1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/CodeGen/Analysis.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/CodeGen/Analysis.h"
49 #include "llvm/CodeGen/FastISel.h"
50 #include "llvm/CodeGen/FunctionLoweringInfo.h"
51 #include "llvm/CodeGen/MachineFrameInfo.h"
52 #include "llvm/CodeGen/MachineInstrBuilder.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Mangler.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetInstrInfo.h"
68 #include "llvm/Target/TargetLowering.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetSubtargetInfo.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
76                                          "target-independent selector");
77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
78                                     "target-specific selector");
79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
80 
setAttributes(ImmutableCallSite * CS,unsigned AttrIdx)81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
82                                            unsigned AttrIdx) {
83   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
84   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
85   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
86   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
87   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
88   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
89   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
90   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
91   Alignment = CS->getParamAlignment(AttrIdx);
92 }
93 
94 /// Set the current block to which generated machine instructions will be
95 /// appended, and clear the local CSE map.
startNewBlock()96 void FastISel::startNewBlock() {
97   LocalValueMap.clear();
98 
99   // Instructions are appended to FuncInfo.MBB. If the basic block already
100   // contains labels or copies, use the last instruction as the last local
101   // value.
102   EmitStartPt = nullptr;
103   if (!FuncInfo.MBB->empty())
104     EmitStartPt = &FuncInfo.MBB->back();
105   LastLocalValue = EmitStartPt;
106 }
107 
lowerArguments()108 bool FastISel::lowerArguments() {
109   if (!FuncInfo.CanLowerReturn)
110     // Fallback to SDISel argument lowering code to deal with sret pointer
111     // parameter.
112     return false;
113 
114   if (!fastLowerArguments())
115     return false;
116 
117   // Enter arguments into ValueMap for uses in non-entry BBs.
118   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
119                                     E = FuncInfo.Fn->arg_end();
120        I != E; ++I) {
121     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
122     assert(VI != LocalValueMap.end() && "Missed an argument?");
123     FuncInfo.ValueMap[&*I] = VI->second;
124   }
125   return true;
126 }
127 
flushLocalValueMap()128 void FastISel::flushLocalValueMap() {
129   LocalValueMap.clear();
130   LastLocalValue = EmitStartPt;
131   recomputeInsertPt();
132   SavedInsertPt = FuncInfo.InsertPt;
133 }
134 
hasTrivialKill(const Value * V)135 bool FastISel::hasTrivialKill(const Value *V) {
136   // Don't consider constants or arguments to have trivial kills.
137   const Instruction *I = dyn_cast<Instruction>(V);
138   if (!I)
139     return false;
140 
141   // No-op casts are trivially coalesced by fast-isel.
142   if (const auto *Cast = dyn_cast<CastInst>(I))
143     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
144         !hasTrivialKill(Cast->getOperand(0)))
145       return false;
146 
147   // Even the value might have only one use in the LLVM IR, it is possible that
148   // FastISel might fold the use into another instruction and now there is more
149   // than one use at the Machine Instruction level.
150   unsigned Reg = lookUpRegForValue(V);
151   if (Reg && !MRI.use_empty(Reg))
152     return false;
153 
154   // GEPs with all zero indices are trivially coalesced by fast-isel.
155   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
156     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
157       return false;
158 
159   // Only instructions with a single use in the same basic block are considered
160   // to have trivial kills.
161   return I->hasOneUse() &&
162          !(I->getOpcode() == Instruction::BitCast ||
163            I->getOpcode() == Instruction::PtrToInt ||
164            I->getOpcode() == Instruction::IntToPtr) &&
165          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
166 }
167 
getRegForValue(const Value * V)168 unsigned FastISel::getRegForValue(const Value *V) {
169   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
170   // Don't handle non-simple values in FastISel.
171   if (!RealVT.isSimple())
172     return 0;
173 
174   // Ignore illegal types. We must do this before looking up the value
175   // in ValueMap because Arguments are given virtual registers regardless
176   // of whether FastISel can handle them.
177   MVT VT = RealVT.getSimpleVT();
178   if (!TLI.isTypeLegal(VT)) {
179     // Handle integer promotions, though, because they're common and easy.
180     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
181       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
182     else
183       return 0;
184   }
185 
186   // Look up the value to see if we already have a register for it.
187   unsigned Reg = lookUpRegForValue(V);
188   if (Reg)
189     return Reg;
190 
191   // In bottom-up mode, just create the virtual register which will be used
192   // to hold the value. It will be materialized later.
193   if (isa<Instruction>(V) &&
194       (!isa<AllocaInst>(V) ||
195        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
196     return FuncInfo.InitializeRegForValue(V);
197 
198   SavePoint SaveInsertPt = enterLocalValueArea();
199 
200   // Materialize the value in a register. Emit any instructions in the
201   // local value area.
202   Reg = materializeRegForValue(V, VT);
203 
204   leaveLocalValueArea(SaveInsertPt);
205 
206   return Reg;
207 }
208 
materializeConstant(const Value * V,MVT VT)209 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
210   unsigned Reg = 0;
211   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
212     if (CI->getValue().getActiveBits() <= 64)
213       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
214   } else if (isa<AllocaInst>(V))
215     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
216   else if (isa<ConstantPointerNull>(V))
217     // Translate this as an integer zero so that it can be
218     // local-CSE'd with actual integer zeros.
219     Reg = getRegForValue(
220         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
221   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
222     if (CF->isNullValue())
223       Reg = fastMaterializeFloatZero(CF);
224     else
225       // Try to emit the constant directly.
226       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
227 
228     if (!Reg) {
229       // Try to emit the constant by using an integer constant with a cast.
230       const APFloat &Flt = CF->getValueAPF();
231       EVT IntVT = TLI.getPointerTy(DL);
232 
233       uint64_t x[2];
234       uint32_t IntBitWidth = IntVT.getSizeInBits();
235       bool isExact;
236       (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
237                                  APFloat::rmTowardZero, &isExact);
238       if (isExact) {
239         APInt IntVal(IntBitWidth, x);
240 
241         unsigned IntegerReg =
242             getRegForValue(ConstantInt::get(V->getContext(), IntVal));
243         if (IntegerReg != 0)
244           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
245                            /*Kill=*/false);
246       }
247     }
248   } else if (const auto *Op = dyn_cast<Operator>(V)) {
249     if (!selectOperator(Op, Op->getOpcode()))
250       if (!isa<Instruction>(Op) ||
251           !fastSelectInstruction(cast<Instruction>(Op)))
252         return 0;
253     Reg = lookUpRegForValue(Op);
254   } else if (isa<UndefValue>(V)) {
255     Reg = createResultReg(TLI.getRegClassFor(VT));
256     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
257             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
258   }
259   return Reg;
260 }
261 
262 /// Helper for getRegForValue. This function is called when the value isn't
263 /// already available in a register and must be materialized with new
264 /// instructions.
materializeRegForValue(const Value * V,MVT VT)265 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
266   unsigned Reg = 0;
267   // Give the target-specific code a try first.
268   if (isa<Constant>(V))
269     Reg = fastMaterializeConstant(cast<Constant>(V));
270 
271   // If target-specific code couldn't or didn't want to handle the value, then
272   // give target-independent code a try.
273   if (!Reg)
274     Reg = materializeConstant(V, VT);
275 
276   // Don't cache constant materializations in the general ValueMap.
277   // To do so would require tracking what uses they dominate.
278   if (Reg) {
279     LocalValueMap[V] = Reg;
280     LastLocalValue = MRI.getVRegDef(Reg);
281   }
282   return Reg;
283 }
284 
lookUpRegForValue(const Value * V)285 unsigned FastISel::lookUpRegForValue(const Value *V) {
286   // Look up the value to see if we already have a register for it. We
287   // cache values defined by Instructions across blocks, and other values
288   // only locally. This is because Instructions already have the SSA
289   // def-dominates-use requirement enforced.
290   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
291   if (I != FuncInfo.ValueMap.end())
292     return I->second;
293   return LocalValueMap[V];
294 }
295 
updateValueMap(const Value * I,unsigned Reg,unsigned NumRegs)296 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
297   if (!isa<Instruction>(I)) {
298     LocalValueMap[I] = Reg;
299     return;
300   }
301 
302   unsigned &AssignedReg = FuncInfo.ValueMap[I];
303   if (AssignedReg == 0)
304     // Use the new register.
305     AssignedReg = Reg;
306   else if (Reg != AssignedReg) {
307     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
308     for (unsigned i = 0; i < NumRegs; i++)
309       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
310 
311     AssignedReg = Reg;
312   }
313 }
314 
getRegForGEPIndex(const Value * Idx)315 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
316   unsigned IdxN = getRegForValue(Idx);
317   if (IdxN == 0)
318     // Unhandled operand. Halt "fast" selection and bail.
