1 //===--- HexagonGenInsert.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hexinsert"
11
12 #include "llvm/Pass.h"
13 #include "llvm/PassRegistry.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Support/Timer.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetRegisterInfo.h"
30
31 #include "Hexagon.h"
32 #include "HexagonRegisterInfo.h"
33 #include "HexagonTargetMachine.h"
34 #include "HexagonBitTracker.h"
35
36 #include <map>
37 #include <vector>
38
39 using namespace llvm;
40
41 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
42 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
43 // The distance cutoff is selected based on the precheckin-perf results:
44 // cutoffs 20, 25, 35, and 40 are worse than 30.
45 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
46 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
47 "generation."));
48
49 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
50 cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
51 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
52 cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
53 "generation"));
54
55 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
56 cl::ZeroOrMore);
57 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
58 cl::ZeroOrMore);
59 // Whether to construct constant values via "insert". Could eliminate constant
60 // extenders, but often not practical.
61 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
62 cl::ZeroOrMore);
63
64 namespace {
65 // The preprocessor gets confused when the DEBUG macro is passed larger
66 // chunks of code. Use this function to detect debugging.
isDebug()67 inline bool isDebug() {
68 #ifndef NDEBUG
69 return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
70 #else
71 return false;
72 #endif
73 }
74 }
75
76
77 namespace {
78 // Set of virtual registers, based on BitVector.
79 struct RegisterSet : private BitVector {
80 RegisterSet() = default;
RegisterSet__anon53296d7a0211::RegisterSet81 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
82
83 using BitVector::clear;
84
find_first__anon53296d7a0211::RegisterSet85 unsigned find_first() const {
86 int First = BitVector::find_first();
87 if (First < 0)
88 return 0;
89 return x2v(First);
90 }
91
find_next__anon53296d7a0211::RegisterSet92 unsigned find_next(unsigned Prev) const {
93 int Next = BitVector::find_next(v2x(Prev));
94 if (Next < 0)
95 return 0;
96 return x2v(Next);
97 }
98
insert__anon53296d7a0211::RegisterSet99 RegisterSet &insert(unsigned R) {
100 unsigned Idx = v2x(R);
101 ensure(Idx);
102 return static_cast<RegisterSet&>(BitVector::set(Idx));
103 }
remove__anon53296d7a0211::RegisterSet104 RegisterSet &remove(unsigned R) {
105 unsigned Idx = v2x(R);
106 if (Idx >= size())
107 return *this;
108 return static_cast<RegisterSet&>(BitVector::reset(Idx));
109 }
110
insert__anon53296d7a0211::RegisterSet111 RegisterSet &insert(const RegisterSet &Rs) {
112 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
113 }
remove__anon53296d7a0211::RegisterSet114 RegisterSet &remove(const RegisterSet &Rs) {
115 return static_cast<RegisterSet&>(BitVector::reset(Rs));
116 }
117
operator []__anon53296d7a0211::RegisterSet118 reference operator[](unsigned R) {
119 unsigned Idx = v2x(R);
120 ensure(Idx);
121 return BitVector::operator[](Idx);
122 }
operator []__anon53296d7a0211::RegisterSet123 bool operator[](unsigned R) const {
124 unsigned Idx = v2x(R);
125 assert(Idx < size());
126 return BitVector::operator[](Idx);
127 }
has__anon53296d7a0211::RegisterSet128 bool has(unsigned R) const {
129 unsigned Idx = v2x(R);
130 if (Idx >= size())
131 return false;
132 return BitVector::test(Idx);
133 }
134
empty__anon53296d7a0211::RegisterSet135 bool empty() const {
136 return !BitVector::any();
137 }
includes__anon53296d7a0211::RegisterSet138 bool includes(const RegisterSet &Rs) const {
139 // A.BitVector::test(B) <=> A-B != {}
140 return !Rs.BitVector::test(*this);
141 }
intersects__anon53296d7a0211::RegisterSet142 bool intersects(const RegisterSet &Rs) const {
143 return BitVector::anyCommon(Rs);
144 }
145
146 private:
ensure__anon53296d7a0211::RegisterSet147 void ensure(unsigned Idx) {
148 if (size() <= Idx)
149 resize(std::max(Idx+1, 32U));
150 }
v2x__anon53296d7a0211::RegisterSet151 static inline unsigned v2x(unsigned v) {
152 return TargetRegisterInfo::virtReg2Index(v);
153 }
x2v__anon53296d7a0211::RegisterSet154 static inline unsigned x2v(unsigned x) {
155 return TargetRegisterInfo::index2VirtReg(x);
156 }
157 };
158
159
160 struct PrintRegSet {
PrintRegSet__anon53296d7a0211::PrintRegSet161 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
162 : RS(S), TRI(RI) {}
163 friend raw_ostream &operator<< (raw_ostream &OS,
164 const PrintRegSet &P);
165 private:
166 const RegisterSet &RS;
167 const TargetRegisterInfo *TRI;
168 };
169
operator <<(raw_ostream & OS,const PrintRegSet & P)170 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
171 OS << '{';
172 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
173 OS << ' ' << PrintReg(R, P.TRI);
174 OS << " }";
175 return OS;
176 }
177 }
178
179
180 namespace {
181 // A convenience class to associate unsigned numbers (such as virtual
182 // registers) with unsigned numbers.
183 struct UnsignedMap : public DenseMap<unsigned,unsigned> {
UnsignedMap__anon53296d7a0311::UnsignedMap184 UnsignedMap() : BaseType() {}
185 private:
186 typedef DenseMap<unsigned,unsigned> BaseType;
187 };
188
189 // A utility to establish an ordering between virtual registers:
190 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
191 // This is meant as a cache for the ordering of virtual registers defined
192 // by a potentially expensive comparison function, or obtained by a proce-
193 // dure that should not be repeated each time two registers are compared.
194 struct RegisterOrdering : public UnsignedMap {
RegisterOrdering__anon53296d7a0311::RegisterOrdering195 RegisterOrdering() : UnsignedMap() {}
operator []__anon53296d7a0311::RegisterOrdering196 unsigned operator[](unsigned VR) const {
197 const_iterator F = find(VR);
198 assert(F != end());
199 return F->second;
200 }
201 // Add operator(), so that objects of this class can be used as
202 // comparators in std::sort et al.
operator ()__anon53296d7a0311::RegisterOrdering203 bool operator() (unsigned VR1, unsigned VR2) const {
204 return operator[](VR1) < operator[](VR2);
205 }
206 };
207 }
208
209
210 namespace {
211 // Ordering of bit values. This class does not have operator[], but
212 // is supplies a comparison operator() for use in std:: algorithms.
