1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
30 
31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
32 /// some part of a constant global variable.  This intentionally only accepts
33 /// constant expressions because we can't rewrite arbitrary instructions.
pointsToConstantGlobal(Value * V)34 static bool pointsToConstantGlobal(Value *V) {
35   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
36     return GV->isConstant();
37 
38   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
39     if (CE->getOpcode() == Instruction::BitCast ||
40         CE->getOpcode() == Instruction::AddrSpaceCast ||
41         CE->getOpcode() == Instruction::GetElementPtr)
42       return pointsToConstantGlobal(CE->getOperand(0));
43   }
44   return false;
45 }
46 
47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
48 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
49 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
51 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
52 /// the alloca, and if the source pointer is a pointer to a constant global, we
53 /// can optimize this.
54 static bool
isOnlyCopiedFromConstantGlobal(Value * V,MemTransferInst * & TheCopy,SmallVectorImpl<Instruction * > & ToDelete)55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
56                                SmallVectorImpl<Instruction *> &ToDelete) {
57   // We track lifetime intrinsics as we encounter them.  If we decide to go
58   // ahead and replace the value with the global, this lets the caller quickly
59   // eliminate the markers.
60 
61   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
62   ValuesToInspect.push_back(std::make_pair(V, false));
63   while (!ValuesToInspect.empty()) {
64     auto ValuePair = ValuesToInspect.pop_back_val();
65     const bool IsOffset = ValuePair.second;
66     for (auto &U : ValuePair.first->uses()) {
67       Instruction *I = cast<Instruction>(U.getUser());
68 
69       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
70         // Ignore non-volatile loads, they are always ok.
71         if (!LI->isSimple()) return false;
72         continue;
73       }
74 
75       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
76         // If uses of the bitcast are ok, we are ok.
77         ValuesToInspect.push_back(std::make_pair(I, IsOffset));
78         continue;
79       }
80       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
81         // If the GEP has all zero indices, it doesn't offset the pointer. If it
82         // doesn't, it does.
83         ValuesToInspect.push_back(
84             std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
85         continue;
86       }
87 
88       if (auto CS = CallSite(I)) {
89         // If this is the function being called then we treat it like a load and
90         // ignore it.
91         if (CS.isCallee(&U))
92           continue;
93 
94         // Inalloca arguments are clobbered by the call.
95         unsigned ArgNo = CS.getArgumentNo(&U);
96         if (CS.isInAllocaArgument(ArgNo))
97           return false;
98 
99         // If this is a readonly/readnone call site, then we know it is just a
100         // load (but one that potentially returns the value itself), so we can
101         // ignore it if we know that the value isn't captured.
102         if (CS.onlyReadsMemory() &&
103             (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
104           continue;
105 
106         // If this is being passed as a byval argument, the caller is making a
107         // copy, so it is only a read of the alloca.
108         if (CS.isByValArgument(ArgNo))
109           continue;
110       }
111 
112       // Lifetime intrinsics can be handled by the caller.
113       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
114         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
115             II->getIntrinsicID() == Intrinsic::lifetime_end) {
116           assert(II->use_empty() && "Lifetime markers have no result to use!");
117           ToDelete.push_back(II);
118           continue;
119         }
120       }
121 
122       // If this is isn't our memcpy/memmove, reject it as something we can't
123       // handle.
124       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
125       if (!MI)
126         return false;
127 
128       // If the transfer is using the alloca as a source of the transfer, then
129       // ignore it since it is a load (unless the transfer is volatile).
130       if (U.getOperandNo() == 1) {
131         if (MI->isVolatile()) return false;
132         continue;
133       }
134 
135       // If we already have seen a copy, reject the second one.
136       if (TheCopy) return false;
137 
138       // If the pointer has been offset from the start of the alloca, we can't
139       // safely handle this.
140       if (IsOffset) return false;
141 
142       // If the memintrinsic isn't using the alloca as the dest, reject it.
