get around this by
271  using ``__asm__("foo")`` to explicitly name your functions, thus preserving
272  your ABI; also, non-overloadable C functions with ``pass_object_size`` are
273  not mangled.
274
275The ``pass_object_size(Type)`` attribute can be placed on function parameters to
276instruct clang to call ``__builtin_object_size(param, Type)`` at each callsite
277of said function, and implicitly pass the result of this call in as an invisible
278argument of type ``size_t`` directly after the parameter annotated with
279``pass_object_size``. Clang will also replace any calls to
280``__builtin_object_size(param, Type)`` in the function by said implicit
281parameter.
282
283Example usage:
284
285.. code-block:: c
286
287  int bzero1(char *const p __attribute__((pass_object_size(0))))
288      __attribute__((noinline)) {
289    int i = 0;
290    for (/**/; i < (int)__builtin_object_size(p, 0); ++i) {
291      p[i] = 0;
292    }
293    return i;
294  }
295
296  int main() {
297    char chars[100];
298    int n = bzero1(&chars[0]);
299    assert(n == sizeof(chars));
300    return 0;
301  }
302
303If successfully evaluating ``__builtin_object_size(param, Type)`` at the
304callsite is not possible, then the "failed" value is passed in. So, using the
305definition of ``bzero1`` from above, the following code would exit cleanly:
306
307.. code-block:: c
308
309  int main2(int argc, char *argv[]) {
310    int n = bzero1(argv);
311    assert(n == -1);
312    return 0;
313  }
314
315``pass_object_size`` plays a part in overload resolution. If two overload
316candidates are otherwise equally good, then the overload with one or more
317parameters with ``pass_object_size`` is preferred. This implies that the choice
318between two identical overloads both with ``pass_object_size`` on one or more
319parameters will always be ambiguous; for this reason, having two such overloads
320is illegal. For example:
321
322.. code-block:: c++
323
324  #define PS(N) __attribute__((pass_object_size(N)))
325  // OK
326  void Foo(char *a, char *b); // Overload A
327  // OK -- overload A has no parameters with pass_object_size.
328  void Foo(char *a PS(0), char *b PS(0)); // Overload B
329  // Error -- Same signature (sans pass_object_size) as overload B, and both
330  // overloads have one or more parameters with the pass_object_size attribute.
331  void Foo(void *a PS(0), void *b);
332
333  // OK
334  void Bar(void *a PS(0)); // Overload C
335  // OK
336  void Bar(char *c PS(1)); // Overload D
337
338  void main() {
339    char known[10], *unknown;
340    Foo(unknown, unknown); // Calls overload B
341    Foo(known, unknown); // Calls overload B
342    Foo(unknown, known); // Calls overload B
343    Foo(known, known); // Calls overload B
344
345    Bar(known); // Calls overload D
346    Bar(unknown); // Calls overload D
347  }
348
349Currently, ``pass_object_size`` is a bit restricted in terms of its usage:
350
351* Only one use of ``pass_object_size`` is allowed per parameter.
352
353* It is an error to take the address of a function with ``pass_object_size`` on
354  any of its parameters. If you wish to do this, you can create an overload
355  without ``pass_object_size`` on any parameters.
356
357* It is an error to apply the ``pass_object_size`` attribute to parameters that
358  are not pointers. Additionally, any parameter that ``pass_object_size`` is
359  applied to must be marked ``const`` at its function's definition.
360  }];
361}
362
363def OverloadableDocs : Documentation {
364  let Category = DocCatFunction;
365  let Content = [{
366Clang provides support for C++ function overloading in C.  Function overloading
367in C is introduced using the ``overloadable`` attribute.  For example, one
368might provide several overloaded versions of a ``tgsin`` function that invokes
369the appropriate standard function computing the sine of a value with ``float``,
370``double``, or ``long double`` precision:
371
372.. code-block:: c
373
374  #include <math.h>
375  float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
376  double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
377  long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }
378
379Given these declarations, one can call ``tgsin`` with a ``float`` value to
380receive a ``float`` result, with a ``double`` to receive a ``double`` result,
381etc.  Function overloading in C follows the rules of C++ function overloading
382to pick the best overload given the call arguments, with a few C-specific
383semantics:
384
385* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
386  floating-point promotion (per C99) rather than as a floating-point conversion
387  (as in C++).
388
389* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
390  considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
391  compatible types.
392
393* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
394  and ``U`` are compatible types.  This conversion is given "conversion" rank.
395
396The declaration of ``overloadable`` functions is restricted to function
397declarations and definitions.  Most importantly, if any function with a given
398name is given the ``overloadable`` attribute, then all function declarations
399and definitions with that name (and in that scope) must have the
400``overloadable`` attribute.  This rule even applies to redeclarations of
401functions whose original declaration had the ``overloadable`` attribute, e.g.,
402
403.. code-block:: c
404
405  int f(int) __attribute__((overloadable));
406  float f(float); // error: declaration of "f" must have the "overloadable" attribute
407
408  int g(int) __attribute__((overloadable));
409  int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute
410
411Functions marked ``overloadable`` must have prototypes.  Therefore, the
412following code is ill-formed:
413
414.. code-block:: c
415
416  int h() __attribute__((overloadable)); // error: h does not have a prototype
417
418However, ``overloadable`` functions are allowed to use a ellipsis even if there
419are no named parameters (as is permitted in C++).  This feature is particularly
420useful when combined with the ``unavailable`` attribute:
421
422.. code-block:: c++
423
424  void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error
425
426Functions declared with the ``overloadable`` attribute have their names mangled
427according to the same rules as C++ function names.  For example, the three
428``tgsin`` functions in our motivating example get the mangled names
429``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively.  There are two
430caveats to this use of name mangling:
431
432* Future versions of Clang may change the name mangling of functions overloaded
433  in C, so you should not depend on an specific mangling.  To be completely
434  safe, we strongly urge the use of ``static inline`` with ``overloadable``
435  functions.
436
437* The ``overloadable`` attribute has almost no meaning when used in C++,
438  because names will already be mangled and functions are already overloadable.
439  However, when an ``overloadable`` function occurs within an ``extern "C"``
440  linkage specification, it's name *will* be mangled in the same way as it
441  would in C.
442
443Query for this feature with ``__has_extension(attribute_overloadable)``.
444  }];
445}
446
447def ObjCMethodFamilyDocs : Documentation {
448  let Category = DocCatFunction;
449  let Content = [{
450Many methods in Objective-C have conventional meanings determined by their
451selectors. It is sometimes useful to be able to mark a method as having a
452particular conventional meaning despite not having the right selector, or as
453not having the conventional meaning that its selector would suggest. For these
454use cases, we provide an attribute to specifically describe the "method family"
455that a method belongs to.
456
457**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
458``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``.  This
459attribute can only be placed at the end of a method declaration:
460
461.. code-block:: objc
462
463  - (NSString *)initMyStringValue __attribute__((objc_method_family(none)));
464
465Users who do not wish to change the conventional meaning of a method, and who
466merely want to document its non-standard retain and release semantics, should
467use the retaining behavior attributes (``ns_returns_retained``,
468``ns_returns_not_retained``, etc).
469
470Query for this feature with ``__has_attribute(objc_method_family)``.