213 // The order is as follows:
214 // - 0 < 1 < ref
215 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
216 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
217 struct BitValueOrdering {
BitValueOrdering__anon53296d7a0411::BitValueOrdering218 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
219 bool operator() (const BitTracker::BitValue &V1,
220 const BitTracker::BitValue &V2) const;
221 const RegisterOrdering &BaseOrd;
222 };
223 }
224
225
operator ()(const BitTracker::BitValue & V1,const BitTracker::BitValue & V2) const226 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
227 const BitTracker::BitValue &V2) const {
228 if (V1 == V2)
229 return false;
230 // V1==0 => true, V2==0 => false
231 if (V1.is(0) || V2.is(0))
232 return V1.is(0);
233 // Neither of V1,V2 is 0, and V1!=V2.
234 // V2==1 => false, V1==1 => true
235 if (V2.is(1) || V1.is(1))
236 return !V2.is(1);
237 // Both V1,V2 are refs.
238 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
239 if (Ind1 != Ind2)
240 return Ind1 < Ind2;
241 // If V1.Pos==V2.Pos
242 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
243 return V1.RefI.Pos < V2.RefI.Pos;
244 }
245
246
247 namespace {
248 // Cache for the BitTracker's cell map. Map lookup has a logarithmic
249 // complexity, this class will memoize the lookup results to reduce
250 // the access time for repeated lookups of the same cell.
251 struct CellMapShadow {
CellMapShadow__anon53296d7a0511::CellMapShadow252 CellMapShadow(const BitTracker &T) : BT(T) {}
lookup__anon53296d7a0511::CellMapShadow253 const BitTracker::RegisterCell &lookup(unsigned VR) {
254 unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
255 // Grow the vector to at least 32 elements.
256 if (RInd >= CVect.size())
257 CVect.resize(std::max(RInd+16, 32U), 0);
258 const BitTracker::RegisterCell *CP = CVect[RInd];
259 if (CP == 0)
260 CP = CVect[RInd] = &BT.lookup(VR);
261 return *CP;
262 }
263
264 const BitTracker &BT;
265
266 private:
267 typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
268 CellVectType CVect;
269 };
270 }
271
272
273 namespace {
274 // Comparator class for lexicographic ordering of virtual registers
275 // according to the corresponding BitTracker::RegisterCell objects.
276 struct RegisterCellLexCompare {
RegisterCellLexCompare__anon53296d7a0611::RegisterCellLexCompare277 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
278 : BitOrd(BO), CM(M) {}
279 bool operator() (unsigned VR1, unsigned VR2) const;
280 private:
281 const BitValueOrdering &BitOrd;
282 CellMapShadow &CM;
283 };
284
285 // Comparator class for lexicographic ordering of virtual registers
286 // according to the specified bits of the corresponding BitTracker::
287 // RegisterCell objects.
288 // Specifically, this class will be used to compare bit B of a register
289 // cell for a selected virtual register R with bit N of any register
290 // other than R.
291 struct RegisterCellBitCompareSel {
RegisterCellBitCompareSel__anon53296d7a0611::RegisterCellBitCompareSel292 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
293 const BitValueOrdering &BO, CellMapShadow &M)
294 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
295 bool operator() (unsigned VR1, unsigned VR2) const;
296 private:
297 const unsigned SelR, SelB;
298 const unsigned BitN;
299 const BitValueOrdering &BitOrd;
300 CellMapShadow &CM;
301 };
302 }
303
304
operator ()(unsigned VR1,unsigned VR2) const305 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
306 // Ordering of registers, made up from two given orderings:
307 // - the ordering of the register numbers, and
308 // - the ordering of register cells.
309 // Def. R1 < R2 if:
310 // - cell(R1) < cell(R2), or
311 // - cell(R1) == cell(R2), and index(R1) < index(R2).
312 //
313 // For register cells, the ordering is lexicographic, with index 0 being
314 // the most significant.
315 if (VR1 == VR2)
316 return false;
317
318 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
319 uint16_t W1 = RC1.width(), W2 = RC2.width();
320 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
321 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
322 if (V1 != V2)
323 return BitOrd(V1, V2);
324 }
325 // Cells are equal up until the common length.
326 if (W1 != W2)
327 return W1 < W2;
328
329 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
330 }
331
332
operator ()(unsigned VR1,unsigned VR2) const333 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
334 if (VR1 == VR2)
335 return false;
336 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
337 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
338 uint16_t W1 = RC1.width(), W2 = RC2.width();
339 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
340 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
341 // If Bit1 exceeds the width of VR1, then:
342 // - return false, if at the same time Bit2 exceeds VR2, or
343 // - return true, otherwise.
344 // (I.e. "a bit value that does not exist is less than any bit value
345 // that does exist".)
346 if (W1 <= Bit1)
347 return Bit2 < W2;
348 // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
349 if (W2 <= Bit2)
350 return false;
351
352 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
353 if (V1 != V2)
354 return BitOrd(V1, V2);
355 return false;
356 }
357
358
359 namespace {
360 class OrderedRegisterList {
361 typedef std::vector<unsigned> ListType;
362 public:
OrderedRegisterList(const RegisterOrdering & RO)363 OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
364 void insert(unsigned VR);
365 void remove(unsigned VR);
operator [](unsigned Idx) const366 unsigned operator[](unsigned Idx) const {
367 assert(Idx < Seq.size());
368 return Seq[Idx];
369 }
size() const370 unsigned size() const {
371 return Seq.size();
372 }
373
374 typedef ListType::iterator iterator;
375 typedef ListType::const_iterator const_iterator;
begin()376 iterator begin() { return Seq.begin(); }
end()377 iterator end() { return Seq.end(); }
begin() const378 const_iterator begin() const { return Seq.begin(); }
end() const379 const_iterator end() const { return Seq.end(); }
380
381 // Convenience function to convert an iterator to the corresponding index.
