1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "instcombine"
27
28 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
30
31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
32 /// some part of a constant global variable. This intentionally only accepts
33 /// constant expressions because we can't rewrite arbitrary instructions.
pointsToConstantGlobal(Value * V)34 static bool pointsToConstantGlobal(Value *V) {
35 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
36 return GV->isConstant();
37
38 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
39 if (CE->getOpcode() == Instruction::BitCast ||
40 CE->getOpcode() == Instruction::AddrSpaceCast ||
41 CE->getOpcode() == Instruction::GetElementPtr)
42 return pointsToConstantGlobal(CE->getOperand(0));
43 }
44 return false;
45 }
46
47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
48 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
49 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
51 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
52 /// the alloca, and if the source pointer is a pointer to a constant global, we
53 /// can optimize this.
54 static bool
isOnlyCopiedFromConstantGlobal(Value * V,MemTransferInst * & TheCopy,SmallVectorImpl<Instruction * > & ToDelete)55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
56 SmallVectorImpl<Instruction *> &ToDelete) {
57 // We track lifetime intrinsics as we encounter them. If we decide to go
58 // ahead and replace the value with the global, this lets the caller quickly
59 // eliminate the markers.
60
61 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
62 ValuesToInspect.push_back(std::make_pair(V, false));
63 while (!ValuesToInspect.empty()) {
64 auto ValuePair = ValuesToInspect.pop_back_val();
65 const bool IsOffset = ValuePair.second;
66 for (auto &U : ValuePair.first->uses()) {
67 Instruction *I = cast<Instruction>(U.getUser());
68
69 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
70 // Ignore non-volatile loads, they are always ok.
71 if (!LI->isSimple()) return false;
72 continue;
73 }
74
75 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
76 // If uses of the bitcast are ok, we are ok.
77 ValuesToInspect.push_back(std::make_pair(I, IsOffset));
78 continue;
79 }
80 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
81 // If the GEP has all zero indices, it doesn't offset the pointer. If it
82 // doesn't, it does.
83 ValuesToInspect.push_back(
84 std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
85 continue;
86 }
87
88 if (auto CS = CallSite(I)) {
89 // If this is the function being called then we treat it like a load and
90 // ignore it.
91 if (CS.isCallee(&U))
92 continue;
93
94 // Inalloca arguments are clobbered by the call.
95 unsigned ArgNo = CS.getArgumentNo(&U);
96 if (CS.isInAllocaArgument(ArgNo))
97 return false;
98
99 // If this is a readonly/readnone call site, then we know it is just a
100 // load (but one that potentially returns the value itself), so we can
101 // ignore it if we know that the value isn't captured.
102 if (CS.onlyReadsMemory() &&
103 (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
104 continue;
105
106 // If this is being passed as a byval argument, the caller is making a
107 // copy, so it is only a read of the alloca.
108 if (CS.isByValArgument(ArgNo))
109 continue;
110 }
111
112 // Lifetime intrinsics can be handled by the caller.
113 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
114 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
115 II->getIntrinsicID() == Intrinsic::lifetime_end) {
116 assert(II->use_empty() && "Lifetime markers have no result to use!");
117 ToDelete.push_back(II);
118 continue;
119 }
120 }
121
122 // If this is isn't our memcpy/memmove, reject it as something we can't
123 // handle.
124 MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
125 if (!MI)
126 return false;
127
128 // If the transfer is using the alloca as a source of the transfer, then
129 // ignore it since it is a load (unless the transfer is volatile).
130 if (U.getOperandNo() == 1) {
131 if (MI->isVolatile()) return false;
132 continue;
133 }
134
135 // If we already have seen a copy, reject the second one.
136 if (TheCopy) return false;
137
138 // If the pointer has been offset from the start of the alloca, we can't
139 // safely handle this.
140 if (IsOffset) return false;
141
142 // If the memintrinsic isn't using the alloca as the dest, reject it.
143 if (U.getOperandNo() != 0) return false;
144
145 // If the source of the memcpy/move is not a constant global, reject it.
146 if (!pointsToConstantGlobal(MI->getSource()))
147 return false;
148
149 // Otherwise, the transform is safe. Remember the copy instruction.
150 TheCopy = MI;
151 }
152 }
153 return true;
154 }
155
156 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
157 /// modified by a copy from a constant global. If we can prove this, we can
158 /// replace any uses of the alloca with uses of the global directly.
159 static MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst * AI,SmallVectorImpl<Instruction * > & ToDelete)160 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
161 SmallVectorImpl<Instruction *> &ToDelete) {
162 MemTransferInst *TheCopy = nullptr;
163 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
164 return TheCopy;
165 return nullptr;
166 }
167
simplifyAllocaArraySize(InstCombiner & IC,AllocaInst & AI)168 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
169 // Check for array size of 1 (scalar allocation).
170 if (!AI.isArrayAllocation()) {
171 // i32 1 is the canonical array size for scalar allocations.
172 if (AI.getArraySize()->getType()->isIntegerTy(32))
173 return nullptr;
174
175 // Canonicalize it.
176 Value *V = IC.Builder->getInt32(1);
177 AI.setOperand(0, V);
178 return &AI;
179 }
180
181 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
182 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
183 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
184 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
185 New->setAlignment(AI.getAlignment());
186
187 // Scan to the end of the allocation instructions, to skip over a block of
188 // allocas if possible...also skip interleaved debug info
189 //
190 BasicBlock::iterator It(New);
191 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
192 ++It;
193
194 // Now that I is pointing to the first non-allocation-inst in the block,
195 // insert our getelementptr instruction...