319     return std::pair<unsigned, bool>(0, false);
320 
321   bool IdxNIsKill = hasTrivialKill(Idx);
322 
323   // If the index is smaller or larger than intptr_t, truncate or extend it.
324   MVT PtrVT = TLI.getPointerTy(DL);
325   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
326   if (IdxVT.bitsLT(PtrVT)) {
327     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
328                       IdxNIsKill);
329     IdxNIsKill = true;
330   } else if (IdxVT.bitsGT(PtrVT)) {
331     IdxN =
332         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
333     IdxNIsKill = true;
334   }
335   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
336 }
337 
recomputeInsertPt()338 void FastISel::recomputeInsertPt() {
339   if (getLastLocalValue()) {
340     FuncInfo.InsertPt = getLastLocalValue();
341     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
342     ++FuncInfo.InsertPt;
343   } else
344     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
345 
346   // Now skip past any EH_LABELs, which must remain at the beginning.
347   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
348          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
349     ++FuncInfo.InsertPt;
350 }
351 
removeDeadCode(MachineBasicBlock::iterator I,MachineBasicBlock::iterator E)352 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
353                               MachineBasicBlock::iterator E) {
354   assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
355   while (I != E) {
356     MachineInstr *Dead = &*I;
357     ++I;
358     Dead->eraseFromParent();
359     ++NumFastIselDead;
360   }
361   recomputeInsertPt();
362 }
363 
enterLocalValueArea()364 FastISel::SavePoint FastISel::enterLocalValueArea() {
365   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
366   DebugLoc OldDL = DbgLoc;
367   recomputeInsertPt();
368   DbgLoc = DebugLoc();
369   SavePoint SP = {OldInsertPt, OldDL};
370   return SP;
371 }
372 
leaveLocalValueArea(SavePoint OldInsertPt)373 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
374   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
375     LastLocalValue = std::prev(FuncInfo.InsertPt);
376 
377   // Restore the previous insert position.
378   FuncInfo.InsertPt = OldInsertPt.InsertPt;
379   DbgLoc = OldInsertPt.DL;
380 }
381 
selectBinaryOp(const User * I,unsigned ISDOpcode)382 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
383   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
384   if (VT == MVT::Other || !VT.isSimple())
385     // Unhandled type. Halt "fast" selection and bail.
386     return false;
387 
388   // We only handle legal types. For example, on x86-32 the instruction
389   // selector contains all of the 64-bit instructions from x86-64,
390   // under the assumption that i64 won't be used if the target doesn't
391   // support it.
392   if (!TLI.isTypeLegal(VT)) {
393     // MVT::i1 is special. Allow AND, OR, or XOR because they
394     // don't require additional zeroing, which makes them easy.
395     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
396                           ISDOpcode == ISD::XOR))
397       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
398     else
399       return false;
400   }
401 
402   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
403   // we don't have anything that canonicalizes operand order.
404   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
405     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
406       unsigned Op1 = getRegForValue(I->getOperand(1));
407       if (!Op1)
408         return false;
409       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
410 
411       unsigned ResultReg =
412           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
413                        CI->getZExtValue(), VT.getSimpleVT());
414       if (!ResultReg)
415         return false;
416 
417       // We successfully emitted code for the given LLVM Instruction.
418       updateValueMap(I, ResultReg);
419       return true;
420     }
421 
422   unsigned Op0 = getRegForValue(I->getOperand(0));
423   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
424     return false;
425   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
426 
427   // Check if the second operand is a constant and handle it appropriately.
428   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
429     uint64_t Imm = CI->getSExtValue();
430 
431     // Transform "sdiv exact X, 8" -> "sra X, 3".
432     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
433         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
434       Imm = Log2_64(Imm);
435       ISDOpcode = ISD::SRA;
436     }
437 
438     // Transform "urem x, pow2" -> "and x, pow2-1".
439     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
440         isPowerOf2_64(Imm)) {
441       --Imm;
442       ISDOpcode = ISD::AND;
443     }
444 
445     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
446                                       Op0IsKill, Imm, VT.getSimpleVT());
447     if (!ResultReg)
448       return false;
449 
450     // We successfully emitted code for the given LLVM Instruction.
451     updateValueMap(I, ResultReg);
452     return true;
453   }
454 
455   // Check if the second operand is a constant float.
456   if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
457     unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
458                                      ISDOpcode, Op0, Op0IsKill, CF);
459     if (ResultReg) {
460       // We successfully emitted code for the given LLVM Instruction.
461       updateValueMap(I, ResultReg);
462       return true;
463     }
464   }
465 
466   unsigned Op1 = getRegForValue(I->getOperand(1));
467   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
468     return false;
469   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
470 
471   // Now we have both operands in registers. Emit the instruction.
472   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
473                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
474   if (!ResultReg)
475     // Target-specific code wasn't able to find a machine opcode for
476     // the given ISD opcode and type. Halt "fast" selection and bail.
477     return false;
478 
479   // We successfully emitted code for the given LLVM Instruction.
480   updateValueMap(I, ResultReg);
481   return true;
482 }
483 
selectGetElementPtr(const User * I)484 bool FastISel::selectGetElementPtr(const User *I) {
485   unsigned N = getRegForValue(I->getOperand(0));
486   if (!N) // Unhandled operand. Halt "fast" selection and bail.
487     return false;
488   bool NIsKill = hasTrivialKill(I->getOperand(0));
489 
490   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
491   // into a single N = N + TotalOffset.
492   uint64_t TotalOffs = 0;
493   // FIXME: What's a good SWAG number for MaxOffs?
494   uint64_t MaxOffs = 2048;
495   Type *Ty = I->getOperand(0)->getType();
496   MVT VT = TLI.getPointerTy(DL);
497   for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
498                                             E = I->op_end();
499        OI != E; ++OI) {
500     const Value *Idx = *OI;
501     if (auto *StTy = dyn_cast<StructType>(Ty)) {
502       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
503       if (Field) {
504         // N = N + Offset
505         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
506         if (TotalOffs >= MaxOffs) {
507           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
508           if (!N) // Unhandled operand. Halt "fast" selection and bail.
509             return false;
510           NIsKill = true;
511           TotalOffs = 0;
512         }
513       }
514       Ty = StTy->getElementType(Field);
515     } else {
516       Ty = cast<SequentialType>(Ty)->getElementType();
517 
518       // If this is a constant subscript, handle it quickly.
519       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
520         if (CI->isZero())
521           continue;
522         // N = N + Offset
523         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
524         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
525         if (TotalOffs >= MaxOffs) {
526           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
527           if (!N) // Unhandled operand. Halt "fast" selection and bail.
528             return false;
529           NIsKill = true;
530           TotalOffs = 0;
531         }
532         continue;
533       }
534       if (TotalOffs) {
535         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
536         if (!N) // Unhandled operand. Halt "fast" selection and bail.
537           return false;
538         NIsKill = true;
539         TotalOffs = 0;
540       }
541 
542       // N = N + Idx * ElementSize;
543       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
544       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
545       unsigned IdxN = Pair.first;
546       bool IdxNIsKill = Pair.second;
547       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
548         return false;
549 
550       if (ElementSize != 1) {
551         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
552         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
553           return false;
554         IdxNIsKill = true;
555       }
556       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
557       if (!N) // Unhandled operand. Halt "fast" selection and bail.
558         return false;
559     }
560   }
561   if (TotalOffs) {
562     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
563     if (!N) // Unhandled operand. Halt "fast" selection and bail.
564       return false;
565   }
566 
567   // We successfully emitted code for the given LLVM Instruction.
568   updateValueMap(I, N);
569   return true;
570 }
571 
addStackMapLiveVars(SmallVectorImpl<MachineOperand> & Ops,const CallInst * CI,unsigned StartIdx)572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
573                                    const CallInst *CI, unsigned StartIdx) {
574   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
575     Value *Val = CI->getArgOperand(i);
576     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
577     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
578       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
579       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
580     } else if (isa<ConstantPointerNull>(Val)) {
581       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
582       Ops.push_back(MachineOperand::CreateImm(0));
583     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
584       // Values coming from a stack location also require a sepcial encoding,
585       // but that is added later on by the target specific frame index
586       // elimination implementation.
587       auto SI = FuncInfo.StaticAllocaMap.find(AI);
588       if (SI != FuncInfo.StaticAllocaMap.end())
589         Ops.push_back(MachineOperand::CreateFI(SI->second));
590       else
591         return false;
592     } else {
593       unsigned Reg = getRegForValue(Val);
594       if (!Reg)
595         return false;
596       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
597     }
598   }
599   return true;
600 }
601 
selectStackmap(const CallInst * I)602 bool FastISel::selectStackmap(const CallInst *I) {
603   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
604   //                                  [live variables...])
