1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/Statepoint.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/ValueMap.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetLowering.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/BuildLibCalls.h"
48 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
51 using namespace llvm;
52 using namespace llvm::PatternMatch;
53
54 #define DEBUG_TYPE "codegenprepare"
55
56 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
60 "sunken Cmps");
61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
62 "of sunken Casts");
63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
64 "computations were sunk");
65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
67 STATISTIC(NumAndsAdded,
68 "Number of and mask instructions added to form ext loads");
69 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
70 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
71 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
72 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
73 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
74 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
75
76 static cl::opt<bool> DisableBranchOpts(
77 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
78 cl::desc("Disable branch optimizations in CodeGenPrepare"));
79
80 static cl::opt<bool>
81 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
82 cl::desc("Disable GC optimizations in CodeGenPrepare"));
83
84 static cl::opt<bool> DisableSelectToBranch(
85 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
86 cl::desc("Disable select to branch conversion."));
87
88 static cl::opt<bool> AddrSinkUsingGEPs(
89 "addr-sink-using-gep", cl::Hidden, cl::init(false),
90 cl::desc("Address sinking in CGP using GEPs."));
91
92 static cl::opt<bool> EnableAndCmpSinking(
93 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
94 cl::desc("Enable sinkinig and/cmp into branches."));
95
96 static cl::opt<bool> DisableStoreExtract(
97 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
98 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
99
100 static cl::opt<bool> StressStoreExtract(
101 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
102 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
103
104 static cl::opt<bool> DisableExtLdPromotion(
105 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
106 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
107 "CodeGenPrepare"));
108
109 static cl::opt<bool> StressExtLdPromotion(
110 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
111 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
112 "optimization in CodeGenPrepare"));
113
114 namespace {
115 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
116 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
118 class TypePromotionTransaction;
119
120 class CodeGenPrepare : public FunctionPass {
121 const TargetMachine *TM;
122 const TargetLowering *TLI;
123 const TargetTransformInfo *TTI;
124 const TargetLibraryInfo *TLInfo;
125
126 /// As we scan instructions optimizing them, this is the next instruction
127 /// to optimize. Transforms that can invalidate this should update it.
128 BasicBlock::iterator CurInstIterator;
129
130 /// Keeps track of non-local addresses that have been sunk into a block.
131 /// This allows us to avoid inserting duplicate code for blocks with
132 /// multiple load/stores of the same address.
133 ValueMap<Value*, Value*> SunkAddrs;
134
135 /// Keeps track of all instructions inserted for the current function.
136 SetOfInstrs InsertedInsts;
137 /// Keeps track of the type of the related instruction before their
138 /// promotion for the current function.
139 InstrToOrigTy PromotedInsts;
140
141 /// True if CFG is modified in any way.
142 bool ModifiedDT;
143
144 /// True if optimizing for size.
145 bool OptSize;
146
147 /// DataLayout for the Function being processed.
148 const DataLayout *DL;
149
150 public:
151 static char ID; // Pass identification, replacement for typeid
CodeGenPrepare(const TargetMachine * TM=nullptr)152 explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
153 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
154 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
155 }
156 bool runOnFunction(Function &F) override;
157
getPassName() const158 const char *getPassName() const override { return "CodeGen Prepare"; }
159
getAnalysisUsage(AnalysisUsage & AU) const160 void getAnalysisUsage(AnalysisUsage &AU) const override {
161 AU.addPreserved<DominatorTreeWrapperPass>();
162 AU.addRequired<TargetLibraryInfoWrapperPass>();
163 AU.addRequired<TargetTransformInfoWrapperPass>();
164 }
165
166 private:
167 bool eliminateFallThrough(Function &F);
168 bool eliminateMostlyEmptyBlocks(Function &F);
169 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
170 void eliminateMostlyEmptyBlock(BasicBlock *BB);
171 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
172 bool optimizeInst(Instruction *I, bool& ModifiedDT);
173 bool optimizeMemoryInst(Instruction *I, Value *Addr,
174 Type *AccessTy, unsigned AS);
175 bool optimizeInlineAsmInst(CallInst *CS);
176 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
177 bool moveExtToFormExtLoad(Instruction *&I);
178 bool optimizeExtUses(Instruction *I);
179 bool optimizeLoadExt(LoadInst *I);
180 bool optimizeSelectInst(SelectInst *SI);
181 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
182 bool optimizeSwitchInst(SwitchInst *CI);
183 bool optimizeExtractElementInst(Instruction *Inst);
184 bool dupRetToEnableTailCallOpts(BasicBlock *BB);
185 bool placeDbgValues(Function &F);
186 bool sinkAndCmp(Function &F);
187 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
188 Instruction *&Inst,
189 const SmallVectorImpl<Instruction *> &Exts,
190 unsigned CreatedInstCost);
191 bool splitBranchCondition(Function &F);
192 bool simplifyOffsetableRelocate(Instruction &I);
193 void stripInvariantGroupMetadata(Instruction &I);
194 };
195 }
196
197 char CodeGenPrepare::ID = 0;
198 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
199 "Optimize for code generation", false, false)
200
createCodeGenPreparePass(const TargetMachine * TM)201 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
202 return new CodeGenPrepare(TM);
203 }
204
runOnFunction(Function & F)205 bool CodeGenPrepare::runOnFunction(Function &F) {
206 if (skipOptnoneFunction(F))
207 return false;
208
209 DL = &F.getParent()->getDataLayout();
210
211 bool EverMadeChange = false;
212 // Clear per function information.
213 InsertedInsts.clear();
214 PromotedInsts.clear();
215
216 ModifiedDT = false;
217 if (TM)
218 TLI = TM->getSubtargetImpl(F)->getTargetLowering();
219 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
220 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
221 OptSize = F.optForSize();
222
223 /// This optimization identifies DIV instructions that can be
224 /// profitably bypassed and carried out with a shorter, faster divide.
225 if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
226 const DenseMap<unsigned int, unsigned int> &BypassWidths =
227 TLI->getBypassSlowDivWidths();
228 for (Function::iterator I = F.begin(); I != F.end(); I++)
229 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
230 }
231
232 // Eliminate blocks that contain only PHI nodes and an
233 // unconditional branch.
234 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
235
236 // llvm.dbg.value is far away from the value then iSel may not be able
237 // handle it properly. iSel will drop llvm.dbg.value if it can not
238 // find a node corresponding to the value.
239 EverMadeChange |= placeDbgValues(F);
240
241 // If there is a mask, compare against zero, and branch that can be combined
242 // into a single target instruction, push the mask and compare into branch
243 // users. Do this before OptimizeBlock -> OptimizeInst ->
244 // OptimizeCmpExpression, which perturbs the pattern being searched for.
245 if (!DisableBranchOpts) {
246 EverMadeChange |= sinkAndCmp(F);
247 EverMadeChange |= splitBranchCondition(F);
248 }
249
250 bool MadeChange = true;
251 while (MadeChange) {
252 MadeChange = false;
253 for (Function::iterator I = F.begin(); I != F.end(); ) {
254 BasicBlock *BB = &*I++;
255 bool ModifiedDTOnIteration = false;
256 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
257
258 // Restart BB iteration if the dominator tree of the Function was changed
259 if (ModifiedDTOnIteration)
260 break;
261 }
262 EverMadeChange |= MadeChange;
263 }
264
265 SunkAddrs.clear();
266
267 if (!DisableBranchOpts) {
268 MadeChange = false;
269 SmallPtrSet<BasicBlock*, 8> WorkList;
270 for (BasicBlock &BB : F) {
271 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
272 MadeChange |= ConstantFoldTerminator(&BB, true);
273 if (!MadeChange) continue;
274
275 for (SmallVectorImpl<BasicBlock*>::iterator
276 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
277 if (pred_begin(*II) == pred_end(*II))
278 WorkList.insert(*II);
279 }
280
281 // Delete the dead blocks and any of their dead successors.
282 MadeChange |= !WorkList.empty();
283 while (!WorkList.empty()) {
284 BasicBlock *BB = *WorkList.begin();
285 WorkList.erase(BB);
286 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
287
288 DeleteDeadBlock(BB);
289
290 for (SmallVectorImpl<BasicBlock*>::iterator
291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
292 if (pred_begin(*II) == pred_end(*II))
293 WorkList.insert(*II);
294 }
295
296 // Merge pairs of basic blocks with unconditional branches, connected by
297 // a single edge.
298 if (EverMadeChange || MadeChange)
299 MadeChange |= eliminateFallThrough(F);
300
301 EverMadeChange |= MadeChange;
302 }
303
304 if (!DisableGCOpts) {
305 SmallVector<Instruction *, 2> Statepoints;
306 for (BasicBlock &BB : F)
307 for (Instruction &I : BB)
308 if (isStatepoint(I))
309 Statepoints.push_back(&I);
310 for (auto &I : Statepoints)
311 EverMadeChange |= simplifyOffsetableRelocate(*I);
312 }
313
314 return EverMadeChange;
315 }
316
317 /// Merge basic blocks which are connected by a single edge, where one of the
318 /// basic blocks has a single successor pointing to the other basic block,
319 /// which has a single predecessor.
eliminateFallThrough(Function & F)320 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
321 bool Changed = false;
322 // Scan all of the blocks in the function, except for the entry block.
323 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
324 BasicBlock *BB = &*I++;
325 // If the destination block has a single pred, then this is a trivial
326 // edge, just collapse it.
327 BasicBlock *SinglePred = BB->getSinglePredecessor();
328
329 // Don't merge if BB's address is taken.
330 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
331
332 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
333 if (Term && !Term->isConditional()) {
334 Changed = true;
335 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
336 // Remember if SinglePred was the entry block of the function.
337 // If so, we will need to move BB back to the entry position.
338 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
339 MergeBasicBlockIntoOnlyPred(BB, nullptr);
340
341 if (isEntry && BB != &BB->getParent()->getEntryBlock())
342 BB->moveBefore(&BB->getParent()->getEntryBlock());
343
344 // We have erased a block. Update the iterator.
345 I = BB->getIterator();
346 }
347 }
348 return Changed;
349 }
350
351 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
352 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
353 /// edges in ways that are non-optimal for isel. Start by eliminating these
354 /// blocks so we can split them the way we want them.
eliminateMostlyEmptyBlocks(Function & F)355 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
356 bool MadeChange = false;
357 // Note that this intentionally skips the entry block.
358 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
359 BasicBlock *BB = &*I++;
360
361 // If this block doesn't end with an uncond branch, ignore it.
362 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
363 if (!BI || !BI->isUnconditional())
364 continue;
365
366 // If the instruction before the branch (skipping debug info) isn't a phi
367 // node, then other stuff is happening here.
368 BasicBlock::iterator BBI = BI->getIterator();
369 if (BBI != BB->begin()) {
370 --BBI;
371 while (isa<DbgInfoIntrinsic>(BBI)) {
372 if (BBI == BB->begin())
373 break;
374 --BBI;
375 }
376 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
377 continue;
378 }
379
380 // Do not break infinite loops.
381 BasicBlock *DestBB = BI->getSuccessor(0);
382 if (DestBB == BB)
383 continue;
384
385 if (!canMergeBlocks(BB, DestBB))
386 continue;
387
388 eliminateMostlyEmptyBlock(BB);
389 MadeChange = true;
390 }
391 return MadeChange;
392 }
393
394 /// Return true if we can merge BB into DestBB if there is a single
395 /// unconditional branch between them, and BB contains no other non-phi
396 /// instructions.
canMergeBlocks(const BasicBlock * BB,const BasicBlock * DestBB) const397 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
398 const BasicBlock *DestBB) const {
399 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
400 // the successor. If there are more complex condition (e.g. preheaders),
401 // don't mess around with them.
402 BasicBlock::const_iterator BBI = BB->begin();
403 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
404 for (const User *U : PN->users()) {
405 const Instruction *UI = cast<Instruction>(U);
406 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
407 return false;
408 // If User is inside DestBB block and it is a PHINode then check
409 // incoming value. If incoming value is not from BB then this is
410 // a complex condition (e.g. preheaders) we want to avoid here.
411 if (UI->getParent() == DestBB) {
412 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
413 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
414 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
415 if (Insn && Insn->getParent() == BB &&
416 Insn->getParent() != UPN->getIncomingBlock(I))
417 return false;
418 }
419 }
420 }
421 }
422
423 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
424 // and DestBB may have conflicting incoming values for the block. If so, we
425 // can't merge the block.
426 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
427 if (!DestBBPN) return true; // no conflict.
428
429 // Collect the preds of BB.
430 SmallPtrSet<const BasicBlock*, 16> BBPreds;
431 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
432 // It is faster to get preds from a PHI than with pred_iterator.
433 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
434 BBPreds.insert(BBPN->getIncomingBlock(i));
435 } else {
436 BBPreds.insert(pred_begin(BB), pred_end(BB));
437 }
438
439 // Walk the preds of DestBB.
440 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
441 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
442 if (BBPreds.count(Pred)) { // Common predecessor?
443 BBI = DestBB->begin();
444 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
445 const Value *V1 = PN->getIncomingValueForBlock(Pred);
446 const Value *V2 = PN->getIncomingValueForBlock(BB);
447
448 // If V2 is a phi node in BB, look up what the mapped value will be.
449 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
450 if (V2PN->getParent() == BB)
451 V2 = V2PN->getIncomingValueForBlock(Pred);
452
453 // If there is a conflict, bail out.
454 if (V1 != V2) return false;
455 }
456 }
457 }
458
459 return true;
460 }
461
462
463 /// Eliminate a basic block that has only phi's and an unconditional branch in
464 /// it.
eliminateMostlyEmptyBlock(BasicBlock * BB)465 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
466 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
467 BasicBlock *DestBB = BI->getSuccessor(0);
468
469 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
470
471 // If the destination block has a single pred, then this is a trivial edge,
472 // just collapse it.
473 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
474 if (SinglePred != DestBB) {
475 // Remember if SinglePred was the entry block of the function. If so, we
476 // will need to move BB back to the entry position.
477 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
478 MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
479
480 if (isEntry && BB != &BB->getParent()->getEntryBlock())
481 BB->moveBefore(&BB->getParent()->getEntryBlock());
482
483 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
484 return;
485 }
486 }
487
488 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
489 // to handle the new incoming edges it is about to have.
490 PHINode *PN;
491 for (BasicBlock::iterator BBI = DestBB->begin();
492 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
493 // Remove the incoming value for BB, and remember it.
494 Value *InVal = PN->removeIncomingValue(BB, false);
495
496 // Two options: either the InVal is a phi node defined in BB or it is some
497 // value that dominates BB.
498 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
499 if (InValPhi && InValPhi->getParent() == BB) {
500 // Add all of the input values of the input PHI as inputs of this phi.
501 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
502 PN->addIncoming(InValPhi->getIncomingValue(i),
503 InValPhi->getIncomingBlock(i));
504 } else {
505 // Otherwise, add one instance of the dominating value for each edge that
506 // we will be adding.
507 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
508 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
509 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
510 } else {
511 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
512 PN->addIncoming(InVal, *PI);
513 }
514 }
515 }
516
517 // The PHIs are now updated, change everything that refers to BB to use
518 // DestBB and remove BB.
519 BB->replaceAllUsesWith(DestBB);
520 BB->eraseFromParent();
521 ++NumBlocksElim;
522
523 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
524 }
525
526 // Computes a map of base pointer relocation instructions to corresponding
527 // derived pointer relocation instructions given a vector of all relocate calls
computeBaseDerivedRelocateMap(const SmallVectorImpl<User * > & AllRelocateCalls,DenseMap<IntrinsicInst *,SmallVector<IntrinsicInst *,2>> & RelocateInstMap)528 static void computeBaseDerivedRelocateMap(
529 const SmallVectorImpl<User *> &AllRelocateCalls,
530 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> &
531 RelocateInstMap) {
532 // Collect information in two maps: one primarily for locating the base object
533 // while filling the second map; the second map is the final structure holding
534 // a mapping between Base and corresponding Derived relocate calls
535 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap;
536 for (auto &U : AllRelocateCalls) {
537 GCRelocateOperands ThisRelocate(U);
538 IntrinsicInst *I = cast<IntrinsicInst>(U);
539 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(),
540 ThisRelocate.getDerivedPtrIndex());
541 RelocateIdxMap.insert(std::make_pair(K, I));
542 }
543 for (auto &Item : RelocateIdxMap) {
544 std::pair<unsigned, unsigned> Key = Item.first;
545 if (Key.first == Key.second)
546 // Base relocation: nothing to insert
547 continue;
548
549 IntrinsicInst *I = Item.second;
550 auto BaseKey = std::make_pair(Key.first, Key.first);
551
552 // We're iterating over RelocateIdxMap so we cannot modify it.
553 auto MaybeBase = RelocateIdxMap.find(BaseKey);
554 if (MaybeBase == RelocateIdxMap.end())
555 // TODO: We might want to insert a new base object relocate and gep off
556 // that, if there are enough derived object relocates.
557 continue;
558
559 RelocateInstMap[MaybeBase->second].push_back(I);
560 }
561 }
562
563 // Accepts a GEP and extracts the operands into a vector provided they're all
564 // small integer constants
getGEPSmallConstantIntOffsetV(GetElementPtrInst * GEP,SmallVectorImpl<Value * > & OffsetV)565 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
566 SmallVectorImpl<Value *> &OffsetV) {
567 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
568 // Only accept small constant integer operands
569 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
570 if (!Op || Op->getZExtValue() > 20)
571 return false;
572 }
573
574 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
575 OffsetV.push_back(GEP->getOperand(i));
576 return true;
577 }
578
579 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
580 // replace, computes a replacement, and affects it.
581 static bool
simplifyRelocatesOffABase(IntrinsicInst * RelocatedBase,const SmallVectorImpl<IntrinsicInst * > & Targets)582 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase,
583 const SmallVectorImpl<IntrinsicInst *> &Targets) {
584 bool MadeChange = false;
585 for (auto &ToReplace : Targets) {
586 GCRelocateOperands MasterRelocate(RelocatedBase);
587 GCRelocateOperands ThisRelocate(ToReplace);
588
589 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() &&
590 "Not relocating a derived object of the original base object");
591 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) {
592 // A duplicate relocate call. TODO: coalesce duplicates.
593 continue;
594 }
595
596 if (RelocatedBase->getParent() != ToReplace->getParent()) {
597 // Base and derived relocates are in different basic blocks.
598 // In this case transform is only valid when base dominates derived
599 // relocate. However it would be too expensive to check dominance
600 // for each such relocate, so we skip the whole transformation.
601 continue;
602 }
603
604 Value *Base = ThisRelocate.getBasePtr();
605 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr());
606 if (!Derived || Derived->getPointerOperand() != Base)
607 continue;
608
609 SmallVector<Value *, 2> OffsetV;
610 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
611 continue;
612
613 // Create a Builder and replace the target callsite with a gep
614 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator");
615
616 // Insert after RelocatedBase
617 IRBuilder<> Builder(RelocatedBase->getNextNode());
618 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
619
620 // If gc_relocate does not match the actual type, cast it to the right type.
621 // In theory, there must be a bitcast after gc_relocate if the type does not
622 // match, and we should reuse it to get the derived pointer. But it could be
623 // cases like this:
624 // bb1:
625 // ...
626 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
627 // br label %merge
628 //
629 // bb2:
630 // ...
631 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
632 // br label %merge
633 //
634 // merge:
635 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
636 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
637 //
638 // In this case, we can not find the bitcast any more. So we insert a new bitcast
639 // no matter there is already one or not. In this way, we can handle all cases, and
640 // the extra bitcast should be optimized away in later passes.
641 Value *ActualRelocatedBase = RelocatedBase;
642 if (RelocatedBase->getType() != Base->getType()) {
643 ActualRelocatedBase =
644 Builder.CreateBitCast(RelocatedBase, Base->getType());
645 }
646 Value *Replacement = Builder.CreateGEP(
647 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
648 Replacement->takeName(ToReplace);
649 // If the newly generated derived pointer's type does not match the original derived
650 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
651 Value *ActualReplacement = Replacement;
652 if (Replacement->getType() != ToReplace->getType()) {
653 ActualReplacement =
654 Builder.CreateBitCast(Replacement, ToReplace->getType());
655 }
656 ToReplace->replaceAllUsesWith(ActualReplacement);
657 ToReplace->eraseFromParent();
658
659 MadeChange = true;
660 }
661 return MadeChange;
662 }
663
664 // Turns this:
665 //
666 // %base = ...
667 // %ptr = gep %base + 15
668 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
669 // %base' = relocate(%tok, i32 4, i32 4)
670 // %ptr' = relocate(%tok, i32 4, i32 5)
671 // %val = load %ptr'
672 //
673 // into this:
674 //
675 // %base = ...
676 // %ptr = gep %base + 15
677 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
678 // %base' = gc.relocate(%tok, i32 4, i32 4)
679 // %ptr' = gep %base' + 15
680 // %val = load %ptr'
simplifyOffsetableRelocate(Instruction & I)681 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
682 bool MadeChange = false;
683 SmallVector<User *, 2> AllRelocateCalls;
684
685 for (auto *U : I.users())
686 if (isGCRelocate(dyn_cast<Instruction>(U)))
687 // Collect all the relocate calls associated with a statepoint
688 AllRelocateCalls.push_back(U);
689
690 // We need atleast one base pointer relocation + one derived pointer
691 // relocation to mangle
692 if (AllRelocateCalls.size() < 2)
693 return false;
694
695 // RelocateInstMap is a mapping from the base relocate instruction to the
696 // corresponding derived relocate instructions
697 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap;
698 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
699 if (RelocateInstMap.empty())
700 return false;
701
702 for (auto &Item : RelocateInstMap)
703 // Item.first is the RelocatedBase to offset against
704 // Item.second is the vector of Targets to replace
705 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
706 return MadeChange;
707 }
708
709 /// SinkCast - Sink the specified cast instruction into its user blocks
SinkCast(CastInst * CI)710 static bool SinkCast(CastInst *CI) {
711 BasicBlock *DefBB = CI->getParent();
712
713 /// InsertedCasts - Only insert a cast in each block once.
714 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
715
716 bool MadeChange = false;
717 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
718 UI != E; ) {
719 Use &TheUse = UI.getUse();
720 Instruction *User = cast<Instruction>(*UI);
721
722 // Figure out which BB this cast is used in. For PHI's this is the
723 // appropriate predecessor block.
724 BasicBlock *UserBB = User->getParent();
725 if (PHINode *PN = dyn_cast<PHINode>(User)) {
726 UserBB = PN->getIncomingBlock(TheUse);
727 }
728
729 // Preincrement use iterator so we don't invalidate it.
730 ++UI;
731
732 // If the block selected to receive the cast is an EH pad that does not
733 // allow non-PHI instructions before the terminator, we can't sink the
734 // cast.
735 if (UserBB->getTerminator()->isEHPad())
736 continue;
737
738 // If this user is in the same block as the cast, don't change the cast.
739 if (UserBB == DefBB) continue;
740
741 // If we have already inserted a cast into this block, use it.
742 CastInst *&InsertedCast = InsertedCasts[UserBB];
743
744 if (!InsertedCast) {
745 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
746 assert(InsertPt != UserBB->end());
747 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
748 CI->getType(), "", &*InsertPt);
749 }
750
751 // Replace a use of the cast with a use of the new cast.
752 TheUse = InsertedCast;
753 MadeChange = true;
754 ++NumCastUses;
755 }
756
757 // If we removed all uses, nuke the cast.
758 if (CI->use_empty()) {
759 CI->eraseFromParent();
760 MadeChange = true;
761 }
762
763 return MadeChange;
764 }
765
766 /// If the specified cast instruction is a noop copy (e.g. it's casting from
767 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
768 /// reduce the number of virtual registers that must be created and coalesced.