196 //
197 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
198 Value *NullIdx = Constant::getNullValue(IdxTy);
199 Value *Idx[2] = {NullIdx, NullIdx};
200 Instruction *GEP =
201 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
202 IC.InsertNewInstBefore(GEP, *It);
203
204 // Now make everything use the getelementptr instead of the original
205 // allocation.
206 return IC.ReplaceInstUsesWith(AI, GEP);
207 }
208
209 if (isa<UndefValue>(AI.getArraySize()))
210 return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
211
212 // Ensure that the alloca array size argument has type intptr_t, so that
213 // any casting is exposed early.
214 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
215 if (AI.getArraySize()->getType() != IntPtrTy) {
216 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
217 AI.setOperand(0, V);
218 return &AI;
219 }
220
221 return nullptr;
222 }
223
visitAllocaInst(AllocaInst & AI)224 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
225 if (auto *I = simplifyAllocaArraySize(*this, AI))
226 return I;
227
228 if (AI.getAllocatedType()->isSized()) {
229 // If the alignment is 0 (unspecified), assign it the preferred alignment.
230 if (AI.getAlignment() == 0)
231 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
232
233 // Move all alloca's of zero byte objects to the entry block and merge them
234 // together. Note that we only do this for alloca's, because malloc should
235 // allocate and return a unique pointer, even for a zero byte allocation.
236 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
237 // For a zero sized alloca there is no point in doing an array allocation.
238 // This is helpful if the array size is a complicated expression not used
239 // elsewhere.
240 if (AI.isArrayAllocation()) {
241 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
242 return &AI;
243 }
244
245 // Get the first instruction in the entry block.
246 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
247 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
248 if (FirstInst != &AI) {
249 // If the entry block doesn't start with a zero-size alloca then move
250 // this one to the start of the entry block. There is no problem with
251 // dominance as the array size was forced to a constant earlier already.
252 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
253 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
254 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
255 AI.moveBefore(FirstInst);
256 return &AI;
257 }
258
259 // If the alignment of the entry block alloca is 0 (unspecified),
260 // assign it the preferred alignment.
261 if (EntryAI->getAlignment() == 0)
262 EntryAI->setAlignment(
263 DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
264 // Replace this zero-sized alloca with the one at the start of the entry
265 // block after ensuring that the address will be aligned enough for both
266 // types.
267 unsigned MaxAlign = std::max(EntryAI->getAlignment(),
268 AI.getAlignment());
269 EntryAI->setAlignment(MaxAlign);
270 if (AI.getType() != EntryAI->getType())
271 return new BitCastInst(EntryAI, AI.getType());
272 return ReplaceInstUsesWith(AI, EntryAI);
273 }
274 }
275 }
276
277 if (AI.getAlignment()) {
278 // Check to see if this allocation is only modified by a memcpy/memmove from
279 // a constant global whose alignment is equal to or exceeds that of the
280 // allocation. If this is the case, we can change all users to use
281 // the constant global instead. This is commonly produced by the CFE by
282 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
283 // is only subsequently read.
284 SmallVector<Instruction *, 4> ToDelete;
285 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
286 unsigned SourceAlign = getOrEnforceKnownAlignment(
287 Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
288 if (AI.getAlignment() <= SourceAlign) {
289 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
290 DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
291 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
292 EraseInstFromFunction(*ToDelete[i]);
293 Constant *TheSrc = cast<Constant>(Copy->getSource());
294 Constant *Cast
295 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
296 Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
297 EraseInstFromFunction(*Copy);
298 ++NumGlobalCopies;
299 return NewI;
300 }
301 }
302 }
303
304 // At last, use the generic allocation site handler to aggressively remove
305 // unused allocas.
306 return visitAllocSite(AI);
307 }
308
309 /// \brief Helper to combine a load to a new type.
310 ///
311 /// This just does the work of combining a load to a new type. It handles
312 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
313 /// loaded *value* type. This will convert it to a pointer, cast the operand to
314 /// that pointer type, load it, etc.
315 ///
316 /// Note that this will create all of the instructions with whatever insert
317 /// point the \c InstCombiner currently is using.
combineLoadToNewType(InstCombiner & IC,LoadInst & LI,Type * NewTy,const Twine & Suffix="")318 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
319 const Twine &Suffix = "") {
320 Value *Ptr = LI.getPointerOperand();
321 unsigned AS = LI.getPointerAddressSpace();
322 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
323 LI.getAllMetadata(MD);
324
325 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
326 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
327 LI.getAlignment(), LI.getName() + Suffix);
328 MDBuilder MDB(NewLoad->getContext());
329 for (const auto &MDPair : MD) {
330 unsigned ID = MDPair.first;
331 MDNode *N = MDPair.second;
332 // Note, essentially every kind of metadata should be preserved here! This
333 // routine is supposed to clone a load instruction changing *only its type*.
334 // The only metadata it makes sense to drop is metadata which is invalidated
335 // when the pointer type changes. This should essentially never be the case
336 // in LLVM, but we explicitly switch over only known metadata to be
337 // conservatively correct. If you are adding metadata to LLVM which pertains
338 // to loads, you almost certainly want to add it here.