605   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
606          "Stackmap cannot return a value.");
607 
608   // The stackmap intrinsic only records the live variables (the arguments
609   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
610   // intrinsic, this won't be lowered to a function call. This means we don't
611   // have to worry about calling conventions and target-specific lowering code.
612   // Instead we perform the call lowering right here.
613   //
614   // CALLSEQ_START(0...)
615   // STACKMAP(id, nbytes, ...)
616   // CALLSEQ_END(0, 0)
617   //
618   SmallVector<MachineOperand, 32> Ops;
619 
620   // Add the <id> and <numBytes> constants.
621   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
622          "Expected a constant integer.");
623   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
624   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
625 
626   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
627          "Expected a constant integer.");
628   const auto *NumBytes =
629       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
630   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
631 
632   // Push live variables for the stack map (skipping the first two arguments
633   // <id> and <numBytes>).
634   if (!addStackMapLiveVars(Ops, I, 2))
635     return false;
636 
637   // We are not adding any register mask info here, because the stackmap doesn't
638   // clobber anything.
639 
640   // Add scratch registers as implicit def and early clobber.
641   CallingConv::ID CC = I->getCallingConv();
642   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
643   for (unsigned i = 0; ScratchRegs[i]; ++i)
644     Ops.push_back(MachineOperand::CreateReg(
645         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
646         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
647 
648   // Issue CALLSEQ_START
649   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
650   auto Builder =
651       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
652   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
653   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
654     Builder.addImm(0);
655 
656   // Issue STACKMAP.
657   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
658                                     TII.get(TargetOpcode::STACKMAP));
659   for (auto const &MO : Ops)
660     MIB.addOperand(MO);
661 
662   // Issue CALLSEQ_END
663   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
664   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
665       .addImm(0)
666       .addImm(0);
667 
668   // Inform the Frame Information that we have a stackmap in this function.
669   FuncInfo.MF->getFrameInfo()->setHasStackMap();
670 
671   return true;
672 }
673 
674 /// \brief Lower an argument list according to the target calling convention.
675 ///
676 /// This is a helper for lowering intrinsics that follow a target calling
677 /// convention or require stack pointer adjustment. Only a subset of the
678 /// intrinsic's operands need to participate in the calling convention.
lowerCallOperands(const CallInst * CI,unsigned ArgIdx,unsigned NumArgs,const Value * Callee,bool ForceRetVoidTy,CallLoweringInfo & CLI)679 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
680                                  unsigned NumArgs, const Value *Callee,
681                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
682   ArgListTy Args;
683   Args.reserve(NumArgs);
684 
685   // Populate the argument list.
686   // Attributes for args start at offset 1, after the return attribute.
687   ImmutableCallSite CS(CI);
688   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
689        ArgI != ArgE; ++ArgI) {
690     Value *V = CI->getOperand(ArgI);
691 
692     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
693 
694     ArgListEntry Entry;
695     Entry.Val = V;
696     Entry.Ty = V->getType();
697     Entry.setAttributes(&CS, AttrI);
698     Args.push_back(Entry);
699   }
700 
701   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
702                                : CI->getType();
703   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
704 
705   return lowerCallTo(CLI);
706 }
707 
setCallee(const DataLayout & DL,MCContext & Ctx,CallingConv::ID CC,Type * ResultTy,const char * Target,ArgListTy && ArgsList,unsigned FixedArgs)708 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
709     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
710     const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
711   SmallString<32> MangledName;
712   Mangler::getNameWithPrefix(MangledName, Target, DL);
713   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
714   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
715 }
716 
selectPatchpoint(const CallInst * I)717 bool FastISel::selectPatchpoint(const CallInst *I) {
718   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
719   //                                                 i32 <numBytes>,
720   //                                                 i8* <target>,
721   //                                                 i32 <numArgs>,
722   //                                                 [Args...],
723   //                                                 [live variables...])
724   CallingConv::ID CC = I->getCallingConv();
725   bool IsAnyRegCC = CC == CallingConv::AnyReg;
726   bool HasDef = !I->getType()->isVoidTy();
727   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
728 
729   // Get the real number of arguments participating in the call <numArgs>
730   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
731          "Expected a constant integer.");
732   const auto *NumArgsVal =
733       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
734   unsigned NumArgs = NumArgsVal->getZExtValue();
735 
736   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
737   // This includes all meta-operands up to but not including CC.
738   unsigned NumMetaOpers = PatchPointOpers::CCPos;
739   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
740          "Not enough arguments provided to the patchpoint intrinsic");
741 
742   // For AnyRegCC the arguments are lowered later on manually.
743   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
744   CallLoweringInfo CLI;
745   CLI.setIsPatchPoint();
746   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
747     return false;
748 
749   assert(CLI.Call && "No call instruction specified.");
750 
751   SmallVector<MachineOperand, 32> Ops;
752 
753   // Add an explicit result reg if we use the anyreg calling convention.
754   if (IsAnyRegCC && HasDef) {
755     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
756     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
757     CLI.NumResultRegs = 1;
758     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
759   }
760 
761   // Add the <id> and <numBytes> constants.
762   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
763          "Expected a constant integer.");
764   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
765   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
766 
767   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
768          "Expected a constant integer.");
769   const auto *NumBytes =
770       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
771   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
772 
773   // Add the call target.
774   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
775     uint64_t CalleeConstAddr =
776       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
777     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
778   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
779     if (C->getOpcode() == Instruction::IntToPtr) {
780       uint64_t CalleeConstAddr =
781         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
782       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
783     } else
784       llvm_unreachable("Unsupported ConstantExpr.");
785   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
786     Ops.push_back(MachineOperand::CreateGA(GV, 0));
787   } else if (isa<ConstantPointerNull>(Callee))
788     Ops.push_back(MachineOperand::CreateImm(0));
789   else
790     llvm_unreachable("Unsupported callee address.");
791 
792   // Adjust <numArgs> to account for any arguments that have been passed on
793   // the stack instead.
794   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
795   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
796 
797   // Add the calling convention
798   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
799 
800   // Add the arguments we omitted previously. The register allocator should
801   // place these in any free register.
802   if (IsAnyRegCC) {
803     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
804       unsigned Reg = getRegForValue(I->getArgOperand(i));
805       if (!Reg)
806         return false;
807       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
808     }
809   }
810 
811   // Push the arguments from the call instruction.
812   for (auto Reg : CLI.OutRegs)
813     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
814 
815   // Push live variables for the stack map.
816   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
817     return false;
818 
819   // Push the register mask info.
820   Ops.push_back(MachineOperand::CreateRegMask(
821       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
822 
823   // Add scratch registers as implicit def and early clobber.
824   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
825   for (unsigned i = 0; ScratchRegs[i]; ++i)
826     Ops.push_back(MachineOperand::CreateReg(
827         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
828         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
829 
830   // Add implicit defs (return values).
831   for (auto Reg : CLI.InRegs)
832     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
833                                             /*IsImpl=*/true));
834 
835   // Insert the patchpoint instruction before the call generated by the target.
836   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
837                                     TII.get(TargetOpcode::PATCHPOINT));
838 
839   for (auto &MO : Ops)
840     MIB.addOperand(MO);
841 
842   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
843 
844   // Delete the original call instruction.
845   CLI.Call->eraseFromParent();
846 
847   // Inform the Frame Information that we have a patchpoint in this function.
848   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
849 
850   if (CLI.NumResultRegs)
851     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
852   return true;
853 }
854 
855 /// Returns an AttributeSet representing the attributes applied to the return
856 /// value of the given call.
getReturnAttrs(FastISel::CallLoweringInfo & CLI)857 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
858   SmallVector<Attribute::AttrKind, 2> Attrs;
859   if (CLI.RetSExt)
860     Attrs.push_back(Attribute::SExt);
861   if (CLI.RetZExt)
862     Attrs.push_back(Attribute::ZExt);
863   if (CLI.IsInReg)
864     Attrs.push_back(Attribute::InReg);
865 
866   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
867                            Attrs);
868 }
869 
lowerCallTo(const CallInst * CI,const char * SymName,unsigned NumArgs)870 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
871                            unsigned NumArgs) {
872   MCContext &Ctx = MF->getContext();
873   SmallString<32> MangledName;
874   Mangler::getNameWithPrefix(MangledName, SymName, DL);
875   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
876   return lowerCallTo(CI, Sym, NumArgs);
877 }
878 
lowerCallTo(const CallInst * CI,MCSymbol * Symbol,unsigned NumArgs)879 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
880                            unsigned NumArgs) {
881   ImmutableCallSite CS(CI);
882 
883   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
884   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
885   Type *RetTy = FTy->getReturnType();
886 
887   ArgListTy Args;
888   Args.reserve(NumArgs);
889 
890   // Populate the argument list.