471  }];
472}
473
474def NoDuplicateDocs : Documentation {
475  let Category = DocCatFunction;
476  let Content = [{
477The ``noduplicate`` attribute can be placed on function declarations to control
478whether function calls to this function can be duplicated or not as a result of
479optimizations. This is required for the implementation of functions with
480certain special requirements, like the OpenCL "barrier" function, that might
481need to be run concurrently by all the threads that are executing in lockstep
482on the hardware. For example this attribute applied on the function
483"nodupfunc" in the code below avoids that:
484
485.. code-block:: c
486
487  void nodupfunc() __attribute__((noduplicate));
488  // Setting it as a C++11 attribute is also valid
489  // void nodupfunc() [[clang::noduplicate]];
490  void foo();
491  void bar();
492
493  nodupfunc();
494  if (a > n) {
495    foo();
496  } else {
497    bar();
498  }
499
500gets possibly modified by some optimizations into code similar to this:
501
502.. code-block:: c
503
504  if (a > n) {
505    nodupfunc();
506    foo();
507  } else {
508    nodupfunc();
509    bar();
510  }
511
512where the call to "nodupfunc" is duplicated and sunk into the two branches
513of the condition.
514  }];
515}
516
517def NoSplitStackDocs : Documentation {
518  let Category = DocCatFunction;
519  let Content = [{
520The ``no_split_stack`` attribute disables the emission of the split stack
521preamble for a particular function. It has no effect if ``-fsplit-stack``
522is not specified.
523  }];
524}
525
526def ObjCRequiresSuperDocs : Documentation {
527  let Category = DocCatFunction;
528  let Content = [{
529Some Objective-C classes allow a subclass to override a particular method in a
530parent class but expect that the overriding method also calls the overridden
531method in the parent class. For these cases, we provide an attribute to
532designate that a method requires a "call to ``super``" in the overriding
533method in the subclass.
534
535**Usage**: ``__attribute__((objc_requires_super))``.  This attribute can only
536be placed at the end of a method declaration:
537
538.. code-block:: objc
539
540  - (void)foo __attribute__((objc_requires_super));
541
542This attribute can only be applied the method declarations within a class, and
543not a protocol.  Currently this attribute does not enforce any placement of
544where the call occurs in the overriding method (such as in the case of
545``-dealloc`` where the call must appear at the end).  It checks only that it
546exists.
547
548Note that on both OS X and iOS that the Foundation framework provides a
549convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this
550attribute:
551
552.. code-block:: objc
553
554  - (void)foo NS_REQUIRES_SUPER;
555
556This macro is conditionally defined depending on the compiler's support for
557this attribute.  If the compiler does not support the attribute the macro
558expands to nothing.
559
560Operationally, when a method has this annotation the compiler will warn if the
561implementation of an override in a subclass does not call super.  For example:
562
563.. code-block:: objc
564
565   warning: method possibly missing a [super AnnotMeth] call
566   - (void) AnnotMeth{};
567                      ^
568  }];
569}
570
571def ObjCRuntimeNameDocs : Documentation {
572    let Category = DocCatFunction;
573    let Content = [{
574By default, the Objective-C interface or protocol identifier is used
575in the metadata name for that object. The `objc_runtime_name`
576attribute allows annotated interfaces or protocols to use the
577specified string argument in the object's metadata name instead of the
578default name.
579
580**Usage**: ``__attribute__((objc_runtime_name("MyLocalName")))``.  This attribute
581can only be placed before an @protocol or @interface declaration:
582
583.. code-block:: objc
584
585  __attribute__((objc_runtime_name("MyLocalName")))
586  @interface Message
587  @end
588
589    }];
590}
591
592def ObjCBoxableDocs : Documentation {
593    let Category = DocCatFunction;
594    let Content = [{
595Structs and unions marked with the ``objc_boxable`` attribute can be used
596with the Objective-C boxed expression syntax, ``@(...)``.
597
598**Usage**: ``__attribute__((objc_boxable))``. This attribute
599can only be placed on a declaration of a trivially-copyable struct or union:
600
601.. code-block:: objc
602
603  struct __attribute__((objc_boxable)) some_struct {
604    int i;
605  };
606  union __attribute__((objc_boxable)) some_union {
607    int i;
608    float f;
609  };
610  typedef struct __attribute__((objc_boxable)) _some_struct some_struct;
611
612  // ...
613
614  some_struct ss;
615  NSValue *boxed = @(ss);
616
617    }];
618}
619
620def AvailabilityDocs : Documentation {
621  let Category = DocCatFunction;
622  let Content = [{
623The ``availability`` attribute can be placed on declarations to describe the
624lifecycle of that declaration relative to operating system versions.  Consider
625the function declaration for a hypothetical function ``f``:
626
627.. code-block:: c++
628
629  void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
630
631The availability attribute states that ``f`` was introduced in Mac OS X 10.4,
632deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7.  This information
633is used by Clang to determine when it is safe to use ``f``: for example, if
634Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()``
635succeeds.  If Clang is instructed to compile code for Mac OS X 10.6, the call
636succeeds but Clang emits a warning specifying that the function is deprecated.
637Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
638fails because ``f()`` is no longer available.
639
640The availability attribute is a comma-separated list starting with the
641platform name and then including clauses specifying important milestones in the
642declaration's lifetime (in any order) along with additional information.  Those
643clauses can be:
644
645introduced=\ *version*
646  The first version in which this declaration was introduced.
647
648deprecated=\ *version*
649  The first version in which this declaration was deprecated, meaning that
650  users should migrate away from this API.
651
652obsoleted=\ *version*
653  The first version in which this declaration was obsoleted, meaning that it
654  was removed completely and can no longer be used.
655
656unavailable
657  This declaration is never available on this platform.
658
659message=\ *string-literal*
660  Additional message text that Clang will provide when emitting a warning or
661  error about use of a deprecated or obsoleted declaration.  Useful to direct
662  users to replacement APIs.
663
664Multiple availability attributes can be placed on a declaration, which may
665correspond to different platforms.  Only the availability attribute with the
666platform corresponding to the target platform will be used; any others will be
667ignored.  If no availability attribute specifies availability for the current
668target platform, the availability attributes are ignored.  Supported platforms
669are:
670
671``ios``
672  Apple's iOS operating system.  The minimum deployment target is specified by
673  the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*``
674  command-line arguments.
675
676``macosx``
677  Apple's Mac OS X operating system.  The minimum deployment target is
678  specified by the ``-mmacosx-version-min=*version*`` command-line argument.
679
680``tvos``
681  Apple's tvOS operating system.  The minimum deployment target is specified by
682  the ``-mtvos-version-min=*version*`` command-line argument.
683
684``watchos``
685  Apple's watchOS operating system.  The minimum deployment target is specified by
686  the ``-mwatchos-version-min=*version*`` command-line argument.
687
688A declaration can be used even when deploying back to a platform version prior
689to when the declaration was introduced.  When this happens, the declaration is
690`weakly linked
691<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_,
692as if the ``weak_import`` attribute were added to the declaration.  A
693weakly-linked declaration may or may not be present a run-time, and a program
694can determine whether the declaration is present by checking whether the
695address of that declaration is non-NULL.
696
697If there are multiple declarations of the same entity, the availability
698attributes must either match on a per-platform basis or later
699declarations must not have availability attributes for that
700platform. For example:
701
702.. code-block:: c
703
704  void g(void) __attribute__((availability(macosx,introduced=10.4)));
705  void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches
706  void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
707  void g(void); // okay, inherits both macosx and ios availability from above.