339 switch (ID) {
340 case LLVMContext::MD_dbg:
341 case LLVMContext::MD_tbaa:
342 case LLVMContext::MD_prof:
343 case LLVMContext::MD_fpmath:
344 case LLVMContext::MD_tbaa_struct:
345 case LLVMContext::MD_invariant_load:
346 case LLVMContext::MD_alias_scope:
347 case LLVMContext::MD_noalias:
348 case LLVMContext::MD_nontemporal:
349 case LLVMContext::MD_mem_parallel_loop_access:
350 // All of these directly apply.
351 NewLoad->setMetadata(ID, N);
352 break;
353
354 case LLVMContext::MD_nonnull:
355 // This only directly applies if the new type is also a pointer.
356 if (NewTy->isPointerTy()) {
357 NewLoad->setMetadata(ID, N);
358 break;
359 }
360 // If it's integral now, translate it to !range metadata.
361 if (NewTy->isIntegerTy()) {
362 auto *ITy = cast<IntegerType>(NewTy);
363 auto *NullInt = ConstantExpr::getPtrToInt(
364 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
365 auto *NonNullInt =
366 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
367 NewLoad->setMetadata(LLVMContext::MD_range,
368 MDB.createRange(NonNullInt, NullInt));
369 }
370 break;
371 case LLVMContext::MD_align:
372 case LLVMContext::MD_dereferenceable:
373 case LLVMContext::MD_dereferenceable_or_null:
374 // These only directly apply if the new type is also a pointer.
375 if (NewTy->isPointerTy())
376 NewLoad->setMetadata(ID, N);
377 break;
378 case LLVMContext::MD_range:
379 // FIXME: It would be nice to propagate this in some way, but the type
380 // conversions make it hard. If the new type is a pointer, we could
381 // translate it to !nonnull metadata.
382 break;
383 }
384 }
385 return NewLoad;
386 }
387
388 /// \brief Combine a store to a new type.
389 ///
390 /// Returns the newly created store instruction.
combineStoreToNewValue(InstCombiner & IC,StoreInst & SI,Value * V)391 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
392 Value *Ptr = SI.getPointerOperand();
393 unsigned AS = SI.getPointerAddressSpace();
394 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
395 SI.getAllMetadata(MD);
396
397 StoreInst *NewStore = IC.Builder->CreateAlignedStore(
398 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
399 SI.getAlignment());
400 for (const auto &MDPair : MD) {
401 unsigned ID = MDPair.first;
402 MDNode *N = MDPair.second;
403 // Note, essentially every kind of metadata should be preserved here! This
404 // routine is supposed to clone a store instruction changing *only its
405 // type*. The only metadata it makes sense to drop is metadata which is
406 // invalidated when the pointer type changes. This should essentially
407 // never be the case in LLVM, but we explicitly switch over only known
408 // metadata to be conservatively correct. If you are adding metadata to
409 // LLVM which pertains to stores, you almost certainly want to add it
410 // here.
411 switch (ID) {
412 case LLVMContext::MD_dbg:
413 case LLVMContext::MD_tbaa:
414 case LLVMContext::MD_prof:
415 case LLVMContext::MD_fpmath:
416 case LLVMContext::MD_tbaa_struct:
417 case LLVMContext::MD_alias_scope:
418 case LLVMContext::MD_noalias:
419 case LLVMContext::MD_nontemporal:
420 case LLVMContext::MD_mem_parallel_loop_access:
421 // All of these directly apply.
422 NewStore->setMetadata(ID, N);
423 break;
424
425 case LLVMContext::MD_invariant_load:
426 case LLVMContext::MD_nonnull:
427 case LLVMContext::MD_range:
428 case LLVMContext::MD_align:
429 case LLVMContext::MD_dereferenceable:
430 case LLVMContext::MD_dereferenceable_or_null:
431 // These don't apply for stores.
432 break;
433 }
434 }
435
436 return NewStore;
437 }
438
439 /// \brief Combine loads to match the type of value their uses after looking
440 /// through intervening bitcasts.
441 ///
442 /// The core idea here is that if the result of a load is used in an operation,
443 /// we should load the type most conducive to that operation. For example, when
444 /// loading an integer and converting that immediately to a pointer, we should
445 /// instead directly load a pointer.
446 ///
447 /// However, this routine must never change the width of a load or the number of
448 /// loads as that would introduce a semantic change. This combine is expected to
449 /// be a semantic no-op which just allows loads to more closely model the types
450 /// of their consuming operations.
451 ///
452 /// Currently, we also refuse to change the precise type used for an atomic load
453 /// or a volatile load. This is debatable, and might be reasonable to change
454 /// later. However, it is risky in case some backend or other part of LLVM is
455 /// relying on the exact type loaded to select appropriate atomic operations.
combineLoadToOperationType(InstCombiner & IC,LoadInst & LI)456 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
457 // FIXME: We could probably with some care handle both volatile and atomic
458 // loads here but it isn't clear that this is important.
459 if (!LI.isSimple())
460 return nullptr;
461
462 if (LI.use_empty())
463 return nullptr;
464
465 Type *Ty = LI.getType();
466 const DataLayout &DL = IC.getDataLayout();
467
468 // Try to canonicalize loads which are only ever stored to operate over
469 // integers instead of any other type. We only do this when the loaded type
470 // is sized and has a size exactly the same as its store size and the store
471 // size is a legal integer type.
472 if (!Ty->isIntegerTy() && Ty->isSized() &&
473 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
474 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
475 if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
476 auto *SI = dyn_cast<StoreInst>(U);
477 return SI && SI->getPointerOperand() != &LI;
478 })) {
479 LoadInst *NewLoad = combineLoadToNewType(
480 IC, LI,
481 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
482 // Replace all the stores with stores of the newly loaded value.