idx(iterator It) const382 unsigned idx(iterator It) const { return It-begin(); }
383 private:
384 ListType Seq;
385 const RegisterOrdering &Ord;
386 };
387
388
389 struct PrintORL {
PrintORL__anon53296d7a0711::PrintORL390 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
391 : RL(L), TRI(RI) {}
392 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
393 private:
394 const OrderedRegisterList &RL;
395 const TargetRegisterInfo *TRI;
396 };
397
operator <<(raw_ostream & OS,const PrintORL & P)398 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
399 OS << '(';
400 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
401 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
402 if (I != B)
403 OS << ", ";
404 OS << PrintReg(*I, P.TRI);
405 }
406 OS << ')';
407 return OS;
408 }
409 }
410
411
insert(unsigned VR)412 void OrderedRegisterList::insert(unsigned VR) {
413 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
414 if (L == Seq.end())
415 Seq.push_back(VR);
416 else
417 Seq.insert(L, VR);
418 }
419
420
remove(unsigned VR)421 void OrderedRegisterList::remove(unsigned VR) {
422 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
423 assert(L != Seq.end());
424 Seq.erase(L);
425 }
426
427
428 namespace {
429 // A record of the insert form. The fields correspond to the operands
430 // of the "insert" instruction:
431 // ... = insert(SrcR, InsR, #Wdh, #Off)
432 struct IFRecord {
IFRecord__anon53296d7a0811::IFRecord433 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
434 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
435 unsigned SrcR, InsR;
436 uint16_t Wdh, Off;
437 };
438
439 struct PrintIFR {
PrintIFR__anon53296d7a0811::PrintIFR440 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
441 : IFR(R), TRI(RI) {}
442 private:
443 const IFRecord &IFR;
444 const TargetRegisterInfo *TRI;
445 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
446 };
447
operator <<(raw_ostream & OS,const PrintIFR & P)448 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
449 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
450 OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
451 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
452 return OS;
453 }
454
455 typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
456 }
457
458
459 namespace llvm {
460 void initializeHexagonGenInsertPass(PassRegistry&);
461 FunctionPass *createHexagonGenInsert();
462 }
463
464
465 namespace {
466 class HexagonGenInsert : public MachineFunctionPass {
467 public:
468 static char ID;
HexagonGenInsert()469 HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
470 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
471 }
getPassName() const472 virtual const char *getPassName() const {
473 return "Hexagon generate \"insert\" instructions";
474 }
getAnalysisUsage(AnalysisUsage & AU) const475 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
476 AU.addRequired<MachineDominatorTree>();
477 AU.addPreserved<MachineDominatorTree>();
478 MachineFunctionPass::getAnalysisUsage(AU);
479 }
480 virtual bool runOnMachineFunction(MachineFunction &MF);
481
482 private:
483 typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
484
485 void buildOrderingMF(RegisterOrdering &RO) const;
486 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
487 bool isIntClass(const TargetRegisterClass *RC) const;
488 bool isConstant(unsigned VR) const;
489 bool isSmallConstant(unsigned VR) const;
490 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
491 uint16_t L, uint16_t S) const;
492 bool findSelfReference(unsigned VR) const;
493 bool findNonSelfReference(unsigned VR) const;
494 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
495 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
496 unsigned distance(const MachineBasicBlock *FromB,
497 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
498 PairMapType &M) const;
499 unsigned distance(MachineBasicBlock::const_iterator FromI,
500 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
501 PairMapType &M) const;
502 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
503 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
504 void findRemovableRegisters(unsigned VR, IFRecord IF,
505 RegisterSet &RMs) const;
506 void computeRemovableRegisters();
507
508 void pruneEmptyLists();
509 void pruneCoveredSets(unsigned VR);
510 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
511 void pruneRegCopies(unsigned VR);
512 void pruneCandidates();
513 void selectCandidates();
514 bool generateInserts();
515
516 bool removeDeadCode(MachineDomTreeNode *N);
517
518 // IFRecord coupled with a set of potentially removable registers:
519 typedef std::vector<IFRecordWithRegSet> IFListType;
520 typedef DenseMap<unsigned,IFListType> IFMapType; // vreg -> IFListType
521
522 void dump_map() const;
523
524 const HexagonInstrInfo *HII;
525 const HexagonRegisterInfo *HRI;
526
527 MachineFunction *MFN;
528 MachineRegisterInfo *MRI;
529 MachineDominatorTree *MDT;
530 CellMapShadow *CMS;
531
532 RegisterOrdering BaseOrd;
533 RegisterOrdering CellOrd;
534 IFMapType IFMap;
535 };
536
537 char HexagonGenInsert::ID = 0;
538 }
539
540
dump_map() const541 void HexagonGenInsert::dump_map() const {
542 typedef IFMapType::const_iterator iterator;
543 for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
544 dbgs() << " " << PrintReg(I->first, HRI) << ":\n";
545 const IFListType &LL = I->second;
546 for (unsigned i = 0, n = LL.size(); i < n; ++i)
547 dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", "
548 << PrintRegSet(LL[i].second, HRI) << '\n';
549 }
550 }
551
552
buildOrderingMF(RegisterOrdering & RO) const553 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
554 unsigned Index = 0;
555 typedef MachineFunction::const_iterator mf_iterator;
556 for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
557 const MachineBasicBlock &B = *A;
558 if (!CMS->BT.reached(&B))
559 continue;
560 typedef MachineBasicBlock::const_iterator mb_iterator;
561 for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
562 const MachineInstr *MI = &*I;
563 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
564 const MachineOperand &MO = MI->getOperand(i);
565 if (MO.isReg() && MO.isDef()) {
566 unsigned R = MO.getReg();
567 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
568 if (TargetRegisterInfo::isVirtualRegister(R))
569 RO.insert(std::make_pair(R, Index++));
570 }
571 }
572 }
573 }
574 // Since some virtual registers may have had their def and uses eliminated,
575 // they are no longer referenced in the code, and so they will not appear
576 // in the map.
577 }
578
579
buildOrderingBT(RegisterOrdering & RB,RegisterOrdering & RO) const580 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
581 RegisterOrdering &RO) const {
582 // Create a vector of all virtual registers (collect them from the base
583 // ordering RB), and then sort it using the RegisterCell comparator.
584 BitValueOrdering BVO(RB);
585 RegisterCellLexCompare LexCmp(BVO, *CMS);
586 typedef std::vector<unsigned> SortableVectorType;
587 SortableVectorType VRs;
588 for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
589 VRs.push_back(I->first);
590 std::sort(VRs.begin(), VRs.end(), LexCmp);
591 // Transfer the results to the outgoing register ordering.
592 for (unsigned i = 0, n = VRs.size(); i < n; ++i)
593 RO.insert(std::make_pair(VRs[i], i));
594 }
595
596
isIntClass(const TargetRegisterClass * RC) const597 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
598 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
599 }
600
601
isConstant(unsigned VR) const602 bool HexagonGenInsert::isConstant(unsigned VR) const {
603 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
604 uint16_t W = RC.width();
605 for (uint16_t i = 0; i < W; ++i) {
606 const BitTracker::BitValue &BV = RC[i];
607 if (BV.is(0) || BV.is(1))
608 continue;
609 return false;
610 }
611 return true;
612 }
613
614
isSmallConstant(unsigned VR) const615 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
616 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
617 uint16_t W = RC.width();
618 if (W > 64)
619 return false;
620 uint64_t V = 0, B = 1;
621 for (uint16_t i = 0; i < W; ++i) {
622 const BitTracker::BitValue &BV = RC[i];
623 if (BV.is(1))
624 V |= B;
625 else if (!BV.is(0))
626 return false;
627 B <<= 1;
628 }
629
630 // For 32-bit registers, consider: Rd = #s16.