769 ///
770 /// Return true if any changes are made.
771 ///
OptimizeNoopCopyExpression(CastInst * CI,const TargetLowering & TLI,const DataLayout & DL)772 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
773 const DataLayout &DL) {
774 // If this is a noop copy,
775 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
776 EVT DstVT = TLI.getValueType(DL, CI->getType());
777
778 // This is an fp<->int conversion?
779 if (SrcVT.isInteger() != DstVT.isInteger())
780 return false;
781
782 // If this is an extension, it will be a zero or sign extension, which
783 // isn't a noop.
784 if (SrcVT.bitsLT(DstVT)) return false;
785
786 // If these values will be promoted, find out what they will be promoted
787 // to. This helps us consider truncates on PPC as noop copies when they
788 // are.
789 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
790 TargetLowering::TypePromoteInteger)
791 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
792 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
793 TargetLowering::TypePromoteInteger)
794 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
795
796 // If, after promotion, these are the same types, this is a noop copy.
797 if (SrcVT != DstVT)
798 return false;
799
800 return SinkCast(CI);
801 }
802
803 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
804 /// possible.
805 ///
806 /// Return true if any changes were made.
CombineUAddWithOverflow(CmpInst * CI)807 static bool CombineUAddWithOverflow(CmpInst *CI) {
808 Value *A, *B;
809 Instruction *AddI;
810 if (!match(CI,
811 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
812 return false;
813
814 Type *Ty = AddI->getType();
815 if (!isa<IntegerType>(Ty))
816 return false;
817
818 // We don't want to move around uses of condition values this late, so we we
819 // check if it is legal to create the call to the intrinsic in the basic
820 // block containing the icmp:
821
822 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
823 return false;
824
825 #ifndef NDEBUG
826 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
827 // for now:
828 if (AddI->hasOneUse())
829 assert(*AddI->user_begin() == CI && "expected!");
830 #endif
831
832 Module *M = CI->getModule();
833 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
834
835 auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
836
837 auto *UAddWithOverflow =
838 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
839 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
840 auto *Overflow =
841 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
842
843 CI->replaceAllUsesWith(Overflow);
844 AddI->replaceAllUsesWith(UAdd);
845 CI->eraseFromParent();
846 AddI->eraseFromParent();
847 return true;
848 }
849
850 /// Sink the given CmpInst into user blocks to reduce the number of virtual
851 /// registers that must be created and coalesced. This is a clear win except on
852 /// targets with multiple condition code registers (PowerPC), where it might
853 /// lose; some adjustment may be wanted there.
854 ///
855 /// Return true if any changes are made.
SinkCmpExpression(CmpInst * CI)856 static bool SinkCmpExpression(CmpInst *CI) {
857 BasicBlock *DefBB = CI->getParent();
858
859 /// Only insert a cmp in each block once.
860 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
861
862 bool MadeChange = false;
863 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
864 UI != E; ) {
865 Use &TheUse = UI.getUse();
866 Instruction *User = cast<Instruction>(*UI);
867
868 // Preincrement use iterator so we don't invalidate it.
869 ++UI;
870
871 // Don't bother for PHI nodes.
872 if (isa<PHINode>(User))
873 continue;
874
875 // Figure out which BB this cmp is used in.
876 BasicBlock *UserBB = User->getParent();
877
878 // If this user is in the same block as the cmp, don't change the cmp.
879 if (UserBB == DefBB) continue;
880
881 // If we have already inserted a cmp into this block, use it.
882 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
883
884 if (!InsertedCmp) {
885 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
886 assert(InsertPt != UserBB->end());
887 InsertedCmp =
888 CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
889 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
890 }
891
892 // Replace a use of the cmp with a use of the new cmp.
893 TheUse = InsertedCmp;
894 MadeChange = true;
895 ++NumCmpUses;
896 }
897
898 // If we removed all uses, nuke the cmp.
899 if (CI->use_empty()) {
900 CI->eraseFromParent();
901 MadeChange = true;
902 }
903
904 return MadeChange;
905 }
906
OptimizeCmpExpression(CmpInst * CI)907 static bool OptimizeCmpExpression(CmpInst *CI) {
908 if (SinkCmpExpression(CI))
909 return true;
910
911 if (CombineUAddWithOverflow(CI))
912 return true;
913
914 return false;
915 }
916
917 /// Check if the candidates could be combined with a shift instruction, which
918 /// includes:
919 /// 1. Truncate instruction
920 /// 2. And instruction and the imm is a mask of the low bits:
921 /// imm & (imm+1) == 0
isExtractBitsCandidateUse(Instruction * User)922 static bool isExtractBitsCandidateUse(Instruction *User) {
923 if (!isa<TruncInst>(User)) {
924 if (User->getOpcode() != Instruction::And ||
925 !isa<ConstantInt>(User->getOperand(1)))
926 return false;
927
928 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
929
930 if ((Cimm & (Cimm + 1)).getBoolValue())
931 return false;
932 }
933 return true;
934 }
935
936 /// Sink both shift and truncate instruction to the use of truncate's BB.
937 static bool
SinkShiftAndTruncate(BinaryOperator * ShiftI,Instruction * User,ConstantInt * CI,DenseMap<BasicBlock *,BinaryOperator * > & InsertedShifts,const TargetLowering & TLI,const DataLayout & DL)938 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
939 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
940 const TargetLowering &TLI, const DataLayout &DL) {
941 BasicBlock *UserBB = User->getParent();
942 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
943 TruncInst *TruncI = dyn_cast<TruncInst>(User);
944 bool MadeChange = false;
945
946 for (Value::user_iterator TruncUI = TruncI->user_begin(),
947 TruncE = TruncI->user_end();
948 TruncUI != TruncE;) {
949
950 Use &TruncTheUse = TruncUI.getUse();
951 Instruction *TruncUser = cast<Instruction>(*TruncUI);
952 // Preincrement use iterator so we don't invalidate it.
953
954 ++TruncUI;
955
956 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
957 if (!ISDOpcode)
958 continue;
959
960 // If the use is actually a legal node, there will not be an
961 // implicit truncate.
962 // FIXME: always querying the result type is just an
963 // approximation; some nodes' legality is determined by the
964 // operand or other means. There's no good way to find out though.
965 if (TLI.isOperationLegalOrCustom(
966 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
967 continue;
968
969 // Don't bother for PHI nodes.
970 if (isa<PHINode>(TruncUser))
971 continue;
972
973 BasicBlock *TruncUserBB = TruncUser->getParent();
974
975 if (UserBB == TruncUserBB)
976 continue;
977
978 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
979 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
980
981 if (!InsertedShift && !InsertedTrunc) {
982 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
983 assert(InsertPt != TruncUserBB->end());
984 // Sink the shift
985 if (ShiftI->getOpcode() == Instruction::AShr)
986 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
987 "", &*InsertPt);
988 else
989 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
990 "", &*InsertPt);
991
992 // Sink the trunc
993 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
994 TruncInsertPt++;
995 assert(TruncInsertPt != TruncUserBB->end());
996
997 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
998 TruncI->getType(), "", &*TruncInsertPt);
999
1000 MadeChange = true;
1001
1002 TruncTheUse = InsertedTrunc;
1003 }
1004 }
1005 return MadeChange;
1006 }
1007
1008 /// Sink the shift *right* instruction into user blocks if the uses could
1009 /// potentially be combined with this shift instruction and generate BitExtract
1010 /// instruction. It will only be applied if the architecture supports BitExtract
1011 /// instruction. Here is an example:
1012 /// BB1:
1013 /// %x.extract.shift = lshr i64 %arg1, 32
1014 /// BB2:
1015 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1016 /// ==>
1017 ///
1018 /// BB2:
1019 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1020 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1021 ///
1022 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1023 /// instruction.
1024 /// Return true if any changes are made.
OptimizeExtractBits(BinaryOperator * ShiftI,ConstantInt * CI,const TargetLowering & TLI,const DataLayout & DL)1025 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1026 const TargetLowering &TLI,
1027 const DataLayout &DL) {
1028 BasicBlock *DefBB = ShiftI->getParent();
1029
1030 /// Only insert instructions in each block once.
1031 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1032
1033 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1034
1035 bool MadeChange = false;
1036 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1037 UI != E;) {
1038 Use &TheUse = UI.getUse();
1039 Instruction *User = cast<Instruction>(*UI);
1040 // Preincrement use iterator so we don't invalidate it.
1041 ++UI;
1042
1043 // Don't bother for PHI nodes.
1044 if (isa<PHINode>(User))
1045 continue;
1046
1047 if (!isExtractBitsCandidateUse(User))
1048 continue;
1049
1050 BasicBlock *UserBB = User->getParent();
1051
1052 if (UserBB == DefBB) {
1053 // If the shift and truncate instruction are in the same BB. The use of
1054 // the truncate(TruncUse) may still introduce another truncate if not
1055 // legal. In this case, we would like to sink both shift and truncate
1056 // instruction to the BB of TruncUse.
1057 // for example:
1058 // BB1:
1059 // i64 shift.result = lshr i64 opnd, imm
1060 // trunc.result = trunc shift.result to i16
1061 //
1062 // BB2:
1063 // ----> We will have an implicit truncate here if the architecture does
1064 // not have i16 compare.
1065 // cmp i16 trunc.result, opnd2
1066 //
1067 if (isa<TruncInst>(User) && shiftIsLegal
1068 // If the type of the truncate is legal, no trucate will be
1069 // introduced in other basic blocks.
1070 &&
1071 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1072 MadeChange =
1073 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1074
1075 continue;
1076 }
1077 // If we have already inserted a shift into this block, use it.
1078 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1079
1080 if (!InsertedShift) {
1081 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1082 assert(InsertPt != UserBB->end());
1083
1084 if (ShiftI->getOpcode() == Instruction::AShr)
1085 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1086 "", &*InsertPt);
1087 else
1088 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1089 "", &*InsertPt);
1090
1091 MadeChange = true;
1092 }
1093
1094 // Replace a use of the shift with a use of the new shift.
1095 TheUse = InsertedShift;
1096 }
1097
1098 // If we removed all uses, nuke the shift.
1099 if (ShiftI->use_empty())
1100 ShiftI->eraseFromParent();
1101
1102 return MadeChange;
1103 }
1104
1105 // Translate a masked load intrinsic like
1106 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1107 // <16 x i1> %mask, <16 x i32> %passthru)
1108 // to a chain of basic blocks, with loading element one-by-one if
1109 // the appropriate mask bit is set
1110 //
1111 // %1 = bitcast i8* %addr to i32*
1112 // %2 = extractelement <16 x i1> %mask, i32 0
1113 // %3 = icmp eq i1 %2, true
1114 // br i1 %3, label %cond.load, label %else
1115 //
1116 //cond.load: ; preds = %0
1117 // %4 = getelementptr i32* %1, i32 0
1118 // %5 = load i32* %4
1119 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1120 // br label %else
1121 //
1122 //else: ; preds = %0, %cond.load
1123 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1124 // %7 = extractelement <16 x i1> %mask, i32 1
1125 // %8 = icmp eq i1 %7, true
1126 // br i1 %8, label %cond.load1, label %else2
1127 //
1128 //cond.load1: ; preds = %else
1129 // %9 = getelementptr i32* %1, i32 1
1130 // %10 = load i32* %9
1131 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
1132 // br label %else2
1133 //
1134 //else2: ; preds = %else, %cond.load1
1135 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1136 // %12 = extractelement <16 x i1> %mask, i32 2
1137 // %13 = icmp eq i1 %12, true
1138 // br i1 %13, label %cond.load4, label %else5
1139 //
ScalarizeMaskedLoad(CallInst * CI)1140 static void ScalarizeMaskedLoad(CallInst *CI) {
1141 Value *Ptr = CI->getArgOperand(0);
1142 Value *Alignment = CI->getArgOperand(1);
1143 Value *Mask = CI->getArgOperand(2);
1144 Value *Src0 = CI->getArgOperand(3);
1145
1146 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1147 VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1148 assert(VecType && "Unexpected return type of masked load intrinsic");
1149
1150 Type *EltTy = CI->getType()->getVectorElementType();
1151
1152 IRBuilder<> Builder(CI->getContext());
1153 Instruction *InsertPt = CI;
1154 BasicBlock *IfBlock = CI->getParent();
1155 BasicBlock *CondBlock = nullptr;
1156 BasicBlock *PrevIfBlock = CI->getParent();
1157
1158 Builder.SetInsertPoint(InsertPt);
1159 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1160
1161 // Short-cut if the mask is all-true.
1162 bool IsAllOnesMask = isa<Constant>(Mask) &&
1163 cast<Constant>(Mask)->isAllOnesValue();
1164
1165 if (IsAllOnesMask) {
1166 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
1167 CI->replaceAllUsesWith(NewI);
1168 CI->eraseFromParent();
1169 return;
1170 }
1171
1172 // Adjust alignment for the scalar instruction.
1173 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
1174 // Bitcast %addr fron i8* to EltTy*
1175 Type *NewPtrType =
1176 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1177 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1178 unsigned VectorWidth = VecType->getNumElements();
1179
1180 Value *UndefVal = UndefValue::get(VecType);
1181
1182 // The result vector
1183 Value *VResult = UndefVal;
1184
1185 if (isa<ConstantVector>(Mask)) {
1186 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1187 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1188 continue;
1189 Value *Gep =
1190 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1191 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1192 VResult = Builder.CreateInsertElement(VResult, Load,
1193 Builder.getInt32(Idx));
1194 }
1195 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1196 CI->replaceAllUsesWith(NewI);
1197 CI->eraseFromParent();
1198 return;
1199 }
1200
1201 PHINode *Phi = nullptr;
1202 Value *PrevPhi = UndefVal;
1203
1204 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1205
1206 // Fill the "else" block, created in the previous iteration
1207 //
1208 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1209 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1210 // %to_load = icmp eq i1 %mask_1, true
1211 // br i1 %to_load, label %cond.load, label %else
1212 //
1213 if (Idx > 0) {
1214 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1215 Phi->addIncoming(VResult, CondBlock);
1216 Phi->addIncoming(PrevPhi, PrevIfBlock);
1217 PrevPhi = Phi;
1218 VResult = Phi;
1219 }
1220
1221 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1222 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1223 ConstantInt::get(Predicate->getType(), 1));
1224
1225 // Create "cond" block
1226 //
1227 // %EltAddr = getelementptr i32* %1, i32 0
1228 // %Elt = load i32* %EltAddr
1229 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1230 //
1231 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
1232 Builder.SetInsertPoint(InsertPt);
1233
1234 Value *Gep =
1235 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1236 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1237 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
1238
1239 // Create "else" block, fill it in the next iteration
1240 BasicBlock *NewIfBlock =
1241 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1242 Builder.SetInsertPoint(InsertPt);
1243 Instruction *OldBr = IfBlock->getTerminator();
1244 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1245 OldBr->eraseFromParent();
1246 PrevIfBlock = IfBlock;
1247 IfBlock = NewIfBlock;
1248 }
1249
1250 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1251 Phi->addIncoming(VResult, CondBlock);
1252 Phi->addIncoming(PrevPhi, PrevIfBlock);
1253 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1254 CI->replaceAllUsesWith(NewI);
1255 CI->eraseFromParent();
1256 }
1257
1258 // Translate a masked store intrinsic, like
1259 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
1260 // <16 x i1> %mask)
1261 // to a chain of basic blocks, that stores element one-by-one if
1262 // the appropriate mask bit is set
1263 //
1264 // %1 = bitcast i8* %addr to i32*
1265 // %2 = extractelement <16 x i1> %mask, i32 0
1266 // %3 = icmp eq i1 %2, true
1267 // br i1 %3, label %cond.store, label %else
1268 //
1269 // cond.store: ; preds = %0
1270 // %4 = extractelement <16 x i32> %val, i32 0
1271 // %5 = getelementptr i32* %1, i32 0
1272 // store i32 %4, i32* %5
1273 // br label %else
1274 //
1275 // else: ; preds = %0, %cond.store
1276 // %6 = extractelement <16 x i1> %mask, i32 1
1277 // %7 = icmp eq i1 %6, true
1278 // br i1 %7, label %cond.store1, label %else2
1279 //
1280 // cond.store1: ; preds = %else
1281 // %8 = extractelement <16 x i32> %val, i32 1
1282 // %9 = getelementptr i32* %1, i32 1
1283 // store i32 %8, i32* %9
1284 // br label %else2
1285 // . . .
ScalarizeMaskedStore(CallInst * CI)1286 static void ScalarizeMaskedStore(CallInst *CI) {
1287 Value *Src = CI->getArgOperand(0);
1288 Value *Ptr = CI->getArgOperand(1);
1289 Value *Alignment = CI->getArgOperand(2);
1290 Value *Mask = CI->getArgOperand(3);
1291
1292 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1293 VectorType *VecType = dyn_cast<VectorType>(Src->getType());
1294 assert(VecType && "Unexpected data type in masked store intrinsic");
1295
1296 Type *EltTy = VecType->getElementType();
1297
1298 IRBuilder<> Builder(CI->getContext());
1299 Instruction *InsertPt = CI;
1300 BasicBlock *IfBlock = CI->getParent();
1301 Builder.SetInsertPoint(InsertPt);
1302 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1303
1304 // Short-cut if the mask is all-true.
1305 bool IsAllOnesMask = isa<Constant>(Mask) &&
1306 cast<Constant>(Mask)->isAllOnesValue();
1307
1308 if (IsAllOnesMask) {
1309 Builder.CreateAlignedStore(Src, Ptr, AlignVal);
1310 CI->eraseFromParent();
1311 return;
1312 }
1313
1314 // Adjust alignment for the scalar instruction.
1315 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
1316 // Bitcast %addr fron i8* to EltTy*
1317 Type *NewPtrType =
1318 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1319 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1320 unsigned VectorWidth = VecType->getNumElements();
1321
1322 if (isa<ConstantVector>(Mask)) {
1323 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1324 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1325 continue;
1326 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1327 Value *Gep =
1328 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1329 Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1330 }
1331 CI->eraseFromParent();
1332 return;
1333 }
1334
1335 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1336
1337 // Fill the "else" block, created in the previous iteration
1338 //
1339 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1340 // %to_store = icmp eq i1 %mask_1, true
1341 // br i1 %to_store, label %cond.store, label %else
1342 //
1343 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1344 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1345 ConstantInt::get(Predicate->getType(), 1));
1346
1347 // Create "cond" block
1348 //
1349 // %OneElt = extractelement <16 x i32> %Src, i32 Idx
1350 // %EltAddr = getelementptr i32* %1, i32 0
1351 // %store i32 %OneElt, i32* %EltAddr
1352 //
1353 BasicBlock *CondBlock =
1354 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
1355 Builder.SetInsertPoint(InsertPt);
1356
1357 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1358 Value *Gep =
1359 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1360 Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1361
1362 // Create "else" block, fill it in the next iteration
1363 BasicBlock *NewIfBlock =
1364 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1365 Builder.SetInsertPoint(InsertPt);
1366 Instruction *OldBr = IfBlock->getTerminator();
1367 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1368 OldBr->eraseFromParent();
1369 IfBlock = NewIfBlock;
1370 }
1371 CI->eraseFromParent();
1372 }
1373
1374 // Translate a masked gather intrinsic like
1375 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
1376 // <16 x i1> %Mask, <16 x i32> %Src)
1377 // to a chain of basic blocks, with loading element one-by-one if
1378 // the appropriate mask bit is set
1379 //
1380 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
1381 // % Mask0 = extractelement <16 x i1> %Mask, i32 0
1382 // % ToLoad0 = icmp eq i1 % Mask0, true
1383 // br i1 % ToLoad0, label %cond.load, label %else
1384 //
1385 // cond.load:
1386 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1387 // % Load0 = load i32, i32* % Ptr0, align 4
1388 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
1389 // br label %else
1390 //
1391 // else:
1392 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
1393 // % Mask1 = extractelement <16 x i1> %Mask, i32 1
1394 // % ToLoad1 = icmp eq i1 % Mask1, true
1395 // br i1 % ToLoad1, label %cond.load1, label %else2
1396 //
1397 // cond.load1:
1398 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1399 // % Load1 = load i32, i32* % Ptr1, align 4
1400 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
1401 // br label %else2
1402 // . . .
1403 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
1404 // ret <16 x i32> %Result
ScalarizeMaskedGather(CallInst * CI)1405 static void ScalarizeMaskedGather(CallInst *CI) {
1406 Value *Ptrs = CI->getArgOperand(0);
1407 Value *Alignment = CI->getArgOperand(1);
1408 Value *Mask = CI->getArgOperand(2);
1409 Value *Src0 = CI->getArgOperand(3);
1410
1411 VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1412
1413 assert(VecType && "Unexpected return type of masked load intrinsic");
1414
1415 IRBuilder<> Builder(CI->getContext());
1416 Instruction *InsertPt = CI;
1417 BasicBlock *IfBlock = CI->getParent();
1418 BasicBlock *CondBlock = nullptr;
1419 BasicBlock *PrevIfBlock = CI->getParent();
1420 Builder.SetInsertPoint(InsertPt);
1421 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1422
1423 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1424
1425 Value *UndefVal = UndefValue::get(VecType);
1426
1427 // The result vector
1428 Value *VResult = UndefVal;
1429 unsigned VectorWidth = VecType->getNumElements();
1430
1431 // Shorten the way if the mask is a vector of constants.
1432 bool IsConstMask = isa<ConstantVector>(Mask);
1433
1434 if (IsConstMask) {
1435 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1436 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1437 continue;
1438 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1439 "Ptr" + Twine(Idx));
1440 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1441 "Load" + Twine(Idx));
1442 VResult = Builder.CreateInsertElement(VResult, Load,
1443 Builder.getInt32(Idx),
1444 "Res" + Twine(Idx));
1445 }
1446 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1447 CI->replaceAllUsesWith(NewI);
1448 CI->eraseFromParent();
1449 return;
1450 }
1451
1452 PHINode *Phi = nullptr;
1453 Value *PrevPhi = UndefVal;
1454
1455 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1456
1457 // Fill the "else" block, created in the previous iteration
1458 //
1459 // %Mask1 = extractelement <16 x i1> %Mask, i32 1
1460 // %ToLoad1 = icmp eq i1 %Mask1, true
1461 // br i1 %ToLoad1, label %cond.load, label %else
1462 //
1463 if (Idx > 0) {
1464 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1465 Phi->addIncoming(VResult, CondBlock);
1466 Phi->addIncoming(PrevPhi, PrevIfBlock);
1467 PrevPhi = Phi;
1468 VResult = Phi;
1469 }
1470
1471 Value *Predicate = Builder.CreateExtractElement(Mask,
1472 Builder.getInt32(Idx),
1473 "Mask" + Twine(Idx));
1474 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1475 ConstantInt::get(Predicate->getType(), 1),
1476 "ToLoad" + Twine(Idx));
1477
1478 // Create "cond" block
1479 //
1480 // %EltAddr = getelementptr i32* %1, i32 0
1481 // %Elt = load i32* %EltAddr
1482 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1483 //
1484 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
1485 Builder.SetInsertPoint(InsertPt);
1486
1487 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1488 "Ptr" + Twine(Idx));
1489 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1490 "Load" + Twine(Idx));
1491 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
1492 "Res" + Twine(Idx));
1493
1494 // Create "else" block, fill it in the next iteration
1495 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1496 Builder.SetInsertPoint(InsertPt);
1497 Instruction *OldBr = IfBlock->getTerminator();
1498 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1499 OldBr->eraseFromParent();
1500 PrevIfBlock = IfBlock;
1501 IfBlock = NewIfBlock;
1502 }
1503
1504 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1505 Phi->addIncoming(VResult, CondBlock);
1506 Phi->addIncoming(PrevPhi, PrevIfBlock);
1507 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1508 CI->replaceAllUsesWith(NewI);
1509 CI->eraseFromParent();
1510 }
1511
1512 // Translate a masked scatter intrinsic, like
1513 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
1514 // <16 x i1> %Mask)
1515 // to a chain of basic blocks, that stores element one-by-one if
1516 // the appropriate mask bit is set.