708  void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch
709
710When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,:
711
712.. code-block:: objc
713
714  @interface A
715  - (id)method __attribute__((availability(macosx,introduced=10.4)));
716  - (id)method2 __attribute__((availability(macosx,introduced=10.4)));
717  @end
718
719  @interface B : A
720  - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later
721  - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4
722  @end
723  }];
724}
725
726def FallthroughDocs : Documentation {
727  let Category = DocCatStmt;
728  let Content = [{
729The ``clang::fallthrough`` attribute is used along with the
730``-Wimplicit-fallthrough`` argument to annotate intentional fall-through
731between switch labels.  It can only be applied to a null statement placed at a
732point of execution between any statement and the next switch label.  It is
733common to mark these places with a specific comment, but this attribute is
734meant to replace comments with a more strict annotation, which can be checked
735by the compiler.  This attribute doesn't change semantics of the code and can
736be used wherever an intended fall-through occurs.  It is designed to mimic
737control-flow statements like ``break;``, so it can be placed in most places
738where ``break;`` can, but only if there are no statements on the execution path
739between it and the next switch label.
740
741Here is an example:
742
743.. code-block:: c++
744
745  // compile with -Wimplicit-fallthrough
746  switch (n) {
747  case 22:
748  case 33:  // no warning: no statements between case labels
749    f();
750  case 44:  // warning: unannotated fall-through
751    g();
752    [[clang::fallthrough]];
753  case 55:  // no warning
754    if (x) {
755      h();
756      break;
757    }
758    else {
759      i();
760      [[clang::fallthrough]];
761    }
762  case 66:  // no warning
763    p();
764    [[clang::fallthrough]]; // warning: fallthrough annotation does not
765                            //          directly precede case label
766    q();
767  case 77:  // warning: unannotated fall-through
768    r();
769  }
770  }];
771}
772
773def ARMInterruptDocs : Documentation {
774  let Category = DocCatFunction;
775  let Content = [{
776Clang supports the GNU style ``__attribute__((interrupt("TYPE")))`` attribute on
777ARM targets. This attribute may be attached to a function definition and
778instructs the backend to generate appropriate function entry/exit code so that
779it can be used directly as an interrupt service routine.
780
781The parameter passed to the interrupt attribute is optional, but if
782provided it must be a string literal with one of the following values: "IRQ",
783"FIQ", "SWI", "ABORT", "UNDEF".
784
785The semantics are as follows:
786
787- If the function is AAPCS, Clang instructs the backend to realign the stack to
788  8 bytes on entry. This is a general requirement of the AAPCS at public
789  interfaces, but may not hold when an exception is taken. Doing this allows
790  other AAPCS functions to be called.
791- If the CPU is M-class this is all that needs to be done since the architecture
792  itself is designed in such a way that functions obeying the normal AAPCS ABI
793  constraints are valid exception handlers.
794- If the CPU is not M-class, the prologue and epilogue are modified to save all
795  non-banked registers that are used, so that upon return the user-mode state
796  will not be corrupted. Note that to avoid unnecessary overhead, only
797  general-purpose (integer) registers are saved in this way. If VFP operations
798  are needed, that state must be saved manually.
799
800  Specifically, interrupt kinds other than "FIQ" will save all core registers
801  except "lr" and "sp". "FIQ" interrupts will save r0-r7.
802- If the CPU is not M-class, the return instruction is changed to one of the
803  canonical sequences permitted by the architecture for exception return. Where
804  possible the function itself will make the necessary "lr" adjustments so that
805  the "preferred return address" is selected.
806
807  Unfortunately the compiler is unable to make this guarantee for an "UNDEF"
808  handler, where the offset from "lr" to the preferred return address depends on
809  the execution state of the code which generated the exception. In this case
810  a sequence equivalent to "movs pc, lr" will be used.
811  }];
812}
813
814def MipsInterruptDocs : Documentation {
815  let Category = DocCatFunction;
816  let Content = [{
817Clang supports the GNU style ``__attribute__((interrupt("ARGUMENT")))`` attribute on
818MIPS targets. This attribute may be attached to a function definition and instructs
819the backend to generate appropriate function entry/exit code so that it can be used
820directly as an interrupt service routine.
821
822By default, the compiler will produce a function prologue and epilogue suitable for
823an interrupt service routine that handles an External Interrupt Controller (eic)
824generated interrupt. This behaviour can be explicitly requested with the "eic"
825argument.
826
827Otherwise, for use with vectored interrupt mode, the argument passed should be
828of the form "vector=LEVEL" where LEVEL is one of the following values:
829"sw0", "sw1", "hw0", "hw1", "hw2", "hw3", "hw4", "hw5". The compiler will
830then set the interrupt mask to the corresponding level which will mask all
831interrupts up to and including the argument.
832
833The semantics are as follows:
834
835- The prologue is modified so that the Exception Program Counter (EPC) and
836  Status coprocessor registers are saved to the stack. The interrupt mask is
837  set so that the function can only be interrupted by a higher priority
838  interrupt. The epilogue will restore the previous values of EPC and Status.
839
840- The prologue and epilogue are modified to save and restore all non-kernel
841  registers as necessary.
842
843- The FPU is disabled in the prologue, as the floating pointer registers are not
844  spilled to the stack.
845
846- The function return sequence is changed to use an exception return instruction.
847
848- The parameter sets the interrupt mask for the function corresponding to the
849  interrupt level specified. If no mask is specified the interrupt mask
850  defaults to "eic".
851  }];
852}
853
854def TargetDocs : Documentation {
855  let Category = DocCatFunction;
856  let Content = [{
857Clang supports the GNU style ``__attribute__((target("OPTIONS")))`` attribute.
858This attribute may be attached to a function definition and instructs
859the backend to use different code generation options than were passed on the
860command line.
861
862The current set of options correspond to the existing "subtarget features" for
863the target with or without a "-mno-" in front corresponding to the absence
864of the feature, as well as ``arch="CPU"`` which will change the default "CPU"
865for the function.
866
867Example "subtarget features" from the x86 backend include: "mmx", "sse", "sse4.2",
868"avx", "xop" and largely correspond to the machine specific options handled by
869the front end.
870}];
871}
872
873def DocCatAMDGPURegisterAttributes :
874  DocumentationCategory<"AMD GPU Register Attributes"> {
875  let Content = [{
876Clang supports attributes for controlling register usage on AMD GPU
877targets. These attributes may be attached to a kernel function
878definition and is an optimization hint to the backend for the maximum
879number of registers to use. This is useful in cases where register
880limited occupancy is known to be an important factor for the
881performance for the kernel.
882
883The semantics are as follows:
884
885- The backend will attempt to limit the number of used registers to
886  the specified value, but the exact number used is not
887  guaranteed. The number used may be rounded up to satisfy the
888  allocation requirements or ABI constraints of the subtarget. For
889  example, on Southern Islands VGPRs may only be allocated in
890  increments of 4, so requesting a limit of 39 VGPRs will really
891  attempt to use up to 40. Requesting more registers than the
892  subtarget supports will truncate to the maximum allowed. The backend
893  may also use fewer registers than requested whenever possible.
894
895- 0 implies the default no limit on register usage.
896
897- Ignored on older VLIW subtargets which did not have separate scalar
898  and vector registers, R600 through Northern Islands.
899
900}];
901}
902
903
904def AMDGPUNumVGPRDocs : Documentation {
905  let Category = DocCatAMDGPURegisterAttributes;
906  let Content = [{
907Clang supports the
908``__attribute__((amdgpu_num_vgpr(<num_registers>)))`` attribute on AMD
909Southern Islands GPUs and later for controlling the number of vector
910registers. A typical value would be between 4 and 256 in increments
911of 4.