631 if (W == 32)
632 return isInt<16>(V);
633
634 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
635 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
636 }
637
638
isValidInsertForm(unsigned DstR,unsigned SrcR,unsigned InsR,uint16_t L,uint16_t S) const639 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
640 unsigned InsR, uint16_t L, uint16_t S) const {
641 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
642 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
643 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
644 // Only integet (32-/64-bit) register classes.
645 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
646 return false;
647 // The "source" register must be of the same class as DstR.
648 if (DstRC != SrcRC)
649 return false;
650 if (DstRC == InsRC)
651 return true;
652 // A 64-bit register can only be generated from other 64-bit registers.
653 if (DstRC == &Hexagon::DoubleRegsRegClass)
654 return false;
655 // Otherwise, the L and S cannot span 32-bit word boundary.
656 if (S < 32 && S+L > 32)
657 return false;
658 return true;
659 }
660
661
findSelfReference(unsigned VR) const662 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
663 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
664 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
665 const BitTracker::BitValue &V = RC[i];
666 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
667 return true;
668 }
669 return false;
670 }
671
672
findNonSelfReference(unsigned VR) const673 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
674 BitTracker::RegisterCell RC = CMS->lookup(VR);
675 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
676 const BitTracker::BitValue &V = RC[i];
677 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
678 return true;
679 }
680 return false;
681 }
682
683
getInstrDefs(const MachineInstr * MI,RegisterSet & Defs) const684 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
685 RegisterSet &Defs) const {
686 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
687 const MachineOperand &MO = MI->getOperand(i);
688 if (!MO.isReg() || !MO.isDef())
689 continue;
690 unsigned R = MO.getReg();
691 if (!TargetRegisterInfo::isVirtualRegister(R))
692 continue;
693 Defs.insert(R);
694 }
695 }
696
697
getInstrUses(const MachineInstr * MI,RegisterSet & Uses) const698 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
699 RegisterSet &Uses) const {
700 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
701 const MachineOperand &MO = MI->getOperand(i);
702 if (!MO.isReg() || !MO.isUse())
703 continue;
704 unsigned R = MO.getReg();
705 if (!TargetRegisterInfo::isVirtualRegister(R))
706 continue;
707 Uses.insert(R);
708 }
709 }
710
711
distance(const MachineBasicBlock * FromB,const MachineBasicBlock * ToB,const UnsignedMap & RPO,PairMapType & M) const712 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
713 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
714 PairMapType &M) const {
715 // Forward distance from the end of a block to the beginning of it does
716 // not make sense. This function should not be called with FromB == ToB.
717 assert(FromB != ToB);
718
719 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
720 // If we have already computed it, return the cached result.
721 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
722 if (F != M.end())
723 return F->second;
724 unsigned ToRPO = RPO.lookup(ToN);
725
726 unsigned MaxD = 0;
727 typedef MachineBasicBlock::const_pred_iterator pred_iterator;
728 for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
729 const MachineBasicBlock *PB = *I;
730 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
731 // along that path will be 0, and we don't need to do any calculations
732 // on it.
733 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
734 continue;
735 unsigned D = PB->size() + distance(FromB, PB, RPO, M);
736 if (D > MaxD)
737 MaxD = D;
738 }
739
740 // Memoize the result for later lookup.
741 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
742 return MaxD;
743 }
744
745
distance(MachineBasicBlock::const_iterator FromI,MachineBasicBlock::const_iterator ToI,const UnsignedMap & RPO,PairMapType & M) const746 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
747 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
748 PairMapType &M) const {
749 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
750 if (FB == TB)
751 return std::distance(FromI, ToI);
752 unsigned D1 = std::distance(TB->begin(), ToI);
753 unsigned D2 = distance(FB, TB, RPO, M);
754 unsigned D3 = std::distance(FromI, FB->end());
755 return D1+D2+D3;
756 }
757
758
findRecordInsertForms(unsigned VR,OrderedRegisterList & AVs)759 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
760 OrderedRegisterList &AVs) {
761 if (isDebug()) {
762 dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
763 << " AVs: " << PrintORL(AVs, HRI) << "\n";
764 }
765 if (AVs.size() == 0)
766 return false;
767
768 typedef OrderedRegisterList::iterator iterator;
769 BitValueOrdering BVO(BaseOrd);
770 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
771 uint16_t W = RC.width();
772
773 typedef std::pair<unsigned,uint16_t> RSRecord; // (reg,shift)
774 typedef std::vector<RSRecord> RSListType;
775 // Have a map, with key being the matching prefix length, and the value
776 // being the list of pairs (R,S), where R's prefix matches VR at S.
777 // (DenseMap<uint16_t,RSListType> fails to instantiate.)
778 typedef DenseMap<unsigned,RSListType> LRSMapType;
779 LRSMapType LM;
780
781 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
782 // and find matching prefixes from AVs with the rotated RC. Such a prefix
783 // would match a string of bits (of length L) in RC starting at S.
784 for (uint16_t S = 0; S < W; ++S) {
785 iterator B = AVs.begin(), E = AVs.end();
786 // The registers in AVs are ordered according to the lexical order of
787 // the corresponding register cells. This means that the range of regis-
788 // ters in AVs that match a prefix of length L+1 will be contained in
789 // the range that matches a prefix of length L. This means that we can
790 // keep narrowing the search space as the prefix length goes up. This
791 // helps reduce the overall complexity of the search.
792 uint16_t L;
793 for (L = 0; L < W-S; ++L) {
794 // Compare against VR's bits starting at S, which emulates rotation
795 // of VR by S.
796 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
797 iterator NewB = std::lower_bound(B, E, VR, RCB);
798 iterator NewE = std::upper_bound(NewB, E, VR, RCB);
799 // For the registers that are eliminated from the next range, L is
800 // the longest prefix matching VR at position S (their prefixes
801 // differ from VR at S+L). If L>0, record this information for later
802 // use.
803 if (L > 0) {
804 for (iterator I = B; I != NewB; ++I)
805 LM[L].push_back(std::make_pair(*I, S));
806 for (iterator I = NewE; I != E; ++I)
807 LM[L].push_back(std::make_pair(*I, S));
808 }
809 B = NewB, E = NewE;
810 if (B == E)
811 break;
812 }
813 // Record the final register range. If this range is non-empty, then
814 // L=W-S.