483 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
484 auto *SI = cast<StoreInst>(*UI++);
485 IC.Builder->SetInsertPoint(SI);
486 combineStoreToNewValue(IC, *SI, NewLoad);
487 IC.EraseInstFromFunction(*SI);
488 }
489 assert(LI.use_empty() && "Failed to remove all users of the load!");
490 // Return the old load so the combiner can delete it safely.
491 return &LI;
492 }
493 }
494
495 // Fold away bit casts of the loaded value by loading the desired type.
496 // We can do this for BitCastInsts as well as casts from and to pointer types,
497 // as long as those are noops (i.e., the source or dest type have the same
498 // bitwidth as the target's pointers).
499 if (LI.hasOneUse())
500 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
501 if (CI->isNoopCast(DL)) {
502 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
503 CI->replaceAllUsesWith(NewLoad);
504 IC.EraseInstFromFunction(*CI);
505 return &LI;
506 }
507 }
508
509 // FIXME: We should also canonicalize loads of vectors when their elements are
510 // cast to other types.
511 return nullptr;
512 }
513
unpackLoadToAggregate(InstCombiner & IC,LoadInst & LI)514 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
515 // FIXME: We could probably with some care handle both volatile and atomic
516 // stores here but it isn't clear that this is important.
517 if (!LI.isSimple())
518 return nullptr;
519
520 Type *T = LI.getType();
521 if (!T->isAggregateType())
522 return nullptr;
523
524 assert(LI.getAlignment() && "Alignment must be set at this point");
525
526 if (auto *ST = dyn_cast<StructType>(T)) {
527 // If the struct only have one element, we unpack.
528 unsigned Count = ST->getNumElements();
529 if (Count == 1) {
530 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
531 ".unpack");
532 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
533 UndefValue::get(T), NewLoad, 0, LI.getName()));
534 }
535
536 // We don't want to break loads with padding here as we'd loose
537 // the knowledge that padding exists for the rest of the pipeline.
538 const DataLayout &DL = IC.getDataLayout();
539 auto *SL = DL.getStructLayout(ST);
540 if (SL->hasPadding())
541 return nullptr;
542
543 auto Name = LI.getName();
544 SmallString<16> LoadName = Name;
545 LoadName += ".unpack";
546 SmallString<16> EltName = Name;
547 EltName += ".elt";
548 auto *Addr = LI.getPointerOperand();
549 Value *V = UndefValue::get(T);
550 auto *IdxType = Type::getInt32Ty(ST->getContext());
551 auto *Zero = ConstantInt::get(IdxType, 0);
552 for (unsigned i = 0; i < Count; i++) {
553 Value *Indices[2] = {
554 Zero,
555 ConstantInt::get(IdxType, i),
556 };
557 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), EltName);
558 auto *L = IC.Builder->CreateLoad(ST->getTypeAtIndex(i), Ptr, LoadName);
559 V = IC.Builder->CreateInsertValue(V, L, i);
560 }
561
562 V->setName(Name);
563 return IC.ReplaceInstUsesWith(LI, V);
564 }
565
566 if (auto *AT = dyn_cast<ArrayType>(T)) {
567 // If the array only have one element, we unpack.
568 if (AT->getNumElements() == 1) {
569 LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(),
570 ".unpack");
571 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
572 UndefValue::get(T), NewLoad, 0, LI.getName()));
573 }
574 }
575
576 return nullptr;
577 }
578
579 // If we can determine that all possible objects pointed to by the provided
580 // pointer value are, not only dereferenceable, but also definitively less than
581 // or equal to the provided maximum size, then return true. Otherwise, return
582 // false (constant global values and allocas fall into this category).
583 //
584 // FIXME: This should probably live in ValueTracking (or similar).
isObjectSizeLessThanOrEq(Value * V,uint64_t MaxSize,const DataLayout & DL)585 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
586 const DataLayout &DL) {
587 SmallPtrSet<Value *, 4> Visited;
588 SmallVector<Value *, 4> Worklist(1, V);
589
590 do {
591 Value *P = Worklist.pop_back_val();
592 P = P->stripPointerCasts();
593
594 if (!Visited.insert(P).second)
595 continue;
596
597 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
598 Worklist.push_back(SI->getTrueValue());
599 Worklist.push_back(SI->getFalseValue());
600 continue;
601 }
602
603 if (PHINode *PN = dyn_cast<PHINode>(P)) {
604 for (Value *IncValue : PN->incoming_values())
605 Worklist.push_back(IncValue);
606 continue;
607 }
608
609 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
610 if (GA->mayBeOverridden())
611 return false;
612 Worklist.push_back(GA->getAliasee());
613 continue;
614 }
615
616 // If we know how big this object is, and it is less than MaxSize, continue
617 // searching. Otherwise, return false.
618 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
619 if (!AI->getAllocatedType()->isSized())
620 return false;
621
622 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
623 if (!CS)
624 return false;
625
626 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
627 // Make sure that, even if the multiplication below would wrap as an
628 // uint64_t, we still do the right thing.
629 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
630 return false;
631 continue;
632 }
633
634 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
635 if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
636 return false;
637
638 uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
639 if (InitSize > MaxSize)
640 return false;
641 continue;
642 }
643
644 return false;
645 } while (!Worklist.empty());
646
647 return true;
648 }
649
650 // If we're indexing into an object of a known size, and the outer index is
651 // not a constant, but having any value but zero would lead to undefined
652 // behavior, replace it with zero.