143       if (U.getOperandNo() != 0) return false;
144 
145       // If the source of the memcpy/move is not a constant global, reject it.
146       if (!pointsToConstantGlobal(MI->getSource()))
147         return false;
148 
149       // Otherwise, the transform is safe.  Remember the copy instruction.
150       TheCopy = MI;
151     }
152   }
153   return true;
154 }
155 
156 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
157 /// modified by a copy from a constant global.  If we can prove this, we can
158 /// replace any uses of the alloca with uses of the global directly.
159 static MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst * AI,SmallVectorImpl<Instruction * > & ToDelete)160 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
161                                SmallVectorImpl<Instruction *> &ToDelete) {
162   MemTransferInst *TheCopy = nullptr;
163   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
164     return TheCopy;
165   return nullptr;
166 }
167 
simplifyAllocaArraySize(InstCombiner & IC,AllocaInst & AI)168 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
169   // Check for array size of 1 (scalar allocation).
170   if (!AI.isArrayAllocation()) {
171     // i32 1 is the canonical array size for scalar allocations.
172     if (AI.getArraySize()->getType()->isIntegerTy(32))
173       return nullptr;
174 
175     // Canonicalize it.
176     Value *V = IC.Builder->getInt32(1);
177     AI.setOperand(0, V);
178     return &AI;
179   }
180 
181   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
182   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
183     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
184     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
185     New->setAlignment(AI.getAlignment());
186 
187     // Scan to the end of the allocation instructions, to skip over a block of
188     // allocas if possible...also skip interleaved debug info
189     //
190     BasicBlock::iterator It(New);
191     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
192       ++It;
193 
194     // Now that I is pointing to the first non-allocation-inst in the block,
195     // insert our getelementptr instruction...
196     //
197     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
198     Value *NullIdx = Constant::getNullValue(IdxTy);
199     Value *Idx[2] = {NullIdx, NullIdx};
200     Instruction *GEP =
201         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
202     IC.InsertNewInstBefore(GEP, *It);
203 
204     // Now make everything use the getelementptr instead of the original
205     // allocation.
206     return IC.ReplaceInstUsesWith(AI, GEP);
207   }
208 
209   if (isa<UndefValue>(AI.getArraySize()))
210     return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
211 
212   // Ensure that the alloca array size argument has type intptr_t, so that
213   // any casting is exposed early.
214   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
215   if (AI.getArraySize()->getType() != IntPtrTy) {
216     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
217     AI.setOperand(0, V);
218     return &AI;
219   }
220 
221   return nullptr;
222 }
223 
visitAllocaInst(AllocaInst & AI)224 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
225   if (auto *I = simplifyAllocaArraySize(*this, AI))
226     return I;
227 
228   if (AI.getAllocatedType()->isSized()) {
229     // If the alignment is 0 (unspecified), assign it the preferred alignment.
230     if (AI.getAlignment() == 0)
231       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
232 
233     // Move all alloca's of zero byte objects to the entry block and merge them
234     // together.  Note that we only do this for alloca's, because malloc should
235     // allocate and return a unique pointer, even for a zero byte allocation.
236     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
237       // For a zero sized alloca there is no point in doing an array allocation.
238       // This is helpful if the array size is a complicated expression not used
239       // elsewhere.
240       if (AI.isArrayAllocation()) {
241         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
242         return &AI;
243       }
244 
245       // Get the first instruction in the entry block.
246       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
247       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
248       if (FirstInst != &AI) {
249         // If the entry block doesn't start with a zero-size alloca then move
250         // this one to the start of the entry block.  There is no problem with
251         // dominance as the array size was forced to a constant earlier already.
252         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
253         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
254             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
255           AI.moveBefore(FirstInst);
256           return &AI;
257         }
258 
259         // If the alignment of the entry block alloca is 0 (unspecified),
260         // assign it the preferred alignment.
261         if (EntryAI->getAlignment() == 0)
262           EntryAI->setAlignment(
263               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
264         // Replace this zero-sized alloca with the one at the start of the entry
265         // block after ensuring that the address will be aligned enough for both
266         // types.