1517 //
1518 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
1519 // % Mask0 = extractelement <16 x i1> % Mask, i32 0
1520 // % ToStore0 = icmp eq i1 % Mask0, true
1521 // br i1 %ToStore0, label %cond.store, label %else
1522 //
1523 // cond.store:
1524 // % Elt0 = extractelement <16 x i32> %Src, i32 0
1525 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1526 // store i32 %Elt0, i32* % Ptr0, align 4
1527 // br label %else
1528 //
1529 // else:
1530 // % Mask1 = extractelement <16 x i1> % Mask, i32 1
1531 // % ToStore1 = icmp eq i1 % Mask1, true
1532 // br i1 % ToStore1, label %cond.store1, label %else2
1533 //
1534 // cond.store1:
1535 // % Elt1 = extractelement <16 x i32> %Src, i32 1
1536 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1537 // store i32 % Elt1, i32* % Ptr1, align 4
1538 // br label %else2
1539 // . . .
ScalarizeMaskedScatter(CallInst * CI)1540 static void ScalarizeMaskedScatter(CallInst *CI) {
1541 Value *Src = CI->getArgOperand(0);
1542 Value *Ptrs = CI->getArgOperand(1);
1543 Value *Alignment = CI->getArgOperand(2);
1544 Value *Mask = CI->getArgOperand(3);
1545
1546 assert(isa<VectorType>(Src->getType()) &&
1547 "Unexpected data type in masked scatter intrinsic");
1548 assert(isa<VectorType>(Ptrs->getType()) &&
1549 isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
1550 "Vector of pointers is expected in masked scatter intrinsic");
1551
1552 IRBuilder<> Builder(CI->getContext());
1553 Instruction *InsertPt = CI;
1554 BasicBlock *IfBlock = CI->getParent();
1555 Builder.SetInsertPoint(InsertPt);
1556 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1557
1558 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1559 unsigned VectorWidth = Src->getType()->getVectorNumElements();
1560
1561 // Shorten the way if the mask is a vector of constants.
1562 bool IsConstMask = isa<ConstantVector>(Mask);
1563
1564 if (IsConstMask) {
1565 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1566 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1567 continue;
1568 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1569 "Elt" + Twine(Idx));
1570 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1571 "Ptr" + Twine(Idx));
1572 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1573 }
1574 CI->eraseFromParent();
1575 return;
1576 }
1577 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1578 // Fill the "else" block, created in the previous iteration
1579 //
1580 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
1581 // % ToStore = icmp eq i1 % Mask1, true
1582 // br i1 % ToStore, label %cond.store, label %else
1583 //
1584 Value *Predicate = Builder.CreateExtractElement(Mask,
1585 Builder.getInt32(Idx),
1586 "Mask" + Twine(Idx));
1587 Value *Cmp =
1588 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1589 ConstantInt::get(Predicate->getType(), 1),
1590 "ToStore" + Twine(Idx));
1591
1592 // Create "cond" block
1593 //
1594 // % Elt1 = extractelement <16 x i32> %Src, i32 1
1595 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1596 // %store i32 % Elt1, i32* % Ptr1
1597 //
1598 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1599 Builder.SetInsertPoint(InsertPt);
1600
1601 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1602 "Elt" + Twine(Idx));
1603 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1604 "Ptr" + Twine(Idx));
1605 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1606
1607 // Create "else" block, fill it in the next iteration
1608 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1609 Builder.SetInsertPoint(InsertPt);
1610 Instruction *OldBr = IfBlock->getTerminator();
1611 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1612 OldBr->eraseFromParent();
1613 IfBlock = NewIfBlock;
1614 }
1615 CI->eraseFromParent();
1616 }
1617
1618 /// If counting leading or trailing zeros is an expensive operation and a zero
1619 /// input is defined, add a check for zero to avoid calling the intrinsic.
1620 ///
1621 /// We want to transform:
1622 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1623 ///
1624 /// into:
1625 /// entry:
1626 /// %cmpz = icmp eq i64 %A, 0
1627 /// br i1 %cmpz, label %cond.end, label %cond.false
1628 /// cond.false:
1629 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1630 /// br label %cond.end
1631 /// cond.end:
1632 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1633 ///
1634 /// If the transform is performed, return true and set ModifiedDT to true.
despeculateCountZeros(IntrinsicInst * CountZeros,const TargetLowering * TLI,const DataLayout * DL,bool & ModifiedDT)1635 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1636 const TargetLowering *TLI,
1637 const DataLayout *DL,
1638 bool &ModifiedDT) {
1639 if (!TLI || !DL)
1640 return false;
1641
1642 // If a zero input is undefined, it doesn't make sense to despeculate that.
1643 if (match(CountZeros->getOperand(1), m_One()))
1644 return false;
1645
1646 // If it's cheap to speculate, there's nothing to do.
1647 auto IntrinsicID = CountZeros->getIntrinsicID();
1648 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1649 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1650 return false;
1651
1652 // Only handle legal scalar cases. Anything else requires too much work.
1653 Type *Ty = CountZeros->getType();
1654 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1655 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize())
1656 return false;
1657
1658 // The intrinsic will be sunk behind a compare against zero and branch.
1659 BasicBlock *StartBlock = CountZeros->getParent();
1660 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1661
1662 // Create another block after the count zero intrinsic. A PHI will be added
1663 // in this block to select the result of the intrinsic or the bit-width
1664 // constant if the input to the intrinsic is zero.
1665 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1666 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1667
1668 // Set up a builder to create a compare, conditional branch, and PHI.
1669 IRBuilder<> Builder(CountZeros->getContext());
1670 Builder.SetInsertPoint(StartBlock->getTerminator());
1671 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1672
1673 // Replace the unconditional branch that was created by the first split with
1674 // a compare against zero and a conditional branch.
1675 Value *Zero = Constant::getNullValue(Ty);
1676 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1677 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1678 StartBlock->getTerminator()->eraseFromParent();
1679
1680 // Create a PHI in the end block to select either the output of the intrinsic
1681 // or the bit width of the operand.
1682 Builder.SetInsertPoint(&EndBlock->front());
1683 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1684 CountZeros->replaceAllUsesWith(PN);
1685 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1686 PN->addIncoming(BitWidth, StartBlock);
1687 PN->addIncoming(CountZeros, CallBlock);
1688
1689 // We are explicitly handling the zero case, so we can set the intrinsic's
1690 // undefined zero argument to 'true'. This will also prevent reprocessing the
1691 // intrinsic; we only despeculate when a zero input is defined.
1692 CountZeros->setArgOperand(1, Builder.getTrue());
1693 ModifiedDT = true;
1694 return true;
1695 }
1696
optimizeCallInst(CallInst * CI,bool & ModifiedDT)1697 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
1698 BasicBlock *BB = CI->getParent();
1699
1700 // Lower inline assembly if we can.
1701 // If we found an inline asm expession, and if the target knows how to
1702 // lower it to normal LLVM code, do so now.
1703 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1704 if (TLI->ExpandInlineAsm(CI)) {
1705 // Avoid invalidating the iterator.
1706 CurInstIterator = BB->begin();
1707 // Avoid processing instructions out of order, which could cause
1708 // reuse before a value is defined.
1709 SunkAddrs.clear();
1710 return true;
1711 }
1712 // Sink address computing for memory operands into the block.
1713 if (optimizeInlineAsmInst(CI))
1714 return true;
1715 }
1716
1717 // Align the pointer arguments to this call if the target thinks it's a good
1718 // idea
1719 unsigned MinSize, PrefAlign;
1720 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1721 for (auto &Arg : CI->arg_operands()) {
1722 // We want to align both objects whose address is used directly and
1723 // objects whose address is used in casts and GEPs, though it only makes
1724 // sense for GEPs if the offset is a multiple of the desired alignment and
1725 // if size - offset meets the size threshold.
1726 if (!Arg->getType()->isPointerTy())
1727 continue;
1728 APInt Offset(DL->getPointerSizeInBits(
1729 cast<PointerType>(Arg->getType())->getAddressSpace()),
1730 0);
1731 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1732 uint64_t Offset2 = Offset.getLimitedValue();
1733 if ((Offset2 & (PrefAlign-1)) != 0)
1734 continue;
1735 AllocaInst *AI;
1736 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1737 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1738 AI->setAlignment(PrefAlign);
1739 // Global variables can only be aligned if they are defined in this
1740 // object (i.e. they are uniquely initialized in this object), and
1741 // over-aligning global variables that have an explicit section is
1742 // forbidden.
1743 GlobalVariable *GV;
1744 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() &&
1745 !GV->hasSection() && GV->getAlignment() < PrefAlign &&
1746 DL->getTypeAllocSize(GV->getType()->getElementType()) >=
1747 MinSize + Offset2)
1748 GV->setAlignment(PrefAlign);
1749 }
1750 // If this is a memcpy (or similar) then we may be able to improve the
1751 // alignment
1752 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1753 unsigned Align = getKnownAlignment(MI->getDest(), *DL);
1754 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1755 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
1756 if (Align > MI->getAlignment())
1757 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
1758 }
1759 }
1760
1761 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1762 if (II) {
1763 switch (II->getIntrinsicID()) {
1764 default: break;
1765 case Intrinsic::objectsize: {
1766 // Lower all uses of llvm.objectsize.*
1767 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
1768 Type *ReturnTy = CI->getType();
1769 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
1770
1771 // Substituting this can cause recursive simplifications, which can
1772 // invalidate our iterator. Use a WeakVH to hold onto it in case this
1773 // happens.
1774 WeakVH IterHandle(&*CurInstIterator);
1775
1776 replaceAndRecursivelySimplify(CI, RetVal,
1777 TLInfo, nullptr);
1778
1779 // If the iterator instruction was recursively deleted, start over at the
1780 // start of the block.
1781 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
1782 CurInstIterator = BB->begin();
1783 SunkAddrs.clear();
1784 }
1785 return true;
1786 }
1787 case Intrinsic::masked_load: {
1788 // Scalarize unsupported vector masked load
1789 if (!TTI->isLegalMaskedLoad(CI->getType())) {
1790 ScalarizeMaskedLoad(CI);
1791 ModifiedDT = true;
1792 return true;
1793 }
1794 return false;
1795 }
1796 case Intrinsic::masked_store: {
1797 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
1798 ScalarizeMaskedStore(CI);
1799 ModifiedDT = true;
1800 return true;
1801 }
1802 return false;
1803 }
1804 case Intrinsic::masked_gather: {
1805 if (!TTI->isLegalMaskedGather(CI->getType())) {
1806 ScalarizeMaskedGather(CI);
1807 ModifiedDT = true;
1808 return true;
1809 }
1810 return false;
1811 }
1812 case Intrinsic::masked_scatter: {
1813 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
1814 ScalarizeMaskedScatter(CI);
1815 ModifiedDT = true;
1816 return true;
1817 }
1818 return false;
1819 }
1820 case Intrinsic::aarch64_stlxr:
1821 case Intrinsic::aarch64_stxr: {
1822 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1823 if (!ExtVal || !ExtVal->hasOneUse() ||
1824 ExtVal->getParent() == CI->getParent())
1825 return false;
1826 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1827 ExtVal->moveBefore(CI);
1828 // Mark this instruction as "inserted by CGP", so that other
1829 // optimizations don't touch it.
1830 InsertedInsts.insert(ExtVal);
1831 return true;
1832 }
1833 case Intrinsic::invariant_group_barrier:
1834 II->replaceAllUsesWith(II->getArgOperand(0));
1835 II->eraseFromParent();
1836 return true;
1837
1838 case Intrinsic::cttz:
1839 case Intrinsic::ctlz:
1840 // If counting zeros is expensive, try to avoid it.
1841 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1842 }
1843
1844 if (TLI) {
1845 // Unknown address space.
1846 // TODO: Target hook to pick which address space the intrinsic cares
1847 // about?
1848 unsigned AddrSpace = ~0u;
1849 SmallVector<Value*, 2> PtrOps;
1850 Type *AccessTy;
1851 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
1852 while (!PtrOps.empty())
1853 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
1854 return true;
1855 }
1856 }
1857
1858 // From here on out we're working with named functions.
1859 if (!CI->getCalledFunction()) return false;
1860
1861 // Lower all default uses of _chk calls. This is very similar
1862 // to what InstCombineCalls does, but here we are only lowering calls
1863 // to fortified library functions (e.g. __memcpy_chk) that have the default
1864 // "don't know" as the objectsize. Anything else should be left alone.
1865 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1866 if (Value *V = Simplifier.optimizeCall(CI)) {
1867 CI->replaceAllUsesWith(V);
1868 CI->eraseFromParent();
1869 return true;
1870 }
1871 return false;
1872 }
1873
1874 /// Look for opportunities to duplicate return instructions to the predecessor
1875 /// to enable tail call optimizations. The case it is currently looking for is:
1876 /// @code
1877 /// bb0:
1878 /// %tmp0 = tail call i32 @f0()
1879 /// br label %return
1880 /// bb1:
1881 /// %tmp1 = tail call i32 @f1()
1882 /// br label %return
1883 /// bb2:
1884 /// %tmp2 = tail call i32 @f2()
1885 /// br label %return
1886 /// return:
1887 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1888 /// ret i32 %retval
1889 /// @endcode
1890 ///
1891 /// =>
1892 ///
1893 /// @code
1894 /// bb0:
1895 /// %tmp0 = tail call i32 @f0()
1896 /// ret i32 %tmp0
1897 /// bb1:
1898 /// %tmp1 = tail call i32 @f1()
1899 /// ret i32 %tmp1
1900 /// bb2:
1901 /// %tmp2 = tail call i32 @f2()
1902 /// ret i32 %tmp2
1903 /// @endcode
dupRetToEnableTailCallOpts(BasicBlock * BB)1904 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1905 if (!TLI)
1906 return false;
1907
1908 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
1909 if (!RI)
1910 return false;
1911
1912 PHINode *PN = nullptr;
1913 BitCastInst *BCI = nullptr;
1914 Value *V = RI->getReturnValue();
1915 if (V) {
1916 BCI = dyn_cast<BitCastInst>(V);
1917 if (BCI)
1918 V = BCI->getOperand(0);
1919
1920 PN = dyn_cast<PHINode>(V);
1921 if (!PN)
1922 return false;
1923 }
1924
1925 if (PN && PN->getParent() != BB)
1926 return false;
1927
1928 // It's not safe to eliminate the sign / zero extension of the return value.
1929 // See llvm::isInTailCallPosition().
1930 const Function *F = BB->getParent();
1931 AttributeSet CallerAttrs = F->getAttributes();
1932 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
1933 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1934 return false;
1935
1936 // Make sure there are no instructions between the PHI and return, or that the
1937 // return is the first instruction in the block.
1938 if (PN) {
1939 BasicBlock::iterator BI = BB->begin();
1940 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1941 if (&*BI == BCI)
1942 // Also skip over the bitcast.
1943 ++BI;
1944 if (&*BI != RI)
1945 return false;
1946 } else {
1947 BasicBlock::iterator BI = BB->begin();
1948 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1949 if (&*BI != RI)
1950 return false;
1951 }
1952
1953 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1954 /// call.
1955 SmallVector<CallInst*, 4> TailCalls;
1956 if (PN) {
1957 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1958 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1959 // Make sure the phi value is indeed produced by the tail call.
1960 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1961 TLI->mayBeEmittedAsTailCall(CI))
1962 TailCalls.push_back(CI);
1963 }
1964 } else {
1965 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1966 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1967 if (!VisitedBBs.insert(*PI).second)
1968 continue;
1969
1970 BasicBlock::InstListType &InstList = (*PI)->getInstList();
1971 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1972 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1973 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1974 if (RI == RE)
1975 continue;
1976
1977 CallInst *CI = dyn_cast<CallInst>(&*RI);
1978 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
1979 TailCalls.push_back(CI);
1980 }
1981 }
1982
1983 bool Changed = false;
1984 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1985 CallInst *CI = TailCalls[i];
1986 CallSite CS(CI);
1987
1988 // Conservatively require the attributes of the call to match those of the
1989 // return. Ignore noalias because it doesn't affect the call sequence.
1990 AttributeSet CalleeAttrs = CS.getAttributes();
1991 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1992 removeAttribute(Attribute::NoAlias) !=
1993 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1994 removeAttribute(Attribute::NoAlias))
1995 continue;
1996
1997 // Make sure the call instruction is followed by an unconditional branch to
1998 // the return block.
1999 BasicBlock *CallBB = CI->getParent();
2000 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2001 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2002 continue;
2003
2004 // Duplicate the return into CallBB.
2005 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
2006 ModifiedDT = Changed = true;
2007 ++NumRetsDup;
2008 }
2009
2010 // If we eliminated all predecessors of the block, delete the block now.
2011 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2012 BB->eraseFromParent();
2013
2014 return Changed;
2015 }
2016
2017 //===----------------------------------------------------------------------===//
2018 // Memory Optimization
2019 //===----------------------------------------------------------------------===//
2020
2021 namespace {
2022
2023 /// This is an extended version of TargetLowering::AddrMode
2024 /// which holds actual Value*'s for register values.
2025 struct ExtAddrMode : public TargetLowering::AddrMode {
2026 Value *BaseReg;
2027 Value *ScaledReg;
ExtAddrMode__anonebd7bfba0211::ExtAddrMode2028 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2029 void print(raw_ostream &OS) const;
2030 void dump() const;
2031
operator ==__anonebd7bfba0211::ExtAddrMode2032 bool operator==(const ExtAddrMode& O) const {
2033 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2034 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2035 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2036 }
2037 };
2038
2039 #ifndef NDEBUG
operator <<(raw_ostream & OS,const ExtAddrMode & AM)2040 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2041 AM.print(OS);
2042 return OS;
2043 }
2044 #endif
2045
print(raw_ostream & OS) const2046 void ExtAddrMode::print(raw_ostream &OS) const {
2047 bool NeedPlus = false;
2048 OS << "[";
2049 if (BaseGV) {
2050 OS << (NeedPlus ? " + " : "")
2051 << "GV:";
2052 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2053 NeedPlus = true;
2054 }
2055
2056 if (BaseOffs) {
2057 OS << (NeedPlus ? " + " : "")
2058 << BaseOffs;
2059 NeedPlus = true;
2060 }
2061
2062 if (BaseReg) {
2063 OS << (NeedPlus ? " + " : "")
2064 << "Base:";
2065 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2066 NeedPlus = true;
2067 }
2068 if (Scale) {
2069 OS << (NeedPlus ? " + " : "")
2070 << Scale << "*";
2071 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2072 }
2073
2074 OS << ']';
2075 }
2076
2077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const2078 void ExtAddrMode::dump() const {
2079 print(dbgs());
2080 dbgs() << '\n';
2081 }
2082 #endif
2083
2084 /// \brief This class provides transaction based operation on the IR.
2085 /// Every change made through this class is recorded in the internal state and
2086 /// can be undone (rollback) until commit is called.
2087 class TypePromotionTransaction {
2088
2089 /// \brief This represents the common interface of the individual transaction.
2090 /// Each class implements the logic for doing one specific modification on
2091 /// the IR via the TypePromotionTransaction.
2092 class TypePromotionAction {
2093 protected:
2094 /// The Instruction modified.
2095 Instruction *Inst;
2096
2097 public:
2098 /// \brief Constructor of the action.
2099 /// The constructor performs the related action on the IR.
TypePromotionAction(Instruction * Inst)2100 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2101
~TypePromotionAction()2102 virtual ~TypePromotionAction() {}
2103
2104 /// \brief Undo the modification done by this action.
2105 /// When this method is called, the IR must be in the same state as it was
2106 /// before this action was applied.
2107 /// \pre Undoing the action works if and only if the IR is in the exact same
2108 /// state as it was directly after this action was applied.
2109 virtual void undo() = 0;
2110
2111 /// \brief Advocate every change made by this action.
2112 /// When the results on the IR of the action are to be kept, it is important
2113 /// to call this function, otherwise hidden information may be kept forever.
commit()2114 virtual void commit() {
2115 // Nothing to be done, this action is not doing anything.
2116 }
2117 };
2118
2119 /// \brief Utility to remember the position of an instruction.
2120 class InsertionHandler {
2121 /// Position of an instruction.
2122 /// Either an instruction:
2123 /// - Is the first in a basic block: BB is used.
2124 /// - Has a previous instructon: PrevInst is used.
2125 union {
2126 Instruction *PrevInst;
2127 BasicBlock *BB;
2128 } Point;
2129 /// Remember whether or not the instruction had a previous instruction.
2130 bool HasPrevInstruction;
2131
2132 public:
2133 /// \brief Record the position of \p Inst.
InsertionHandler(Instruction * Inst)2134 InsertionHandler(Instruction *Inst) {
2135 BasicBlock::iterator It = Inst->getIterator();
2136 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2137 if (HasPrevInstruction)
2138 Point.PrevInst = &*--It;
2139 else
2140 Point.BB = Inst->getParent();
2141 }
2142
2143 /// \brief Insert \p Inst at the recorded position.
insert(Instruction * Inst)2144 void insert(Instruction *Inst) {
2145 if (HasPrevInstruction) {
2146 if (Inst->getParent())
2147 Inst->removeFromParent();
2148 Inst->insertAfter(Point.PrevInst);
2149 } else {
2150 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2151 if (Inst->getParent())
2152 Inst->moveBefore(Position);
2153 else
2154 Inst->insertBefore(Position);
2155 }
2156 }
2157 };
2158
2159 /// \brief Move an instruction before another.
2160 class InstructionMoveBefore : public TypePromotionAction {
2161 /// Original position of the instruction.
2162 InsertionHandler Position;
2163
2164 public:
2165 /// \brief Move \p Inst before \p Before.
InstructionMoveBefore(Instruction * Inst,Instruction * Before)2166 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2167 : TypePromotionAction(Inst), Position(Inst) {
2168 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2169 Inst->moveBefore(Before);
2170 }
2171
2172 /// \brief Move the instruction back to its original position.
undo()2173 void undo() override {
2174 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2175 Position.insert(Inst);
2176 }
2177 };
2178
2179 /// \brief Set the operand of an instruction with a new value.
2180 class OperandSetter : public TypePromotionAction {
2181 /// Original operand of the instruction.
2182 Value *Origin;
2183 /// Index of the modified instruction.
2184 unsigned Idx;
2185
2186 public:
2187 /// \brief Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction * Inst,unsigned Idx,Value * NewVal)2188 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2189 : TypePromotionAction(Inst), Idx(Idx) {
2190 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2191 << "for:" << *Inst << "\n"
2192 << "with:" << *NewVal << "\n");
2193 Origin = Inst->getOperand(Idx);
2194 Inst->setOperand(Idx, NewVal);
2195 }
2196
2197 /// \brief Restore the original value of the instruction.
undo()2198 void undo() override {
2199 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2200 << "for: " << *Inst << "\n"
2201 << "with: " << *Origin << "\n");
2202 Inst->setOperand(Idx, Origin);
2203 }
2204 };
2205
2206 /// \brief Hide the operands of an instruction.
2207 /// Do as if this instruction was not using any of its operands.
2208 class OperandsHider : public TypePromotionAction {
2209 /// The list of original operands.