815 assert(B == E || L == W-S);
816 if (B != E) {
817 for (iterator I = B; I != E; ++I)
818 LM[L].push_back(std::make_pair(*I, S));
819 // If B!=E, then we found a range of registers whose prefixes cover the
820 // rest of VR from position S. There is no need to further advance S.
821 break;
822 }
823 }
824
825 if (isDebug()) {
826 dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
827 for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
828 dbgs() << " L=" << I->first << ':';
829 const RSListType &LL = I->second;
830 for (unsigned i = 0, n = LL.size(); i < n; ++i)
831 dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
832 << LL[i].second << ')';
833 dbgs() << '\n';
834 }
835 }
836
837
838 bool Recorded = false;
839
840 for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
841 unsigned SrcR = *I;
842 int FDi = -1, LDi = -1; // First/last different bit.
843 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
844 uint16_t AW = AC.width();
845 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
846 if (RC[i] == AC[i])
847 continue;
848 if (FDi == -1)
849 FDi = i;
850 LDi = i;
851 }
852 if (FDi == -1)
853 continue; // TODO (future): Record identical registers.
854 // Look for a register whose prefix could patch the range [FD..LD]
855 // where VR and SrcR differ.
856 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
857 uint16_t MinL = LD-FD+1;
858 for (uint16_t L = MinL; L < W; ++L) {
859 LRSMapType::iterator F = LM.find(L);
860 if (F == LM.end())
861 continue;
862 RSListType &LL = F->second;
863 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
864 uint16_t S = LL[i].second;
865 // MinL is the minimum length of the prefix. Any length above MinL
866 // allows some flexibility as to where the prefix can start:
867 // given the extra length EL=L-MinL, the prefix must start between
868 // max(0,FD-EL) and FD.
869 if (S > FD) // Starts too late.
870 continue;
871 uint16_t EL = L-MinL;
872 uint16_t LowS = (EL < FD) ? FD-EL : 0;
873 if (S < LowS) // Starts too early.
874 continue;
875 unsigned InsR = LL[i].first;
876 if (!isValidInsertForm(VR, SrcR, InsR, L, S))
877 continue;
878 if (isDebug()) {
879 dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
880 << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
881 << S << ")\n";
882 }
883 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
884 IFMap[VR].push_back(RR);
885 Recorded = true;
886 }
887 }
888 }
889
890 return Recorded;
891 }
892
893
collectInBlock(MachineBasicBlock * B,OrderedRegisterList & AVs)894 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
895 OrderedRegisterList &AVs) {
896 if (isDebug())
897 dbgs() << "visiting block BB#" << B->getNumber() << "\n";
898
899 // First, check if this block is reachable at all. If not, the bit tracker
900 // will not have any information about registers in it.
901 if (!CMS->BT.reached(B))
902 return;
903
904 bool DoConst = OptConst;
905 // Keep a separate set of registers defined in this block, so that we
906 // can remove them from the list of available registers once all DT
907 // successors have been processed.
908 RegisterSet BlockDefs, InsDefs;
909 for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
910 MachineInstr *MI = &*I;
911 InsDefs.clear();
912 getInstrDefs(MI, InsDefs);
913 // Leave those alone. They are more transparent than "insert".
914 bool Skip = MI->isCopy() || MI->isRegSequence();
915
916 if (!Skip) {
917 // Visit all defined registers, and attempt to find the corresponding
918 // "insert" representations.
919 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
920 // Do not collect registers that are known to be compile-time cons-
921 // tants, unless requested.
922 if (!DoConst && isConstant(VR))
923 continue;
924 // If VR's cell contains a reference to VR, then VR cannot be defined
925 // via "insert". If VR is a constant that can be generated in a single
926 // instruction (without constant extenders), generating it via insert
927 // makes no sense.
928 if (findSelfReference(VR) || isSmallConstant(VR))
929 continue;
930
931 findRecordInsertForms(VR, AVs);
932 }
933 }
934
935 // Insert the defined registers into the list of available registers
936 // after they have been processed.
937 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
938 AVs.insert(VR);
939 BlockDefs.insert(InsDefs);
940 }
941
942 MachineDomTreeNode *N = MDT->getNode(B);
943 typedef GraphTraits<MachineDomTreeNode*> GTN;
944 typedef GTN::ChildIteratorType ChildIter;
945 for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
946 MachineBasicBlock *SB = (*I)->getBlock();
947 collectInBlock(SB, AVs);
948 }
949
950 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
951 AVs.remove(VR);
952 }
953
954
findRemovableRegisters(unsigned VR,IFRecord IF,RegisterSet & RMs) const955 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
956 RegisterSet &RMs) const {
957 // For a given register VR and a insert form, find the registers that are
958 // used by the current definition of VR, and which would no longer be
959 // needed for it after the definition of VR is replaced with the insert
960 // form. These are the registers that could potentially become dead.
961 RegisterSet Regs[2];
962
963 unsigned S = 0; // Register set selector.
964 Regs[S].insert(VR);
965
966 while (!Regs[S].empty()) {
967 // Breadth-first search.
968 unsigned OtherS = 1-S;
969 Regs[OtherS].clear();
970 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
971 Regs[S].remove(R);
972 if (R == IF.SrcR || R == IF.InsR)
973 continue;
974 // Check if a given register has bits that are references to any other
975 // registers. This is to detect situations where the instruction that
976 // defines register R takes register Q as an operand, but R itself does
977 // not contain any bits from Q. Loads are examples of how this could
978 // happen:
979 // R = load Q
980 // In this case (assuming we do not have any knowledge about the loaded
981 // value), we must not treat R as a "conveyance" of the bits from Q.
982 // (The information in BT about R's bits would have them as constants,
983 // in case of zero-extending loads, or refs to R.)
984 if (!findNonSelfReference(R))
985 continue;
986 RMs.insert(R);
987 const MachineInstr *DefI = MRI->getVRegDef(R);
988 assert(DefI);
989 // Do not iterate past PHI nodes to avoid infinite loops. This can
990 // make the final set a bit less accurate, but the removable register
991 // sets are an approximation anyway.
992 if (DefI->isPHI())
993 continue;
994 getInstrUses(DefI, Regs[OtherS]);
995 }
996 S = OtherS;
997 }
998 // The register VR is added to the list as a side-effect of the algorithm,
999 // but it is not "potentially removable". A potentially removable register
1000 // is one that may become unused (dead) after conversion to the insert form
1001 // IF, and obviously VR (or its replacement) will not become dead by apply-
1002 // ing IF.