653 //
654 // For example, if we have:
655 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
656 // ...
657 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
658 // ... = load i32* %arrayidx, align 4
659 // Then we know that we can replace %x in the GEP with i64 0.
660 //
661 // FIXME: We could fold any GEP index to zero that would cause UB if it were
662 // not zero. Currently, we only handle the first such index. Also, we could
663 // also search through non-zero constant indices if we kept track of the
664 // offsets those indices implied.
canReplaceGEPIdxWithZero(InstCombiner & IC,GetElementPtrInst * GEPI,Instruction * MemI,unsigned & Idx)665 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
666 Instruction *MemI, unsigned &Idx) {
667 if (GEPI->getNumOperands() < 2)
668 return false;
669
670 // Find the first non-zero index of a GEP. If all indices are zero, return
671 // one past the last index.
672 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
673 unsigned I = 1;
674 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
675 Value *V = GEPI->getOperand(I);
676 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
677 if (CI->isZero())
678 continue;
679
680 break;
681 }
682
683 return I;
684 };
685
686 // Skip through initial 'zero' indices, and find the corresponding pointer
687 // type. See if the next index is not a constant.
688 Idx = FirstNZIdx(GEPI);
689 if (Idx == GEPI->getNumOperands())
690 return false;
691 if (isa<Constant>(GEPI->getOperand(Idx)))
692 return false;
693
694 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
695 Type *AllocTy = GetElementPtrInst::getIndexedType(
696 cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType())
697 ->getElementType(),
698 Ops);
699 if (!AllocTy || !AllocTy->isSized())
700 return false;
701 const DataLayout &DL = IC.getDataLayout();
702 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
703
704 // If there are more indices after the one we might replace with a zero, make
705 // sure they're all non-negative. If any of them are negative, the overall
706 // address being computed might be before the base address determined by the
707 // first non-zero index.
708 auto IsAllNonNegative = [&]() {
709 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
710 bool KnownNonNegative, KnownNegative;
711 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
712 KnownNegative, 0, MemI);
713 if (KnownNonNegative)
714 continue;
715 return false;
716 }
717
718 return true;
719 };
720
721 // FIXME: If the GEP is not inbounds, and there are extra indices after the
722 // one we'll replace, those could cause the address computation to wrap
723 // (rendering the IsAllNonNegative() check below insufficient). We can do
724 // better, ignoring zero indices (and other indices we can prove small
725 // enough not to wrap).
726 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
727 return false;
728
729 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
730 // also known to be dereferenceable.
731 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
732 IsAllNonNegative();
733 }
734
735 // If we're indexing into an object with a variable index for the memory
736 // access, but the object has only one element, we can assume that the index
737 // will always be zero. If we replace the GEP, return it.
738 template <typename T>
replaceGEPIdxWithZero(InstCombiner & IC,Value * Ptr,T & MemI)739 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
740 T &MemI) {
741 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
742 unsigned Idx;
743 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
744 Instruction *NewGEPI = GEPI->clone();
745 NewGEPI->setOperand(Idx,
746 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
747 NewGEPI->insertBefore(GEPI);
748 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
749 return NewGEPI;
750 }
751 }
752
753 return nullptr;
754 }
755
visitLoadInst(LoadInst & LI)756 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
757 Value *Op = LI.getOperand(0);
758
759 // Try to canonicalize the loaded type.
760 if (Instruction *Res = combineLoadToOperationType(*this, LI))
761 return Res;
762
763 // Attempt to improve the alignment.
764 unsigned KnownAlign = getOrEnforceKnownAlignment(
765 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
766 unsigned LoadAlign = LI.getAlignment();
767 unsigned EffectiveLoadAlign =
768 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
769
770 if (KnownAlign > EffectiveLoadAlign)
771 LI.setAlignment(KnownAlign);
772 else if (LoadAlign == 0)
773 LI.setAlignment(EffectiveLoadAlign);
774
775 // Replace GEP indices if possible.
776 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
777 Worklist.Add(NewGEPI);
778 return &LI;
779 }
780
781 // None of the following transforms are legal for volatile/atomic loads.
782 // FIXME: Some of it is okay for atomic loads; needs refactoring.
783 if (!LI.isSimple()) return nullptr;
784
785 if (Instruction *Res = unpackLoadToAggregate(*this, LI))
786 return Res;
787
788 // Do really simple store-to-load forwarding and load CSE, to catch cases
789 // where there are several consecutive memory accesses to the same location,
790 // separated by a few arithmetic operations.
791 BasicBlock::iterator BBI(LI);
792 AAMDNodes AATags;
793 if (Value *AvailableVal =
794 FindAvailableLoadedValue(Op, LI.getParent(), BBI,
795 DefMaxInstsToScan, AA, &AATags)) {
796 if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) {
797 unsigned KnownIDs[] = {
798 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
799 LLVMContext::MD_noalias, LLVMContext::MD_range,
800 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
801 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
802 LLVMContext::MD_dereferenceable,
803 LLVMContext::MD_dereferenceable_or_null};
804 combineMetadata(NLI, &LI, KnownIDs);
805 };
806
807 return ReplaceInstUsesWith(
808 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
809 LI.getName() + ".cast"));
810 }
811
812 // load(gep null, ...) -> unreachable
813 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
814 const Value *GEPI0 = GEPI->getOperand(0);
815 // TODO: Consider a target hook for valid address spaces for this xform.