267         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
268                                      AI.getAlignment());
269         EntryAI->setAlignment(MaxAlign);
270         if (AI.getType() != EntryAI->getType())
271           return new BitCastInst(EntryAI, AI.getType());
272         return ReplaceInstUsesWith(AI, EntryAI);
273       }
274     }
275   }
276 
277   if (AI.getAlignment()) {
278     // Check to see if this allocation is only modified by a memcpy/memmove from
279     // a constant global whose alignment is equal to or exceeds that of the
280     // allocation.  If this is the case, we can change all users to use
281     // the constant global instead.  This is commonly produced by the CFE by
282     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
283     // is only subsequently read.
284     SmallVector<Instruction *, 4> ToDelete;
285     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
286       unsigned SourceAlign = getOrEnforceKnownAlignment(
287           Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
288       if (AI.getAlignment() <= SourceAlign) {
289         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
290         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
291         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
292           EraseInstFromFunction(*ToDelete[i]);
293         Constant *TheSrc = cast<Constant>(Copy->getSource());
294         Constant *Cast
295           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
296         Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
297         EraseInstFromFunction(*Copy);
298         ++NumGlobalCopies;
299         return NewI;
300       }
301     }
302   }
303 
304   // At last, use the generic allocation site handler to aggressively remove
305   // unused allocas.
306   return visitAllocSite(AI);
307 }
308 
309 /// \brief Helper to combine a load to a new type.
310 ///
311 /// This just does the work of combining a load to a new type. It handles
312 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
313 /// loaded *value* type. This will convert it to a pointer, cast the operand to
314 /// that pointer type, load it, etc.
315 ///
316 /// Note that this will create all of the instructions with whatever insert
317 /// point the \c InstCombiner currently is using.
combineLoadToNewType(InstCombiner & IC,LoadInst & LI,Type * NewTy,const Twine & Suffix="")318 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
319                                       const Twine &Suffix = "") {
320   Value *Ptr = LI.getPointerOperand();
321   unsigned AS = LI.getPointerAddressSpace();
322   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
323   LI.getAllMetadata(MD);
324 
325   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
326       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
327       LI.getAlignment(), LI.getName() + Suffix);
328   MDBuilder MDB(NewLoad->getContext());
329   for (const auto &MDPair : MD) {
330     unsigned ID = MDPair.first;
331     MDNode *N = MDPair.second;
332     // Note, essentially every kind of metadata should be preserved here! This
333     // routine is supposed to clone a load instruction changing *only its type*.
334     // The only metadata it makes sense to drop is metadata which is invalidated
335     // when the pointer type changes. This should essentially never be the case
336     // in LLVM, but we explicitly switch over only known metadata to be
337     // conservatively correct. If you are adding metadata to LLVM which pertains
338     // to loads, you almost certainly want to add it here.
339     switch (ID) {
340     case LLVMContext::MD_dbg:
341     case LLVMContext::MD_tbaa:
342     case LLVMContext::MD_prof:
343     case LLVMContext::MD_fpmath:
344     case LLVMContext::MD_tbaa_struct:
345     case LLVMContext::MD_invariant_load:
346     case LLVMContext::MD_alias_scope:
347     case LLVMContext::MD_noalias:
348     case LLVMContext::MD_nontemporal:
349     case LLVMContext::MD_mem_parallel_loop_access:
350       // All of these directly apply.
351       NewLoad->setMetadata(ID, N);
352       break;
353 
354     case LLVMContext::MD_nonnull:
355       // This only directly applies if the new type is also a pointer.
356       if (NewTy->isPointerTy()) {
357         NewLoad->setMetadata(ID, N);
358         break;
359       }
360       // If it's integral now, translate it to !range metadata.