912}];
913}
914
915def AMDGPUNumSGPRDocs : Documentation {
916  let Category = DocCatAMDGPURegisterAttributes;
917  let Content = [{
918
919Clang supports the
920``__attribute__((amdgpu_num_sgpr(<num_registers>)))`` attribute on AMD
921Southern Islands GPUs and later for controlling the number of scalar
922registers. A typical value would be between 8 and 104 in increments of
9238.
924
925Due to common instruction constraints, an additional 2-4 SGPRs are
926typically required for internal use depending on features used. This
927value is a hint for the total number of SGPRs to use, and not the
928number of user SGPRs, so no special consideration needs to be given
929for these.
930}];
931}
932
933def DocCatCallingConvs : DocumentationCategory<"Calling Conventions"> {
934  let Content = [{
935Clang supports several different calling conventions, depending on the target
936platform and architecture. The calling convention used for a function determines
937how parameters are passed, how results are returned to the caller, and other
938low-level details of calling a function.
939  }];
940}
941
942def PcsDocs : Documentation {
943  let Category = DocCatCallingConvs;
944  let Content = [{
945On ARM targets, this attribute can be used to select calling conventions
946similar to ``stdcall`` on x86. Valid parameter values are "aapcs" and
947"aapcs-vfp".
948  }];
949}
950
951def RegparmDocs : Documentation {
952  let Category = DocCatCallingConvs;
953  let Content = [{
954On 32-bit x86 targets, the regparm attribute causes the compiler to pass
955the first three integer parameters in EAX, EDX, and ECX instead of on the
956stack. This attribute has no effect on variadic functions, and all parameters
957are passed via the stack as normal.
958  }];
959}
960
961def SysVABIDocs : Documentation {
962  let Category = DocCatCallingConvs;
963  let Content = [{
964On Windows x86_64 targets, this attribute changes the calling convention of a
965function to match the default convention used on Sys V targets such as Linux,
966Mac, and BSD. This attribute has no effect on other targets.
967  }];
968}
969
970def MSABIDocs : Documentation {
971  let Category = DocCatCallingConvs;
972  let Content = [{
973On non-Windows x86_64 targets, this attribute changes the calling convention of
974a function to match the default convention used on Windows x86_64. This
975attribute has no effect on Windows targets or non-x86_64 targets.
976  }];
977}
978
979def StdCallDocs : Documentation {
980  let Category = DocCatCallingConvs;
981  let Content = [{
982On 32-bit x86 targets, this attribute changes the calling convention of a
983function to clear parameters off of the stack on return. This convention does
984not support variadic calls or unprototyped functions in C, and has no effect on
985x86_64 targets. This calling convention is used widely by the Windows API and
986COM applications.  See the documentation for `__stdcall`_ on MSDN.
987
988.. _`__stdcall`: http://msdn.microsoft.com/en-us/library/zxk0tw93.aspx
989  }];
990}
991
992def FastCallDocs : Documentation {
993  let Category = DocCatCallingConvs;
994  let Content = [{
995On 32-bit x86 targets, this attribute changes the calling convention of a
996function to use ECX and EDX as register parameters and clear parameters off of
997the stack on return. This convention does not support variadic calls or
998unprototyped functions in C, and has no effect on x86_64 targets. This calling
999convention is supported primarily for compatibility with existing code. Users
1000seeking register parameters should use the ``regparm`` attribute, which does
1001not require callee-cleanup.  See the documentation for `__fastcall`_ on MSDN.
1002
1003.. _`__fastcall`: http://msdn.microsoft.com/en-us/library/6xa169sk.aspx
1004  }];
1005}
1006
1007def ThisCallDocs : Documentation {
1008  let Category = DocCatCallingConvs;
1009  let Content = [{
1010On 32-bit x86 targets, this attribute changes the calling convention of a
1011function to use ECX for the first parameter (typically the implicit ``this``
1012parameter of C++ methods) and clear parameters off of the stack on return. This
1013convention does not support variadic calls or unprototyped functions in C, and
1014has no effect on x86_64 targets. See the documentation for `__thiscall`_ on
1015MSDN.
1016
1017.. _`__thiscall`: http://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx
1018  }];
1019}
1020
1021def VectorCallDocs : Documentation {
1022  let Category = DocCatCallingConvs;
1023  let Content = [{
1024On 32-bit x86 *and* x86_64 targets, this attribute changes the calling
1025convention of a function to pass vector parameters in SSE registers.
1026
1027On 32-bit x86 targets, this calling convention is similar to ``__fastcall``.
1028The first two integer parameters are passed in ECX and EDX. Subsequent integer
1029parameters are passed in memory, and callee clears the stack.  On x86_64
1030targets, the callee does *not* clear the stack, and integer parameters are
1031passed in RCX, RDX, R8, and R9 as is done for the default Windows x64 calling
1032convention.
1033
1034On both 32-bit x86 and x86_64 targets, vector and floating point arguments are
1035passed in XMM0-XMM5. Homogenous vector aggregates of up to four elements are
1036passed in sequential SSE registers if enough are available. If AVX is enabled,
1037256 bit vectors are passed in YMM0-YMM5. Any vector or aggregate type that
1038cannot be passed in registers for any reason is passed by reference, which
1039allows the caller to align the parameter memory.
1040
1041See the documentation for `__vectorcall`_ on MSDN for more details.
1042
1043.. _`__vectorcall`: http://msdn.microsoft.com/en-us/library/dn375768.aspx
1044  }];
1045}
1046
1047def DocCatConsumed : DocumentationCategory<"Consumed Annotation Checking"> {
1048  let Content = [{
1049Clang supports additional attributes for checking basic resource management
1050properties, specifically for unique objects that have a single owning reference.
1051The following attributes are currently supported, although **the implementation
1052for these annotations is currently in development and are subject to change.**
1053  }];
1054}
1055
1056def SetTypestateDocs : Documentation {
1057  let Category = DocCatConsumed;
1058  let Content = [{
1059Annotate methods that transition an object into a new state with
1060``__attribute__((set_typestate(new_state)))``.  The new state must be
1061unconsumed, consumed, or unknown.
1062  }];
1063}
1064
1065def CallableWhenDocs : Documentation {
1066  let Category = DocCatConsumed;
1067  let Content = [{
1068Use ``__attribute__((callable_when(...)))`` to indicate what states a method
1069may be called in.  Valid states are unconsumed, consumed, or unknown.  Each
1070argument to this attribute must be a quoted string.  E.g.:
1071
1072``__attribute__((callable_when("unconsumed", "unknown")))``
1073  }];
1074}
1075
1076def TestTypestateDocs : Documentation {
1077  let Category = DocCatConsumed;
1078  let Content = [{
1079Use ``__attribute__((test_typestate(tested_state)))`` to indicate that a method
1080returns true if the object is in the specified state..
1081  }];
1082}
1083
1084def ParamTypestateDocs : Documentation {
1085  let Category = DocCatConsumed;
1086  let Content = [{
1087This attribute specifies expectations about function parameters.  Calls to an
1088function with annotated parameters will issue a warning if the corresponding
1089argument isn't in the expected state.  The attribute is also used to set the
1090initial state of the parameter when analyzing the function's body.
1091  }];
1092}
1093
1094def ReturnTypestateDocs : Documentation {
1095  let Category = DocCatConsumed;
1096  let Content = [{
1097The ``return_typestate`` attribute can be applied to functions or parameters.