816 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
817 // Insert a new store to null instruction before the load to indicate
818 // that this code is not reachable. We do this instead of inserting
819 // an unreachable instruction directly because we cannot modify the
820 // CFG.
821 new StoreInst(UndefValue::get(LI.getType()),
822 Constant::getNullValue(Op->getType()), &LI);
823 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
824 }
825 }
826
827 // load null/undef -> unreachable
828 // TODO: Consider a target hook for valid address spaces for this xform.
829 if (isa<UndefValue>(Op) ||
830 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
831 // Insert a new store to null instruction before the load to indicate that
832 // this code is not reachable. We do this instead of inserting an
833 // unreachable instruction directly because we cannot modify the CFG.
834 new StoreInst(UndefValue::get(LI.getType()),
835 Constant::getNullValue(Op->getType()), &LI);
836 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
837 }
838
839 if (Op->hasOneUse()) {
840 // Change select and PHI nodes to select values instead of addresses: this
841 // helps alias analysis out a lot, allows many others simplifications, and
842 // exposes redundancy in the code.
843 //
844 // Note that we cannot do the transformation unless we know that the
845 // introduced loads cannot trap! Something like this is valid as long as
846 // the condition is always false: load (select bool %C, int* null, int* %G),
847 // but it would not be valid if we transformed it to load from null
848 // unconditionally.
849 //
850 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
851 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
852 unsigned Align = LI.getAlignment();
853 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
854 isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
855 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
856 SI->getOperand(1)->getName()+".val");
857 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
858 SI->getOperand(2)->getName()+".val");
859 V1->setAlignment(Align);
860 V2->setAlignment(Align);
861 return SelectInst::Create(SI->getCondition(), V1, V2);
862 }
863
864 // load (select (cond, null, P)) -> load P
865 if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
866 LI.getPointerAddressSpace() == 0) {
867 LI.setOperand(0, SI->getOperand(2));
868 return &LI;
869 }
870
871 // load (select (cond, P, null)) -> load P
872 if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
873 LI.getPointerAddressSpace() == 0) {
874 LI.setOperand(0, SI->getOperand(1));
875 return &LI;
876 }
877 }
878 }
879 return nullptr;
880 }
881
882 /// \brief Combine stores to match the type of value being stored.
883 ///
884 /// The core idea here is that the memory does not have any intrinsic type and
885 /// where we can we should match the type of a store to the type of value being
886 /// stored.
887 ///
888 /// However, this routine must never change the width of a store or the number of
889 /// stores as that would introduce a semantic change. This combine is expected to
890 /// be a semantic no-op which just allows stores to more closely model the types
891 /// of their incoming values.
892 ///
893 /// Currently, we also refuse to change the precise type used for an atomic or
894 /// volatile store. This is debatable, and might be reasonable to change later.
895 /// However, it is risky in case some backend or other part of LLVM is relying
896 /// on the exact type stored to select appropriate atomic operations.
897 ///
898 /// \returns true if the store was successfully combined away. This indicates
899 /// the caller must erase the store instruction. We have to let the caller erase
900 /// the store instruction as otherwise there is no way to signal whether it was
901 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
combineStoreToValueType(InstCombiner & IC,StoreInst & SI)902 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
903 // FIXME: We could probably with some care handle both volatile and atomic
904 // stores here but it isn't clear that this is important.
905 if (!SI.isSimple())
906 return false;
907
908 Value *V = SI.getValueOperand();
909
910 // Fold away bit casts of the stored value by storing the original type.
911 if (auto *BC = dyn_cast<BitCastInst>(V)) {
912 V = BC->getOperand(0);
913 combineStoreToNewValue(IC, SI, V);
914 return true;
915 }
916
917 // FIXME: We should also canonicalize loads of vectors when their elements are
918 // cast to other types.
919 return false;
920 }
921
unpackStoreToAggregate(InstCombiner & IC,StoreInst & SI)922 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
923 // FIXME: We could probably with some care handle both volatile and atomic
924 // stores here but it isn't clear that this is important.
925 if (!SI.isSimple())
926 return false;
927
928 Value *V = SI.getValueOperand();
929 Type *T = V->getType();
930
931 if (!T->isAggregateType())
932 return false;
933
934 if (auto *ST = dyn_cast<StructType>(T)) {
935 // If the struct only have one element, we unpack.
936 unsigned Count = ST->getNumElements();
937 if (Count == 1) {
938 V = IC.Builder->CreateExtractValue(V, 0);
939 combineStoreToNewValue(IC, SI, V);
940 return true;
941 }
942
943 // We don't want to break loads with padding here as we'd loose
944 // the knowledge that padding exists for the rest of the pipeline.
945 const DataLayout &DL = IC.getDataLayout();
946 auto *SL = DL.getStructLayout(ST);
947 if (SL->hasPadding())
948 return false;
949
950 SmallString<16> EltName = V->getName();
951 EltName += ".elt";
952 auto *Addr = SI.getPointerOperand();
953 SmallString<16> AddrName = Addr->getName();
954 AddrName += ".repack";
955 auto *IdxType = Type::getInt32Ty(ST->getContext());
956 auto *Zero = ConstantInt::get(IdxType, 0);
957 for (unsigned i = 0; i < Count; i++) {
958 Value *Indices[2] = {
959 Zero,
960 ConstantInt::get(IdxType, i),
961 };
962 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), AddrName);
963 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
964 IC.Builder->CreateStore(Val, Ptr);
965 }
966
967 return true;
968 }
969
970 if (auto *AT = dyn_cast<ArrayType>(T)) {
971 // If the array only have one element, we unpack.