891   // Attributes for args start at offset 1, after the return attribute.
892   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
893     Value *V = CI->getOperand(ArgI);
894 
895     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
896 
897     ArgListEntry Entry;
898     Entry.Val = V;
899     Entry.Ty = V->getType();
900     Entry.setAttributes(&CS, ArgI + 1);
901     Args.push_back(Entry);
902   }
903 
904   CallLoweringInfo CLI;
905   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
906 
907   return lowerCallTo(CLI);
908 }
909 
lowerCallTo(CallLoweringInfo & CLI)910 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
911   // Handle the incoming return values from the call.
912   CLI.clearIns();
913   SmallVector<EVT, 4> RetTys;
914   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
915 
916   SmallVector<ISD::OutputArg, 4> Outs;
917   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
918 
919   bool CanLowerReturn = TLI.CanLowerReturn(
920       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
921 
922   // FIXME: sret demotion isn't supported yet - bail out.
923   if (!CanLowerReturn)
924     return false;
925 
926   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
927     EVT VT = RetTys[I];
928     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
929     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
930     for (unsigned i = 0; i != NumRegs; ++i) {
931       ISD::InputArg MyFlags;
932       MyFlags.VT = RegisterVT;
933       MyFlags.ArgVT = VT;
934       MyFlags.Used = CLI.IsReturnValueUsed;
935       if (CLI.RetSExt)
936         MyFlags.Flags.setSExt();
937       if (CLI.RetZExt)
938         MyFlags.Flags.setZExt();
939       if (CLI.IsInReg)
940         MyFlags.Flags.setInReg();
941       CLI.Ins.push_back(MyFlags);
942     }
943   }
944 
945   // Handle all of the outgoing arguments.
946   CLI.clearOuts();
947   for (auto &Arg : CLI.getArgs()) {
948     Type *FinalType = Arg.Ty;
949     if (Arg.IsByVal)
950       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
951     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
952         FinalType, CLI.CallConv, CLI.IsVarArg);
953 
954     ISD::ArgFlagsTy Flags;
955     if (Arg.IsZExt)
956       Flags.setZExt();
957     if (Arg.IsSExt)
958       Flags.setSExt();
959     if (Arg.IsInReg)
960       Flags.setInReg();
961     if (Arg.IsSRet)
962       Flags.setSRet();
963     if (Arg.IsByVal)
964       Flags.setByVal();
965     if (Arg.IsInAlloca) {
966       Flags.setInAlloca();
967       // Set the byval flag for CCAssignFn callbacks that don't know about
968       // inalloca. This way we can know how many bytes we should've allocated
969       // and how many bytes a callee cleanup function will pop.  If we port
970       // inalloca to more targets, we'll have to add custom inalloca handling in
971       // the various CC lowering callbacks.
972       Flags.setByVal();
973     }
974     if (Arg.IsByVal || Arg.IsInAlloca) {
975       PointerType *Ty = cast<PointerType>(Arg.Ty);
976       Type *ElementTy = Ty->getElementType();
977       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
978       // For ByVal, alignment should come from FE. BE will guess if this info is
979       // not there, but there are cases it cannot get right.
980       unsigned FrameAlign = Arg.Alignment;
981       if (!FrameAlign)
982         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
983       Flags.setByValSize(FrameSize);
984       Flags.setByValAlign(FrameAlign);
985     }
986     if (Arg.IsNest)
987       Flags.setNest();
988     if (NeedsRegBlock)
989       Flags.setInConsecutiveRegs();
990     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
991     Flags.setOrigAlign(OriginalAlignment);
992 
993     CLI.OutVals.push_back(Arg.Val);
994     CLI.OutFlags.push_back(Flags);
995   }
996 
997   if (!fastLowerCall(CLI))
998     return false;
999 
1000   // Set all unused physreg defs as dead.
1001   assert(CLI.Call && "No call instruction specified.");
1002   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1003 
1004   if (CLI.NumResultRegs && CLI.CS)
1005     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1006 
1007   return true;
1008 }
1009 
lowerCall(const CallInst * CI)1010 bool FastISel::lowerCall(const CallInst *CI) {
1011   ImmutableCallSite CS(CI);
1012 
1013   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1014   FunctionType *FuncTy = cast<FunctionType>(PT->getElementType());
1015   Type *RetTy = FuncTy->getReturnType();
1016 
1017   ArgListTy Args;
1018   ArgListEntry Entry;
1019   Args.reserve(CS.arg_size());
1020 
1021   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1022        i != e; ++i) {
1023     Value *V = *i;
1024 
1025     // Skip empty types
1026     if (V->getType()->isEmptyTy())
1027       continue;
1028 
1029     Entry.Val = V;
1030     Entry.Ty = V->getType();
1031 
1032     // Skip the first return-type Attribute to get to params.
1033     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
1034     Args.push_back(Entry);
1035   }
1036 
1037   // Check if target-independent constraints permit a tail call here.
1038   // Target-dependent constraints are checked within fastLowerCall.
1039   bool IsTailCall = CI->isTailCall();
1040   if (IsTailCall && !isInTailCallPosition(CS, TM))
1041     IsTailCall = false;
1042 
1043   CallLoweringInfo CLI;
1044   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1045       .setTailCall(IsTailCall);
1046 
1047   return lowerCallTo(CLI);
1048 }
1049 
selectCall(const User * I)1050 bool FastISel::selectCall(const User *I) {
1051   const CallInst *Call = cast<CallInst>(I);
1052 
1053   // Handle simple inline asms.
1054   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1055     // If the inline asm has side effects, then make sure that no local value
1056     // lives across by flushing the local value map.
1057     if (IA->hasSideEffects())
1058       flushLocalValueMap();
1059 
1060     // Don't attempt to handle constraints.
1061     if (!IA->getConstraintString().empty())
1062       return false;
1063 
1064     unsigned ExtraInfo = 0;
1065     if (IA->hasSideEffects())
1066       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1067     if (IA->isAlignStack())
1068       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1069 
1070     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1071             TII.get(TargetOpcode::INLINEASM))
1072         .addExternalSymbol(IA->getAsmString().c_str())
1073         .addImm(ExtraInfo);
1074     return true;
1075   }
1076 
1077   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1078   ComputeUsesVAFloatArgument(*Call, &MMI);
1079 
1080   // Handle intrinsic function calls.
1081   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1082     return selectIntrinsicCall(II);
1083 
1084   // Usually, it does not make sense to initialize a value,
1085   // make an unrelated function call and use the value, because
1086   // it tends to be spilled on the stack. So, we move the pointer
1087   // to the last local value to the beginning of the block, so that
1088   // all the values which have already been materialized,
1089   // appear after the call. It also makes sense to skip intrinsics
1090   // since they tend to be inlined.
1091   flushLocalValueMap();
1092 
1093   return lowerCall(Call);
1094 }
1095 
selectIntrinsicCall(const IntrinsicInst * II)1096 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1097   switch (II->getIntrinsicID()) {
1098   default:
1099     break;
1100   // At -O0 we don't care about the lifetime intrinsics.
1101   case Intrinsic::lifetime_start:
1102   case Intrinsic::lifetime_end:
1103   // The donothing intrinsic does, well, nothing.
1104   case Intrinsic::donothing:
1105     return true;
1106   case Intrinsic::dbg_declare: {
1107     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1108     assert(DI->getVariable() && "Missing variable");
1109     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1110       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1111       return true;
1112     }
1113 
1114     const Value *Address = DI->getAddress();
1115     if (!Address || isa<UndefValue>(Address)) {
1116       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1117       return true;
1118     }
1119 
1120     unsigned Offset = 0;
1121     Optional<MachineOperand> Op;
1122     if (const auto *Arg = dyn_cast<Argument>(Address))
1123       // Some arguments' frame index is recorded during argument lowering.
1124       Offset = FuncInfo.getArgumentFrameIndex(Arg);
1125     if (Offset)
1126       Op = MachineOperand::CreateFI(Offset);
1127     if (!Op)
1128       if (unsigned Reg = lookUpRegForValue(Address))
1129         Op = MachineOperand::CreateReg(Reg, false);
1130 
1131     // If we have a VLA that has a "use" in a metadata node that's then used
1132     // here but it has no other uses, then we have a problem. E.g.,
1133     //
1134     //   int foo (const int *x) {
1135     //     char a[*x];
1136     //     return 0;
1137     //   }
1138     //
1139     // If we assign 'a' a vreg and fast isel later on has to use the selection
1140     // DAG isel, it will want to copy the value to the vreg. However, there are
1141     // no uses, which goes counter to what selection DAG isel expects.