1098When applied to a function the attribute specifies the state of the returned
1099value.  The function's body is checked to ensure that it always returns a value
1100in the specified state.  On the caller side, values returned by the annotated
1101function are initialized to the given state.
1102
1103When applied to a function parameter it modifies the state of an argument after
1104a call to the function returns.  The function's body is checked to ensure that
1105the parameter is in the expected state before returning.
1106  }];
1107}
1108
1109def ConsumableDocs : Documentation {
1110  let Category = DocCatConsumed;
1111  let Content = [{
1112Each ``class`` that uses any of the typestate annotations must first be marked
1113using the ``consumable`` attribute.  Failure to do so will result in a warning.
1114
1115This attribute accepts a single parameter that must be one of the following:
1116``unknown``, ``consumed``, or ``unconsumed``.
1117  }];
1118}
1119
1120def NoSanitizeDocs : Documentation {
1121  let Category = DocCatFunction;
1122  let Content = [{
1123Use the ``no_sanitize`` attribute on a function declaration to specify
1124that a particular instrumentation or set of instrumentations should not be
1125applied to that function. The attribute takes a list of string literals,
1126which have the same meaning as values accepted by the ``-fno-sanitize=``
1127flag. For example, ``__attribute__((no_sanitize("address", "thread")))``
1128specifies that AddressSanitizer and ThreadSanitizer should not be applied
1129to the function.
1130
1131See :ref:`Controlling Code Generation <controlling-code-generation>` for a
1132full list of supported sanitizer flags.
1133  }];
1134}
1135
1136def NoSanitizeAddressDocs : Documentation {
1137  let Category = DocCatFunction;
1138  // This function has multiple distinct spellings, and so it requires a custom
1139  // heading to be specified. The most common spelling is sufficient.
1140  let Heading = "no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address)";
1141  let Content = [{
1142.. _langext-address_sanitizer:
1143
1144Use ``__attribute__((no_sanitize_address))`` on a function declaration to
1145specify that address safety instrumentation (e.g. AddressSanitizer) should
1146not be applied to that function.
1147  }];
1148}
1149
1150def NoSanitizeThreadDocs : Documentation {
1151  let Category = DocCatFunction;
1152  let Heading = "no_sanitize_thread";
1153  let Content = [{
1154.. _langext-thread_sanitizer:
1155
1156Use ``__attribute__((no_sanitize_thread))`` on a function declaration to
1157specify that checks for data races on plain (non-atomic) memory accesses should
1158not be inserted by ThreadSanitizer. The function is still instrumented by the
1159tool to avoid false positives and provide meaningful stack traces.
1160  }];
1161}
1162
1163def NoSanitizeMemoryDocs : Documentation {
1164  let Category = DocCatFunction;
1165  let Heading = "no_sanitize_memory";
1166  let Content = [{
1167.. _langext-memory_sanitizer:
1168
1169Use ``__attribute__((no_sanitize_memory))`` on a function declaration to
1170specify that checks for uninitialized memory should not be inserted
1171(e.g. by MemorySanitizer). The function may still be instrumented by the tool
1172to avoid false positives in other places.
1173  }];
1174}
1175
1176def DocCatTypeSafety : DocumentationCategory<"Type Safety Checking"> {
1177  let Content = [{
1178Clang supports additional attributes to enable checking type safety properties
1179that can't be enforced by the C type system.  Use cases include:
1180
1181* MPI library implementations, where these attributes enable checking that
1182  the buffer type matches the passed ``MPI_Datatype``;
1183* for HDF5 library there is a similar use case to MPI;
1184* checking types of variadic functions' arguments for functions like
1185  ``fcntl()`` and ``ioctl()``.
1186
1187You can detect support for these attributes with ``__has_attribute()``.  For
1188example:
1189
1190.. code-block:: c++
1191
1192  #if defined(__has_attribute)
1193  #  if __has_attribute(argument_with_type_tag) && \
1194        __has_attribute(pointer_with_type_tag) && \
1195        __has_attribute(type_tag_for_datatype)
1196  #    define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
1197  /* ... other macros ...  */
1198  #  endif
1199  #endif
1200
1201  #if !defined(ATTR_MPI_PWT)
1202  # define ATTR_MPI_PWT(buffer_idx, type_idx)
1203  #endif
1204
1205  int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
1206      ATTR_MPI_PWT(1,3);
1207  }];
1208}
1209
1210def ArgumentWithTypeTagDocs : Documentation {
1211  let Category = DocCatTypeSafety;
1212  let Heading = "argument_with_type_tag";
1213  let Content = [{
1214Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx,
1215type_tag_idx)))`` on a function declaration to specify that the function
1216accepts a type tag that determines the type of some other argument.
1217``arg_kind`` is an identifier that should be used when annotating all
1218applicable type tags.
1219
1220This attribute is primarily useful for checking arguments of variadic functions
1221(``pointer_with_type_tag`` can be used in most non-variadic cases).
1222
1223For example:
1224
1225.. code-block:: c++
1226
1227  int fcntl(int fd, int cmd, ...)
1228      __attribute__(( argument_with_type_tag(fcntl,3,2) ));
1229  }];
1230}
1231
1232def PointerWithTypeTagDocs : Documentation {
1233  let Category = DocCatTypeSafety;
1234  let Heading = "pointer_with_type_tag";
1235  let Content = [{
1236Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))``
1237on a function declaration to specify that the function accepts a type tag that
1238determines the pointee type of some other pointer argument.
1239
1240For example:
1241
1242.. code-block:: c++
1243
1244  int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
1245      __attribute__(( pointer_with_type_tag(mpi,1,3) ));
1246  }];
1247}
1248
1249def TypeTagForDatatypeDocs : Documentation {
1250  let Category = DocCatTypeSafety;
1251  let Content = [{
1252Clang supports annotating type tags of two forms.
1253
1254* **Type tag that is an expression containing a reference to some declared
1255  identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a
1256  declaration with that identifier:
1257
1258  .. code-block:: c++
1259
1260    extern struct mpi_datatype mpi_datatype_int
1261        __attribute__(( type_tag_for_datatype(mpi,int) ));
1262    #define MPI_INT ((MPI_Datatype) &mpi_datatype_int)
1263
1264* **Type tag that is an integral literal.** Introduce a ``static const``
1265  variable with a corresponding initializer value and attach
1266  ``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration,
1267  for example:
1268
1269  .. code-block:: c++
1270
1271    #define MPI_INT ((MPI_Datatype) 42)
1272    static const MPI_Datatype mpi_datatype_int
1273        __attribute__(( type_tag_for_datatype(mpi,int) )) = 42
1274
1275The attribute also accepts an optional third argument that determines how the
1276expression is compared to the type tag.  There are two supported flags:
1277
1278* ``layout_compatible`` will cause types to be compared according to
1279  layout-compatibility rules (C++11 [class.mem] p 17, 18).  This is
1280  implemented to support annotating types like ``MPI_DOUBLE_INT``.