361       if (NewTy->isIntegerTy()) {
362         auto *ITy = cast<IntegerType>(NewTy);
363         auto *NullInt = ConstantExpr::getPtrToInt(
364             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
365         auto *NonNullInt =
366             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
367         NewLoad->setMetadata(LLVMContext::MD_range,
368                              MDB.createRange(NonNullInt, NullInt));
369       }
370       break;
371     case LLVMContext::MD_align:
372     case LLVMContext::MD_dereferenceable:
373     case LLVMContext::MD_dereferenceable_or_null:
374       // These only directly apply if the new type is also a pointer.
375       if (NewTy->isPointerTy())
376         NewLoad->setMetadata(ID, N);
377       break;
378     case LLVMContext::MD_range:
379       // FIXME: It would be nice to propagate this in some way, but the type
380       // conversions make it hard. If the new type is a pointer, we could
381       // translate it to !nonnull metadata.
382       break;
383     }
384   }
385   return NewLoad;
386 }
387 
388 /// \brief Combine a store to a new type.
389 ///
390 /// Returns the newly created store instruction.
combineStoreToNewValue(InstCombiner & IC,StoreInst & SI,Value * V)391 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
392   Value *Ptr = SI.getPointerOperand();
393   unsigned AS = SI.getPointerAddressSpace();
394   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
395   SI.getAllMetadata(MD);
396 
397   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
398       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
399       SI.getAlignment());
400   for (const auto &MDPair : MD) {
401     unsigned ID = MDPair.first;
402     MDNode *N = MDPair.second;
403     // Note, essentially every kind of metadata should be preserved here! This
404     // routine is supposed to clone a store instruction changing *only its
405     // type*. The only metadata it makes sense to drop is metadata which is
406     // invalidated when the pointer type changes. This should essentially
407     // never be the case in LLVM, but we explicitly switch over only known
408     // metadata to be conservatively correct. If you are adding metadata to
409     // LLVM which pertains to stores, you almost certainly want to add it
410     // here.
411     switch (ID) {
412     case LLVMContext::MD_dbg:
413     case LLVMContext::MD_tbaa:
414     case LLVMContext::MD_prof:
415     case LLVMContext::MD_fpmath:
416     case LLVMContext::MD_tbaa_struct:
417     case LLVMContext::MD_alias_scope:
418     case LLVMContext::MD_noalias:
419     case LLVMContext::MD_nontemporal:
420     case LLVMContext::MD_mem_parallel_loop_access:
421       // All of these directly apply.
422       NewStore->setMetadata(ID, N);
423       break;
424 
425     case LLVMContext::MD_invariant_load:
426     case LLVMContext::MD_nonnull:
427     case LLVMContext::MD_range:
428     case LLVMContext::MD_align:
429     case LLVMContext::MD_dereferenceable:
430     case LLVMContext::MD_dereferenceable_or_null:
431       // These don't apply for stores.
432       break;
433     }
434   }
435 
436   return NewStore;
437 }
438 
439 /// \brief Combine loads to match the type of value their uses after looking
440 /// through intervening bitcasts.
441 ///
442 /// The core idea here is that if the result of a load is used in an operation,
443 /// we should load the type most conducive to that operation. For example, when
444 /// loading an integer and converting that immediately to a pointer, we should
445 /// instead directly load a pointer.
446 ///
447 /// However, this routine must never change the width of a load or the number of
448 /// loads as that would introduce a semantic change. This combine is expected to
449 /// be a semantic no-op which just allows loads to more closely model the types
450 /// of their consuming operations.
451 ///
452 /// Currently, we also refuse to change the precise type used for an atomic load
453 /// or a volatile load. This is debatable, and might be reasonable to change
454 /// later. However, it is risky in case some backend or other part of LLVM is
455 /// relying on the exact type loaded to select appropriate atomic operations.
combineLoadToOperationType(InstCombiner & IC,LoadInst & LI)456 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
457   // FIXME: We could probably with some care handle both volatile and atomic
458   // loads here but it isn't clear that this is important.