1142     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1143         (!isa<AllocaInst>(Address) ||
1144          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1145       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1146                                      false);
1147 
1148     if (Op) {
1149       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1150              "Expected inlined-at fields to agree");
1151       if (Op->isReg()) {
1152         Op->setIsDebug(true);
1153         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1154                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
1155                 DI->getVariable(), DI->getExpression());
1156       } else
1157         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1158                 TII.get(TargetOpcode::DBG_VALUE))
1159             .addOperand(*Op)
1160             .addImm(0)
1161             .addMetadata(DI->getVariable())
1162             .addMetadata(DI->getExpression());
1163     } else {
1164       // We can't yet handle anything else here because it would require
1165       // generating code, thus altering codegen because of debug info.
1166       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1167     }
1168     return true;
1169   }
1170   case Intrinsic::dbg_value: {
1171     // This form of DBG_VALUE is target-independent.
1172     const DbgValueInst *DI = cast<DbgValueInst>(II);
1173     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1174     const Value *V = DI->getValue();
1175     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1176            "Expected inlined-at fields to agree");
1177     if (!V) {
1178       // Currently the optimizer can produce this; insert an undef to
1179       // help debugging.  Probably the optimizer should not do this.
1180       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1181           .addReg(0U)
1182           .addImm(DI->getOffset())
1183           .addMetadata(DI->getVariable())
1184           .addMetadata(DI->getExpression());
1185     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1186       if (CI->getBitWidth() > 64)
1187         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1188             .addCImm(CI)
1189             .addImm(DI->getOffset())
1190             .addMetadata(DI->getVariable())
1191             .addMetadata(DI->getExpression());
1192       else
1193         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1194             .addImm(CI->getZExtValue())
1195             .addImm(DI->getOffset())
1196             .addMetadata(DI->getVariable())
1197             .addMetadata(DI->getExpression());
1198     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1199       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1200           .addFPImm(CF)
1201           .addImm(DI->getOffset())
1202           .addMetadata(DI->getVariable())
1203           .addMetadata(DI->getExpression());
1204     } else if (unsigned Reg = lookUpRegForValue(V)) {
1205       // FIXME: This does not handle register-indirect values at offset 0.
1206       bool IsIndirect = DI->getOffset() != 0;
1207       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1208               DI->getOffset(), DI->getVariable(), DI->getExpression());
1209     } else {
1210       // We can't yet handle anything else here because it would require
1211       // generating code, thus altering codegen because of debug info.
1212       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1213     }
1214     return true;
1215   }
1216   case Intrinsic::objectsize: {
1217     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1218     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1219     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1220     unsigned ResultReg = getRegForValue(ResCI);
1221     if (!ResultReg)
1222       return false;
1223     updateValueMap(II, ResultReg);
1224     return true;
1225   }
1226   case Intrinsic::expect: {
1227     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1228     if (!ResultReg)
1229       return false;
1230     updateValueMap(II, ResultReg);
1231     return true;
1232   }
1233   case Intrinsic::experimental_stackmap:
1234     return selectStackmap(II);
1235   case Intrinsic::experimental_patchpoint_void:
1236   case Intrinsic::experimental_patchpoint_i64:
1237     return selectPatchpoint(II);
1238   }
1239 
1240   return fastLowerIntrinsicCall(II);
1241 }
1242 
selectCast(const User * I,unsigned Opcode)1243 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1244   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1245   EVT DstVT = TLI.getValueType(DL, I->getType());
1246 
1247   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1248       !DstVT.isSimple())
1249     // Unhandled type. Halt "fast" selection and bail.
1250     return false;
1251 
1252   // Check if the destination type is legal.
1253   if (!TLI.isTypeLegal(DstVT))
1254     return false;
1255 
1256   // Check if the source operand is legal.
1257   if (!TLI.isTypeLegal(SrcVT))
1258     return false;
1259 
1260   unsigned InputReg = getRegForValue(I->getOperand(0));
1261   if (!InputReg)
1262     // Unhandled operand.  Halt "fast" selection and bail.
1263     return false;
1264 
1265   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1266 
1267   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1268                                   Opcode, InputReg, InputRegIsKill);
1269   if (!ResultReg)
1270     return false;
1271 
1272   updateValueMap(I, ResultReg);
1273   return true;
1274 }
1275 
selectBitCast(const User * I)1276 bool FastISel::selectBitCast(const User *I) {
1277   // If the bitcast doesn't change the type, just use the operand value.
1278   if (I->getType() == I->getOperand(0)->getType()) {
1279     unsigned Reg = getRegForValue(I->getOperand(0));
1280     if (!Reg)
1281       return false;
1282     updateValueMap(I, Reg);
1283     return true;
1284   }
1285 
1286   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1287   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1288   EVT DstEVT = TLI.getValueType(DL, I->getType());
1289   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1290       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1291     // Unhandled type. Halt "fast" selection and bail.
1292     return false;
1293 
1294   MVT SrcVT = SrcEVT.getSimpleVT();
1295   MVT DstVT = DstEVT.getSimpleVT();
1296   unsigned Op0 = getRegForValue(I->getOperand(0));
1297   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1298     return false;
1299   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1300 
1301   // First, try to perform the bitcast by inserting a reg-reg copy.
1302   unsigned ResultReg = 0;
1303   if (SrcVT == DstVT) {
1304     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1305     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1306     // Don't attempt a cross-class copy. It will likely fail.
1307     if (SrcClass == DstClass) {
1308       ResultReg = createResultReg(DstClass);
1309       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1310               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1311     }
1312   }
1313 
1314   // If the reg-reg copy failed, select a BITCAST opcode.
1315   if (!ResultReg)
1316     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1317 
1318   if (!ResultReg)
1319     return false;
1320 
1321   updateValueMap(I, ResultReg);
1322   return true;
1323 }
1324 
1325 // Remove local value instructions starting from the instruction after
1326 // SavedLastLocalValue to the current function insert point.
removeDeadLocalValueCode(MachineInstr * SavedLastLocalValue)1327 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1328 {
1329   MachineInstr *CurLastLocalValue = getLastLocalValue();
1330   if (CurLastLocalValue != SavedLastLocalValue) {
1331     // Find the first local value instruction to be deleted.
1332     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1333     // Otherwise it's the first instruction in the block.
1334     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1335     if (SavedLastLocalValue)
1336       ++FirstDeadInst;
1337     else
1338       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1339     setLastLocalValue(SavedLastLocalValue);
1340     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1341   }
1342 }
1343 
selectInstruction(const Instruction * I)1344 bool FastISel::selectInstruction(const Instruction *I) {
1345   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1346   // Just before the terminator instruction, insert instructions to
1347   // feed PHI nodes in successor blocks.
1348   if (isa<TerminatorInst>(I))
1349     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1350       // PHI node handling may have generated local value instructions,
1351       // even though it failed to handle all PHI nodes.
1352       // We remove these instructions because SelectionDAGISel will generate
1353       // them again.
1354       removeDeadLocalValueCode(SavedLastLocalValue);
1355       return false;
1356     }
1357 
1358   DbgLoc = I->getDebugLoc();
1359 
1360   SavedInsertPt = FuncInfo.InsertPt;
1361 
1362   if (const auto *Call = dyn_cast<CallInst>(I)) {
1363     const Function *F = Call->getCalledFunction();
1364     LibFunc::Func Func;
1365 
1366     // As a special case, don't handle calls to builtin library functions that
1367     // may be translated directly to target instructions.
1368     if (F && !F->hasLocalLinkage() && F->hasName() &&
1369         LibInfo->getLibFunc(F->getName(), Func) &&
1370         LibInfo->hasOptimizedCodeGen(Func))
1371       return false;
1372 
1373     // Don't handle Intrinsic::trap if a trap function is specified.
1374     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1375         Call->hasFnAttr("trap-func-name"))
1376       return false;
1377   }
1378 
1379   // First, try doing target-independent selection.
1380   if (!SkipTargetIndependentISel) {
1381     if (selectOperator(I, I->getOpcode())) {
1382       ++NumFastIselSuccessIndependent;
1383       DbgLoc = DebugLoc();
1384       return true;
1385     }
1386     // Remove dead code.
1387     recomputeInsertPt();
1388     if (SavedInsertPt != FuncInfo.InsertPt)
1389       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1390     SavedInsertPt = FuncInfo.InsertPt;
1391   }
1392   // Next, try calling the target to attempt to handle the instruction.
1393   if (fastSelectInstruction(I)) {
1394     ++NumFastIselSuccessTarget;
1395     DbgLoc = DebugLoc();
1396     return true;
1397   }
1398   // Remove dead code.
1399   recomputeInsertPt();
1400   if (SavedInsertPt != FuncInfo.InsertPt)
1401     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1402 
1403   DbgLoc = DebugLoc();
1404   // Undo phi node updates, because they will be added again by SelectionDAG.