1281
1282  For example:
1283
1284  .. code-block:: c++
1285
1286    /* In mpi.h */
1287    struct internal_mpi_double_int { double d; int i; };
1288    extern struct mpi_datatype mpi_datatype_double_int
1289        __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));
1290
1291    #define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)
1292
1293    /* In user code */
1294    struct my_pair { double a; int b; };
1295    struct my_pair *buffer;
1296    MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ...  */); // no warning
1297
1298    struct my_int_pair { int a; int b; }
1299    struct my_int_pair *buffer2;
1300    MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ...  */); // warning: actual buffer element
1301                                                      // type 'struct my_int_pair'
1302                                                      // doesn't match specified MPI_Datatype
1303
1304* ``must_be_null`` specifies that the expression should be a null pointer
1305  constant, for example:
1306
1307  .. code-block:: c++
1308
1309    /* In mpi.h */
1310    extern struct mpi_datatype mpi_datatype_null
1311        __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
1312
1313    #define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)
1314
1315    /* In user code */
1316    MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ...  */); // warning: MPI_DATATYPE_NULL
1317                                                        // was specified but buffer
1318                                                        // is not a null pointer
1319  }];
1320}
1321
1322def FlattenDocs : Documentation {
1323  let Category = DocCatFunction;
1324  let Content = [{
1325The ``flatten`` attribute causes calls within the attributed function to
1326be inlined unless it is impossible to do so, for example if the body of the
1327callee is unavailable or if the callee has the ``noinline`` attribute.
1328  }];
1329}
1330
1331def FormatDocs : Documentation {
1332  let Category = DocCatFunction;
1333  let Content = [{
1334
1335Clang supports the ``format`` attribute, which indicates that the function
1336accepts a ``printf`` or ``scanf``-like format string and corresponding
1337arguments or a ``va_list`` that contains these arguments.
1338
1339Please see `GCC documentation about format attribute
1340<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details
1341about attribute syntax.
1342
1343Clang implements two kinds of checks with this attribute.
1344
1345#. Clang checks that the function with the ``format`` attribute is called with
1346   a format string that uses format specifiers that are allowed, and that
1347   arguments match the format string.  This is the ``-Wformat`` warning, it is
1348   on by default.
1349
1350#. Clang checks that the format string argument is a literal string.  This is
1351   the ``-Wformat-nonliteral`` warning, it is off by default.
1352
1353   Clang implements this mostly the same way as GCC, but there is a difference
1354   for functions that accept a ``va_list`` argument (for example, ``vprintf``).
1355   GCC does not emit ``-Wformat-nonliteral`` warning for calls to such
1356   functions.  Clang does not warn if the format string comes from a function
1357   parameter, where the function is annotated with a compatible attribute,
1358   otherwise it warns.  For example:
1359
1360   .. code-block:: c
1361
1362     __attribute__((__format__ (__scanf__, 1, 3)))
1363     void foo(const char* s, char *buf, ...) {
1364       va_list ap;
1365       va_start(ap, buf);
1366
1367       vprintf(s, ap); // warning: format string is not a string literal
1368     }
1369
1370   In this case we warn because ``s`` contains a format string for a
1371   ``scanf``-like function, but it is passed to a ``printf``-like function.
1372
1373   If the attribute is removed, clang still warns, because the format string is
1374   not a string literal.
1375
1376   Another example:
1377
1378   .. code-block:: c
1379
1380     __attribute__((__format__ (__printf__, 1, 3)))
1381     void foo(const char* s, char *buf, ...) {
1382       va_list ap;
1383       va_start(ap, buf);
1384
1385       vprintf(s, ap); // warning
1386     }
1387
1388   In this case Clang does not warn because the format string ``s`` and
1389   the corresponding arguments are annotated.  If the arguments are
1390   incorrect, the caller of ``foo`` will receive a warning.
1391  }];
1392}
1393
1394def AlignValueDocs : Documentation {
1395  let Category = DocCatType;
1396  let Content = [{
1397The align_value attribute can be added to the typedef of a pointer type or the
1398declaration of a variable of pointer or reference type. It specifies that the
1399pointer will point to, or the reference will bind to, only objects with at
1400least the provided alignment. This alignment value must be some positive power
1401of 2.
1402
1403   .. code-block:: c
1404
1405     typedef double * aligned_double_ptr __attribute__((align_value(64)));
1406     void foo(double & x  __attribute__((align_value(128)),
1407              aligned_double_ptr y) { ... }
1408
1409If the pointer value does not have the specified alignment at runtime, the
1410behavior of the program is undefined.
1411  }];
1412}
1413
1414def FlagEnumDocs : Documentation {
1415  let Category = DocCatType;
1416  let Content = [{
1417This attribute can be added to an enumerator to signal to the compiler that it
1418is intended to be used as a flag type. This will cause the compiler to assume
1419that the range of the type includes all of the values that you can get by
1420manipulating bits of the enumerator when issuing warnings.
1421  }];
1422}
1423
1424def MSInheritanceDocs : Documentation {
1425  let Category = DocCatType;
1426  let Heading = "__single_inhertiance, __multiple_inheritance, __virtual_inheritance";
1427  let Content = [{
1428This collection of keywords is enabled under ``-fms-extensions`` and controls
1429the pointer-to-member representation used on ``*-*-win32`` targets.
1430
1431The ``*-*-win32`` targets utilize a pointer-to-member representation which
1432varies in size and alignment depending on the definition of the underlying
1433class.
1434
1435However, this is problematic when a forward declaration is only available and
1436no definition has been made yet.  In such cases, Clang is forced to utilize the
1437most general representation that is available to it.
1438
1439These keywords make it possible to use a pointer-to-member representation other
1440than the most general one regardless of whether or not the definition will ever
1441be present in the current translation unit.
1442
1443This family of keywords belong between the ``class-key`` and ``class-name``:
1444
1445.. code-block:: c++
1446
1447  struct __single_inheritance S;
1448  int S::*i;
1449  struct S {};
1450
1451This keyword can be applied to class templates but only has an effect when used
1452on full specializations:
1453
1454.. code-block:: c++
1455
1456  template <typename T, typename U> struct __single_inheritance A; // warning: inheritance model ignored on primary template
1457  template <typename T> struct __multiple_inheritance A<T, T>; // warning: inheritance model ignored on partial specialization
1458  template <> struct __single_inheritance A<int, float>;
1459
1460Note that choosing an inheritance model less general than strictly necessary is
1461an error:
1462
1463.. code-block:: c++
1464
1465  struct __multiple_inheritance S; // error: inheritance model does not match definition
1466  int S::*i;
1467  struct S {};
1468}];
1469}
1470
1471def MSNoVTableDocs : Documentation {
1472  let Category = DocCatType;
1473  let Content = [{
1474This attribute can be added to a class declaration or definition to signal to
1475the compiler that constructors and destructors will not reference the virtual
1476function table. It is only supported when using the Microsoft C++ ABI.
1477  }];
1478}
1479
1480def OptnoneDocs : Documentation {
1481  let Category = DocCatFunction;
1482  let Content = [{
1483The ``optnone`` attribute suppresses essentially all optimizations
1484on a function or method, regardless of the optimization level applied to
1485the compilation unit as a whole.  This is particularly useful when you
1486need to debug a particular function, but it is infeasible to build the
1487entire application without optimization.  Avoiding optimization on the
1488specified function can improve the quality of the debugging information
1489for that function.
1490
1491This attribute is incompatible with the ``always_inline`` and ``minsize``
1492attributes.
1493  }];
1494}
1495
1496def LoopHintDocs : Documentation {
1497  let Category = DocCatStmt;
1498  let Heading = "#pragma clang loop";
1499  let Content = [{
1500The ``#pragma clang loop`` directive allows loop optimization hints to be
1501specified for the subsequent loop. The directive allows vectorization,
1502interleaving, and unrolling to be enabled or disabled. Vector width as well
1503as interleave and unrolling count can be manually specified. See
1504`language extensions
1505<http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_
1506for details.