2210 SmallVector<Value *, 4> OriginalValues;
2211
2212 public:
2213 /// \brief Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction * Inst)2214 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2215 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2216 unsigned NumOpnds = Inst->getNumOperands();
2217 OriginalValues.reserve(NumOpnds);
2218 for (unsigned It = 0; It < NumOpnds; ++It) {
2219 // Save the current operand.
2220 Value *Val = Inst->getOperand(It);
2221 OriginalValues.push_back(Val);
2222 // Set a dummy one.
2223 // We could use OperandSetter here, but that would imply an overhead
2224 // that we are not willing to pay.
2225 Inst->setOperand(It, UndefValue::get(Val->getType()));
2226 }
2227 }
2228
2229 /// \brief Restore the original list of uses.
undo()2230 void undo() override {
2231 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2232 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2233 Inst->setOperand(It, OriginalValues[It]);
2234 }
2235 };
2236
2237 /// \brief Build a truncate instruction.
2238 class TruncBuilder : public TypePromotionAction {
2239 Value *Val;
2240 public:
2241 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2242 /// result.
2243 /// trunc Opnd to Ty.
TruncBuilder(Instruction * Opnd,Type * Ty)2244 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2245 IRBuilder<> Builder(Opnd);
2246 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2247 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2248 }
2249
2250 /// \brief Get the built value.
getBuiltValue()2251 Value *getBuiltValue() { return Val; }
2252
2253 /// \brief Remove the built instruction.
undo()2254 void undo() override {
2255 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2256 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2257 IVal->eraseFromParent();
2258 }
2259 };
2260
2261 /// \brief Build a sign extension instruction.
2262 class SExtBuilder : public TypePromotionAction {
2263 Value *Val;
2264 public:
2265 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2266 /// result.
2267 /// sext Opnd to Ty.
SExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2268 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2269 : TypePromotionAction(InsertPt) {
2270 IRBuilder<> Builder(InsertPt);
2271 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2272 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2273 }
2274
2275 /// \brief Get the built value.
getBuiltValue()2276 Value *getBuiltValue() { return Val; }
2277
2278 /// \brief Remove the built instruction.
undo()2279 void undo() override {
2280 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2281 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2282 IVal->eraseFromParent();
2283 }
2284 };
2285
2286 /// \brief Build a zero extension instruction.
2287 class ZExtBuilder : public TypePromotionAction {
2288 Value *Val;
2289 public:
2290 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2291 /// result.
2292 /// zext Opnd to Ty.
ZExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2293 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2294 : TypePromotionAction(InsertPt) {
2295 IRBuilder<> Builder(InsertPt);
2296 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2297 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2298 }
2299
2300 /// \brief Get the built value.
getBuiltValue()2301 Value *getBuiltValue() { return Val; }
2302
2303 /// \brief Remove the built instruction.
undo()2304 void undo() override {
2305 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2306 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2307 IVal->eraseFromParent();
2308 }
2309 };
2310
2311 /// \brief Mutate an instruction to another type.
2312 class TypeMutator : public TypePromotionAction {
2313 /// Record the original type.
2314 Type *OrigTy;
2315
2316 public:
2317 /// \brief Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction * Inst,Type * NewTy)2318 TypeMutator(Instruction *Inst, Type *NewTy)
2319 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2320 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2321 << "\n");
2322 Inst->mutateType(NewTy);
2323 }
2324
2325 /// \brief Mutate the instruction back to its original type.
undo()2326 void undo() override {
2327 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2328 << "\n");
2329 Inst->mutateType(OrigTy);
2330 }
2331 };
2332
2333 /// \brief Replace the uses of an instruction by another instruction.
2334 class UsesReplacer : public TypePromotionAction {
2335 /// Helper structure to keep track of the replaced uses.
2336 struct InstructionAndIdx {
2337 /// The instruction using the instruction.
2338 Instruction *Inst;
2339 /// The index where this instruction is used for Inst.
2340 unsigned Idx;
InstructionAndIdx__anonebd7bfba0211::TypePromotionTransaction::UsesReplacer::InstructionAndIdx2341 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2342 : Inst(Inst), Idx(Idx) {}
2343 };
2344
2345 /// Keep track of the original uses (pair Instruction, Index).
2346 SmallVector<InstructionAndIdx, 4> OriginalUses;
2347 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
2348
2349 public:
2350 /// \brief Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction * Inst,Value * New)2351 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2352 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2353 << "\n");
2354 // Record the original uses.
2355 for (Use &U : Inst->uses()) {
2356 Instruction *UserI = cast<Instruction>(U.getUser());
2357 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2358 }
2359 // Now, we can replace the uses.
2360 Inst->replaceAllUsesWith(New);
2361 }
2362
2363 /// \brief Reassign the original uses of Inst to Inst.
undo()2364 void undo() override {
2365 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2366 for (use_iterator UseIt = OriginalUses.begin(),
2367 EndIt = OriginalUses.end();
2368 UseIt != EndIt; ++UseIt) {
2369 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2370 }
2371 }
2372 };
2373
2374 /// \brief Remove an instruction from the IR.
2375 class InstructionRemover : public TypePromotionAction {
2376 /// Original position of the instruction.
2377 InsertionHandler Inserter;
2378 /// Helper structure to hide all the link to the instruction. In other
2379 /// words, this helps to do as if the instruction was removed.
2380 OperandsHider Hider;
2381 /// Keep track of the uses replaced, if any.
2382 UsesReplacer *Replacer;
2383
2384 public:
2385 /// \brief Remove all reference of \p Inst and optinally replace all its
2386 /// uses with New.
2387 /// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction * Inst,Value * New=nullptr)2388 InstructionRemover(Instruction *Inst, Value *New = nullptr)
2389 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2390 Replacer(nullptr) {
2391 if (New)
2392 Replacer = new UsesReplacer(Inst, New);
2393 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2394 Inst->removeFromParent();
2395 }
2396
~InstructionRemover()2397 ~InstructionRemover() override { delete Replacer; }
2398
2399 /// \brief Really remove the instruction.
commit()2400 void commit() override { delete Inst; }
2401
2402 /// \brief Resurrect the instruction and reassign it to the proper uses if
2403 /// new value was provided when build this action.
undo()2404 void undo() override {
2405 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2406 Inserter.insert(Inst);
2407 if (Replacer)
2408 Replacer->undo();
2409 Hider.undo();
2410 }
2411 };
2412
2413 public:
2414 /// Restoration point.
2415 /// The restoration point is a pointer to an action instead of an iterator
2416 /// because the iterator may be invalidated but not the pointer.
2417 typedef const TypePromotionAction *ConstRestorationPt;
2418 /// Advocate every changes made in that transaction.
2419 void commit();
2420 /// Undo all the changes made after the given point.
2421 void rollback(ConstRestorationPt Point);
2422 /// Get the current restoration point.
2423 ConstRestorationPt getRestorationPoint() const;
2424
2425 /// \name API for IR modification with state keeping to support rollback.
2426 /// @{
2427 /// Same as Instruction::setOperand.
2428 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2429 /// Same as Instruction::eraseFromParent.
2430 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2431 /// Same as Value::replaceAllUsesWith.
2432 void replaceAllUsesWith(Instruction *Inst, Value *New);
2433 /// Same as Value::mutateType.
2434 void mutateType(Instruction *Inst, Type *NewTy);
2435 /// Same as IRBuilder::createTrunc.
2436 Value *createTrunc(Instruction *Opnd, Type *Ty);
2437 /// Same as IRBuilder::createSExt.
2438 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2439 /// Same as IRBuilder::createZExt.
2440 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2441 /// Same as Instruction::moveBefore.
2442 void moveBefore(Instruction *Inst, Instruction *Before);
2443 /// @}
2444
2445 private:
2446 /// The ordered list of actions made so far.
2447 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2448 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
2449 };
2450
setOperand(Instruction * Inst,unsigned Idx,Value * NewVal)2451 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2452 Value *NewVal) {
2453 Actions.push_back(
2454 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
2455 }
2456
eraseInstruction(Instruction * Inst,Value * NewVal)2457 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2458 Value *NewVal) {
2459 Actions.push_back(
2460 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
2461 }
2462
replaceAllUsesWith(Instruction * Inst,Value * New)2463 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2464 Value *New) {
2465 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2466 }
2467
mutateType(Instruction * Inst,Type * NewTy)2468 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2469 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2470 }
2471
createTrunc(Instruction * Opnd,Type * Ty)2472 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2473 Type *Ty) {
2474 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2475 Value *Val = Ptr->getBuiltValue();
2476 Actions.push_back(std::move(Ptr));
2477 return Val;
2478 }
2479
createSExt(Instruction * Inst,Value * Opnd,Type * Ty)2480 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2481 Value *Opnd, Type *Ty) {
2482 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2483 Value *Val = Ptr->getBuiltValue();
2484 Actions.push_back(std::move(Ptr));
2485 return Val;
2486 }
2487
createZExt(Instruction * Inst,Value * Opnd,Type * Ty)2488 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2489 Value *Opnd, Type *Ty) {
2490 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2491 Value *Val = Ptr->getBuiltValue();
2492 Actions.push_back(std::move(Ptr));
2493 return Val;
2494 }
2495
moveBefore(Instruction * Inst,Instruction * Before)2496 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2497 Instruction *Before) {
2498 Actions.push_back(
2499 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
2500 }
2501
2502 TypePromotionTransaction::ConstRestorationPt
getRestorationPoint() const2503 TypePromotionTransaction::getRestorationPoint() const {
2504 return !Actions.empty() ? Actions.back().get() : nullptr;
2505 }
2506
commit()2507 void TypePromotionTransaction::commit() {
2508 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2509 ++It)
2510 (*It)->commit();
2511 Actions.clear();
2512 }
2513
rollback(TypePromotionTransaction::ConstRestorationPt Point)2514 void TypePromotionTransaction::rollback(
2515 TypePromotionTransaction::ConstRestorationPt Point) {
2516 while (!Actions.empty() && Point != Actions.back().get()) {
2517 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2518 Curr->undo();
2519 }
2520 }
2521
2522 /// \brief A helper class for matching addressing modes.
2523 ///
2524 /// This encapsulates the logic for matching the target-legal addressing modes.
2525 class AddressingModeMatcher {
2526 SmallVectorImpl<Instruction*> &AddrModeInsts;
2527 const TargetMachine &TM;
2528 const TargetLowering &TLI;
2529 const DataLayout &DL;
2530
2531 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2532 /// the memory instruction that we're computing this address for.
2533 Type *AccessTy;
2534 unsigned AddrSpace;
2535 Instruction *MemoryInst;
2536
2537 /// This is the addressing mode that we're building up. This is
2538 /// part of the return value of this addressing mode matching stuff.
2539 ExtAddrMode &AddrMode;
2540
2541 /// The instructions inserted by other CodeGenPrepare optimizations.
2542 const SetOfInstrs &InsertedInsts;
2543 /// A map from the instructions to their type before promotion.
2544 InstrToOrigTy &PromotedInsts;
2545 /// The ongoing transaction where every action should be registered.
2546 TypePromotionTransaction &TPT;
2547
2548 /// This is set to true when we should not do profitability checks.
2549 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2550 bool IgnoreProfitability;
2551
AddressingModeMatcher(SmallVectorImpl<Instruction * > & AMI,const TargetMachine & TM,Type * AT,unsigned AS,Instruction * MI,ExtAddrMode & AM,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT)2552 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2553 const TargetMachine &TM, Type *AT, unsigned AS,
2554 Instruction *MI, ExtAddrMode &AM,
2555 const SetOfInstrs &InsertedInsts,
2556 InstrToOrigTy &PromotedInsts,
2557 TypePromotionTransaction &TPT)
2558 : AddrModeInsts(AMI), TM(TM),
2559 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
2560 ->getTargetLowering()),
2561 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2562 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2563 PromotedInsts(PromotedInsts), TPT(TPT) {
2564 IgnoreProfitability = false;
2565 }
2566 public:
2567
2568 /// Find the maximal addressing mode that a load/store of V can fold,
2569 /// give an access type of AccessTy. This returns a list of involved
2570 /// instructions in AddrModeInsts.
2571 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2572 /// optimizations.
2573 /// \p PromotedInsts maps the instructions to their type before promotion.
2574 /// \p The ongoing transaction where every action should be registered.
Match(Value * V,Type * AccessTy,unsigned AS,Instruction * MemoryInst,SmallVectorImpl<Instruction * > & AddrModeInsts,const TargetMachine & TM,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT)2575 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
2576 Instruction *MemoryInst,
2577 SmallVectorImpl<Instruction*> &AddrModeInsts,
2578 const TargetMachine &TM,
2579 const SetOfInstrs &InsertedInsts,
2580 InstrToOrigTy &PromotedInsts,
2581 TypePromotionTransaction &TPT) {
2582 ExtAddrMode Result;
2583
2584 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
2585 MemoryInst, Result, InsertedInsts,
2586 PromotedInsts, TPT).matchAddr(V, 0);
2587 (void)Success; assert(Success && "Couldn't select *anything*?");
2588 return Result;
2589 }
2590 private:
2591 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2592 bool matchAddr(Value *V, unsigned Depth);
2593 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2594 bool *MovedAway = nullptr);
2595 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2596 ExtAddrMode &AMBefore,
2597 ExtAddrMode &AMAfter);
2598 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2599 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2600 Value *PromotedOperand) const;
2601 };
2602
2603 /// Try adding ScaleReg*Scale to the current addressing mode.
2604 /// Return true and update AddrMode if this addr mode is legal for the target,
2605 /// false if not.
matchScaledValue(Value * ScaleReg,int64_t Scale,unsigned Depth)2606 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
2607 unsigned Depth) {
2608 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
2609 // mode. Just process that directly.
2610 if (Scale == 1)
2611 return matchAddr(ScaleReg, Depth);
2612
2613 // If the scale is 0, it takes nothing to add this.
2614 if (Scale == 0)
2615 return true;
2616
2617 // If we already have a scale of this value, we can add to it, otherwise, we
2618 // need an available scale field.
2619 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
2620 return false;
2621
2622 ExtAddrMode TestAddrMode = AddrMode;
2623
2624 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
2625 // [A+B + A*7] -> [B+A*8].
2626 TestAddrMode.Scale += Scale;
2627 TestAddrMode.ScaledReg = ScaleReg;
2628
2629 // If the new address isn't legal, bail out.
2630 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
2631 return false;
2632
2633 // It was legal, so commit it.
2634 AddrMode = TestAddrMode;
2635
2636 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
2637 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
2638 // X*Scale + C*Scale to addr mode.
2639 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
2640 if (isa<Instruction>(ScaleReg) && // not a constant expr.
2641 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
2642 TestAddrMode.ScaledReg = AddLHS;
2643 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
2644
2645 // If this addressing mode is legal, commit it and remember that we folded
2646 // this instruction.
2647 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
2648 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
2649 AddrMode = TestAddrMode;
2650 return true;
2651 }
2652 }
2653
2654 // Otherwise, not (x+c)*scale, just return what we have.
2655 return true;
2656 }
2657
2658 /// This is a little filter, which returns true if an addressing computation
2659 /// involving I might be folded into a load/store accessing it.
2660 /// This doesn't need to be perfect, but needs to accept at least
2661 /// the set of instructions that MatchOperationAddr can.
MightBeFoldableInst(Instruction * I)2662 static bool MightBeFoldableInst(Instruction *I) {
2663 switch (I->getOpcode()) {
2664 case Instruction::BitCast:
2665 case Instruction::AddrSpaceCast:
2666 // Don't touch identity bitcasts.
2667 if (I->getType() == I->getOperand(0)->getType())
2668 return false;
2669 return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
2670 case Instruction::PtrToInt:
2671 // PtrToInt is always a noop, as we know that the int type is pointer sized.
2672 return true;
2673 case Instruction::IntToPtr:
2674 // We know the input is intptr_t, so this is foldable.
2675 return true;
2676 case Instruction::Add:
2677 return true;
2678 case Instruction::Mul:
2679 case Instruction::Shl:
2680 // Can only handle X*C and X << C.
2681 return isa<ConstantInt>(I->getOperand(1));
2682 case Instruction::GetElementPtr:
2683 return true;
2684 default:
2685 return false;
2686 }
2687 }
2688
2689 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
2690 /// \note \p Val is assumed to be the product of some type promotion.
2691 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
2692 /// to be legal, as the non-promoted value would have had the same state.
isPromotedInstructionLegal(const TargetLowering & TLI,const DataLayout & DL,Value * Val)2693 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
2694 const DataLayout &DL, Value *Val) {
2695 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
2696 if (!PromotedInst)
2697 return false;
2698 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
2699 // If the ISDOpcode is undefined, it was undefined before the promotion.
2700 if (!ISDOpcode)
2701 return true;
2702 // Otherwise, check if the promoted instruction is legal or not.
2703 return TLI.isOperationLegalOrCustom(
2704 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
2705 }
2706
2707 /// \brief Hepler class to perform type promotion.
2708 class TypePromotionHelper {
2709 /// \brief Utility function to check whether or not a sign or zero extension
2710 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
2711 /// either using the operands of \p Inst or promoting \p Inst.
2712 /// The type of the extension is defined by \p IsSExt.
2713 /// In other words, check if:
2714 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
2715 /// #1 Promotion applies:
2716 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
2717 /// #2 Operand reuses:
2718 /// ext opnd1 to ConsideredExtType.
2719 /// \p PromotedInsts maps the instructions to their type before promotion.
2720 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
2721 const InstrToOrigTy &PromotedInsts, bool IsSExt);
2722
2723 /// \brief Utility function to determine if \p OpIdx should be promoted when
2724 /// promoting \p Inst.
shouldExtOperand(const Instruction * Inst,int OpIdx)2725 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
2726 return !(isa<SelectInst>(Inst) && OpIdx == 0);
2727 }
2728
2729 /// \brief Utility function to promote the operand of \p Ext when this
2730 /// operand is a promotable trunc or sext or zext.
2731 /// \p PromotedInsts maps the instructions to their type before promotion.
2732 /// \p CreatedInstsCost[out] contains the cost of all instructions
2733 /// created to promote the operand of Ext.
2734 /// Newly added extensions are inserted in \p Exts.
2735 /// Newly added truncates are inserted in \p Truncs.
2736 /// Should never be called directly.
2737 /// \return The promoted value which is used instead of Ext.
2738 static Value *promoteOperandForTruncAndAnyExt(
2739 Instruction *Ext, TypePromotionTransaction &TPT,
2740 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2741 SmallVectorImpl<Instruction *> *Exts,
2742 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
2743
2744 /// \brief Utility function to promote the operand of \p Ext when this
2745 /// operand is promotable and is not a supported trunc or sext.
2746 /// \p PromotedInsts maps the instructions to their type before promotion.
2747 /// \p CreatedInstsCost[out] contains the cost of all the instructions
2748 /// created to promote the operand of Ext.
2749 /// Newly added extensions are inserted in \p Exts.
2750 /// Newly added truncates are inserted in \p Truncs.
2751 /// Should never be called directly.
2752 /// \return The promoted value which is used instead of Ext.
2753 static Value *promoteOperandForOther(Instruction *Ext,
2754 TypePromotionTransaction &TPT,
2755 InstrToOrigTy &PromotedInsts,
2756 unsigned &CreatedInstsCost,
2757 SmallVectorImpl<Instruction *> *Exts,
2758 SmallVectorImpl<Instruction *> *Truncs,
2759 const TargetLowering &TLI, bool IsSExt);
2760
2761 /// \see promoteOperandForOther.
signExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)2762 static Value *signExtendOperandForOther(
2763 Instruction *Ext, TypePromotionTransaction &TPT,
2764 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2765 SmallVectorImpl<Instruction *> *Exts,
2766 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2767 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2768 Exts, Truncs, TLI, true);
2769 }
2770
2771 /// \see promoteOperandForOther.
zeroExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)2772 static Value *zeroExtendOperandForOther(
2773 Instruction *Ext, TypePromotionTransaction &TPT,
2774 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2775 SmallVectorImpl<Instruction *> *Exts,
2776 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2777 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2778 Exts, Truncs, TLI, false);
2779 }
2780
2781 public:
2782 /// Type for the utility function that promotes the operand of Ext.
2783 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
2784 InstrToOrigTy &PromotedInsts,
2785 unsigned &CreatedInstsCost,
2786 SmallVectorImpl<Instruction *> *Exts,
2787 SmallVectorImpl<Instruction *> *Truncs,
2788 const TargetLowering &TLI);
2789 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
2790 /// action to promote the operand of \p Ext instead of using Ext.
2791 /// \return NULL if no promotable action is possible with the current
2792 /// sign extension.
2793 /// \p InsertedInsts keeps track of all the instructions inserted by the
2794 /// other CodeGenPrepare optimizations. This information is important
2795 /// because we do not want to promote these instructions as CodeGenPrepare
2796 /// will reinsert them later. Thus creating an infinite loop: create/remove.
2797 /// \p PromotedInsts maps the instructions to their type before promotion.
2798 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
2799 const TargetLowering &TLI,
2800 const InstrToOrigTy &PromotedInsts);
2801 };
2802
canGetThrough(const Instruction * Inst,Type * ConsideredExtType,const InstrToOrigTy & PromotedInsts,bool IsSExt)2803 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
2804 Type *ConsideredExtType,
2805 const InstrToOrigTy &PromotedInsts,
2806 bool IsSExt) {
2807 // The promotion helper does not know how to deal with vector types yet.
2808 // To be able to fix that, we would need to fix the places where we
2809 // statically extend, e.g., constants and such.
2810 if (Inst->getType()->isVectorTy())
2811 return false;
2812
2813 // We can always get through zext.
2814 if (isa<ZExtInst>(Inst))
2815 return true;
2816
2817 // sext(sext) is ok too.
2818 if (IsSExt && isa<SExtInst>(Inst))
2819 return true;
2820
2821 // We can get through binary operator, if it is legal. In other words, the
2822 // binary operator must have a nuw or nsw flag.
2823 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
2824 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
2825 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
2826 (IsSExt && BinOp->hasNoSignedWrap())))
2827 return true;
2828
2829 // Check if we can do the following simplification.
2830 // ext(trunc(opnd)) --> ext(opnd)
2831 if (!isa<TruncInst>(Inst))
2832 return false;
2833
2834 Value *OpndVal = Inst->getOperand(0);
2835 // Check if we can use this operand in the extension.
2836 // If the type is larger than the result type of the extension, we cannot.
2837 if (!OpndVal->getType()->isIntegerTy() ||
2838 OpndVal->getType()->getIntegerBitWidth() >
2839 ConsideredExtType->getIntegerBitWidth())
2840 return false;
2841
2842 // If the operand of the truncate is not an instruction, we will not have
2843 // any information on the dropped bits.
2844 // (Actually we could for constant but it is not worth the extra logic).
2845 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
2846 if (!Opnd)
2847 return false;
2848
2849 // Check if the source of the type is narrow enough.
2850 // I.e., check that trunc just drops extended bits of the same kind of
2851 // the extension.
2852 // #1 get the type of the operand and check the kind of the extended bits.
2853 const Type *OpndType;
2854 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
2855 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
2856 OpndType = It->second.getPointer();
2857 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
2858 OpndType = Opnd->getOperand(0)->getType();
2859 else
2860 return false;
2861
2862 // #2 check that the truncate just drops extended bits.
2863 return Inst->getType()->getIntegerBitWidth() >=
2864 OpndType->getIntegerBitWidth();
2865 }
2866
getAction(Instruction * Ext,const SetOfInstrs & InsertedInsts,const TargetLowering & TLI,const InstrToOrigTy & PromotedInsts)2867 TypePromotionHelper::Action TypePromotionHelper::getAction(
2868 Instruction *Ext, const SetOfInstrs &InsertedInsts,
2869 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
2870 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2871 "Unexpected instruction type");
2872 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
2873 Type *ExtTy = Ext->getType();
2874 bool IsSExt = isa<SExtInst>(Ext);
2875 // If the operand of the extension is not an instruction, we cannot
2876 // get through.