1405   if (isa<TerminatorInst>(I)) {
1406     // PHI node handling may have generated local value instructions.
1407     // We remove them because SelectionDAGISel will generate them again.
1408     removeDeadLocalValueCode(SavedLastLocalValue);
1409     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1410   }
1411   return false;
1412 }
1413 
1414 /// Emit an unconditional branch to the given block, unless it is the immediate
1415 /// (fall-through) successor, and update the CFG.
fastEmitBranch(MachineBasicBlock * MSucc,DebugLoc DbgLoc)1416 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
1417   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1418       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1419     // For more accurate line information if this is the only instruction
1420     // in the block then emit it, otherwise we have the unconditional
1421     // fall-through case, which needs no instructions.
1422   } else {
1423     // The unconditional branch case.
1424     TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
1425                      SmallVector<MachineOperand, 0>(), DbgLoc);
1426   }
1427   if (FuncInfo.BPI) {
1428     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1429         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1430     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1431   } else
1432     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1433 }
1434 
finishCondBranch(const BasicBlock * BranchBB,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB)1435 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1436                                 MachineBasicBlock *TrueMBB,
1437                                 MachineBasicBlock *FalseMBB) {
1438   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1439   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1440   // successor/predecessor lists.
1441   if (TrueMBB != FalseMBB) {
1442     if (FuncInfo.BPI) {
1443       auto BranchProbability =
1444           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1445       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1446     } else
1447       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1448   }
1449 
1450   fastEmitBranch(FalseMBB, DbgLoc);
1451 }
1452 
1453 /// Emit an FNeg operation.
selectFNeg(const User * I)1454 bool FastISel::selectFNeg(const User *I) {
1455   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1456   if (!OpReg)
1457     return false;
1458   bool OpRegIsKill = hasTrivialKill(I);
1459 
1460   // If the target has ISD::FNEG, use it.
1461   EVT VT = TLI.getValueType(DL, I->getType());
1462   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1463                                   OpReg, OpRegIsKill);
1464   if (ResultReg) {
1465     updateValueMap(I, ResultReg);
1466     return true;
1467   }
1468 
1469   // Bitcast the value to integer, twiddle the sign bit with xor,
1470   // and then bitcast it back to floating-point.
1471   if (VT.getSizeInBits() > 64)
1472     return false;
1473   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1474   if (!TLI.isTypeLegal(IntVT))
1475     return false;
1476 
1477   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1478                                ISD::BITCAST, OpReg, OpRegIsKill);
1479   if (!IntReg)
1480     return false;
1481 
1482   unsigned IntResultReg = fastEmit_ri_(
1483       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1484       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1485   if (!IntResultReg)
1486     return false;
1487 
1488   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1489                          IntResultReg, /*IsKill=*/true);
1490   if (!ResultReg)
1491     return false;
1492 
1493   updateValueMap(I, ResultReg);
1494   return true;
1495 }
1496 
selectExtractValue(const User * U)1497 bool FastISel::selectExtractValue(const User *U) {
1498   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1499   if (!EVI)
1500     return false;
1501 
1502   // Make sure we only try to handle extracts with a legal result.  But also
1503   // allow i1 because it's easy.
1504   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1505   if (!RealVT.isSimple())
1506     return false;
1507   MVT VT = RealVT.getSimpleVT();
1508   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1509     return false;
1510 
1511   const Value *Op0 = EVI->getOperand(0);
1512   Type *AggTy = Op0->getType();
1513 
1514   // Get the base result register.
1515   unsigned ResultReg;
1516   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1517   if (I != FuncInfo.ValueMap.end())
1518     ResultReg = I->second;
1519   else if (isa<Instruction>(Op0))
1520     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1521   else
1522     return false; // fast-isel can't handle aggregate constants at the moment
1523 
1524   // Get the actual result register, which is an offset from the base register.
1525   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1526 
1527   SmallVector<EVT, 4> AggValueVTs;
1528   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1529 
1530   for (unsigned i = 0; i < VTIndex; i++)
1531     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1532 
1533   updateValueMap(EVI, ResultReg);
1534   return true;
1535 }
1536 
selectOperator(const User * I,unsigned Opcode)1537 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1538   switch (Opcode) {
1539   case Instruction::Add:
1540     return selectBinaryOp(I, ISD::ADD);
1541   case Instruction::FAdd:
1542     return selectBinaryOp(I, ISD::FADD);
1543   case Instruction::Sub:
1544     return selectBinaryOp(I, ISD::SUB);
1545   case Instruction::FSub:
1546     // FNeg is currently represented in LLVM IR as a special case of FSub.
1547     if (BinaryOperator::isFNeg(I))
1548       return selectFNeg(I);
1549     return selectBinaryOp(I, ISD::FSUB);
1550   case Instruction::Mul:
1551     return selectBinaryOp(I, ISD::MUL);
1552   case Instruction::FMul:
1553     return selectBinaryOp(I, ISD::FMUL);
1554   case Instruction::SDiv:
1555     return selectBinaryOp(I, ISD::SDIV);
1556   case Instruction::UDiv:
1557     return selectBinaryOp(I, ISD::UDIV);
1558   case Instruction::FDiv:
1559     return selectBinaryOp(I, ISD::FDIV);
1560   case Instruction::SRem:
1561     return selectBinaryOp(I, ISD::SREM);
1562   case Instruction::URem:
1563     return selectBinaryOp(I, ISD::UREM);
1564   case Instruction::FRem:
1565     return selectBinaryOp(I, ISD::FREM);
1566   case Instruction::Shl:
1567     return selectBinaryOp(I, ISD::SHL);
1568   case Instruction::LShr:
1569     return selectBinaryOp(I, ISD::SRL);
1570   case Instruction::AShr:
1571     return selectBinaryOp(I, ISD::SRA);
1572   case Instruction::And:
1573     return selectBinaryOp(I, ISD::AND);
1574   case Instruction::Or:
1575     return selectBinaryOp(I, ISD::OR);
1576   case Instruction::Xor:
1577     return selectBinaryOp(I, ISD::XOR);
1578 
1579   case Instruction::GetElementPtr:
1580     return selectGetElementPtr(I);
1581 
1582   case Instruction::Br: {
1583     const BranchInst *BI = cast<BranchInst>(I);
1584 
1585     if (BI->isUnconditional()) {
1586       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1587       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1588       fastEmitBranch(MSucc, BI->getDebugLoc());
1589       return true;
1590     }
1591 
1592     // Conditional branches are not handed yet.
1593     // Halt "fast" selection and bail.
1594     return false;
1595   }
1596 
1597   case Instruction::Unreachable:
1598     if (TM.Options.TrapUnreachable)
1599       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1600     else
1601       return true;
1602 
1603   case Instruction::Alloca:
1604     // FunctionLowering has the static-sized case covered.
1605     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1606       return true;
1607 
1608     // Dynamic-sized alloca is not handled yet.
1609     return false;
1610 
1611   case Instruction::Call:
1612     return selectCall(I);
1613 
1614   case Instruction::BitCast:
1615     return selectBitCast(I);
1616 
1617   case Instruction::FPToSI:
1618     return selectCast(I, ISD::FP_TO_SINT);
1619   case Instruction::ZExt:
1620     return selectCast(I, ISD::ZERO_EXTEND);
1621   case Instruction::SExt:
1622     return selectCast(I, ISD::SIGN_EXTEND);
1623   case Instruction::Trunc:
1624     return selectCast(I, ISD::TRUNCATE);
1625   case Instruction::SIToFP:
1626     return selectCast(I, ISD::SINT_TO_FP);
1627 
1628   case Instruction::IntToPtr: // Deliberate fall-through.
1629   case Instruction::PtrToInt: {
1630     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1631     EVT DstVT = TLI.getValueType(DL, I->getType());
1632     if (DstVT.bitsGT(SrcVT))
1633       return selectCast(I, ISD::ZERO_EXTEND);
1634     if (DstVT.bitsLT(SrcVT))
1635       return selectCast(I, ISD::TRUNCATE);
1636     unsigned Reg = getRegForValue(I->getOperand(0));
1637     if (!Reg)
1638       return false;
1639     updateValueMap(I, Reg);
1640     return true;
1641   }
1642 
1643   case Instruction::ExtractValue:
1644     return selectExtractValue(I);
1645 
1646   case Instruction::PHI:
1647     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1648 
1649   default:
1650     // Unhandled instruction. Halt "fast" selection and bail.