459   if (!LI.isSimple())
460     return nullptr;
461 
462   if (LI.use_empty())
463     return nullptr;
464 
465   Type *Ty = LI.getType();
466   const DataLayout &DL = IC.getDataLayout();
467 
468   // Try to canonicalize loads which are only ever stored to operate over
469   // integers instead of any other type. We only do this when the loaded type
470   // is sized and has a size exactly the same as its store size and the store
471   // size is a legal integer type.
472   if (!Ty->isIntegerTy() && Ty->isSized() &&
473       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
474       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
475     if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
476           auto *SI = dyn_cast<StoreInst>(U);
477           return SI && SI->getPointerOperand() != &LI;
478         })) {
479       LoadInst *NewLoad = combineLoadToNewType(
480           IC, LI,
481           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
482       // Replace all the stores with stores of the newly loaded value.
483       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
484         auto *SI = cast<StoreInst>(*UI++);
485         IC.Builder->SetInsertPoint(SI);
486         combineStoreToNewValue(IC, *SI, NewLoad);
487         IC.EraseInstFromFunction(*SI);
488       }
489       assert(LI.use_empty() && "Failed to remove all users of the load!");
490       // Return the old load so the combiner can delete it safely.
491       return &LI;
492     }
493   }
494 
495   // Fold away bit casts of the loaded value by loading the desired type.
496   // We can do this for BitCastInsts as well as casts from and to pointer types,
497   // as long as those are noops (i.e., the source or dest type have the same
498   // bitwidth as the target's pointers).
499   if (LI.hasOneUse())
500     if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
501       if (CI->isNoopCast(DL)) {
502         LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
503         CI->replaceAllUsesWith(NewLoad);
504         IC.EraseInstFromFunction(*CI);
505         return &LI;
506       }
507     }
508 
509   // FIXME: We should also canonicalize loads of vectors when their elements are
510   // cast to other types.
511   return nullptr;
512 }
513 
unpackLoadToAggregate(InstCombiner & IC,LoadInst & LI)514 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
515   // FIXME: We could probably with some care handle both volatile and atomic
516   // stores here but it isn't clear that this is important.
517   if (!LI.isSimple())
518     return nullptr;
519 
520   Type *T = LI.getType();
521   if (!T->isAggregateType())
522     return nullptr;
523 
524   assert(LI.getAlignment() && "Alignment must be set at this point");
525 
526   if (auto *ST = dyn_cast<StructType>(T)) {
527     // If the struct only have one element, we unpack.
528     unsigned Count = ST->getNumElements();
529     if (Count == 1) {
530       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
531                                                ".unpack");
532       return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
533         UndefValue::get(T), NewLoad, 0, LI.getName()));
534     }
535 
536     // We don't want to break loads with padding here as we'd loose
537     // the knowledge that padding exists for the rest of the pipeline.
538     const DataLayout &DL = IC.getDataLayout();
539     auto *SL = DL.getStructLayout(ST);
540     if (SL->hasPadding())
541       return nullptr;
542 
543     auto Name = LI.getName();
544     SmallString<16> LoadName = Name;
545     LoadName += ".unpack";
546     SmallString<16> EltName = Name;
547     EltName += ".elt";
548     auto *Addr = LI.getPointerOperand();
549     Value *V = UndefValue::get(T);
550     auto *IdxType = Type::getInt32Ty(ST->getContext());
551     auto *Zero = ConstantInt::get(IdxType, 0);
552     for (unsigned i = 0; i < Count; i++) {
553       Value *Indices[2] = {
554         Zero,
555         ConstantInt::get(IdxType, i),
556       };
557       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), EltName);
558       auto *L = IC.Builder->CreateLoad(ST->getTypeAtIndex(i), Ptr, LoadName);
559       V = IC.Builder->CreateInsertValue(V, L, i);
560     }
561 
562     V->setName(Name);
563     return IC.ReplaceInstUsesWith(LI, V);
564   }
565 
566   if (auto *AT = dyn_cast<ArrayType>(T)) {
567     // If the array only have one element, we unpack.