2877 // If it, check we can get through.
2878 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
2879 return nullptr;
2880
2881 // Do not promote if the operand has been added by codegenprepare.
2882 // Otherwise, it means we are undoing an optimization that is likely to be
2883 // redone, thus causing potential infinite loop.
2884 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
2885 return nullptr;
2886
2887 // SExt or Trunc instructions.
2888 // Return the related handler.
2889 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
2890 isa<ZExtInst>(ExtOpnd))
2891 return promoteOperandForTruncAndAnyExt;
2892
2893 // Regular instruction.
2894 // Abort early if we will have to insert non-free instructions.
2895 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
2896 return nullptr;
2897 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
2898 }
2899
promoteOperandForTruncAndAnyExt(llvm::Instruction * SExt,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)2900 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
2901 llvm::Instruction *SExt, TypePromotionTransaction &TPT,
2902 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2903 SmallVectorImpl<Instruction *> *Exts,
2904 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2905 // By construction, the operand of SExt is an instruction. Otherwise we cannot
2906 // get through it and this method should not be called.
2907 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
2908 Value *ExtVal = SExt;
2909 bool HasMergedNonFreeExt = false;
2910 if (isa<ZExtInst>(SExtOpnd)) {
2911 // Replace s|zext(zext(opnd))
2912 // => zext(opnd).
2913 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
2914 Value *ZExt =
2915 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
2916 TPT.replaceAllUsesWith(SExt, ZExt);
2917 TPT.eraseInstruction(SExt);
2918 ExtVal = ZExt;
2919 } else {
2920 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
2921 // => z|sext(opnd).
2922 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
2923 }
2924 CreatedInstsCost = 0;
2925
2926 // Remove dead code.
2927 if (SExtOpnd->use_empty())
2928 TPT.eraseInstruction(SExtOpnd);
2929
2930 // Check if the extension is still needed.
2931 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
2932 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
2933 if (ExtInst) {
2934 if (Exts)
2935 Exts->push_back(ExtInst);
2936 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
2937 }
2938 return ExtVal;
2939 }
2940
2941 // At this point we have: ext ty opnd to ty.
2942 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
2943 Value *NextVal = ExtInst->getOperand(0);
2944 TPT.eraseInstruction(ExtInst, NextVal);
2945 return NextVal;
2946 }
2947
promoteOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI,bool IsSExt)2948 Value *TypePromotionHelper::promoteOperandForOther(
2949 Instruction *Ext, TypePromotionTransaction &TPT,
2950 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2951 SmallVectorImpl<Instruction *> *Exts,
2952 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
2953 bool IsSExt) {
2954 // By construction, the operand of Ext is an instruction. Otherwise we cannot
2955 // get through it and this method should not be called.
2956 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
2957 CreatedInstsCost = 0;
2958 if (!ExtOpnd->hasOneUse()) {
2959 // ExtOpnd will be promoted.
2960 // All its uses, but Ext, will need to use a truncated value of the
2961 // promoted version.
2962 // Create the truncate now.
2963 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
2964 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
2965 ITrunc->removeFromParent();
2966 // Insert it just after the definition.
2967 ITrunc->insertAfter(ExtOpnd);
2968 if (Truncs)
2969 Truncs->push_back(ITrunc);
2970 }
2971
2972 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
2973 // Restore the operand of Ext (which has been replaced by the previous call
2974 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
2975 TPT.setOperand(Ext, 0, ExtOpnd);
2976 }
2977
2978 // Get through the Instruction:
2979 // 1. Update its type.
2980 // 2. Replace the uses of Ext by Inst.
2981 // 3. Extend each operand that needs to be extended.
2982
2983 // Remember the original type of the instruction before promotion.
2984 // This is useful to know that the high bits are sign extended bits.
2985 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
2986 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
2987 // Step #1.
2988 TPT.mutateType(ExtOpnd, Ext->getType());
2989 // Step #2.
2990 TPT.replaceAllUsesWith(Ext, ExtOpnd);
2991 // Step #3.
2992 Instruction *ExtForOpnd = Ext;
2993
2994 DEBUG(dbgs() << "Propagate Ext to operands\n");
2995 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
2996 ++OpIdx) {
2997 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
2998 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
2999 !shouldExtOperand(ExtOpnd, OpIdx)) {
3000 DEBUG(dbgs() << "No need to propagate\n");
3001 continue;
3002 }
3003 // Check if we can statically extend the operand.
3004 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3005 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3006 DEBUG(dbgs() << "Statically extend\n");
3007 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3008 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3009 : Cst->getValue().zext(BitWidth);
3010 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3011 continue;
3012 }
3013 // UndefValue are typed, so we have to statically sign extend them.
3014 if (isa<UndefValue>(Opnd)) {
3015 DEBUG(dbgs() << "Statically extend\n");
3016 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3017 continue;
3018 }
3019
3020 // Otherwise we have to explicity sign extend the operand.
3021 // Check if Ext was reused to extend an operand.
3022 if (!ExtForOpnd) {
3023 // If yes, create a new one.
3024 DEBUG(dbgs() << "More operands to ext\n");
3025 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3026 : TPT.createZExt(Ext, Opnd, Ext->getType());
3027 if (!isa<Instruction>(ValForExtOpnd)) {
3028 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3029 continue;
3030 }
3031 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3032 }
3033 if (Exts)
3034 Exts->push_back(ExtForOpnd);
3035 TPT.setOperand(ExtForOpnd, 0, Opnd);
3036
3037 // Move the sign extension before the insertion point.
3038 TPT.moveBefore(ExtForOpnd, ExtOpnd);
3039 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3040 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3041 // If more sext are required, new instructions will have to be created.
3042 ExtForOpnd = nullptr;
3043 }
3044 if (ExtForOpnd == Ext) {
3045 DEBUG(dbgs() << "Extension is useless now\n");
3046 TPT.eraseInstruction(Ext);
3047 }
3048 return ExtOpnd;
3049 }
3050
3051 /// Check whether or not promoting an instruction to a wider type is profitable.
3052 /// \p NewCost gives the cost of extension instructions created by the
3053 /// promotion.
3054 /// \p OldCost gives the cost of extension instructions before the promotion
3055 /// plus the number of instructions that have been
3056 /// matched in the addressing mode the promotion.
3057 /// \p PromotedOperand is the value that has been promoted.
3058 /// \return True if the promotion is profitable, false otherwise.
isPromotionProfitable(unsigned NewCost,unsigned OldCost,Value * PromotedOperand) const3059 bool AddressingModeMatcher::isPromotionProfitable(
3060 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3061 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3062 // The cost of the new extensions is greater than the cost of the
3063 // old extension plus what we folded.
3064 // This is not profitable.
3065 if (NewCost > OldCost)
3066 return false;
3067 if (NewCost < OldCost)
3068 return true;
3069 // The promotion is neutral but it may help folding the sign extension in
3070 // loads for instance.
3071 // Check that we did not create an illegal instruction.
3072 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3073 }
3074
3075 /// Given an instruction or constant expr, see if we can fold the operation
3076 /// into the addressing mode. If so, update the addressing mode and return
3077 /// true, otherwise return false without modifying AddrMode.
3078 /// If \p MovedAway is not NULL, it contains the information of whether or
3079 /// not AddrInst has to be folded into the addressing mode on success.
3080 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3081 /// because it has been moved away.
3082 /// Thus AddrInst must not be added in the matched instructions.
3083 /// This state can happen when AddrInst is a sext, since it may be moved away.
3084 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3085 /// not be referenced anymore.
matchOperationAddr(User * AddrInst,unsigned Opcode,unsigned Depth,bool * MovedAway)3086 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3087 unsigned Depth,
3088 bool *MovedAway) {
3089 // Avoid exponential behavior on extremely deep expression trees.
3090 if (Depth >= 5) return false;
3091
3092 // By default, all matched instructions stay in place.
3093 if (MovedAway)
3094 *MovedAway = false;
3095
3096 switch (Opcode) {
3097 case Instruction::PtrToInt:
3098 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3099 return matchAddr(AddrInst->getOperand(0), Depth);
3100 case Instruction::IntToPtr: {
3101 auto AS = AddrInst->getType()->getPointerAddressSpace();
3102 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3103 // This inttoptr is a no-op if the integer type is pointer sized.
3104 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3105 return matchAddr(AddrInst->getOperand(0), Depth);
3106 return false;
3107 }
3108 case Instruction::BitCast:
3109 // BitCast is always a noop, and we can handle it as long as it is
3110 // int->int or pointer->pointer (we don't want int<->fp or something).
3111 if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3112 AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3113 // Don't touch identity bitcasts. These were probably put here by LSR,
3114 // and we don't want to mess around with them. Assume it knows what it
3115 // is doing.
3116 AddrInst->getOperand(0)->getType() != AddrInst->getType())
3117 return matchAddr(AddrInst->getOperand(0), Depth);
3118 return false;
3119 case Instruction::AddrSpaceCast: {
3120 unsigned SrcAS
3121 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3122 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3123 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3124 return matchAddr(AddrInst->getOperand(0), Depth);
3125 return false;
3126 }
3127 case Instruction::Add: {
3128 // Check to see if we can merge in the RHS then the LHS. If so, we win.
3129 ExtAddrMode BackupAddrMode = AddrMode;
3130 unsigned OldSize = AddrModeInsts.size();
3131 // Start a transaction at this point.
3132 // The LHS may match but not the RHS.
3133 // Therefore, we need a higher level restoration point to undo partially
3134 // matched operation.
3135 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3136 TPT.getRestorationPoint();
3137
3138 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3139 matchAddr(AddrInst->getOperand(0), Depth+1))
3140 return true;
3141
3142 // Restore the old addr mode info.
3143 AddrMode = BackupAddrMode;
3144 AddrModeInsts.resize(OldSize);
3145 TPT.rollback(LastKnownGood);
3146
3147 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
3148 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3149 matchAddr(AddrInst->getOperand(1), Depth+1))
3150 return true;
3151
3152 // Otherwise we definitely can't merge the ADD in.
3153 AddrMode = BackupAddrMode;
3154 AddrModeInsts.resize(OldSize);
3155 TPT.rollback(LastKnownGood);
3156 break;
3157 }
3158 //case Instruction::Or:
3159 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3160 //break;
3161 case Instruction::Mul:
3162 case Instruction::Shl: {
3163 // Can only handle X*C and X << C.
3164 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3165 if (!RHS)
3166 return false;
3167 int64_t Scale = RHS->getSExtValue();
3168 if (Opcode == Instruction::Shl)
3169 Scale = 1LL << Scale;
3170
3171 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3172 }
3173 case Instruction::GetElementPtr: {
3174 // Scan the GEP. We check it if it contains constant offsets and at most
3175 // one variable offset.
3176 int VariableOperand = -1;
3177 unsigned VariableScale = 0;
3178
3179 int64_t ConstantOffset = 0;
3180 gep_type_iterator GTI = gep_type_begin(AddrInst);
3181 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3182 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
3183 const StructLayout *SL = DL.getStructLayout(STy);
3184 unsigned Idx =
3185 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3186 ConstantOffset += SL->getElementOffset(Idx);
3187 } else {
3188 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3189 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3190 ConstantOffset += CI->getSExtValue()*TypeSize;
3191 } else if (TypeSize) { // Scales of zero don't do anything.
3192 // We only allow one variable index at the moment.
3193 if (VariableOperand != -1)
3194 return false;
3195
3196 // Remember the variable index.
3197 VariableOperand = i;
3198 VariableScale = TypeSize;
3199 }
3200 }
3201 }
3202
3203 // A common case is for the GEP to only do a constant offset. In this case,
3204 // just add it to the disp field and check validity.
3205 if (VariableOperand == -1) {
3206 AddrMode.BaseOffs += ConstantOffset;
3207 if (ConstantOffset == 0 ||
3208 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3209 // Check to see if we can fold the base pointer in too.
3210 if (matchAddr(AddrInst->getOperand(0), Depth+1))
3211 return true;
3212 }
3213 AddrMode.BaseOffs -= ConstantOffset;
3214 return false;
3215 }
3216
3217 // Save the valid addressing mode in case we can't match.
3218 ExtAddrMode BackupAddrMode = AddrMode;
3219 unsigned OldSize = AddrModeInsts.size();
3220
3221 // See if the scale and offset amount is valid for this target.
3222 AddrMode.BaseOffs += ConstantOffset;
3223
3224 // Match the base operand of the GEP.
3225 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3226 // If it couldn't be matched, just stuff the value in a register.
3227 if (AddrMode.HasBaseReg) {
3228 AddrMode = BackupAddrMode;
3229 AddrModeInsts.resize(OldSize);
3230 return false;
3231 }
3232 AddrMode.HasBaseReg = true;
3233 AddrMode.BaseReg = AddrInst->getOperand(0);
3234 }
3235
3236 // Match the remaining variable portion of the GEP.
3237 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3238 Depth)) {
3239 // If it couldn't be matched, try stuffing the base into a register
3240 // instead of matching it, and retrying the match of the scale.
3241 AddrMode = BackupAddrMode;
3242 AddrModeInsts.resize(OldSize);
3243 if (AddrMode.HasBaseReg)
3244 return false;
3245 AddrMode.HasBaseReg = true;
3246 AddrMode.BaseReg = AddrInst->getOperand(0);
3247 AddrMode.BaseOffs += ConstantOffset;
3248 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3249 VariableScale, Depth)) {
3250 // If even that didn't work, bail.
3251 AddrMode = BackupAddrMode;
3252 AddrModeInsts.resize(OldSize);
3253 return false;
3254 }
3255 }
3256
3257 return true;
3258 }
3259 case Instruction::SExt:
3260 case Instruction::ZExt: {
3261 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3262 if (!Ext)
3263 return false;
3264
3265 // Try to move this ext out of the way of the addressing mode.
3266 // Ask for a method for doing so.
3267 TypePromotionHelper::Action TPH =
3268 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3269 if (!TPH)
3270 return false;
3271
3272 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3273 TPT.getRestorationPoint();
3274 unsigned CreatedInstsCost = 0;
3275 unsigned ExtCost = !TLI.isExtFree(Ext);
3276 Value *PromotedOperand =
3277 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3278 // SExt has been moved away.
3279 // Thus either it will be rematched later in the recursive calls or it is
3280 // gone. Anyway, we must not fold it into the addressing mode at this point.
3281 // E.g.,
3282 // op = add opnd, 1
3283 // idx = ext op
3284 // addr = gep base, idx
3285 // is now:
3286 // promotedOpnd = ext opnd <- no match here
3287 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
3288 // addr = gep base, op <- match
3289 if (MovedAway)
3290 *MovedAway = true;
3291
3292 assert(PromotedOperand &&
3293 "TypePromotionHelper should have filtered out those cases");
3294
3295 ExtAddrMode BackupAddrMode = AddrMode;
3296 unsigned OldSize = AddrModeInsts.size();
3297
3298 if (!matchAddr(PromotedOperand, Depth) ||
3299 // The total of the new cost is equal to the cost of the created
3300 // instructions.
3301 // The total of the old cost is equal to the cost of the extension plus
3302 // what we have saved in the addressing mode.
3303 !isPromotionProfitable(CreatedInstsCost,
3304 ExtCost + (AddrModeInsts.size() - OldSize),
3305 PromotedOperand)) {
3306 AddrMode = BackupAddrMode;
3307 AddrModeInsts.resize(OldSize);
3308 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3309 TPT.rollback(LastKnownGood);
3310 return false;
3311 }
3312 return true;
3313 }
3314 }
3315 return false;
3316 }
3317
3318 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3319 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3320 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3321 /// for the target.
3322 ///
matchAddr(Value * Addr,unsigned Depth)3323 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3324 // Start a transaction at this point that we will rollback if the matching
3325 // fails.
3326 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3327 TPT.getRestorationPoint();
3328 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3329 // Fold in immediates if legal for the target.
3330 AddrMode.BaseOffs += CI->getSExtValue();
3331 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3332 return true;
3333 AddrMode.BaseOffs -= CI->getSExtValue();
3334 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3335 // If this is a global variable, try to fold it into the addressing mode.
3336 if (!AddrMode.BaseGV) {
3337 AddrMode.BaseGV = GV;
3338 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3339 return true;
3340 AddrMode.BaseGV = nullptr;
3341 }
3342 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3343 ExtAddrMode BackupAddrMode = AddrMode;
3344 unsigned OldSize = AddrModeInsts.size();
3345
3346 // Check to see if it is possible to fold this operation.
3347 bool MovedAway = false;
3348 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3349 // This instruction may have been moved away. If so, there is nothing
3350 // to check here.
3351 if (MovedAway)
3352 return true;
3353 // Okay, it's possible to fold this. Check to see if it is actually
3354 // *profitable* to do so. We use a simple cost model to avoid increasing
3355 // register pressure too much.
3356 if (I->hasOneUse() ||
3357 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3358 AddrModeInsts.push_back(I);
3359 return true;
3360 }
3361
3362 // It isn't profitable to do this, roll back.
3363 //cerr << "NOT FOLDING: " << *I;
3364 AddrMode = BackupAddrMode;
3365 AddrModeInsts.resize(OldSize);
3366 TPT.rollback(LastKnownGood);
3367 }
3368 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3369 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3370 return true;
3371 TPT.rollback(LastKnownGood);
3372 } else if (isa<ConstantPointerNull>(Addr)) {
3373 // Null pointer gets folded without affecting the addressing mode.
3374 return true;
3375 }
3376
3377 // Worse case, the target should support [reg] addressing modes. :)
3378 if (!AddrMode.HasBaseReg) {
3379 AddrMode.HasBaseReg = true;
3380 AddrMode.BaseReg = Addr;
3381 // Still check for legality in case the target supports [imm] but not [i+r].
3382 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3383 return true;
3384 AddrMode.HasBaseReg = false;
3385 AddrMode.BaseReg = nullptr;
3386 }
3387
3388 // If the base register is already taken, see if we can do [r+r].
3389 if (AddrMode.Scale == 0) {
3390 AddrMode.Scale = 1;
3391 AddrMode.ScaledReg = Addr;
3392 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3393 return true;
3394 AddrMode.Scale = 0;
3395 AddrMode.ScaledReg = nullptr;
3396 }
3397 // Couldn't match.
3398 TPT.rollback(LastKnownGood);
3399 return false;
3400 }
3401
3402 /// Check to see if all uses of OpVal by the specified inline asm call are due
3403 /// to memory operands. If so, return true, otherwise return false.
IsOperandAMemoryOperand(CallInst * CI,InlineAsm * IA,Value * OpVal,const TargetMachine & TM)3404 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
3405 const TargetMachine &TM) {
3406 const Function *F = CI->getParent()->getParent();
3407 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
3408 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
3409 TargetLowering::AsmOperandInfoVector TargetConstraints =
3410 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
3411 ImmutableCallSite(CI));
3412 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3413 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3414
3415 // Compute the constraint code and ConstraintType to use.
3416 TLI->ComputeConstraintToUse(OpInfo, SDValue());
3417
3418 // If this asm operand is our Value*, and if it isn't an indirect memory
3419 // operand, we can't fold it!
3420 if (OpInfo.CallOperandVal == OpVal &&
3421 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
3422 !OpInfo.isIndirect))
3423 return false;
3424 }
3425
3426 return true;
3427 }
3428
3429 /// Recursively walk all the uses of I until we find a memory use.
3430 /// If we find an obviously non-foldable instruction, return true.
3431 /// Add the ultimately found memory instructions to MemoryUses.
FindAllMemoryUses(Instruction * I,SmallVectorImpl<std::pair<Instruction *,unsigned>> & MemoryUses,SmallPtrSetImpl<Instruction * > & ConsideredInsts,const TargetMachine & TM)3432 static bool FindAllMemoryUses(
3433 Instruction *I,
3434 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
3435 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
3436 // If we already considered this instruction, we're done.
3437 if (!ConsideredInsts.insert(I).second)
3438 return false;
3439
3440 // If this is an obviously unfoldable instruction, bail out.
3441 if (!MightBeFoldableInst(I))
3442 return true;
3443
3444 // Loop over all the uses, recursively processing them.
3445 for (Use &U : I->uses()) {
3446 Instruction *UserI = cast<Instruction>(U.getUser());
3447
3448 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
3449 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
3450 continue;
3451 }
3452
3453 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
3454 unsigned opNo = U.getOperandNo();
3455 if (opNo == 0) return true; // Storing addr, not into addr.
3456 MemoryUses.push_back(std::make_pair(SI, opNo));
3457 continue;
3458 }
3459
3460 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
3461 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
3462 if (!IA) return true;
3463
3464 // If this is a memory operand, we're cool, otherwise bail out.
3465 if (!IsOperandAMemoryOperand(CI, IA, I, TM))
3466 return true;
3467 continue;
3468 }
3469
3470 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
3471 return true;
3472 }
3473
3474 return false;
3475 }
3476
3477 /// Return true if Val is already known to be live at the use site that we're
3478 /// folding it into. If so, there is no cost to include it in the addressing
3479 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
3480 /// instruction already.
valueAlreadyLiveAtInst(Value * Val,Value * KnownLive1,Value * KnownLive2)3481 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
3482 Value *KnownLive2) {
3483 // If Val is either of the known-live values, we know it is live!
3484 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
3485 return true;
3486
3487 // All values other than instructions and arguments (e.g. constants) are live.
3488 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
3489
3490 // If Val is a constant sized alloca in the entry block, it is live, this is
3491 // true because it is just a reference to the stack/frame pointer, which is
3492 // live for the whole function.
3493 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
3494 if (AI->isStaticAlloca())
3495 return true;
3496
3497 // Check to see if this value is already used in the memory instruction's
3498 // block. If so, it's already live into the block at the very least, so we
3499 // can reasonably fold it.
3500 return Val->isUsedInBasicBlock(MemoryInst->getParent());
3501 }
3502
3503 /// It is possible for the addressing mode of the machine to fold the specified
3504 /// instruction into a load or store that ultimately uses it.
3505 /// However, the specified instruction has multiple uses.
3506 /// Given this, it may actually increase register pressure to fold it
3507 /// into the load. For example, consider this code:
3508 ///
3509 /// X = ...
3510 /// Y = X+1
3511 /// use(Y) -> nonload/store
3512 /// Z = Y+1
3513 /// load Z
3514 ///
3515 /// In this case, Y has multiple uses, and can be folded into the load of Z
3516 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
3517 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
3518 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
3519 /// number of computations either.
3520 ///
3521 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
3522 /// X was live across 'load Z' for other reasons, we actually *would* want to
3523 /// fold the addressing mode in the Z case. This would make Y die earlier.
3524 bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction * I,ExtAddrMode & AMBefore,ExtAddrMode & AMAfter)3525 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
3526 ExtAddrMode &AMAfter) {
3527 if (IgnoreProfitability) return true;
3528
3529 // AMBefore is the addressing mode before this instruction was folded into it,
3530 // and AMAfter is the addressing mode after the instruction was folded. Get
3531 // the set of registers referenced by AMAfter and subtract out those
3532 // referenced by AMBefore: this is the set of values which folding in this
3533 // address extends the lifetime of.
3534 //
3535 // Note that there are only two potential values being referenced here,
3536 // BaseReg and ScaleReg (global addresses are always available, as are any
3537 // folded immediates).
3538 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
3539
3540 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
3541 // lifetime wasn't extended by adding this instruction.