1003 RMs.remove(VR);
1004 }
1005
1006
computeRemovableRegisters()1007 void HexagonGenInsert::computeRemovableRegisters() {
1008 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1009 IFListType &LL = I->second;
1010 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1011 findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1012 }
1013 }
1014
1015
pruneEmptyLists()1016 void HexagonGenInsert::pruneEmptyLists() {
1017 // Remove all entries from the map, where the register has no insert forms
1018 // associated with it.
1019 typedef SmallVector<IFMapType::iterator,16> IterListType;
1020 IterListType Prune;
1021 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1022 if (I->second.size() == 0)
1023 Prune.push_back(I);
1024 }
1025 for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1026 IFMap.erase(Prune[i]);
1027 }
1028
1029
pruneCoveredSets(unsigned VR)1030 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1031 IFMapType::iterator F = IFMap.find(VR);
1032 assert(F != IFMap.end());
1033 IFListType &LL = F->second;
1034
1035 // First, examine the IF candidates for register VR whose removable-regis-
1036 // ter sets are empty. This means that a given candidate will not help eli-
1037 // minate any registers, but since "insert" is not a constant-extendable
1038 // instruction, using such a candidate may reduce code size if the defini-
1039 // tion of VR is constant-extended.
1040 // If there exists a candidate with a non-empty set, the ones with empty
1041 // sets will not be used and can be removed.
1042 MachineInstr *DefVR = MRI->getVRegDef(VR);
1043 bool DefEx = HII->isConstExtended(DefVR);
1044 bool HasNE = false;
1045 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1046 if (LL[i].second.empty())
1047 continue;
1048 HasNE = true;
1049 break;
1050 }
1051 if (!DefEx || HasNE) {
1052 // The definition of VR is not constant-extended, or there is a candidate
1053 // with a non-empty set. Remove all candidates with empty sets.
1054 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1055 return IR.second.empty();
1056 };
1057 auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
1058 if (End != LL.end())
1059 LL.erase(End, LL.end());
1060 } else {
1061 // The definition of VR is constant-extended, and all candidates have
1062 // empty removable-register sets. Pick the maximum candidate, and remove
1063 // all others. The "maximum" does not have any special meaning here, it
1064 // is only so that the candidate that will remain on the list is selec-
1065 // ted deterministically.
1066 IFRecord MaxIF = LL[0].first;
1067 for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1068 // If LL[MaxI] < LL[i], then MaxI = i.
1069 const IFRecord &IF = LL[i].first;
1070 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1071 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1072 if (M0 > R0)
1073 continue;
1074 if (M0 == R0) {
1075 if (M1 > R1)
1076 continue;
1077 if (M1 == R1) {
1078 if (MaxIF.Wdh > IF.Wdh)
1079 continue;
1080 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1081 continue;
1082 }
1083 }
1084 // MaxIF < IF.
1085 MaxIF = IF;
1086 }
1087 // Remove everything except the maximum candidate. All register sets
1088 // are empty, so no need to preserve anything.
1089 LL.clear();
1090 LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1091 }
1092
1093 // Now, remove those whose sets of potentially removable registers are
1094 // contained in another IF candidate for VR. For example, given these
1095 // candidates for vreg45,
1096 // %vreg45:
1097 // (%vreg44,%vreg41,#9,#8), { %vreg42 }
1098 // (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
1099 // remove the first one, since it is contained in the second one.
1100 for (unsigned i = 0, n = LL.size(); i < n; ) {
1101 const RegisterSet &RMi = LL[i].second;
1102 unsigned j = 0;
1103 while (j < n) {
1104 if (j != i && LL[j].second.includes(RMi))
1105 break;
1106 j++;
1107 }
1108 if (j == n) { // RMi not contained in anything else.
1109 i++;
1110 continue;
1111 }
1112 LL.erase(LL.begin()+i);
1113 n = LL.size();
1114 }
1115 }
1116
1117
pruneUsesTooFar(unsigned VR,const UnsignedMap & RPO,PairMapType & M)1118 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1119 PairMapType &M) {
1120 IFMapType::iterator F = IFMap.find(VR);
1121 assert(F != IFMap.end());
1122 IFListType &LL = F->second;
1123 unsigned Cutoff = VRegDistCutoff;
1124 const MachineInstr *DefV = MRI->getVRegDef(VR);
1125
1126 for (unsigned i = LL.size(); i > 0; --i) {
1127 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1128 const MachineInstr *DefS = MRI->getVRegDef(SR);
1129 const MachineInstr *DefI = MRI->getVRegDef(IR);
1130 unsigned DSV = distance(DefS, DefV, RPO, M);
1131 if (DSV < Cutoff) {
1132 unsigned DIV = distance(DefI, DefV, RPO, M);
1133 if (DIV < Cutoff)
1134 continue;
1135 }
1136 LL.erase(LL.begin()+(i-1));
1137 }
1138 }
1139
1140
pruneRegCopies(unsigned VR)1141 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1142 IFMapType::iterator F = IFMap.find(VR);
1143 assert(F != IFMap.end());
1144 IFListType &LL = F->second;
1145
1146 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1147 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1148 };
1149 auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
1150 if (End != LL.end())
1151 LL.erase(End, LL.end());
1152 }
1153
1154
pruneCandidates()1155 void HexagonGenInsert::pruneCandidates() {
1156 // Remove candidates that are not beneficial, regardless of the final
1157 // selection method.
1158 // First, remove candidates whose potentially removable set is a subset
1159 // of another candidate's set.
1160 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1161 pruneCoveredSets(I->first);
1162
1163 UnsignedMap RPO;
1164 typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
1165 RPOTType RPOT(MFN);
1166 unsigned RPON = 0;
1167 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1168 RPO[(*I)->getNumber()] = RPON++;
1169
1170 PairMapType Memo; // Memoization map for distance calculation.
1171 // Remove candidates that would use registers defined too far away.
1172 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1173 pruneUsesTooFar(I->first, RPO, Memo);
1174
1175 pruneEmptyLists();
1176
1177 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1178 pruneRegCopies(I->first);
1179 }
1180
1181
1182 namespace {
1183 // Class for comparing IF candidates for registers that have multiple of
1184 // them. The smaller the candidate, according to this ordering, the better.
1185 // First, compare the number of zeros in the associated potentially remova-
1186 // ble register sets. "Zero" indicates that the register is very likely to
1187 // become dead after this transformation.
1188 // Second, compare "averages", i.e. use-count per size. The lower wins.
1189 // After that, it does not really matter which one is smaller. Resolve
1190 // the tie in some deterministic way.