1507  }];
1508}
1509
1510def UnrollHintDocs : Documentation {
1511  let Category = DocCatStmt;
1512  let Heading = "#pragma unroll, #pragma nounroll";
1513  let Content = [{
1514Loop unrolling optimization hints can be specified with ``#pragma unroll`` and
1515``#pragma nounroll``. The pragma is placed immediately before a for, while,
1516do-while, or c++11 range-based for loop.
1517
1518Specifying ``#pragma unroll`` without a parameter directs the loop unroller to
1519attempt to fully unroll the loop if the trip count is known at compile time and
1520attempt to partially unroll the loop if the trip count is not known at compile
1521time:
1522
1523.. code-block:: c++
1524
1525  #pragma unroll
1526  for (...) {
1527    ...
1528  }
1529
1530Specifying the optional parameter, ``#pragma unroll _value_``, directs the
1531unroller to unroll the loop ``_value_`` times.  The parameter may optionally be
1532enclosed in parentheses:
1533
1534.. code-block:: c++
1535
1536  #pragma unroll 16
1537  for (...) {
1538    ...
1539  }
1540
1541  #pragma unroll(16)
1542  for (...) {
1543    ...
1544  }
1545
1546Specifying ``#pragma nounroll`` indicates that the loop should not be unrolled:
1547
1548.. code-block:: c++
1549
1550  #pragma nounroll
1551  for (...) {
1552    ...
1553  }
1554
1555``#pragma unroll`` and ``#pragma unroll _value_`` have identical semantics to
1556``#pragma clang loop unroll(full)`` and
1557``#pragma clang loop unroll_count(_value_)`` respectively. ``#pragma nounroll``
1558is equivalent to ``#pragma clang loop unroll(disable)``.  See
1559`language extensions
1560<http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_
1561for further details including limitations of the unroll hints.
1562  }];
1563}
1564
1565def DocOpenCLAddressSpaces : DocumentationCategory<"OpenCL Address Spaces"> {
1566  let Content = [{
1567The address space qualifier may be used to specify the region of memory that is
1568used to allocate the object. OpenCL supports the following address spaces:
1569__generic(generic), __global(global), __local(local), __private(private),
1570__constant(constant).
1571
1572  .. code-block:: c
1573
1574    __constant int c = ...;
1575
1576    __generic int* foo(global int* g) {
1577      __local int* l;
1578      private int p;
1579      ...
1580      return l;
1581    }
1582
1583More details can be found in the OpenCL C language Spec v2.0, Section 6.5.
1584  }];
1585}
1586
1587def OpenCLAddressSpaceGenericDocs : Documentation {
1588  let Category = DocOpenCLAddressSpaces;
1589  let Content = [{
1590The generic address space attribute is only available with OpenCL v2.0 and later.
1591It can be used with pointer types. Variables in global and local scope and
1592function parameters in non-kernel functions can have the generic address space
1593type attribute. It is intended to be a placeholder for any other address space
1594except for '__constant' in OpenCL code which can be used with multiple address
1595spaces.
1596  }];
1597}
1598
1599def OpenCLAddressSpaceConstantDocs : Documentation {
1600  let Category = DocOpenCLAddressSpaces;
1601  let Content = [{
1602The constant address space attribute signals that an object is located in
1603a constant (non-modifiable) memory region. It is available to all work items.
1604Any type can be annotated with the constant address space attribute. Objects
1605with the constant address space qualifier can be declared in any scope and must
1606have an initializer.
1607  }];
1608}
1609
1610def OpenCLAddressSpaceGlobalDocs : Documentation {
1611  let Category = DocOpenCLAddressSpaces;
1612  let Content = [{
1613The global address space attribute specifies that an object is allocated in
1614global memory, which is accessible by all work items. The content stored in this
1615memory area persists between kernel executions. Pointer types to the global
1616address space are allowed as function parameters or local variables. Starting
1617with OpenCL v2.0, the global address space can be used with global (program
1618scope) variables and static local variable as well.
1619  }];
1620}
1621
1622def OpenCLAddressSpaceLocalDocs : Documentation {
1623  let Category = DocOpenCLAddressSpaces;
1624  let Content = [{
1625The local address space specifies that an object is allocated in the local (work
1626group) memory area, which is accessible to all work items in the same work
1627group. The content stored in this memory region is not accessible after
1628the kernel execution ends. In a kernel function scope, any variable can be in
1629the local address space. In other scopes, only pointer types to the local address
1630space are allowed. Local address space variables cannot have an initializer.
1631  }];
1632}
1633
1634def OpenCLAddressSpacePrivateDocs : Documentation {
1635  let Category = DocOpenCLAddressSpaces;
1636  let Content = [{
1637The private address space specifies that an object is allocated in the private
1638(work item) memory. Other work items cannot access the same memory area and its
1639content is destroyed after work item execution ends. Local variables can be
1640declared in the private address space. Function arguments are always in the
1641private address space. Kernel function arguments of a pointer or an array type
1642cannot point to the private address space.
1643  }];
1644}
1645
1646def NullabilityDocs : DocumentationCategory<"Nullability Attributes"> {
1647  let Content = [{
1648Whether a particular pointer may be "null" is an important concern when working with pointers in the C family of languages. The various nullability attributes indicate whether a particular pointer can be null or not, which makes APIs more expressive and can help static analysis tools identify bugs involving null pointers. Clang supports several kinds of nullability attributes: the ``nonnull`` and ``returns_nonnull`` attributes indicate which function or method parameters and result types can never be null, while nullability type qualifiers indicate which pointer types can be null (``_Nullable``) or cannot be null (``_Nonnull``).
1649
1650The nullability (type) qualifiers express whether a value of a given pointer type can be null (the ``_Nullable`` qualifier), doesn't have a defined meaning for null (the ``_Nonnull`` qualifier), or for which the purpose of null is unclear (the ``_Null_unspecified`` qualifier). Because nullability qualifiers are expressed within the type system, they are more general than the ``nonnull`` and ``returns_nonnull`` attributes, allowing one to express (for example) a nullable pointer to an array of nonnull pointers. Nullability qualifiers are written to the right of the pointer to which they apply. For example:
1651
1652  .. code-block:: c
1653
1654    // No meaningful result when 'ptr' is null (here, it happens to be undefined behavior).
1655    int fetch(int * _Nonnull ptr) { return *ptr; }
1656
1657    // 'ptr' may be null.
1658    int fetch_or_zero(int * _Nullable ptr) {
1659      return ptr ? *ptr : 0;
1660    }
1661
1662    // A nullable pointer to non-null pointers to const characters.
1663    const char *join_strings(const char * _Nonnull * _Nullable strings, unsigned n);
1664
1665In Objective-C, there is an alternate spelling for the nullability qualifiers that can be used in Objective-C methods and properties using context-sensitive, non-underscored keywords. For example:
1666
1667  .. code-block:: objective-c
1668
1669    @interface NSView : NSResponder
1670      - (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView;
1671      @property (assign, nullable) NSView *superview;
1672      @property (readonly, nonnull) NSArray *subviews;
1673    @end
1674  }];
1675}
1676
1677def TypeNonNullDocs : Documentation {
1678  let Category = NullabilityDocs;
1679  let Content = [{
1680The ``_Nonnull`` nullability qualifier indicates that null is not a meaningful value for a value of the ``_Nonnull`` pointer type. For example, given a declaration such as:
1681
1682  .. code-block:: c
1683
1684    int fetch(int * _Nonnull ptr);
1685
1686a caller of ``fetch`` should not provide a null value, and the compiler will produce a warning if it sees a literal null value passed to ``fetch``. Note that, unlike the declaration attribute ``nonnull``, the presence of ``_Nonnull`` does not imply that passing null is undefined behavior: ``fetch`` is free to consider null undefined behavior or (perhaps for backward-compatibility reasons) defensively handle null.