972 if (AT->getNumElements() == 1) {
973 V = IC.Builder->CreateExtractValue(V, 0);
974 combineStoreToNewValue(IC, SI, V);
975 return true;
976 }
977 }
978
979 return false;
980 }
981
982 /// equivalentAddressValues - Test if A and B will obviously have the same
983 /// value. This includes recognizing that %t0 and %t1 will have the same
984 /// value in code like this:
985 /// %t0 = getelementptr \@a, 0, 3
986 /// store i32 0, i32* %t0
987 /// %t1 = getelementptr \@a, 0, 3
988 /// %t2 = load i32* %t1
989 ///
equivalentAddressValues(Value * A,Value * B)990 static bool equivalentAddressValues(Value *A, Value *B) {
991 // Test if the values are trivially equivalent.
992 if (A == B) return true;
993
994 // Test if the values come form identical arithmetic instructions.
995 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
996 // its only used to compare two uses within the same basic block, which
997 // means that they'll always either have the same value or one of them
998 // will have an undefined value.
999 if (isa<BinaryOperator>(A) ||
1000 isa<CastInst>(A) ||
1001 isa<PHINode>(A) ||
1002 isa<GetElementPtrInst>(A))
1003 if (Instruction *BI = dyn_cast<Instruction>(B))
1004 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1005 return true;
1006
1007 // Otherwise they may not be equivalent.
1008 return false;
1009 }
1010
visitStoreInst(StoreInst & SI)1011 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1012 Value *Val = SI.getOperand(0);
1013 Value *Ptr = SI.getOperand(1);
1014
1015 // Try to canonicalize the stored type.
1016 if (combineStoreToValueType(*this, SI))
1017 return EraseInstFromFunction(SI);
1018
1019 // Attempt to improve the alignment.
1020 unsigned KnownAlign = getOrEnforceKnownAlignment(
1021 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
1022 unsigned StoreAlign = SI.getAlignment();
1023 unsigned EffectiveStoreAlign =
1024 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1025
1026 if (KnownAlign > EffectiveStoreAlign)
1027 SI.setAlignment(KnownAlign);
1028 else if (StoreAlign == 0)
1029 SI.setAlignment(EffectiveStoreAlign);
1030
1031 // Try to canonicalize the stored type.
1032 if (unpackStoreToAggregate(*this, SI))
1033 return EraseInstFromFunction(SI);
1034
1035 // Replace GEP indices if possible.
1036 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1037 Worklist.Add(NewGEPI);
1038 return &SI;
1039 }
1040
1041 // Don't hack volatile/ordered stores.
1042 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1043 if (!SI.isUnordered()) return nullptr;
1044
1045 // If the RHS is an alloca with a single use, zapify the store, making the
1046 // alloca dead.
1047 if (Ptr->hasOneUse()) {
1048 if (isa<AllocaInst>(Ptr))
1049 return EraseInstFromFunction(SI);
1050 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1051 if (isa<AllocaInst>(GEP->getOperand(0))) {
1052 if (GEP->getOperand(0)->hasOneUse())
1053 return EraseInstFromFunction(SI);
1054 }
1055 }
1056 }
1057
1058 // Do really simple DSE, to catch cases where there are several consecutive
1059 // stores to the same location, separated by a few arithmetic operations. This
1060 // situation often occurs with bitfield accesses.
1061 BasicBlock::iterator BBI(SI);
1062 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1063 --ScanInsts) {
1064 --BBI;
1065 // Don't count debug info directives, lest they affect codegen,
1066 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1067 if (isa<DbgInfoIntrinsic>(BBI) ||
1068 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1069 ScanInsts++;
1070 continue;
1071 }
1072
1073 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1074 // Prev store isn't volatile, and stores to the same location?
1075 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1076 SI.getOperand(1))) {
1077 ++NumDeadStore;
1078 ++BBI;
1079 EraseInstFromFunction(*PrevSI);
1080 continue;
1081 }
1082 break;
1083 }
1084
1085 // If this is a load, we have to stop. However, if the loaded value is from
1086 // the pointer we're loading and is producing the pointer we're storing,
1087 // then *this* store is dead (X = load P; store X -> P).
1088 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1089 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1090 assert(SI.isUnordered() && "can't eliminate ordering operation");
1091 return EraseInstFromFunction(SI);
1092 }
1093
1094 // Otherwise, this is a load from some other location. Stores before it
1095 // may not be dead.
1096 break;
1097 }
1098
1099 // Don't skip over loads or things that can modify memory.
1100 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1101 break;
1102 }
1103
1104 // store X, null -> turns into 'unreachable' in SimplifyCFG
1105 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1106 if (!isa<UndefValue>(Val)) {
1107 SI.setOperand(0, UndefValue::get(Val->getType()));
1108 if (Instruction *U = dyn_cast<Instruction>(Val))
1109 Worklist.Add(U); // Dropped a use.
1110 }
1111 return nullptr; // Do not modify these!
1112 }
1113
1114 // store undef, Ptr -> noop
1115 if (isa<UndefValue>(Val))
1116 return EraseInstFromFunction(SI);
1117
1118 // The code below needs to be audited and adjusted for unordered atomics
1119 if (!SI.isSimple())
1120 return nullptr;
1121
1122 // If this store is the last instruction in the basic block (possibly
1123 // excepting debug info instructions), and if the block ends with an
1124 // unconditional branch, try to move it to the successor block.