3542 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3543 BaseReg = nullptr;
3544 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3545 ScaledReg = nullptr;
3546
3547 // If folding this instruction (and it's subexprs) didn't extend any live
3548 // ranges, we're ok with it.
3549 if (!BaseReg && !ScaledReg)
3550 return true;
3551
3552 // If all uses of this instruction are ultimately load/store/inlineasm's,
3553 // check to see if their addressing modes will include this instruction. If
3554 // so, we can fold it into all uses, so it doesn't matter if it has multiple
3555 // uses.
3556 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
3557 SmallPtrSet<Instruction*, 16> ConsideredInsts;
3558 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
3559 return false; // Has a non-memory, non-foldable use!
3560
3561 // Now that we know that all uses of this instruction are part of a chain of
3562 // computation involving only operations that could theoretically be folded
3563 // into a memory use, loop over each of these uses and see if they could
3564 // *actually* fold the instruction.
3565 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
3566 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
3567 Instruction *User = MemoryUses[i].first;
3568 unsigned OpNo = MemoryUses[i].second;
3569
3570 // Get the access type of this use. If the use isn't a pointer, we don't
3571 // know what it accesses.
3572 Value *Address = User->getOperand(OpNo);
3573 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
3574 if (!AddrTy)
3575 return false;
3576 Type *AddressAccessTy = AddrTy->getElementType();
3577 unsigned AS = AddrTy->getAddressSpace();
3578
3579 // Do a match against the root of this address, ignoring profitability. This
3580 // will tell us if the addressing mode for the memory operation will
3581 // *actually* cover the shared instruction.
3582 ExtAddrMode Result;
3583 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3584 TPT.getRestorationPoint();
3585 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
3586 MemoryInst, Result, InsertedInsts,
3587 PromotedInsts, TPT);
3588 Matcher.IgnoreProfitability = true;
3589 bool Success = Matcher.matchAddr(Address, 0);
3590 (void)Success; assert(Success && "Couldn't select *anything*?");
3591
3592 // The match was to check the profitability, the changes made are not
3593 // part of the original matcher. Therefore, they should be dropped
3594 // otherwise the original matcher will not present the right state.
3595 TPT.rollback(LastKnownGood);
3596
3597 // If the match didn't cover I, then it won't be shared by it.
3598 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
3599 I) == MatchedAddrModeInsts.end())
3600 return false;
3601
3602 MatchedAddrModeInsts.clear();
3603 }
3604
3605 return true;
3606 }
3607
3608 } // end anonymous namespace
3609
3610 /// Return true if the specified values are defined in a
3611 /// different basic block than BB.
IsNonLocalValue(Value * V,BasicBlock * BB)3612 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
3613 if (Instruction *I = dyn_cast<Instruction>(V))
3614 return I->getParent() != BB;
3615 return false;
3616 }
3617
3618 /// Load and Store Instructions often have addressing modes that can do
3619 /// significant amounts of computation. As such, instruction selection will try
3620 /// to get the load or store to do as much computation as possible for the
3621 /// program. The problem is that isel can only see within a single block. As
3622 /// such, we sink as much legal addressing mode work into the block as possible.
3623 ///
3624 /// This method is used to optimize both load/store and inline asms with memory
3625 /// operands.
optimizeMemoryInst(Instruction * MemoryInst,Value * Addr,Type * AccessTy,unsigned AddrSpace)3626 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
3627 Type *AccessTy, unsigned AddrSpace) {
3628 Value *Repl = Addr;
3629
3630 // Try to collapse single-value PHI nodes. This is necessary to undo
3631 // unprofitable PRE transformations.
3632 SmallVector<Value*, 8> worklist;
3633 SmallPtrSet<Value*, 16> Visited;
3634 worklist.push_back(Addr);
3635
3636 // Use a worklist to iteratively look through PHI nodes, and ensure that
3637 // the addressing mode obtained from the non-PHI roots of the graph
3638 // are equivalent.
3639 Value *Consensus = nullptr;
3640 unsigned NumUsesConsensus = 0;
3641 bool IsNumUsesConsensusValid = false;
3642 SmallVector<Instruction*, 16> AddrModeInsts;
3643 ExtAddrMode AddrMode;
3644 TypePromotionTransaction TPT;
3645 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3646 TPT.getRestorationPoint();
3647 while (!worklist.empty()) {
3648 Value *V = worklist.back();
3649 worklist.pop_back();
3650
3651 // Break use-def graph loops.
3652 if (!Visited.insert(V).second) {
3653 Consensus = nullptr;
3654 break;
3655 }
3656
3657 // For a PHI node, push all of its incoming values.
3658 if (PHINode *P = dyn_cast<PHINode>(V)) {
3659 for (Value *IncValue : P->incoming_values())
3660 worklist.push_back(IncValue);
3661 continue;
3662 }
3663
3664 // For non-PHIs, determine the addressing mode being computed.
3665 SmallVector<Instruction*, 16> NewAddrModeInsts;
3666 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
3667 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
3668 InsertedInsts, PromotedInsts, TPT);
3669
3670 // This check is broken into two cases with very similar code to avoid using
3671 // getNumUses() as much as possible. Some values have a lot of uses, so
3672 // calling getNumUses() unconditionally caused a significant compile-time
3673 // regression.
3674 if (!Consensus) {
3675 Consensus = V;
3676 AddrMode = NewAddrMode;
3677 AddrModeInsts = NewAddrModeInsts;
3678 continue;
3679 } else if (NewAddrMode == AddrMode) {
3680 if (!IsNumUsesConsensusValid) {
3681 NumUsesConsensus = Consensus->getNumUses();
3682 IsNumUsesConsensusValid = true;
3683 }
3684
3685 // Ensure that the obtained addressing mode is equivalent to that obtained
3686 // for all other roots of the PHI traversal. Also, when choosing one
3687 // such root as representative, select the one with the most uses in order
3688 // to keep the cost modeling heuristics in AddressingModeMatcher
3689 // applicable.
3690 unsigned NumUses = V->getNumUses();
3691 if (NumUses > NumUsesConsensus) {
3692 Consensus = V;
3693 NumUsesConsensus = NumUses;
3694 AddrModeInsts = NewAddrModeInsts;
3695 }
3696 continue;
3697 }
3698
3699 Consensus = nullptr;
3700 break;
3701 }
3702
3703 // If the addressing mode couldn't be determined, or if multiple different
3704 // ones were determined, bail out now.
3705 if (!Consensus) {
3706 TPT.rollback(LastKnownGood);
3707 return false;
3708 }
3709 TPT.commit();
3710
3711 // Check to see if any of the instructions supersumed by this addr mode are
3712 // non-local to I's BB.
3713 bool AnyNonLocal = false;
3714 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
3715 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
3716 AnyNonLocal = true;
3717 break;
3718 }
3719 }
3720
3721 // If all the instructions matched are already in this BB, don't do anything.
3722 if (!AnyNonLocal) {
3723 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
3724 return false;
3725 }
3726
3727 // Insert this computation right after this user. Since our caller is
3728 // scanning from the top of the BB to the bottom, reuse of the expr are
3729 // guaranteed to happen later.
3730 IRBuilder<> Builder(MemoryInst);
3731
3732 // Now that we determined the addressing expression we want to use and know
3733 // that we have to sink it into this block. Check to see if we have already
3734 // done this for some other load/store instr in this block. If so, reuse the
3735 // computation.
3736 Value *&SunkAddr = SunkAddrs[Addr];
3737 if (SunkAddr) {
3738 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
3739 << *MemoryInst << "\n");
3740 if (SunkAddr->getType() != Addr->getType())
3741 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3742 } else if (AddrSinkUsingGEPs ||
3743 (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
3744 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
3745 ->useAA())) {
3746 // By default, we use the GEP-based method when AA is used later. This
3747 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
3748 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3749 << *MemoryInst << "\n");
3750 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3751 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
3752
3753 // First, find the pointer.
3754 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
3755 ResultPtr = AddrMode.BaseReg;
3756 AddrMode.BaseReg = nullptr;
3757 }
3758
3759 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
3760 // We can't add more than one pointer together, nor can we scale a
3761 // pointer (both of which seem meaningless).
3762 if (ResultPtr || AddrMode.Scale != 1)
3763 return false;
3764
3765 ResultPtr = AddrMode.ScaledReg;
3766 AddrMode.Scale = 0;
3767 }
3768
3769 if (AddrMode.BaseGV) {
3770 if (ResultPtr)
3771 return false;
3772
3773 ResultPtr = AddrMode.BaseGV;
3774 }
3775
3776 // If the real base value actually came from an inttoptr, then the matcher
3777 // will look through it and provide only the integer value. In that case,
3778 // use it here.
3779 if (!ResultPtr && AddrMode.BaseReg) {
3780 ResultPtr =
3781 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
3782 AddrMode.BaseReg = nullptr;
3783 } else if (!ResultPtr && AddrMode.Scale == 1) {
3784 ResultPtr =
3785 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
3786 AddrMode.Scale = 0;
3787 }
3788
3789 if (!ResultPtr &&
3790 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
3791 SunkAddr = Constant::getNullValue(Addr->getType());
3792 } else if (!ResultPtr) {
3793 return false;
3794 } else {
3795 Type *I8PtrTy =
3796 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
3797 Type *I8Ty = Builder.getInt8Ty();
3798
3799 // Start with the base register. Do this first so that subsequent address
3800 // matching finds it last, which will prevent it from trying to match it
3801 // as the scaled value in case it happens to be a mul. That would be
3802 // problematic if we've sunk a different mul for the scale, because then
3803 // we'd end up sinking both muls.
3804 if (AddrMode.BaseReg) {
3805 Value *V = AddrMode.BaseReg;
3806 if (V->getType() != IntPtrTy)
3807 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3808
3809 ResultIndex = V;
3810 }
3811
3812 // Add the scale value.
3813 if (AddrMode.Scale) {
3814 Value *V = AddrMode.ScaledReg;
3815 if (V->getType() == IntPtrTy) {
3816 // done.
3817 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3818 cast<IntegerType>(V->getType())->getBitWidth()) {
3819 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3820 } else {
3821 // It is only safe to sign extend the BaseReg if we know that the math
3822 // required to create it did not overflow before we extend it. Since
3823 // the original IR value was tossed in favor of a constant back when
3824 // the AddrMode was created we need to bail out gracefully if widths
3825 // do not match instead of extending it.
3826 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
3827 if (I && (ResultIndex != AddrMode.BaseReg))
3828 I->eraseFromParent();
3829 return false;
3830 }
3831
3832 if (AddrMode.Scale != 1)
3833 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3834 "sunkaddr");
3835 if (ResultIndex)
3836 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
3837 else
3838 ResultIndex = V;
3839 }
3840
3841 // Add in the Base Offset if present.
3842 if (AddrMode.BaseOffs) {
3843 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3844 if (ResultIndex) {
3845 // We need to add this separately from the scale above to help with
3846 // SDAG consecutive load/store merging.
3847 if (ResultPtr->getType() != I8PtrTy)
3848 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3849 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3850 }
3851
3852 ResultIndex = V;
3853 }
3854
3855 if (!ResultIndex) {
3856 SunkAddr = ResultPtr;
3857 } else {
3858 if (ResultPtr->getType() != I8PtrTy)
3859 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3860 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3861 }
3862
3863 if (SunkAddr->getType() != Addr->getType())
3864 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3865 }
3866 } else {
3867 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3868 << *MemoryInst << "\n");
3869 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3870 Value *Result = nullptr;
3871
3872 // Start with the base register. Do this first so that subsequent address
3873 // matching finds it last, which will prevent it from trying to match it
3874 // as the scaled value in case it happens to be a mul. That would be
3875 // problematic if we've sunk a different mul for the scale, because then
3876 // we'd end up sinking both muls.
3877 if (AddrMode.BaseReg) {
3878 Value *V = AddrMode.BaseReg;
3879 if (V->getType()->isPointerTy())
3880 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3881 if (V->getType() != IntPtrTy)
3882 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3883 Result = V;
3884 }
3885
3886 // Add the scale value.
3887 if (AddrMode.Scale) {
3888 Value *V = AddrMode.ScaledReg;
3889 if (V->getType() == IntPtrTy) {
3890 // done.
3891 } else if (V->getType()->isPointerTy()) {
3892 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3893 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3894 cast<IntegerType>(V->getType())->getBitWidth()) {
3895 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3896 } else {
3897 // It is only safe to sign extend the BaseReg if we know that the math
3898 // required to create it did not overflow before we extend it. Since
3899 // the original IR value was tossed in favor of a constant back when
3900 // the AddrMode was created we need to bail out gracefully if widths
3901 // do not match instead of extending it.
3902 Instruction *I = dyn_cast_or_null<Instruction>(Result);
3903 if (I && (Result != AddrMode.BaseReg))
3904 I->eraseFromParent();
3905 return false;
3906 }
3907 if (AddrMode.Scale != 1)
3908 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3909 "sunkaddr");
3910 if (Result)
3911 Result = Builder.CreateAdd(Result, V, "sunkaddr");
3912 else
3913 Result = V;
3914 }
3915
3916 // Add in the BaseGV if present.
3917 if (AddrMode.BaseGV) {
3918 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
3919 if (Result)
3920 Result = Builder.CreateAdd(Result, V, "sunkaddr");
3921 else
3922 Result = V;
3923 }
3924
3925 // Add in the Base Offset if present.
3926 if (AddrMode.BaseOffs) {
3927 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3928 if (Result)
3929 Result = Builder.CreateAdd(Result, V, "sunkaddr");
3930 else
3931 Result = V;
3932 }
3933
3934 if (!Result)
3935 SunkAddr = Constant::getNullValue(Addr->getType());
3936 else
3937 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
3938 }
3939
3940 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
3941
3942 // If we have no uses, recursively delete the value and all dead instructions
3943 // using it.
3944 if (Repl->use_empty()) {
3945 // This can cause recursive deletion, which can invalidate our iterator.
3946 // Use a WeakVH to hold onto it in case this happens.
3947 WeakVH IterHandle(&*CurInstIterator);
3948 BasicBlock *BB = CurInstIterator->getParent();
3949
3950 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
3951
3952 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
3953 // If the iterator instruction was recursively deleted, start over at the
3954 // start of the block.
3955 CurInstIterator = BB->begin();
3956 SunkAddrs.clear();
3957 }
3958 }
3959 ++NumMemoryInsts;
3960 return true;
3961 }
3962
3963 /// If there are any memory operands, use OptimizeMemoryInst to sink their
3964 /// address computing into the block when possible / profitable.
optimizeInlineAsmInst(CallInst * CS)3965 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
3966 bool MadeChange = false;
3967
3968 const TargetRegisterInfo *TRI =
3969 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
3970 TargetLowering::AsmOperandInfoVector TargetConstraints =
3971 TLI->ParseConstraints(*DL, TRI, CS);
3972 unsigned ArgNo = 0;
3973 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3974 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3975
3976 // Compute the constraint code and ConstraintType to use.
3977 TLI->ComputeConstraintToUse(OpInfo, SDValue());
3978
3979 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3980 OpInfo.isIndirect) {
3981 Value *OpVal = CS->getArgOperand(ArgNo++);
3982 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
3983 } else if (OpInfo.Type == InlineAsm::isInput)
3984 ArgNo++;
3985 }
3986
3987 return MadeChange;
3988 }
3989
3990 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
3991 /// sign extensions.
hasSameExtUse(Instruction * Inst,const TargetLowering & TLI)3992 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
3993 assert(!Inst->use_empty() && "Input must have at least one use");
3994 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
3995 bool IsSExt = isa<SExtInst>(FirstUser);
3996 Type *ExtTy = FirstUser->getType();
3997 for (const User *U : Inst->users()) {
3998 const Instruction *UI = cast<Instruction>(U);
3999 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4000 return false;
4001 Type *CurTy = UI->getType();
4002 // Same input and output types: Same instruction after CSE.
4003 if (CurTy == ExtTy)
4004 continue;
4005
4006 // If IsSExt is true, we are in this situation:
4007 // a = Inst
4008 // b = sext ty1 a to ty2
4009 // c = sext ty1 a to ty3
4010 // Assuming ty2 is shorter than ty3, this could be turned into:
4011 // a = Inst
4012 // b = sext ty1 a to ty2
4013 // c = sext ty2 b to ty3
4014 // However, the last sext is not free.
4015 if (IsSExt)
4016 return false;
4017
4018 // This is a ZExt, maybe this is free to extend from one type to another.
4019 // In that case, we would not account for a different use.
4020 Type *NarrowTy;
4021 Type *LargeTy;
4022 if (ExtTy->getScalarType()->getIntegerBitWidth() >
4023 CurTy->getScalarType()->getIntegerBitWidth()) {
4024 NarrowTy = CurTy;
4025 LargeTy = ExtTy;
4026 } else {
4027 NarrowTy = ExtTy;
4028 LargeTy = CurTy;
4029 }
4030
4031 if (!TLI.isZExtFree(NarrowTy, LargeTy))
4032 return false;
4033 }
4034 // All uses are the same or can be derived from one another for free.
4035 return true;
4036 }
4037
4038 /// \brief Try to form ExtLd by promoting \p Exts until they reach a
4039 /// load instruction.
4040 /// If an ext(load) can be formed, it is returned via \p LI for the load
4041 /// and \p Inst for the extension.
4042 /// Otherwise LI == nullptr and Inst == nullptr.
4043 /// When some promotion happened, \p TPT contains the proper state to
4044 /// revert them.
4045 ///
4046 /// \return true when promoting was necessary to expose the ext(load)
4047 /// opportunity, false otherwise.
4048 ///
4049 /// Example:
4050 /// \code
4051 /// %ld = load i32* %addr
4052 /// %add = add nuw i32 %ld, 4
4053 /// %zext = zext i32 %add to i64
4054 /// \endcode
4055 /// =>
4056 /// \code
4057 /// %ld = load i32* %addr
4058 /// %zext = zext i32 %ld to i64
4059 /// %add = add nuw i64 %zext, 4
4060 /// \encode
4061 /// Thanks to the promotion, we can match zext(load i32*) to i64.
extLdPromotion(TypePromotionTransaction & TPT,LoadInst * & LI,Instruction * & Inst,const SmallVectorImpl<Instruction * > & Exts,unsigned CreatedInstsCost=0)4062 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
4063 LoadInst *&LI, Instruction *&Inst,
4064 const SmallVectorImpl<Instruction *> &Exts,
4065 unsigned CreatedInstsCost = 0) {
4066 // Iterate over all the extensions to see if one form an ext(load).
4067 for (auto I : Exts) {
4068 // Check if we directly have ext(load).
4069 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
4070 Inst = I;
4071 // No promotion happened here.
4072 return false;
4073 }
4074 // Check whether or not we want to do any promotion.
4075 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4076 continue;
4077 // Get the action to perform the promotion.
4078 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
4079 I, InsertedInsts, *TLI, PromotedInsts);
4080 // Check if we can promote.
4081 if (!TPH)
4082 continue;
4083 // Save the current state.
4084 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4085 TPT.getRestorationPoint();
4086 SmallVector<Instruction *, 4> NewExts;
4087 unsigned NewCreatedInstsCost = 0;
4088 unsigned ExtCost = !TLI->isExtFree(I);
4089 // Promote.
4090 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4091 &NewExts, nullptr, *TLI);
4092 assert(PromotedVal &&
4093 "TypePromotionHelper should have filtered out those cases");
4094
4095 // We would be able to merge only one extension in a load.
4096 // Therefore, if we have more than 1 new extension we heuristically
4097 // cut this search path, because it means we degrade the code quality.
4098 // With exactly 2, the transformation is neutral, because we will merge
4099 // one extension but leave one. However, we optimistically keep going,
4100 // because the new extension may be removed too.
4101 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4102 TotalCreatedInstsCost -= ExtCost;
4103 if (!StressExtLdPromotion &&
4104 (TotalCreatedInstsCost > 1 ||
4105 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4106 // The promotion is not profitable, rollback to the previous state.
4107 TPT.rollback(LastKnownGood);
4108 continue;
4109 }
4110 // The promotion is profitable.
4111 // Check if it exposes an ext(load).
4112 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
4113 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4114 // If we have created a new extension, i.e., now we have two
4115 // extensions. We must make sure one of them is merged with
4116 // the load, otherwise we may degrade the code quality.
4117 (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
4118 // Promotion happened.
4119 return true;
4120 // If this does not help to expose an ext(load) then, rollback.
4121 TPT.rollback(LastKnownGood);
4122 }
4123 // None of the extension can form an ext(load).
4124 LI = nullptr;
4125 Inst = nullptr;
4126 return false;
4127 }
4128
4129 /// Move a zext or sext fed by a load into the same basic block as the load,
4130 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4131 /// extend into the load.
4132 /// \p I[in/out] the extension may be modified during the process if some
4133 /// promotions apply.
4134 ///
moveExtToFormExtLoad(Instruction * & I)4135 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
4136 // Try to promote a chain of computation if it allows to form
4137 // an extended load.
4138 TypePromotionTransaction TPT;
4139 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4140 TPT.getRestorationPoint();
4141 SmallVector<Instruction *, 1> Exts;
4142 Exts.push_back(I);
4143 // Look for a load being extended.
4144 LoadInst *LI = nullptr;
4145 Instruction *OldExt = I;
4146 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
4147 if (!LI || !I) {
4148 assert(!HasPromoted && !LI && "If we did not match any load instruction "
4149 "the code must remain the same");
4150 I = OldExt;
4151 return false;
4152 }
4153
4154 // If they're already in the same block, there's nothing to do.
4155 // Make the cheap checks first if we did not promote.
4156 // If we promoted, we need to check if it is indeed profitable.
4157 if (!HasPromoted && LI->getParent() == I->getParent())
4158 return false;
4159
4160 EVT VT = TLI->getValueType(*DL, I->getType());
4161 EVT LoadVT = TLI->getValueType(*DL, LI->getType());
4162
4163 // If the load has other users and the truncate is not free, this probably
4164 // isn't worthwhile.
4165 if (!LI->hasOneUse() && TLI &&
4166 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
4167 !TLI->isTruncateFree(I->getType(), LI->getType())) {
4168 I = OldExt;
4169 TPT.rollback(LastKnownGood);
4170 return false;
4171 }
4172
4173 // Check whether the target supports casts folded into loads.
4174 unsigned LType;
4175 if (isa<ZExtInst>(I))
4176 LType = ISD::ZEXTLOAD;
4177 else {
4178 assert(isa<SExtInst>(I) && "Unexpected ext type!");
4179 LType = ISD::SEXTLOAD;
4180 }
4181 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
4182 I = OldExt;
4183 TPT.rollback(LastKnownGood);
4184 return false;
4185 }
4186
4187 // Move the extend into the same block as the load, so that SelectionDAG
4188 // can fold it.
4189 TPT.commit();
4190 I->removeFromParent();
4191 I->insertAfter(LI);
4192 ++NumExtsMoved;
4193 return true;
4194 }
4195
optimizeExtUses(Instruction * I)4196 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
4197 BasicBlock *DefBB = I->getParent();
4198
4199 // If the result of a {s|z}ext and its source are both live out, rewrite all
4200 // other uses of the source with result of extension.
4201 Value *Src = I->getOperand(0);
4202 if (Src->hasOneUse())
4203 return false;
4204
4205 // Only do this xform if truncating is free.
4206 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
4207 return false;
4208
4209 // Only safe to perform the optimization if the source is also defined in
4210 // this block.
4211 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
4212 return false;
4213
4214 bool DefIsLiveOut = false;
4215 for (User *U : I->users()) {
4216 Instruction *UI = cast<Instruction>(U);
4217
4218 // Figure out which BB this ext is used in.