1687  }];
1688}
1689
1690def TypeNullableDocs : Documentation {
1691  let Category = NullabilityDocs;
1692  let Content = [{
1693The ``_Nullable`` nullability qualifier indicates that a value of the ``_Nullable`` pointer type can be null. For example, given:
1694
1695  .. code-block:: c
1696
1697    int fetch_or_zero(int * _Nullable ptr);
1698
1699a caller of ``fetch_or_zero`` can provide null.
1700  }];
1701}
1702
1703def TypeNullUnspecifiedDocs : Documentation {
1704  let Category = NullabilityDocs;
1705  let Content = [{
1706The ``_Null_unspecified`` nullability qualifier indicates that neither the ``_Nonnull`` nor ``_Nullable`` qualifiers make sense for a particular pointer type. It is used primarily to indicate that the role of null with specific pointers in a nullability-annotated header is unclear, e.g., due to overly-complex implementations or historical factors with a long-lived API.
1707  }];
1708}
1709
1710def NonNullDocs : Documentation {
1711  let Category = NullabilityDocs;
1712  let Content = [{
1713The ``nonnull`` attribute indicates that some function parameters must not be null, and can be used in several different ways. It's original usage (`from GCC <https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes>`_) is as a function (or Objective-C method) attribute that specifies which parameters of the function are nonnull in a comma-separated list. For example:
1714
1715  .. code-block:: c
1716
1717    extern void * my_memcpy (void *dest, const void *src, size_t len)
1718                    __attribute__((nonnull (1, 2)));
1719
1720Here, the ``nonnull`` attribute indicates that parameters 1 and 2
1721cannot have a null value. Omitting the parenthesized list of parameter indices means that all parameters of pointer type cannot be null:
1722
1723  .. code-block:: c
1724
1725    extern void * my_memcpy (void *dest, const void *src, size_t len)
1726                    __attribute__((nonnull));
1727
1728Clang also allows the ``nonnull`` attribute to be placed directly on a function (or Objective-C method) parameter, eliminating the need to specify the parameter index ahead of type. For example:
1729
1730  .. code-block:: c
1731
1732    extern void * my_memcpy (void *dest __attribute__((nonnull)),
1733                             const void *src __attribute__((nonnull)), size_t len);
1734
1735Note that the ``nonnull`` attribute indicates that passing null to a non-null parameter is undefined behavior, which the optimizer may take advantage of to, e.g., remove null checks. The ``_Nonnull`` type qualifier indicates that a pointer cannot be null in a more general manner (because it is part of the type system) and does not imply undefined behavior, making it more widely applicable.
1736  }];
1737}
1738
1739def ReturnsNonNullDocs : Documentation {
1740  let Category = NullabilityDocs;
1741  let Content = [{
1742The ``returns_nonnull`` attribute indicates that a particular function (or Objective-C method) always returns a non-null pointer. For example, a particular system ``malloc`` might be defined to terminate a process when memory is not available rather than returning a null pointer:
1743
1744  .. code-block:: c
1745
1746    extern void * malloc (size_t size) __attribute__((returns_nonnull));
1747
1748The ``returns_nonnull`` attribute implies that returning a null pointer is undefined behavior, which the optimizer may take advantage of. The ``_Nonnull`` type qualifier indicates that a pointer cannot be null in a more general manner (because it is part of the type system) and does not imply undefined behavior, making it more widely applicable
1749}];
1750}
1751
1752def NoAliasDocs : Documentation {
1753  let Category = DocCatFunction;
1754  let Content = [{
1755The ``noalias`` attribute indicates that the only memory accesses inside
1756function are loads and stores from objects pointed to by its pointer-typed
1757arguments, with arbitrary offsets.
1758  }];
1759}
1760
1761def NotTailCalledDocs : Documentation {
1762  let Category = DocCatFunction;
1763  let Content = [{
1764The ``not_tail_called`` attribute prevents tail-call optimization on statically bound calls. It has no effect on indirect calls. Virtual functions, objective-c methods, and functions marked as ``always_inline`` cannot be marked as ``not_tail_called``.
1765
1766For example, it prevents tail-call optimization in the following case:
1767
1768  .. code-block: c
1769
1770    int __attribute__((not_tail_called)) foo1(int);
1771
1772    int foo2(int a) {
1773      return foo1(a); // No tail-call optimization on direct calls.
1774    }
1775
1776However, it doesn't prevent tail-call optimization in this case:
1777
1778  .. code-block: c
1779
1780    int __attribute__((not_tail_called)) foo1(int);
1781
1782    int foo2(int a) {
1783      int (*fn)(int) = &foo1;
1784
1785      // not_tail_called has no effect on an indirect call even if the call can be
1786      // resolved at compile time.
1787      return (*fn)(a);
1788    }
1789
1790Marking virtual functions as ``not_tail_called`` is an error:
1791
1792  .. code-block: c++
1793
1794    class Base {
1795    public:
1796      // not_tail_called on a virtual function is an error.
1797      [[clang::not_tail_called]] virtual int foo1();
1798
1799      virtual int foo2();
1800
1801      // Non-virtual functions can be marked ``not_tail_called``.
1802      [[clang::not_tail_called]] int foo3();
1803    };
1804
1805    class Derived1 : public Base {
1806    public:
1807      int foo1() override;
1808
1809      // not_tail_called on a virtual function is an error.
1810      [[clang::not_tail_called]] int foo2() override;
1811    };
1812  }];
1813}
1814
1815def InternalLinkageDocs : Documentation {
1816  let Category = DocCatFunction;
1817  let Content = [{
1818The ``internal_linkage`` attribute changes the linkage type of the declaration to internal.
1819This is similar to C-style ``static``, but can be used on classes and class methods. When applied to a class definition,
1820this attribute affects all methods and static data members of that class.
1821This can be used to contain the ABI of a C++ library by excluding unwanted class methods from the export tables.
1822  }];
1823}
1824
1825def DisableTailCallsDocs : Documentation {
1826  let Category = DocCatFunction;
1827  let Content = [{
1828The ``disable_tail_calls`` attribute instructs the backend to not perform tail call optimization inside the marked function.
1829
1830For example:
1831
1832  .. code-block:: c
1833
1834    int callee(int);
1835
1836    int foo(int a) __attribute__((disable_tail_calls)) {
1837      return callee(a); // This call is not tail-call optimized.
1838    }
1839
1840Marking virtual functions as ``disable_tail_calls`` is legal.
1841
1842  .. code-block: c++
1843
1844    int callee(int);
1845
1846    class Base {
1847    public:
1848      [[clang::disable_tail_calls]] virtual int foo1() {
1849        return callee(); // This call is not tail-call optimized.
1850      }
1851    };
1852
1853    class Derived1 : public Base {
1854    public:
1855      int foo1() override {
1856        return callee(); // This call is tail-call optimized.
1857      }
1858    };
1859
1860  }];
1861}
1862