1651     return false;
1652   }
1653 }
1654 
FastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo,bool SkipTargetIndependentISel)1655 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1656                    const TargetLibraryInfo *LibInfo,
1657                    bool SkipTargetIndependentISel)
1658     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1659       MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1660       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1661       TII(*MF->getSubtarget().getInstrInfo()),
1662       TLI(*MF->getSubtarget().getTargetLowering()),
1663       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1664       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1665 
~FastISel()1666 FastISel::~FastISel() {}
1667 
fastLowerArguments()1668 bool FastISel::fastLowerArguments() { return false; }
1669 
fastLowerCall(CallLoweringInfo &)1670 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1671 
fastLowerIntrinsicCall(const IntrinsicInst *)1672 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1673   return false;
1674 }
1675 
fastEmit_(MVT,MVT,unsigned)1676 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1677 
fastEmit_r(MVT,MVT,unsigned,unsigned,bool)1678 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1679                               bool /*Op0IsKill*/) {
1680   return 0;
1681 }
1682 
fastEmit_rr(MVT,MVT,unsigned,unsigned,bool,unsigned,bool)1683 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1684                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1685                                bool /*Op1IsKill*/) {
1686   return 0;
1687 }
1688 
fastEmit_i(MVT,MVT,unsigned,uint64_t)1689 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1690   return 0;
1691 }
1692 
fastEmit_f(MVT,MVT,unsigned,const ConstantFP *)1693 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1694                               const ConstantFP * /*FPImm*/) {
1695   return 0;
1696 }
1697 
fastEmit_ri(MVT,MVT,unsigned,unsigned,bool,uint64_t)1698 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1699                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1700   return 0;
1701 }
1702 
fastEmit_rf(MVT,MVT,unsigned,unsigned,bool,const ConstantFP *)1703 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
1704                                bool /*Op0IsKill*/,
1705                                const ConstantFP * /*FPImm*/) {
1706   return 0;
1707 }
1708 
fastEmit_rri(MVT,MVT,unsigned,unsigned,bool,unsigned,bool,uint64_t)1709 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
1710                                 bool /*Op0IsKill*/, unsigned /*Op1*/,
1711                                 bool /*Op1IsKill*/, uint64_t /*Imm*/) {
1712   return 0;
1713 }
1714 
1715 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1716 /// instruction with an immediate operand using fastEmit_ri.
1717 /// If that fails, it materializes the immediate into a register and try
1718 /// fastEmit_rr instead.
fastEmit_ri_(MVT VT,unsigned Opcode,unsigned Op0,bool Op0IsKill,uint64_t Imm,MVT ImmType)1719 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1720                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1721   // If this is a multiply by a power of two, emit this as a shift left.
1722   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1723     Opcode = ISD::SHL;
1724     Imm = Log2_64(Imm);
1725   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1726     // div x, 8 -> srl x, 3
1727     Opcode = ISD::SRL;
1728     Imm = Log2_64(Imm);
1729   }
1730 
1731   // Horrible hack (to be removed), check to make sure shift amounts are
1732   // in-range.
1733   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1734       Imm >= VT.getSizeInBits())
1735     return 0;
1736 
1737   // First check if immediate type is legal. If not, we can't use the ri form.
1738   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1739   if (ResultReg)
1740     return ResultReg;
1741   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1742   bool IsImmKill = true;
1743   if (!MaterialReg) {
1744     // This is a bit ugly/slow, but failing here means falling out of
1745     // fast-isel, which would be very slow.
1746     IntegerType *ITy =
1747         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1748     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1749     if (!MaterialReg)
1750       return 0;
1751     // FIXME: If the materialized register here has no uses yet then this
1752     // will be the first use and we should be able to mark it as killed.
1753     // However, the local value area for materialising constant expressions
1754     // grows down, not up, which means that any constant expressions we generate
1755     // later which also use 'Imm' could be after this instruction and therefore
1756     // after this kill.
1757     IsImmKill = false;
1758   }
1759   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1760 }
1761 
createResultReg(const TargetRegisterClass * RC)1762 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1763   return MRI.createVirtualRegister(RC);
1764 }
1765 
constrainOperandRegClass(const MCInstrDesc & II,unsigned Op,unsigned OpNum)1766 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1767                                             unsigned OpNum) {
1768   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1769     const TargetRegisterClass *RegClass =
1770         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1771     if (!MRI.constrainRegClass(Op, RegClass)) {
1772       // If it's not legal to COPY between the register classes, something
1773       // has gone very wrong before we got here.
1774       unsigned NewOp = createResultReg(RegClass);
1775       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1776               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1777       return NewOp;
1778     }
1779   }
1780   return Op;
1781 }
1782 
fastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)1783 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1784                                  const TargetRegisterClass *RC) {
1785   unsigned ResultReg = createResultReg(RC);
1786   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1787 
1788   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1789   return ResultReg;
1790 }
1791 
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)1792 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1793                                   const TargetRegisterClass *RC, unsigned Op0,
1794                                   bool Op0IsKill) {
1795   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1796 
1797   unsigned ResultReg = createResultReg(RC);
1798   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1799 
1800   if (II.getNumDefs() >= 1)
1801     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1802         .addReg(Op0, getKillRegState(Op0IsKill));
1803   else {
1804     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1805         .addReg(Op0, getKillRegState(Op0IsKill));
1806     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1807             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1808   }
1809 
1810   return ResultReg;
1811 }
1812 
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)1813 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1814                                    const TargetRegisterClass *RC, unsigned Op0,
1815                                    bool Op0IsKill, unsigned Op1,
1816                                    bool Op1IsKill) {
1817   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1818 
1819   unsigned ResultReg = createResultReg(RC);
1820   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1821   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1822 
1823   if (II.getNumDefs() >= 1)
1824     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1825         .addReg(Op0, getKillRegState(Op0IsKill))
1826         .addReg(Op1, getKillRegState(Op1IsKill));
1827   else {
1828     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1829         .addReg(Op0, getKillRegState(Op0IsKill))
1830         .addReg(Op1, getKillRegState(Op1IsKill));
1831     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1832             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1833   }
1834   return ResultReg;
1835 }
1836 
fastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)1837 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1838                                     const TargetRegisterClass *RC, unsigned Op0,
1839                                     bool Op0IsKill, unsigned Op1,
1840                                     bool Op1IsKill, unsigned Op2,
1841                                     bool Op2IsKill) {
1842   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1843 
1844   unsigned ResultReg = createResultReg(RC);
1845   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1846   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1847   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1848 
1849   if (II.getNumDefs() >= 1)
1850     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1851         .addReg(Op0, getKillRegState(Op0IsKill))
1852         .addReg(Op1, getKillRegState(Op1IsKill))
1853         .addReg(Op2, getKillRegState(Op2IsKill));
1854   else {
1855     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1856         .addReg(Op0, getKillRegState(Op0IsKill))
1857         .addReg(Op1, getKillRegState(Op1IsKill))
1858         .addReg(Op2, getKillRegState(Op2IsKill));
1859     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1860             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1861   }
1862   return ResultReg;
1863 }
1864 
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)1865 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1866                                    const TargetRegisterClass *RC, unsigned Op0,
1867                                    bool Op0IsKill, uint64_t Imm) {
1868   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1869 
1870   unsigned ResultReg = createResultReg(RC);
1871   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1872 
1873   if (II.getNumDefs() >= 1)
1874     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1875         .addReg(Op0, getKillRegState(Op0IsKill))
1876         .addImm(Imm);
1877   else {
1878     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1879         .addReg(Op0, getKillRegState(Op0IsKill))
1880         .addImm(Imm);
1881     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1882             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1883   }
1884   return ResultReg;
1885 }
1886 
fastEmitInst_rii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm1,uint64_t Imm2)1887 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1888                                     const TargetRegisterClass *RC, unsigned Op0,
1889                                     bool Op0IsKill, uint64_t Imm1,
1890                                     uint64_t Imm2) {
1891   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1892 
1893   unsigned ResultReg = createResultReg(RC);
1894   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1895 
1896   if (II.getNumDefs() >= 1)
1897     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1898         .addReg(Op0, getKillRegState(Op0IsKill))
1899         .addImm(Imm1)
1900         .addImm(Imm2);
1901   else {
1902     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1903         .addReg(Op0, getKillRegState(Op0IsKill))
1904         .addImm(Imm1)
1905         .addImm(Imm2);
1906     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1907             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1908   }
1909   return ResultReg;
1910 }
1911 
fastEmitInst_f(unsigned MachineInstOpcode,const TargetRegisterClass * RC,const ConstantFP * FPImm)1912 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
1913                                   const TargetRegisterClass *RC,
1914                                   const ConstantFP *FPImm) {
1915   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1916 
1917   unsigned ResultReg = createResultReg(RC);
1918 
1919   if (II.getNumDefs() >= 1)
1920     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1921         .addFPImm(FPImm);
1922   else {
1923     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1924         .addFPImm(FPImm);
1925     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1926             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1927   }
1928   return ResultReg;
1929 }
1930 
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)1931 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1932                                     const TargetRegisterClass *RC, unsigned Op0,
1933                                     bool Op0IsKill, unsigned Op1,
1934                                     bool Op1IsKill, uint64_t Imm) {
1935   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1936 
1937   unsigned ResultReg = createResultReg(RC);
1938   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1939   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1940 
1941   if (II.getNumDefs() >= 1)
1942     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1943         .addReg(Op0, getKillRegState(Op0IsKill))
1944         .addReg(Op1, getKillRegState(Op1IsKill))
1945         .addImm(Imm);
1946   else {
1947     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1948         .addReg(Op0, getKillRegState(Op0IsKill))
1949         .addReg(Op1, getKillRegState(Op1IsKill))
1950         .addImm(Imm);
1951     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1952             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1953   }
1954   return ResultReg;
1955 }
1956 
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)1957 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1958                                   const TargetRegisterClass *RC, uint64_t Imm) {
1959   unsigned ResultReg = createResultReg(RC);
1960   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1961 
1962   if (II.getNumDefs() >= 1)
1963     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1964         .addImm(Imm);
1965   else {
1966     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1967     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1968             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1969   }
1970   return ResultReg;
1971 }
1972 
fastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)1973 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
1974                                               bool Op0IsKill, uint32_t Idx) {
1975   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1976   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1977          "Cannot yet extract from physregs");
1978   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1979   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1980   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1981           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
1982   return ResultReg;
1983 }
1984 
1985 /// Emit MachineInstrs to compute the value of Op with all but the least
1986 /// significant bit set to zero.