1191 struct IFOrdering {
IFOrdering__anon53296d7a0c11::IFOrdering1192 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1193 : UseC(UC), BaseOrd(BO) {}
1194 bool operator() (const IFRecordWithRegSet &A,
1195 const IFRecordWithRegSet &B) const;
1196 private:
1197 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1198 unsigned &Sum) const;
1199 const UnsignedMap &UseC;
1200 const RegisterOrdering &BaseOrd;
1201 };
1202 }
1203
1204
operator ()(const IFRecordWithRegSet & A,const IFRecordWithRegSet & B) const1205 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1206 const IFRecordWithRegSet &B) const {
1207 unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1208 unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1209 stats(A.second, SizeA, ZeroA, SumA);
1210 stats(B.second, SizeB, ZeroB, SumB);
1211
1212 // We will pick the minimum element. The more zeros, the better.
1213 if (ZeroA != ZeroB)
1214 return ZeroA > ZeroB;
1215 // Compare SumA/SizeA with SumB/SizeB, lower is better.
1216 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1217 if (AvgA != AvgB)
1218 return AvgA < AvgB;
1219
1220 // The sets compare identical so far. Resort to comparing the IF records.
1221 // The actual values don't matter, this is only for determinism.
1222 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1223 if (OSA != OSB)
1224 return OSA < OSB;
1225 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1226 if (OIA != OIB)
1227 return OIA < OIB;
1228 if (A.first.Wdh != B.first.Wdh)
1229 return A.first.Wdh < B.first.Wdh;
1230 return A.first.Off < B.first.Off;
1231 }
1232
1233
stats(const RegisterSet & Rs,unsigned & Size,unsigned & Zero,unsigned & Sum) const1234 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1235 unsigned &Sum) const {
1236 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1237 UnsignedMap::const_iterator F = UseC.find(R);
1238 assert(F != UseC.end());
1239 unsigned UC = F->second;
1240 if (UC == 0)
1241 Zero++;
1242 Sum += UC;
1243 Size++;
1244 }
1245 }
1246
1247
selectCandidates()1248 void HexagonGenInsert::selectCandidates() {
1249 // Some registers may have multiple valid candidates. Pick the best one
1250 // (or decide not to use any).
1251
1252 // Compute the "removability" measure of R:
1253 // For each potentially removable register R, record the number of regis-
1254 // ters with IF candidates, where R appears in at least one set.
1255 RegisterSet AllRMs;
1256 UnsignedMap UseC, RemC;
1257 IFMapType::iterator End = IFMap.end();
1258
1259 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1260 const IFListType &LL = I->second;
1261 RegisterSet TT;
1262 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1263 TT.insert(LL[i].second);
1264 for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1265 RemC[R]++;
1266 AllRMs.insert(TT);
1267 }
1268
1269 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1270 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
1271 typedef SmallSet<const MachineInstr*,16> InstrSet;
1272 InstrSet UIs;
1273 // Count as the number of instructions in which R is used, not the
1274 // number of operands.
1275 use_iterator E = MRI->use_nodbg_end();
1276 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1277 UIs.insert(I->getParent());
1278 unsigned C = UIs.size();
1279 // Calculate a measure, which is the number of instructions using R,
1280 // minus the "removability" count computed earlier.
1281 unsigned D = RemC[R];
1282 UseC[R] = (C > D) ? C-D : 0; // doz
1283 }
1284
1285
1286 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1287 if (!SelectAll0 && !SelectHas0)
1288 SelectAll0 = true;
1289
1290 // The smaller the number UseC for a given register R, the "less used"
1291 // R is aside from the opportunities for removal offered by generating
1292 // "insert" instructions.
1293 // Iterate over the IF map, and for those registers that have multiple
1294 // candidates, pick the minimum one according to IFOrdering.
1295 IFOrdering IFO(UseC, BaseOrd);
1296 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1297 IFListType &LL = I->second;
1298 if (LL.empty())
1299 continue;
1300 // Get the minimum element, remember it and clear the list. If the
1301 // element found is adequate, we will put it back on the list, other-
1302 // wise the list will remain empty, and the entry for this register
1303 // will be removed (i.e. this register will not be replaced by insert).
1304 IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1305 assert(MinI != LL.end());
1306 IFRecordWithRegSet M = *MinI;
1307 LL.clear();
1308
1309 // We want to make sure that this replacement will have a chance to be
1310 // beneficial, and that means that we want to have indication that some
1311 // register will be removed. The most likely registers to be eliminated
1312 // are the use operands in the definition of I->first. Accept/reject a
1313 // candidate based on how many of its uses it can potentially eliminate.
1314
1315 RegisterSet Us;
1316 const MachineInstr *DefI = MRI->getVRegDef(I->first);
1317 getInstrUses(DefI, Us);
1318 bool Accept = false;
1319
1320 if (SelectAll0) {
1321 bool All0 = true;
1322 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1323 if (UseC[R] == 0)
1324 continue;
1325 All0 = false;
1326 break;
1327 }
1328 Accept = All0;
1329 } else if (SelectHas0) {
1330 bool Has0 = false;
1331 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1332 if (UseC[R] != 0)
1333 continue;
1334 Has0 = true;
1335 break;
1336 }
1337 Accept = Has0;
1338 }
1339 if (Accept)
1340 LL.push_back(M);
1341 }
1342
1343 // Remove candidates that add uses of removable registers, unless the
1344 // removable registers are among replacement candidates.
1345 // Recompute the removable registers, since some candidates may have
1346 // been eliminated.
1347 AllRMs.clear();
1348 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1349 const IFListType &LL = I->second;
1350 if (LL.size() > 0)
1351 AllRMs.insert(LL[0].second);
1352 }
1353 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1354 IFListType &LL = I->second;
1355 if (LL.size() == 0)
1356 continue;
1357 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1358 if (AllRMs[SR] || AllRMs[IR])
1359 LL.clear();
1360 }
1361
1362 pruneEmptyLists();
1363 }
1364
1365
generateInserts()1366 bool HexagonGenInsert::generateInserts() {
1367 // Create a new register for each one from IFMap, and store them in the
1368 // map.
1369 UnsignedMap RegMap;
1370 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1371 unsigned VR = I->first;
1372 const TargetRegisterClass *RC = MRI->getRegClass(VR);
1373 unsigned NewVR = MRI->createVirtualRegister(RC);
1374 RegMap[VR] = NewVR;
1375 }
1376
1377 // We can generate the "insert" instructions using potentially stale re-
1378 // gisters: SrcR and InsR for a given VR may be among other registers that
1379 // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1380 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1381 MachineInstr *MI = MRI->getVRegDef(I->first);
1382 MachineBasicBlock &B = *MI->getParent();
1383 DebugLoc DL = MI->getDebugLoc();
1384 unsigned NewR = RegMap[I->first];
1385 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1386 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1387 : HII->get(Hexagon::S2_insertp);
1388 IFRecord IF = I->second[0].first;
1389 unsigned Wdh = IF.Wdh, Off = IF.Off;
1390 unsigned InsS = 0;
1391 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1392 InsS = Hexagon::subreg_loreg;
1393 if (Off >= 32) {
1394 InsS = Hexagon::subreg_hireg;
1395 Off -= 32;
1396 }
1397 }
1398 // Advance to the proper location for inserting instructions. This could
1399 // be B.end().