4219 BasicBlock *UserBB = UI->getParent();
4220 if (UserBB == DefBB) continue;
4221 DefIsLiveOut = true;
4222 break;
4223 }
4224 if (!DefIsLiveOut)
4225 return false;
4226
4227 // Make sure none of the uses are PHI nodes.
4228 for (User *U : Src->users()) {
4229 Instruction *UI = cast<Instruction>(U);
4230 BasicBlock *UserBB = UI->getParent();
4231 if (UserBB == DefBB) continue;
4232 // Be conservative. We don't want this xform to end up introducing
4233 // reloads just before load / store instructions.
4234 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
4235 return false;
4236 }
4237
4238 // InsertedTruncs - Only insert one trunc in each block once.
4239 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
4240
4241 bool MadeChange = false;
4242 for (Use &U : Src->uses()) {
4243 Instruction *User = cast<Instruction>(U.getUser());
4244
4245 // Figure out which BB this ext is used in.
4246 BasicBlock *UserBB = User->getParent();
4247 if (UserBB == DefBB) continue;
4248
4249 // Both src and def are live in this block. Rewrite the use.
4250 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
4251
4252 if (!InsertedTrunc) {
4253 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4254 assert(InsertPt != UserBB->end());
4255 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
4256 InsertedInsts.insert(InsertedTrunc);
4257 }
4258
4259 // Replace a use of the {s|z}ext source with a use of the result.
4260 U = InsertedTrunc;
4261 ++NumExtUses;
4262 MadeChange = true;
4263 }
4264
4265 return MadeChange;
4266 }
4267
4268 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
4269 // just after the load if the target can fold this into one extload instruction,
4270 // with the hope of eliminating some of the other later "and" instructions using
4271 // the loaded value. "and"s that are made trivially redundant by the insertion
4272 // of the new "and" are removed by this function, while others (e.g. those whose
4273 // path from the load goes through a phi) are left for isel to potentially
4274 // remove.
4275 //
4276 // For example:
4277 //
4278 // b0:
4279 // x = load i32
4280 // ...
4281 // b1:
4282 // y = and x, 0xff
4283 // z = use y
4284 //
4285 // becomes:
4286 //
4287 // b0:
4288 // x = load i32
4289 // x' = and x, 0xff
4290 // ...
4291 // b1:
4292 // z = use x'
4293 //
4294 // whereas:
4295 //
4296 // b0:
4297 // x1 = load i32
4298 // ...
4299 // b1:
4300 // x2 = load i32
4301 // ...
4302 // b2:
4303 // x = phi x1, x2
4304 // y = and x, 0xff
4305 //
4306 // becomes (after a call to optimizeLoadExt for each load):
4307 //
4308 // b0:
4309 // x1 = load i32
4310 // x1' = and x1, 0xff
4311 // ...
4312 // b1:
4313 // x2 = load i32
4314 // x2' = and x2, 0xff
4315 // ...
4316 // b2:
4317 // x = phi x1', x2'
4318 // y = and x, 0xff
4319 //
4320
optimizeLoadExt(LoadInst * Load)4321 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
4322
4323 if (!Load->isSimple() ||
4324 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
4325 return false;
4326
4327 // Skip loads we've already transformed or have no reason to transform.
4328 if (Load->hasOneUse()) {
4329 User *LoadUser = *Load->user_begin();
4330 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() &&
4331 !dyn_cast<PHINode>(LoadUser))
4332 return false;
4333 }
4334
4335 // Look at all uses of Load, looking through phis, to determine how many bits
4336 // of the loaded value are needed.
4337 SmallVector<Instruction *, 8> WorkList;
4338 SmallPtrSet<Instruction *, 16> Visited;
4339 SmallVector<Instruction *, 8> AndsToMaybeRemove;
4340 for (auto *U : Load->users())
4341 WorkList.push_back(cast<Instruction>(U));
4342
4343 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
4344 unsigned BitWidth = LoadResultVT.getSizeInBits();
4345 APInt DemandBits(BitWidth, 0);
4346 APInt WidestAndBits(BitWidth, 0);
4347
4348 while (!WorkList.empty()) {
4349 Instruction *I = WorkList.back();
4350 WorkList.pop_back();
4351
4352 // Break use-def graph loops.
4353 if (!Visited.insert(I).second)
4354 continue;
4355
4356 // For a PHI node, push all of its users.
4357 if (auto *Phi = dyn_cast<PHINode>(I)) {
4358 for (auto *U : Phi->users())
4359 WorkList.push_back(cast<Instruction>(U));
4360 continue;
4361 }
4362
4363 switch (I->getOpcode()) {
4364 case llvm::Instruction::And: {
4365 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
4366 if (!AndC)
4367 return false;
4368 APInt AndBits = AndC->getValue();
4369 DemandBits |= AndBits;
4370 // Keep track of the widest and mask we see.
4371 if (AndBits.ugt(WidestAndBits))
4372 WidestAndBits = AndBits;
4373 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
4374 AndsToMaybeRemove.push_back(I);
4375 break;
4376 }
4377
4378 case llvm::Instruction::Shl: {
4379 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
4380 if (!ShlC)
4381 return false;
4382 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
4383 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt);
4384 DemandBits |= ShlDemandBits;
4385 break;
4386 }
4387
4388 case llvm::Instruction::Trunc: {
4389 EVT TruncVT = TLI->getValueType(*DL, I->getType());
4390 unsigned TruncBitWidth = TruncVT.getSizeInBits();
4391 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth);
4392 DemandBits |= TruncBits;
4393 break;
4394 }
4395
4396 default:
4397 return false;
4398 }
4399 }
4400
4401 uint32_t ActiveBits = DemandBits.getActiveBits();
4402 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
4403 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
4404 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
4405 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
4406 // followed by an AND.
4407 // TODO: Look into removing this restriction by fixing backends to either
4408 // return false for isLoadExtLegal for i1 or have them select this pattern to
4409 // a single instruction.
4410 //
4411 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
4412 // mask, since these are the only ands that will be removed by isel.
4413 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) ||
4414 WidestAndBits != DemandBits)
4415 return false;
4416
4417 LLVMContext &Ctx = Load->getType()->getContext();
4418 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
4419 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
4420
4421 // Reject cases that won't be matched as extloads.
4422 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
4423 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
4424 return false;
4425
4426 IRBuilder<> Builder(Load->getNextNode());
4427 auto *NewAnd = dyn_cast<Instruction>(
4428 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
4429
4430 // Replace all uses of load with new and (except for the use of load in the
4431 // new and itself).
4432 Load->replaceAllUsesWith(NewAnd);
4433 NewAnd->setOperand(0, Load);
4434
4435 // Remove any and instructions that are now redundant.
4436 for (auto *And : AndsToMaybeRemove)
4437 // Check that the and mask is the same as the one we decided to put on the
4438 // new and.
4439 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
4440 And->replaceAllUsesWith(NewAnd);
4441 if (&*CurInstIterator == And)
4442 CurInstIterator = std::next(And->getIterator());
4443 And->eraseFromParent();
4444 ++NumAndUses;
4445 }
4446
4447 ++NumAndsAdded;
4448 return true;
4449 }
4450
4451 /// Check if V (an operand of a select instruction) is an expensive instruction
4452 /// that is only used once.
sinkSelectOperand(const TargetTransformInfo * TTI,Value * V)4453 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
4454 auto *I = dyn_cast<Instruction>(V);
4455 // If it's safe to speculatively execute, then it should not have side
4456 // effects; therefore, it's safe to sink and possibly *not* execute.
4457 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
4458 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
4459 }
4460
4461 /// Returns true if a SelectInst should be turned into an explicit branch.
isFormingBranchFromSelectProfitable(const TargetTransformInfo * TTI,SelectInst * SI)4462 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
4463 SelectInst *SI) {
4464 // FIXME: This should use the same heuristics as IfConversion to determine
4465 // whether a select is better represented as a branch. This requires that
4466 // branch probability metadata is preserved for the select, which is not the
4467 // case currently.
4468
4469 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
4470
4471 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
4472 // comparison condition. If the compare has more than one use, there's
4473 // probably another cmov or setcc around, so it's not worth emitting a branch.
4474 if (!Cmp || !Cmp->hasOneUse())
4475 return false;
4476
4477 Value *CmpOp0 = Cmp->getOperand(0);
4478 Value *CmpOp1 = Cmp->getOperand(1);
4479
4480 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls
4481 // on a load from memory. But if the load is used more than once, do not
4482 // change the select to a branch because the load is probably needed
4483 // regardless of whether the branch is taken or not.
4484 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
4485 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()))
4486 return true;
4487
4488 // If either operand of the select is expensive and only needed on one side
4489 // of the select, we should form a branch.
4490 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
4491 sinkSelectOperand(TTI, SI->getFalseValue()))
4492 return true;
4493
4494 return false;
4495 }
4496
4497
4498 /// If we have a SelectInst that will likely profit from branch prediction,
4499 /// turn it into a branch.
optimizeSelectInst(SelectInst * SI)4500 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
4501 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
4502
4503 // Can we convert the 'select' to CF ?
4504 if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
4505 return false;
4506
4507 TargetLowering::SelectSupportKind SelectKind;
4508 if (VectorCond)
4509 SelectKind = TargetLowering::VectorMaskSelect;
4510 else if (SI->getType()->isVectorTy())
4511 SelectKind = TargetLowering::ScalarCondVectorVal;
4512 else
4513 SelectKind = TargetLowering::ScalarValSelect;
4514
4515 // Do we have efficient codegen support for this kind of 'selects' ?
4516 if (TLI->isSelectSupported(SelectKind)) {
4517 // We have efficient codegen support for the select instruction.
4518 // Check if it is profitable to keep this 'select'.
4519 if (!TLI->isPredictableSelectExpensive() ||
4520 !isFormingBranchFromSelectProfitable(TTI, SI))
4521 return false;
4522 }
4523
4524 ModifiedDT = true;
4525
4526 // Transform a sequence like this:
4527 // start:
4528 // %cmp = cmp uge i32 %a, %b
4529 // %sel = select i1 %cmp, i32 %c, i32 %d
4530 //
4531 // Into:
4532 // start:
4533 // %cmp = cmp uge i32 %a, %b
4534 // br i1 %cmp, label %select.true, label %select.false
4535 // select.true:
4536 // br label %select.end
4537 // select.false:
4538 // br label %select.end
4539 // select.end:
4540 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
4541 //
4542 // In addition, we may sink instructions that produce %c or %d from
4543 // the entry block into the destination(s) of the new branch.
4544 // If the true or false blocks do not contain a sunken instruction, that
4545 // block and its branch may be optimized away. In that case, one side of the
4546 // first branch will point directly to select.end, and the corresponding PHI
4547 // predecessor block will be the start block.
4548
4549 // First, we split the block containing the select into 2 blocks.
4550 BasicBlock *StartBlock = SI->getParent();
4551 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
4552 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
4553
4554 // Delete the unconditional branch that was just created by the split.
4555 StartBlock->getTerminator()->eraseFromParent();
4556
4557 // These are the new basic blocks for the conditional branch.
4558 // At least one will become an actual new basic block.
4559 BasicBlock *TrueBlock = nullptr;
4560 BasicBlock *FalseBlock = nullptr;
4561
4562 // Sink expensive instructions into the conditional blocks to avoid executing
4563 // them speculatively.
4564 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
4565 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
4566 EndBlock->getParent(), EndBlock);
4567 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
4568 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
4569 TrueInst->moveBefore(TrueBranch);
4570 }
4571 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
4572 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
4573 EndBlock->getParent(), EndBlock);
4574 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
4575 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
4576 FalseInst->moveBefore(FalseBranch);
4577 }
4578
4579 // If there was nothing to sink, then arbitrarily choose the 'false' side
4580 // for a new input value to the PHI.
4581 if (TrueBlock == FalseBlock) {
4582 assert(TrueBlock == nullptr &&
4583 "Unexpected basic block transform while optimizing select");
4584
4585 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
4586 EndBlock->getParent(), EndBlock);
4587 BranchInst::Create(EndBlock, FalseBlock);
4588 }
4589
4590 // Insert the real conditional branch based on the original condition.
4591 // If we did not create a new block for one of the 'true' or 'false' paths
4592 // of the condition, it means that side of the branch goes to the end block
4593 // directly and the path originates from the start block from the point of
4594 // view of the new PHI.
4595 if (TrueBlock == nullptr) {
4596 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
4597 TrueBlock = StartBlock;
4598 } else if (FalseBlock == nullptr) {
4599 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
4600 FalseBlock = StartBlock;
4601 } else {
4602 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
4603 }
4604
4605 // The select itself is replaced with a PHI Node.
4606 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
4607 PN->takeName(SI);
4608 PN->addIncoming(SI->getTrueValue(), TrueBlock);
4609 PN->addIncoming(SI->getFalseValue(), FalseBlock);
4610
4611 SI->replaceAllUsesWith(PN);
4612 SI->eraseFromParent();
4613
4614 // Instruct OptimizeBlock to skip to the next block.
4615 CurInstIterator = StartBlock->end();
4616 ++NumSelectsExpanded;
4617 return true;
4618 }
4619
isBroadcastShuffle(ShuffleVectorInst * SVI)4620 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
4621 SmallVector<int, 16> Mask(SVI->getShuffleMask());
4622 int SplatElem = -1;
4623 for (unsigned i = 0; i < Mask.size(); ++i) {
4624 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
4625 return false;
4626 SplatElem = Mask[i];
4627 }
4628
4629 return true;
4630 }
4631
4632 /// Some targets have expensive vector shifts if the lanes aren't all the same
4633 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
4634 /// it's often worth sinking a shufflevector splat down to its use so that
4635 /// codegen can spot all lanes are identical.
optimizeShuffleVectorInst(ShuffleVectorInst * SVI)4636 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
4637 BasicBlock *DefBB = SVI->getParent();
4638
4639 // Only do this xform if variable vector shifts are particularly expensive.
4640 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
4641 return false;
4642
4643 // We only expect better codegen by sinking a shuffle if we can recognise a
4644 // constant splat.
4645 if (!isBroadcastShuffle(SVI))
4646 return false;
4647
4648 // InsertedShuffles - Only insert a shuffle in each block once.
4649 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
4650
4651 bool MadeChange = false;
4652 for (User *U : SVI->users()) {
4653 Instruction *UI = cast<Instruction>(U);
4654
4655 // Figure out which BB this ext is used in.
4656 BasicBlock *UserBB = UI->getParent();
4657 if (UserBB == DefBB) continue;
4658
4659 // For now only apply this when the splat is used by a shift instruction.
4660 if (!UI->isShift()) continue;
4661
4662 // Everything checks out, sink the shuffle if the user's block doesn't
4663 // already have a copy.
4664 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
4665
4666 if (!InsertedShuffle) {
4667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4668 assert(InsertPt != UserBB->end());
4669 InsertedShuffle =
4670 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4671 SVI->getOperand(2), "", &*InsertPt);
4672 }
4673
4674 UI->replaceUsesOfWith(SVI, InsertedShuffle);
4675 MadeChange = true;
4676 }
4677
4678 // If we removed all uses, nuke the shuffle.
4679 if (SVI->use_empty()) {
4680 SVI->eraseFromParent();
4681 MadeChange = true;
4682 }
4683
4684 return MadeChange;
4685 }
4686
optimizeSwitchInst(SwitchInst * SI)4687 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
4688 if (!TLI || !DL)
4689 return false;
4690
4691 Value *Cond = SI->getCondition();
4692 Type *OldType = Cond->getType();
4693 LLVMContext &Context = Cond->getContext();
4694 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
4695 unsigned RegWidth = RegType.getSizeInBits();
4696
4697 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
4698 return false;
4699
4700 // If the register width is greater than the type width, expand the condition
4701 // of the switch instruction and each case constant to the width of the
4702 // register. By widening the type of the switch condition, subsequent
4703 // comparisons (for case comparisons) will not need to be extended to the
4704 // preferred register width, so we will potentially eliminate N-1 extends,
4705 // where N is the number of cases in the switch.
4706 auto *NewType = Type::getIntNTy(Context, RegWidth);
4707
4708 // Zero-extend the switch condition and case constants unless the switch
4709 // condition is a function argument that is already being sign-extended.
4710 // In that case, we can avoid an unnecessary mask/extension by sign-extending
4711 // everything instead.
4712 Instruction::CastOps ExtType = Instruction::ZExt;
4713 if (auto *Arg = dyn_cast<Argument>(Cond))
4714 if (Arg->hasSExtAttr())
4715 ExtType = Instruction::SExt;
4716
4717 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
4718 ExtInst->insertBefore(SI);
4719 SI->setCondition(ExtInst);
4720 for (SwitchInst::CaseIt Case : SI->cases()) {
4721 APInt NarrowConst = Case.getCaseValue()->getValue();
4722 APInt WideConst = (ExtType == Instruction::ZExt) ?
4723 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
4724 Case.setValue(ConstantInt::get(Context, WideConst));
4725 }
4726
4727 return true;
4728 }
4729
4730 namespace {
4731 /// \brief Helper class to promote a scalar operation to a vector one.
4732 /// This class is used to move downward extractelement transition.
4733 /// E.g.,
4734 /// a = vector_op <2 x i32>
4735 /// b = extractelement <2 x i32> a, i32 0
4736 /// c = scalar_op b
4737 /// store c
4738 ///
4739 /// =>
4740 /// a = vector_op <2 x i32>
4741 /// c = vector_op a (equivalent to scalar_op on the related lane)
4742 /// * d = extractelement <2 x i32> c, i32 0
4743 /// * store d
4744 /// Assuming both extractelement and store can be combine, we get rid of the
4745 /// transition.
4746 class VectorPromoteHelper {
4747 /// DataLayout associated with the current module.
4748 const DataLayout &DL;
4749
4750 /// Used to perform some checks on the legality of vector operations.
4751 const TargetLowering &TLI;
4752
4753 /// Used to estimated the cost of the promoted chain.
4754 const TargetTransformInfo &TTI;
4755
4756 /// The transition being moved downwards.
4757 Instruction *Transition;
4758 /// The sequence of instructions to be promoted.
4759 SmallVector<Instruction *, 4> InstsToBePromoted;
4760 /// Cost of combining a store and an extract.
4761 unsigned StoreExtractCombineCost;
4762 /// Instruction that will be combined with the transition.
4763 Instruction *CombineInst;
4764
4765 /// \brief The instruction that represents the current end of the transition.
4766 /// Since we are faking the promotion until we reach the end of the chain
4767 /// of computation, we need a way to get the current end of the transition.
getEndOfTransition() const4768 Instruction *getEndOfTransition() const {
4769 if (InstsToBePromoted.empty())
4770 return Transition;
4771 return InstsToBePromoted.back();
4772 }
4773
4774 /// \brief Return the index of the original value in the transition.
4775 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
4776 /// c, is at index 0.
getTransitionOriginalValueIdx() const4777 unsigned getTransitionOriginalValueIdx() const {
4778 assert(isa<ExtractElementInst>(Transition) &&
4779 "Other kind of transitions are not supported yet");
4780 return 0;
4781 }
4782
4783 /// \brief Return the index of the index in the transition.
4784 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
4785 /// is at index 1.
getTransitionIdx() const4786 unsigned getTransitionIdx() const {
4787 assert(isa<ExtractElementInst>(Transition) &&
4788 "Other kind of transitions are not supported yet");
4789 return 1;
4790 }
4791
4792 /// \brief Get the type of the transition.
4793 /// This is the type of the original value.
4794 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
4795 /// transition is <2 x i32>.
getTransitionType() const4796 Type *getTransitionType() const {
4797 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
4798 }
4799
4800 /// \brief Promote \p ToBePromoted by moving \p Def downward through.
4801 /// I.e., we have the following sequence:
4802 /// Def = Transition <ty1> a to <ty2>
4803 /// b = ToBePromoted <ty2> Def, ...
4804 /// =>
4805 /// b = ToBePromoted <ty1> a, ...
4806 /// Def = Transition <ty1> ToBePromoted to <ty2>
4807 void promoteImpl(Instruction *ToBePromoted);
4808
4809 /// \brief Check whether or not it is profitable to promote all the
4810 /// instructions enqueued to be promoted.
isProfitableToPromote()4811 bool isProfitableToPromote() {
4812 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
4813 unsigned Index = isa<ConstantInt>(ValIdx)
4814 ? cast<ConstantInt>(ValIdx)->getZExtValue()
4815 : -1;
4816 Type *PromotedType = getTransitionType();
4817
4818 StoreInst *ST = cast<StoreInst>(CombineInst);
4819 unsigned AS = ST->getPointerAddressSpace();
4820 unsigned Align = ST->getAlignment();
4821 // Check if this store is supported.
4822 if (!TLI.allowsMisalignedMemoryAccesses(
4823 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
4824 Align)) {
4825 // If this is not supported, there is no way we can combine
4826 // the extract with the store.
4827 return false;
4828 }
4829
4830 // The scalar chain of computation has to pay for the transition
4831 // scalar to vector.
4832 // The vector chain has to account for the combining cost.
4833 uint64_t ScalarCost =
4834 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
4835 uint64_t VectorCost = StoreExtractCombineCost;
4836 for (const auto &Inst : InstsToBePromoted) {
4837 // Compute the cost.
4838 // By construction, all instructions being promoted are arithmetic ones.
4839 // Moreover, one argument is a constant that can be viewed as a splat
4840 // constant.
4841 Value *Arg0 = Inst->getOperand(0);
4842 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
4843 isa<ConstantFP>(Arg0);
4844 TargetTransformInfo::OperandValueKind Arg0OVK =
4845 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4846 : TargetTransformInfo::OK_AnyValue;
4847 TargetTransformInfo::OperandValueKind Arg1OVK =
4848 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4849 : TargetTransformInfo::OK_AnyValue;
4850 ScalarCost += TTI.getArithmeticInstrCost(
4851 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
4852 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
4853 Arg0OVK, Arg1OVK);
4854 }
4855 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
4856 << ScalarCost << "\nVector: " << VectorCost << '\n');
4857 return ScalarCost > VectorCost;
4858 }
4859
4860 /// \brief Generate a constant vector with \p Val with the same
4861 /// number of elements as the transition.
4862 /// \p UseSplat defines whether or not \p Val should be replicated
4863 /// across the whole vector.
4864 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
4865 /// otherwise we generate a vector with as many undef as possible:
4866 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
4867 /// used at the index of the extract.
getConstantVector(Constant * Val,bool UseSplat) const4868 Value *getConstantVector(Constant *Val, bool UseSplat) const {
4869 unsigned ExtractIdx = UINT_MAX;
4870 if (!UseSplat) {
4871 // If we cannot determine where the constant must be, we have to
4872 // use a splat constant.
4873 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
4874 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
4875 ExtractIdx = CstVal->getSExtValue();
4876 else
4877 UseSplat = true;
4878 }
4879
4880 unsigned End = getTransitionType()->getVectorNumElements();
4881 if (UseSplat)
4882 return ConstantVector::getSplat(End, Val);
4883
4884 SmallVector<Constant *, 4> ConstVec;
4885 UndefValue *UndefVal = UndefValue::get(Val->getType());
4886 for (unsigned Idx = 0; Idx != End; ++Idx) {
4887 if (Idx == ExtractIdx)
4888 ConstVec.push_back(Val);
4889 else
4890 ConstVec.push_back(UndefVal);
4891 }
4892 return ConstantVector::get(ConstVec);
4893 }
4894
4895 /// \brief Check if promoting to a vector type an operand at \p OperandIdx
4896 /// in \p Use can trigger undefined behavior.
canCauseUndefinedBehavior(const Instruction * Use,unsigned OperandIdx)4897 static bool canCauseUndefinedBehavior(const Instruction *Use,
4898 unsigned OperandIdx) {
4899 // This is not safe to introduce undef when the operand is on
4900 // the right hand side of a division-like instruction.