fastEmitZExtFromI1(MVT VT,unsigned Op0,bool Op0IsKill)1987 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1988   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1989 }
1990 
1991 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1992 /// Emit code to ensure constants are copied into registers when needed.
1993 /// Remember the virtual registers that need to be added to the Machine PHI
1994 /// nodes as input.  We cannot just directly add them, because expansion
1995 /// might result in multiple MBB's for one BB.  As such, the start of the
1996 /// BB might correspond to a different MBB than the end.
handlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)1997 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1998   const TerminatorInst *TI = LLVMBB->getTerminator();
1999 
2000   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2001   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2002 
2003   // Check successor nodes' PHI nodes that expect a constant to be available
2004   // from this block.
2005   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2006     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2007     if (!isa<PHINode>(SuccBB->begin()))
2008       continue;
2009     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2010 
2011     // If this terminator has multiple identical successors (common for
2012     // switches), only handle each succ once.
2013     if (!SuccsHandled.insert(SuccMBB).second)
2014       continue;
2015 
2016     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2017 
2018     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2019     // nodes and Machine PHI nodes, but the incoming operands have not been
2020     // emitted yet.
2021     for (BasicBlock::const_iterator I = SuccBB->begin();
2022          const auto *PN = dyn_cast<PHINode>(I); ++I) {
2023 
2024       // Ignore dead phi's.
2025       if (PN->use_empty())
2026         continue;
2027 
2028       // Only handle legal types. Two interesting things to note here. First,
2029       // by bailing out early, we may leave behind some dead instructions,
2030       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2031       // own moves. Second, this check is necessary because FastISel doesn't
2032       // use CreateRegs to create registers, so it always creates
2033       // exactly one register for each non-void instruction.
2034       EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true);
2035       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2036         // Handle integer promotions, though, because they're common and easy.
2037         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2038           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2039           return false;
2040         }
2041       }
2042 
2043       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2044 
2045       // Set the DebugLoc for the copy. Prefer the location of the operand
2046       // if there is one; use the location of the PHI otherwise.
2047       DbgLoc = PN->getDebugLoc();
2048       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2049         DbgLoc = Inst->getDebugLoc();
2050 
2051       unsigned Reg = getRegForValue(PHIOp);
2052       if (!Reg) {
2053         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2054         return false;
2055       }
2056       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
2057       DbgLoc = DebugLoc();
2058     }
2059   }
2060 
2061   return true;
2062 }
2063 
tryToFoldLoad(const LoadInst * LI,const Instruction * FoldInst)2064 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2065   assert(LI->hasOneUse() &&
2066          "tryToFoldLoad expected a LoadInst with a single use");
2067   // We know that the load has a single use, but don't know what it is.  If it
2068   // isn't one of the folded instructions, then we can't succeed here.  Handle
2069   // this by scanning the single-use users of the load until we get to FoldInst.
2070   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2071 
2072   const Instruction *TheUser = LI->user_back();
2073   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2074          // Stay in the right block.
2075          TheUser->getParent() == FoldInst->getParent() &&
2076          --MaxUsers) { // Don't scan too far.
2077     // If there are multiple or no uses of this instruction, then bail out.
2078     if (!TheUser->hasOneUse())
2079       return false;
2080 
2081     TheUser = TheUser->user_back();
2082   }
2083 
2084   // If we didn't find the fold instruction, then we failed to collapse the
2085   // sequence.
2086   if (TheUser != FoldInst)
2087     return false;
2088 
2089   // Don't try to fold volatile loads.  Target has to deal with alignment
2090   // constraints.
2091   if (LI->isVolatile())
2092     return false;
2093 
2094   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2095   // then there actually was no reference to it.  Perhaps the load is referenced
2096   // by a dead instruction.
2097   unsigned LoadReg = getRegForValue(LI);
2098   if (!LoadReg)
2099     return false;
2100 
2101   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2102   // may mean that the instruction got lowered to multiple MIs, or the use of
2103   // the loaded value ended up being multiple operands of the result.
2104   if (!MRI.hasOneUse(LoadReg))
2105     return false;
2106 
2107   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2108   MachineInstr *User = RI->getParent();
2109 
2110   // Set the insertion point properly.  Folding the load can cause generation of
2111   // other random instructions (like sign extends) for addressing modes; make
2112   // sure they get inserted in a logical place before the new instruction.
2113   FuncInfo.InsertPt = User;
2114   FuncInfo.MBB = User->getParent();
2115 
2116   // Ask the target to try folding the load.
2117   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2118 }
2119 
canFoldAddIntoGEP(const User * GEP,const Value * Add)2120 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2121   // Must be an add.
2122   if (!isa<AddOperator>(Add))
2123     return false;
2124   // Type size needs to match.
2125   if (DL.getTypeSizeInBits(GEP->getType()) !=
2126       DL.getTypeSizeInBits(Add->getType()))
2127     return false;
2128   // Must be in the same basic block.
2129   if (isa<Instruction>(Add) &&
2130       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2131     return false;
2132   // Must have a constant operand.
2133   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2134 }
2135 
2136 MachineMemOperand *
createMachineMemOperandFor(const Instruction * I) const2137 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2138   const Value *Ptr;
2139   Type *ValTy;
2140   unsigned Alignment;
2141   unsigned Flags;
2142   bool IsVolatile;
2143 
2144   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2145     Alignment = LI->getAlignment();
2146     IsVolatile = LI->isVolatile();
2147     Flags = MachineMemOperand::MOLoad;
2148     Ptr = LI->getPointerOperand();
2149     ValTy = LI->getType();
2150   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2151     Alignment = SI->getAlignment();
2152     IsVolatile = SI->isVolatile();
2153     Flags = MachineMemOperand::MOStore;
2154     Ptr = SI->getPointerOperand();
2155     ValTy = SI->getValueOperand()->getType();
2156   } else
2157     return nullptr;
2158 
2159   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2160   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2161   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2162 
2163   AAMDNodes AAInfo;
2164   I->getAAMetadata(AAInfo);
2165 
2166   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2167     Alignment = DL.getABITypeAlignment(ValTy);
2168 
2169   unsigned Size = DL.getTypeStoreSize(ValTy);
2170 
2171   if (IsVolatile)
2172     Flags |= MachineMemOperand::MOVolatile;
2173   if (IsNonTemporal)
2174     Flags |= MachineMemOperand::MONonTemporal;
2175   if (IsInvariant)
2176     Flags |= MachineMemOperand::MOInvariant;
2177 
2178   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2179                                            Alignment, AAInfo, Ranges);
2180 }
2181 
optimizeCmpPredicate(const CmpInst * CI) const2182 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2183   // If both operands are the same, then try to optimize or fold the cmp.
2184   CmpInst::Predicate Predicate = CI->getPredicate();
2185   if (CI->getOperand(0) != CI->getOperand(1))
2186     return Predicate;
2187 
2188   switch (Predicate) {
2189   default: llvm_unreachable("Invalid predicate!");
2190   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2191   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2192   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2193   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2194   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2195   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2196   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2197   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2198   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2199   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2200   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2201   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2202   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2203   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2204   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2205   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2206 
2207   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2208   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2209   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2210   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2211   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2212   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2213   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2214   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2215   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2216   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2217   }
2218 
2219   return Predicate;
2220 }
2221