1125 BBI = SI.getIterator();
1126 do {
1127 ++BBI;
1128 } while (isa<DbgInfoIntrinsic>(BBI) ||
1129 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1130 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1131 if (BI->isUnconditional())
1132 if (SimplifyStoreAtEndOfBlock(SI))
1133 return nullptr; // xform done!
1134
1135 return nullptr;
1136 }
1137
1138 /// SimplifyStoreAtEndOfBlock - Turn things like:
1139 /// if () { *P = v1; } else { *P = v2 }
1140 /// into a phi node with a store in the successor.
1141 ///
1142 /// Simplify things like:
1143 /// *P = v1; if () { *P = v2; }
1144 /// into a phi node with a store in the successor.
1145 ///
SimplifyStoreAtEndOfBlock(StoreInst & SI)1146 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1147 BasicBlock *StoreBB = SI.getParent();
1148
1149 // Check to see if the successor block has exactly two incoming edges. If
1150 // so, see if the other predecessor contains a store to the same location.
1151 // if so, insert a PHI node (if needed) and move the stores down.
1152 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1153
1154 // Determine whether Dest has exactly two predecessors and, if so, compute
1155 // the other predecessor.
1156 pred_iterator PI = pred_begin(DestBB);
1157 BasicBlock *P = *PI;
1158 BasicBlock *OtherBB = nullptr;
1159
1160 if (P != StoreBB)
1161 OtherBB = P;
1162
1163 if (++PI == pred_end(DestBB))
1164 return false;
1165
1166 P = *PI;
1167 if (P != StoreBB) {
1168 if (OtherBB)
1169 return false;
1170 OtherBB = P;
1171 }
1172 if (++PI != pred_end(DestBB))
1173 return false;
1174
1175 // Bail out if all the relevant blocks aren't distinct (this can happen,
1176 // for example, if SI is in an infinite loop)
1177 if (StoreBB == DestBB || OtherBB == DestBB)
1178 return false;
1179
1180 // Verify that the other block ends in a branch and is not otherwise empty.
1181 BasicBlock::iterator BBI(OtherBB->getTerminator());
1182 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1183 if (!OtherBr || BBI == OtherBB->begin())
1184 return false;
1185
1186 // If the other block ends in an unconditional branch, check for the 'if then
1187 // else' case. there is an instruction before the branch.
1188 StoreInst *OtherStore = nullptr;
1189 if (OtherBr->isUnconditional()) {
1190 --BBI;
1191 // Skip over debugging info.
1192 while (isa<DbgInfoIntrinsic>(BBI) ||
1193 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1194 if (BBI==OtherBB->begin())
1195 return false;
1196 --BBI;
1197 }
1198 // If this isn't a store, isn't a store to the same location, or is not the
1199 // right kind of store, bail out.
1200 OtherStore = dyn_cast<StoreInst>(BBI);
1201 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1202 !SI.isSameOperationAs(OtherStore))
1203 return false;
1204 } else {
1205 // Otherwise, the other block ended with a conditional branch. If one of the
1206 // destinations is StoreBB, then we have the if/then case.
1207 if (OtherBr->getSuccessor(0) != StoreBB &&
1208 OtherBr->getSuccessor(1) != StoreBB)
1209 return false;
1210
1211 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1212 // if/then triangle. See if there is a store to the same ptr as SI that
1213 // lives in OtherBB.
1214 for (;; --BBI) {
1215 // Check to see if we find the matching store.
1216 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1217 if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1218 !SI.isSameOperationAs(OtherStore))
1219 return false;
1220 break;
1221 }
1222 // If we find something that may be using or overwriting the stored
1223 // value, or if we run out of instructions, we can't do the xform.
1224 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1225 BBI == OtherBB->begin())
1226 return false;
1227 }
1228
1229 // In order to eliminate the store in OtherBr, we have to
1230 // make sure nothing reads or overwrites the stored value in
1231 // StoreBB.
1232 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1233 // FIXME: This should really be AA driven.
1234 if (I->mayReadFromMemory() || I->mayWriteToMemory())
1235 return false;
1236 }
1237 }
1238
1239 // Insert a PHI node now if we need it.
1240 Value *MergedVal = OtherStore->getOperand(0);
1241 if (MergedVal != SI.getOperand(0)) {
1242 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1243 PN->addIncoming(SI.getOperand(0), SI.getParent());
1244 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1245 MergedVal = InsertNewInstBefore(PN, DestBB->front());
1246 }
1247
1248 // Advance to a place where it is safe to insert the new store and
1249 // insert it.
1250 BBI = DestBB->getFirstInsertionPt();
1251 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1252 SI.isVolatile(),
1253 SI.getAlignment(),
1254 SI.getOrdering(),
1255 SI.getSynchScope());
1256 InsertNewInstBefore(NewSI, *BBI);
1257 NewSI->setDebugLoc(OtherStore->getDebugLoc());
1258
1259 // If the two stores had AA tags, merge them.
1260 AAMDNodes AATags;
1261 SI.getAAMetadata(AATags);
1262 if (AATags) {
1263 OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1264 NewSI->setAAMetadata(AATags);
1265 }
1266
1267 // Nuke the old stores.
1268 EraseInstFromFunction(SI);
1269 EraseInstFromFunction(*OtherStore);
1270 return true;
1271 }
1272