4901 if (OperandIdx != 1)
4902 return false;
4903 switch (Use->getOpcode()) {
4904 default:
4905 return false;
4906 case Instruction::SDiv:
4907 case Instruction::UDiv:
4908 case Instruction::SRem:
4909 case Instruction::URem:
4910 return true;
4911 case Instruction::FDiv:
4912 case Instruction::FRem:
4913 return !Use->hasNoNaNs();
4914 }
4915 llvm_unreachable(nullptr);
4916 }
4917
4918 public:
VectorPromoteHelper(const DataLayout & DL,const TargetLowering & TLI,const TargetTransformInfo & TTI,Instruction * Transition,unsigned CombineCost)4919 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
4920 const TargetTransformInfo &TTI, Instruction *Transition,
4921 unsigned CombineCost)
4922 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
4923 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
4924 assert(Transition && "Do not know how to promote null");
4925 }
4926
4927 /// \brief Check if we can promote \p ToBePromoted to \p Type.
canPromote(const Instruction * ToBePromoted) const4928 bool canPromote(const Instruction *ToBePromoted) const {
4929 // We could support CastInst too.
4930 return isa<BinaryOperator>(ToBePromoted);
4931 }
4932
4933 /// \brief Check if it is profitable to promote \p ToBePromoted
4934 /// by moving downward the transition through.
shouldPromote(const Instruction * ToBePromoted) const4935 bool shouldPromote(const Instruction *ToBePromoted) const {
4936 // Promote only if all the operands can be statically expanded.
4937 // Indeed, we do not want to introduce any new kind of transitions.
4938 for (const Use &U : ToBePromoted->operands()) {
4939 const Value *Val = U.get();
4940 if (Val == getEndOfTransition()) {
4941 // If the use is a division and the transition is on the rhs,
4942 // we cannot promote the operation, otherwise we may create a
4943 // division by zero.
4944 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
4945 return false;
4946 continue;
4947 }
4948 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
4949 !isa<ConstantFP>(Val))
4950 return false;
4951 }
4952 // Check that the resulting operation is legal.
4953 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
4954 if (!ISDOpcode)
4955 return false;
4956 return StressStoreExtract ||
4957 TLI.isOperationLegalOrCustom(
4958 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
4959 }
4960
4961 /// \brief Check whether or not \p Use can be combined
4962 /// with the transition.
4963 /// I.e., is it possible to do Use(Transition) => AnotherUse?
canCombine(const Instruction * Use)4964 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
4965
4966 /// \brief Record \p ToBePromoted as part of the chain to be promoted.
enqueueForPromotion(Instruction * ToBePromoted)4967 void enqueueForPromotion(Instruction *ToBePromoted) {
4968 InstsToBePromoted.push_back(ToBePromoted);
4969 }
4970
4971 /// \brief Set the instruction that will be combined with the transition.
recordCombineInstruction(Instruction * ToBeCombined)4972 void recordCombineInstruction(Instruction *ToBeCombined) {
4973 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
4974 CombineInst = ToBeCombined;
4975 }
4976
4977 /// \brief Promote all the instructions enqueued for promotion if it is
4978 /// is profitable.
4979 /// \return True if the promotion happened, false otherwise.
promote()4980 bool promote() {
4981 // Check if there is something to promote.
4982 // Right now, if we do not have anything to combine with,
4983 // we assume the promotion is not profitable.
4984 if (InstsToBePromoted.empty() || !CombineInst)
4985 return false;
4986
4987 // Check cost.
4988 if (!StressStoreExtract && !isProfitableToPromote())
4989 return false;
4990
4991 // Promote.
4992 for (auto &ToBePromoted : InstsToBePromoted)
4993 promoteImpl(ToBePromoted);
4994 InstsToBePromoted.clear();
4995 return true;
4996 }
4997 };
4998 } // End of anonymous namespace.
4999
promoteImpl(Instruction * ToBePromoted)5000 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5001 // At this point, we know that all the operands of ToBePromoted but Def
5002 // can be statically promoted.
5003 // For Def, we need to use its parameter in ToBePromoted:
5004 // b = ToBePromoted ty1 a
5005 // Def = Transition ty1 b to ty2
5006 // Move the transition down.
5007 // 1. Replace all uses of the promoted operation by the transition.
5008 // = ... b => = ... Def.
5009 assert(ToBePromoted->getType() == Transition->getType() &&
5010 "The type of the result of the transition does not match "
5011 "the final type");
5012 ToBePromoted->replaceAllUsesWith(Transition);
5013 // 2. Update the type of the uses.
5014 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5015 Type *TransitionTy = getTransitionType();
5016 ToBePromoted->mutateType(TransitionTy);
5017 // 3. Update all the operands of the promoted operation with promoted
5018 // operands.
5019 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5020 for (Use &U : ToBePromoted->operands()) {
5021 Value *Val = U.get();
5022 Value *NewVal = nullptr;
5023 if (Val == Transition)
5024 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5025 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5026 isa<ConstantFP>(Val)) {
5027 // Use a splat constant if it is not safe to use undef.
5028 NewVal = getConstantVector(
5029 cast<Constant>(Val),
5030 isa<UndefValue>(Val) ||
5031 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5032 } else
5033 llvm_unreachable("Did you modified shouldPromote and forgot to update "
5034 "this?");
5035 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5036 }
5037 Transition->removeFromParent();
5038 Transition->insertAfter(ToBePromoted);
5039 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5040 }
5041
5042 /// Some targets can do store(extractelement) with one instruction.
5043 /// Try to push the extractelement towards the stores when the target
5044 /// has this feature and this is profitable.
optimizeExtractElementInst(Instruction * Inst)5045 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5046 unsigned CombineCost = UINT_MAX;
5047 if (DisableStoreExtract || !TLI ||
5048 (!StressStoreExtract &&
5049 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5050 Inst->getOperand(1), CombineCost)))
5051 return false;
5052
5053 // At this point we know that Inst is a vector to scalar transition.
5054 // Try to move it down the def-use chain, until:
5055 // - We can combine the transition with its single use
5056 // => we got rid of the transition.
5057 // - We escape the current basic block
5058 // => we would need to check that we are moving it at a cheaper place and
5059 // we do not do that for now.
5060 BasicBlock *Parent = Inst->getParent();
5061 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5062 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5063 // If the transition has more than one use, assume this is not going to be
5064 // beneficial.
5065 while (Inst->hasOneUse()) {
5066 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5067 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5068
5069 if (ToBePromoted->getParent() != Parent) {
5070 DEBUG(dbgs() << "Instruction to promote is in a different block ("
5071 << ToBePromoted->getParent()->getName()
5072 << ") than the transition (" << Parent->getName() << ").\n");
5073 return false;
5074 }
5075
5076 if (VPH.canCombine(ToBePromoted)) {
5077 DEBUG(dbgs() << "Assume " << *Inst << '\n'
5078 << "will be combined with: " << *ToBePromoted << '\n');
5079 VPH.recordCombineInstruction(ToBePromoted);
5080 bool Changed = VPH.promote();
5081 NumStoreExtractExposed += Changed;
5082 return Changed;
5083 }
5084
5085 DEBUG(dbgs() << "Try promoting.\n");
5086 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5087 return false;
5088
5089 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5090
5091 VPH.enqueueForPromotion(ToBePromoted);
5092 Inst = ToBePromoted;
5093 }
5094 return false;
5095 }
5096
optimizeInst(Instruction * I,bool & ModifiedDT)5097 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
5098 // Bail out if we inserted the instruction to prevent optimizations from
5099 // stepping on each other's toes.
5100 if (InsertedInsts.count(I))
5101 return false;
5102
5103 if (PHINode *P = dyn_cast<PHINode>(I)) {
5104 // It is possible for very late stage optimizations (such as SimplifyCFG)
5105 // to introduce PHI nodes too late to be cleaned up. If we detect such a
5106 // trivial PHI, go ahead and zap it here.
5107 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
5108 P->replaceAllUsesWith(V);
5109 P->eraseFromParent();
5110 ++NumPHIsElim;
5111 return true;
5112 }
5113 return false;
5114 }
5115
5116 if (CastInst *CI = dyn_cast<CastInst>(I)) {
5117 // If the source of the cast is a constant, then this should have
5118 // already been constant folded. The only reason NOT to constant fold
5119 // it is if something (e.g. LSR) was careful to place the constant
5120 // evaluation in a block other than then one that uses it (e.g. to hoist
5121 // the address of globals out of a loop). If this is the case, we don't
5122 // want to forward-subst the cast.
5123 if (isa<Constant>(CI->getOperand(0)))
5124 return false;
5125
5126 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
5127 return true;
5128
5129 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
5130 /// Sink a zext or sext into its user blocks if the target type doesn't
5131 /// fit in one register
5132 if (TLI &&
5133 TLI->getTypeAction(CI->getContext(),
5134 TLI->getValueType(*DL, CI->getType())) ==
5135 TargetLowering::TypeExpandInteger) {
5136 return SinkCast(CI);
5137 } else {
5138 bool MadeChange = moveExtToFormExtLoad(I);
5139 return MadeChange | optimizeExtUses(I);
5140 }
5141 }
5142 return false;
5143 }
5144
5145 if (CmpInst *CI = dyn_cast<CmpInst>(I))
5146 if (!TLI || !TLI->hasMultipleConditionRegisters())
5147 return OptimizeCmpExpression(CI);
5148
5149 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5150 stripInvariantGroupMetadata(*LI);
5151 if (TLI) {
5152 bool Modified = optimizeLoadExt(LI);
5153 unsigned AS = LI->getPointerAddressSpace();
5154 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
5155 return Modified;
5156 }
5157 return false;
5158 }
5159
5160 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
5161 stripInvariantGroupMetadata(*SI);
5162 if (TLI) {
5163 unsigned AS = SI->getPointerAddressSpace();
5164 return optimizeMemoryInst(I, SI->getOperand(1),
5165 SI->getOperand(0)->getType(), AS);
5166 }
5167 return false;
5168 }
5169
5170 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
5171
5172 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
5173 BinOp->getOpcode() == Instruction::LShr)) {
5174 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
5175 if (TLI && CI && TLI->hasExtractBitsInsn())
5176 return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
5177
5178 return false;
5179 }
5180
5181 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
5182 if (GEPI->hasAllZeroIndices()) {
5183 /// The GEP operand must be a pointer, so must its result -> BitCast
5184 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
5185 GEPI->getName(), GEPI);
5186 GEPI->replaceAllUsesWith(NC);
5187 GEPI->eraseFromParent();
5188 ++NumGEPsElim;
5189 optimizeInst(NC, ModifiedDT);
5190 return true;
5191 }
5192 return false;
5193 }
5194
5195 if (CallInst *CI = dyn_cast<CallInst>(I))
5196 return optimizeCallInst(CI, ModifiedDT);
5197
5198 if (SelectInst *SI = dyn_cast<SelectInst>(I))
5199 return optimizeSelectInst(SI);
5200
5201 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
5202 return optimizeShuffleVectorInst(SVI);
5203
5204 if (auto *Switch = dyn_cast<SwitchInst>(I))
5205 return optimizeSwitchInst(Switch);
5206
5207 if (isa<ExtractElementInst>(I))
5208 return optimizeExtractElementInst(I);
5209
5210 return false;
5211 }
5212
5213 // In this pass we look for GEP and cast instructions that are used
5214 // across basic blocks and rewrite them to improve basic-block-at-a-time
5215 // selection.
optimizeBlock(BasicBlock & BB,bool & ModifiedDT)5216 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
5217 SunkAddrs.clear();
5218 bool MadeChange = false;
5219
5220 CurInstIterator = BB.begin();
5221 while (CurInstIterator != BB.end()) {
5222 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
5223 if (ModifiedDT)
5224 return true;
5225 }
5226 MadeChange |= dupRetToEnableTailCallOpts(&BB);
5227
5228 return MadeChange;
5229 }
5230
5231 // llvm.dbg.value is far away from the value then iSel may not be able
5232 // handle it properly. iSel will drop llvm.dbg.value if it can not
5233 // find a node corresponding to the value.
placeDbgValues(Function & F)5234 bool CodeGenPrepare::placeDbgValues(Function &F) {
5235 bool MadeChange = false;
5236 for (BasicBlock &BB : F) {
5237 Instruction *PrevNonDbgInst = nullptr;
5238 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
5239 Instruction *Insn = &*BI++;
5240 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
5241 // Leave dbg.values that refer to an alloca alone. These
5242 // instrinsics describe the address of a variable (= the alloca)
5243 // being taken. They should not be moved next to the alloca
5244 // (and to the beginning of the scope), but rather stay close to
5245 // where said address is used.
5246 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
5247 PrevNonDbgInst = Insn;
5248 continue;
5249 }
5250
5251 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
5252 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
5253 // If VI is a phi in a block with an EHPad terminator, we can't insert
5254 // after it.
5255 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
5256 continue;
5257 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
5258 DVI->removeFromParent();
5259 if (isa<PHINode>(VI))
5260 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
5261 else
5262 DVI->insertAfter(VI);
5263 MadeChange = true;
5264 ++NumDbgValueMoved;
5265 }
5266 }
5267 }
5268 return MadeChange;
5269 }
5270
5271 // If there is a sequence that branches based on comparing a single bit
5272 // against zero that can be combined into a single instruction, and the
5273 // target supports folding these into a single instruction, sink the
5274 // mask and compare into the branch uses. Do this before OptimizeBlock ->
5275 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
5276 // searched for.
sinkAndCmp(Function & F)5277 bool CodeGenPrepare::sinkAndCmp(Function &F) {
5278 if (!EnableAndCmpSinking)
5279 return false;
5280 if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
5281 return false;
5282 bool MadeChange = false;
5283 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
5284 BasicBlock *BB = &*I++;
5285
5286 // Does this BB end with the following?
5287 // %andVal = and %val, #single-bit-set
5288 // %icmpVal = icmp %andResult, 0
5289 // br i1 %cmpVal label %dest1, label %dest2"
5290 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
5291 if (!Brcc || !Brcc->isConditional())
5292 continue;
5293 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
5294 if (!Cmp || Cmp->getParent() != BB)
5295 continue;
5296 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
5297 if (!Zero || !Zero->isZero())
5298 continue;
5299 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
5300 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
5301 continue;
5302 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
5303 if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
5304 continue;
5305 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
5306
5307 // Push the "and; icmp" for any users that are conditional branches.
5308 // Since there can only be one branch use per BB, we don't need to keep
5309 // track of which BBs we insert into.
5310 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
5311 UI != E; ) {
5312 Use &TheUse = *UI;
5313 // Find brcc use.
5314 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
5315 ++UI;
5316 if (!BrccUser || !BrccUser->isConditional())
5317 continue;
5318 BasicBlock *UserBB = BrccUser->getParent();
5319 if (UserBB == BB) continue;
5320 DEBUG(dbgs() << "found Brcc use\n");
5321
5322 // Sink the "and; icmp" to use.
5323 MadeChange = true;
5324 BinaryOperator *NewAnd =
5325 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
5326 BrccUser);
5327 CmpInst *NewCmp =
5328 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
5329 "", BrccUser);
5330 TheUse = NewCmp;
5331 ++NumAndCmpsMoved;
5332 DEBUG(BrccUser->getParent()->dump());
5333 }
5334 }
5335 return MadeChange;
5336 }
5337
5338 /// \brief Retrieve the probabilities of a conditional branch. Returns true on
5339 /// success, or returns false if no or invalid metadata was found.
extractBranchMetadata(BranchInst * BI,uint64_t & ProbTrue,uint64_t & ProbFalse)5340 static bool extractBranchMetadata(BranchInst *BI,
5341 uint64_t &ProbTrue, uint64_t &ProbFalse) {
5342 assert(BI->isConditional() &&
5343 "Looking for probabilities on unconditional branch?");
5344 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
5345 if (!ProfileData || ProfileData->getNumOperands() != 3)
5346 return false;
5347
5348 const auto *CITrue =
5349 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
5350 const auto *CIFalse =
5351 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
5352 if (!CITrue || !CIFalse)
5353 return false;
5354
5355 ProbTrue = CITrue->getValue().getZExtValue();
5356 ProbFalse = CIFalse->getValue().getZExtValue();
5357
5358 return true;
5359 }
5360
5361 /// \brief Scale down both weights to fit into uint32_t.
scaleWeights(uint64_t & NewTrue,uint64_t & NewFalse)5362 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
5363 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
5364 uint32_t Scale = (NewMax / UINT32_MAX) + 1;
5365 NewTrue = NewTrue / Scale;
5366 NewFalse = NewFalse / Scale;
5367 }
5368
5369 /// \brief Some targets prefer to split a conditional branch like:
5370 /// \code
5371 /// %0 = icmp ne i32 %a, 0
5372 /// %1 = icmp ne i32 %b, 0
5373 /// %or.cond = or i1 %0, %1
5374 /// br i1 %or.cond, label %TrueBB, label %FalseBB
5375 /// \endcode
5376 /// into multiple branch instructions like:
5377 /// \code
5378 /// bb1:
5379 /// %0 = icmp ne i32 %a, 0
5380 /// br i1 %0, label %TrueBB, label %bb2
5381 /// bb2:
5382 /// %1 = icmp ne i32 %b, 0
5383 /// br i1 %1, label %TrueBB, label %FalseBB
5384 /// \endcode
5385 /// This usually allows instruction selection to do even further optimizations
5386 /// and combine the compare with the branch instruction. Currently this is
5387 /// applied for targets which have "cheap" jump instructions.
5388 ///
5389 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
5390 ///
splitBranchCondition(Function & F)5391 bool CodeGenPrepare::splitBranchCondition(Function &F) {
5392 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
5393 return false;
5394
5395 bool MadeChange = false;
5396 for (auto &BB : F) {
5397 // Does this BB end with the following?
5398 // %cond1 = icmp|fcmp|binary instruction ...
5399 // %cond2 = icmp|fcmp|binary instruction ...
5400 // %cond.or = or|and i1 %cond1, cond2
5401 // br i1 %cond.or label %dest1, label %dest2"
5402 BinaryOperator *LogicOp;
5403 BasicBlock *TBB, *FBB;
5404 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
5405 continue;
5406
5407 auto *Br1 = cast<BranchInst>(BB.getTerminator());
5408 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
5409 continue;
5410
5411 unsigned Opc;
5412 Value *Cond1, *Cond2;
5413 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
5414 m_OneUse(m_Value(Cond2)))))
5415 Opc = Instruction::And;
5416 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
5417 m_OneUse(m_Value(Cond2)))))
5418 Opc = Instruction::Or;
5419 else
5420 continue;
5421
5422 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
5423 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
5424 continue;
5425
5426 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
5427
5428 // Create a new BB.
5429 auto *InsertBefore = std::next(Function::iterator(BB))
5430 .getNodePtrUnchecked();
5431 auto TmpBB = BasicBlock::Create(BB.getContext(),
5432 BB.getName() + ".cond.split",
5433 BB.getParent(), InsertBefore);
5434
5435 // Update original basic block by using the first condition directly by the
5436 // branch instruction and removing the no longer needed and/or instruction.
5437 Br1->setCondition(Cond1);
5438 LogicOp->eraseFromParent();
5439
5440 // Depending on the conditon we have to either replace the true or the false
5441 // successor of the original branch instruction.
5442 if (Opc == Instruction::And)
5443 Br1->setSuccessor(0, TmpBB);
5444 else
5445 Br1->setSuccessor(1, TmpBB);
5446
5447 // Fill in the new basic block.
5448 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
5449 if (auto *I = dyn_cast<Instruction>(Cond2)) {
5450 I->removeFromParent();
5451 I->insertBefore(Br2);
5452 }
5453
5454 // Update PHI nodes in both successors. The original BB needs to be
5455 // replaced in one succesor's PHI nodes, because the branch comes now from
5456 // the newly generated BB (NewBB). In the other successor we need to add one
5457 // incoming edge to the PHI nodes, because both branch instructions target
5458 // now the same successor. Depending on the original branch condition
5459 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
5460 // we perfrom the correct update for the PHI nodes.
5461 // This doesn't change the successor order of the just created branch
5462 // instruction (or any other instruction).
5463 if (Opc == Instruction::Or)
5464 std::swap(TBB, FBB);
5465
5466 // Replace the old BB with the new BB.
5467 for (auto &I : *TBB) {
5468 PHINode *PN = dyn_cast<PHINode>(&I);
5469 if (!PN)
5470 break;
5471 int i;
5472 while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
5473 PN->setIncomingBlock(i, TmpBB);
5474 }
5475
5476 // Add another incoming edge form the new BB.
5477 for (auto &I : *FBB) {
5478 PHINode *PN = dyn_cast<PHINode>(&I);
5479 if (!PN)
5480 break;
5481 auto *Val = PN->getIncomingValueForBlock(&BB);
5482 PN->addIncoming(Val, TmpBB);
5483 }
5484
5485 // Update the branch weights (from SelectionDAGBuilder::
5486 // FindMergedConditions).
5487 if (Opc == Instruction::Or) {
5488 // Codegen X | Y as:
5489 // BB1:
5490 // jmp_if_X TBB
5491 // jmp TmpBB
5492 // TmpBB:
5493 // jmp_if_Y TBB
5494 // jmp FBB
5495 //
5496
5497 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
5498 // The requirement is that
5499 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
5500 // = TrueProb for orignal BB.
5501 // Assuming the orignal weights are A and B, one choice is to set BB1's
5502 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
5503 // assumes that
5504 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
5505 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
5506 // TmpBB, but the math is more complicated.
5507 uint64_t TrueWeight, FalseWeight;
5508 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5509 uint64_t NewTrueWeight = TrueWeight;
5510 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
5511 scaleWeights(NewTrueWeight, NewFalseWeight);
5512 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5513 .createBranchWeights(TrueWeight, FalseWeight));
5514
5515 NewTrueWeight = TrueWeight;
5516 NewFalseWeight = 2 * FalseWeight;
5517 scaleWeights(NewTrueWeight, NewFalseWeight);
5518 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5519 .createBranchWeights(TrueWeight, FalseWeight));
5520 }
5521 } else {
5522 // Codegen X & Y as:
5523 // BB1:
5524 // jmp_if_X TmpBB
5525 // jmp FBB
5526 // TmpBB:
5527 // jmp_if_Y TBB
5528 // jmp FBB
5529 //
5530 // This requires creation of TmpBB after CurBB.
5531
5532 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
5533 // The requirement is that
5534 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
5535 // = FalseProb for orignal BB.
5536 // Assuming the orignal weights are A and B, one choice is to set BB1's
5537 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
5538 // assumes that
5539 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
5540 uint64_t TrueWeight, FalseWeight;
5541 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5542 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
5543 uint64_t NewFalseWeight = FalseWeight;
5544 scaleWeights(NewTrueWeight, NewFalseWeight);
5545 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5546 .createBranchWeights(TrueWeight, FalseWeight));
5547
5548 NewTrueWeight = 2 * TrueWeight;
5549 NewFalseWeight = FalseWeight;
5550 scaleWeights(NewTrueWeight, NewFalseWeight);
5551 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5552 .createBranchWeights(TrueWeight, FalseWeight));
5553 }
5554 }
5555
5556 // Note: No point in getting fancy here, since the DT info is never
5557 // available to CodeGenPrepare.
5558 ModifiedDT = true;
5559
5560 MadeChange = true;
5561
5562 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
5563 TmpBB->dump());
5564 }
5565 return MadeChange;
5566 }
5567
stripInvariantGroupMetadata(Instruction & I)5568 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
5569 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
5570 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
5571 }
5572