1400 MachineBasicBlock::iterator At = MI;
1401 if (MI->isPHI())
1402 At = B.getFirstNonPHI();
1403
1404 BuildMI(B, At, DL, D, NewR)
1405 .addReg(IF.SrcR)
1406 .addReg(IF.InsR, 0, InsS)
1407 .addImm(Wdh)
1408 .addImm(Off);
1409
1410 MRI->clearKillFlags(IF.SrcR);
1411 MRI->clearKillFlags(IF.InsR);
1412 }
1413
1414 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1415 MachineInstr *DefI = MRI->getVRegDef(I->first);
1416 MRI->replaceRegWith(I->first, RegMap[I->first]);
1417 DefI->eraseFromParent();
1418 }
1419
1420 return true;
1421 }
1422
1423
removeDeadCode(MachineDomTreeNode * N)1424 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1425 bool Changed = false;
1426 typedef GraphTraits<MachineDomTreeNode*> GTN;
1427 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1428 Changed |= removeDeadCode(*I);
1429
1430 MachineBasicBlock *B = N->getBlock();
1431 std::vector<MachineInstr*> Instrs;
1432 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1433 Instrs.push_back(&*I);
1434
1435 for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1436 MachineInstr *MI = *I;
1437 unsigned Opc = MI->getOpcode();
1438 // Do not touch lifetime markers. This is why the target-independent DCE
1439 // cannot be used.
1440 if (Opc == TargetOpcode::LIFETIME_START ||
1441 Opc == TargetOpcode::LIFETIME_END)
1442 continue;
1443 bool Store = false;
1444 if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1445 continue;
1446
1447 bool AllDead = true;
1448 SmallVector<unsigned,2> Regs;
1449 for (ConstMIOperands Op(MI); Op.isValid(); ++Op) {
1450 if (!Op->isReg() || !Op->isDef())
1451 continue;
1452 unsigned R = Op->getReg();
1453 if (!TargetRegisterInfo::isVirtualRegister(R) ||
1454 !MRI->use_nodbg_empty(R)) {
1455 AllDead = false;
1456 break;
1457 }
1458 Regs.push_back(R);
1459 }
1460 if (!AllDead)
1461 continue;
1462
1463 B->erase(MI);
1464 for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1465 MRI->markUsesInDebugValueAsUndef(Regs[I]);
1466 Changed = true;
1467 }
1468
1469 return Changed;
1470 }
1471
1472
runOnMachineFunction(MachineFunction & MF)1473 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1474 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1475 bool Changed = false;
1476 TimerGroup __G("hexinsert");
1477 NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
1478
1479 // Sanity check: one, but not both.
1480 assert(!OptSelectAll0 || !OptSelectHas0);
1481
1482 IFMap.clear();
1483 BaseOrd.clear();
1484 CellOrd.clear();
1485
1486 const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1487 HII = ST.getInstrInfo();
1488 HRI = ST.getRegisterInfo();
1489 MFN = &MF;
1490 MRI = &MF.getRegInfo();
1491 MDT = &getAnalysis<MachineDominatorTree>();
1492
1493 // Clean up before any further processing, so that dead code does not
1494 // get used in a newly generated "insert" instruction. Have a custom
1495 // version of DCE that preserves lifetime markers. Without it, merging
1496 // of stack objects can fail to recognize and merge disjoint objects
1497 // leading to unnecessary stack growth.
1498 Changed = removeDeadCode(MDT->getRootNode());
1499
1500 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1501 BitTracker BTLoc(HE, MF);
1502 BTLoc.trace(isDebug());
1503 BTLoc.run();
1504 CellMapShadow MS(BTLoc);
1505 CMS = &MS;
1506
1507 buildOrderingMF(BaseOrd);
1508 buildOrderingBT(BaseOrd, CellOrd);
1509
1510 if (isDebug()) {
1511 dbgs() << "Cell ordering:\n";
1512 for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1513 I != E; ++I) {
1514 unsigned VR = I->first, Pos = I->second;
1515 dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
1516 }
1517 }
1518
1519 // Collect candidates for conversion into the insert forms.
1520 MachineBasicBlock *RootB = MDT->getRoot();
1521 OrderedRegisterList AvailR(CellOrd);
1522
1523 {
1524 NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
1525 collectInBlock(RootB, AvailR);
1526 // Complete the information gathered in IFMap.
1527 computeRemovableRegisters();
1528 }
1529
1530 if (isDebug()) {
1531 dbgs() << "Candidates after collection:\n";
1532 dump_map();
1533 }
1534
1535 if (IFMap.empty())
1536 return Changed;
1537
1538 {
1539 NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
1540 pruneCandidates();
1541 }
1542
1543 if (isDebug()) {
1544 dbgs() << "Candidates after pruning:\n";
1545 dump_map();
1546 }
1547
1548 if (IFMap.empty())
1549 return Changed;
1550
1551 {
1552 NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
1553 selectCandidates();
1554 }
1555
1556 if (isDebug()) {
1557 dbgs() << "Candidates after selection:\n";
1558 dump_map();
1559 }
1560
1561 // Filter out vregs beyond the cutoff.
1562 if (VRegIndexCutoff.getPosition()) {
1563 unsigned Cutoff = VRegIndexCutoff;
1564 typedef SmallVector<IFMapType::iterator,16> IterListType;
1565 IterListType Out;
1566 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1567 unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1568 if (Idx >= Cutoff)
1569 Out.push_back(I);
1570 }
1571 for (unsigned i = 0, n = Out.size(); i < n; ++i)
1572 IFMap.erase(Out[i]);
1573 }
1574 if (IFMap.empty())
1575 return Changed;
1576
1577 {
1578 NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
1579 generateInserts();
1580 }
1581
1582 return true;
1583 }
1584
1585
createHexagonGenInsert()1586 FunctionPass *llvm::createHexagonGenInsert() {
1587 return new HexagonGenInsert();
1588 }
1589
1590
1591 //===----------------------------------------------------------------------===//
1592 // Public Constructor Functions
1593 //===----------------------------------------------------------------------===//
1594
1595 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1596 "Hexagon generate \"insert\" instructions", false, false)
1597 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1598 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1599 "Hexagon generate \"insert\" instructions", false, false)
1600