568     if (AT->getNumElements() == 1) {
569       LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(),
570                                                ".unpack");
571       return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
572         UndefValue::get(T), NewLoad, 0, LI.getName()));
573     }
574   }
575 
576   return nullptr;
577 }
578 
579 // If we can determine that all possible objects pointed to by the provided
580 // pointer value are, not only dereferenceable, but also definitively less than
581 // or equal to the provided maximum size, then return true. Otherwise, return
582 // false (constant global values and allocas fall into this category).
583 //
584 // FIXME: This should probably live in ValueTracking (or similar).
isObjectSizeLessThanOrEq(Value * V,uint64_t MaxSize,const DataLayout & DL)585 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
586                                      const DataLayout &DL) {
587   SmallPtrSet<Value *, 4> Visited;
588   SmallVector<Value *, 4> Worklist(1, V);
589 
590   do {
591     Value *P = Worklist.pop_back_val();
592     P = P->stripPointerCasts();
593 
594     if (!Visited.insert(P).second)
595       continue;
596 
597     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
598       Worklist.push_back(SI->getTrueValue());
599       Worklist.push_back(SI->getFalseValue());
600       continue;
601     }
602 
603     if (PHINode *PN = dyn_cast<PHINode>(P)) {
604       for (Value *IncValue : PN->incoming_values())
605         Worklist.push_back(IncValue);
606       continue;
607     }
608 
609     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
610       if (GA->mayBeOverridden())
611         return false;
612       Worklist.push_back(GA->getAliasee());
613       continue;
614     }
615 
616     // If we know how big this object is, and it is less than MaxSize, continue
617     // searching. Otherwise, return false.
618     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
619       if (!AI->getAllocatedType()->isSized())
620         return false;
621 
622       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
623       if (!CS)
624         return false;
625 
626       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
627       // Make sure that, even if the multiplication below would wrap as an
628       // uint64_t, we still do the right thing.
629       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
630         return false;
631       continue;
632     }
633 
634     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
635       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
636         return false;
637 
638       uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
639       if (InitSize > MaxSize)
640         return false;
641       continue;
642     }
643 
644     return false;
645   } while (!Worklist.empty());
646 
647   return true;
648 }
649 
650 // If we're indexing into an object of a known size, and the outer index is
651 // not a constant, but having any value but zero would lead to undefined
652 // behavior, replace it with zero.
653 //
654 // For example, if we have:
655 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
656 // ...
657 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
658 // ... = load i32* %arrayidx, align 4
659 // Then we know that we can replace %x in the GEP with i64 0.
660 //
661 // FIXME: We could fold any GEP index to zero that would cause UB if it were
662 // not zero. Currently, we only handle the first such index. Also, we could
663 // also search through non-zero constant indices if we kept track of the
664 // offsets those indices implied.
canReplaceGEPIdxWithZero(InstCombiner & IC,GetElementPtrInst * GEPI,Instruction * MemI,unsigned & Idx)665 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
666                                      Instruction *MemI, unsigned &Idx) {
667   if (GEPI->getNumOperands() < 2)
668     return false;
669 
670   // Find the first non-zero index of a GEP. If all indices are zero, return
671   // one past the last index.
672   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
673     unsigned I = 1;
674     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
675       Value *V = GEPI->getOperand(I);
676       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
677         if (CI->isZero())
678           continue;
679 
680       break;
681     }
682 
683     return I;
684   };
685 
686   // Skip through initial 'zero' indices, and find the corresponding pointer
687   // type. See if the next index is not a constant.
688   Idx = FirstNZIdx(GEPI);
689   if (Idx == GEPI->getNumOperands())
690     return false;
691   if (isa<Constant>(GEPI->getOperand(Idx)))
692     return false;
693 
694   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
695   Type *AllocTy = GetElementPtrInst::getIndexedType(
696       cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType())
697           ->getElementType(),
698       Ops);
699   if (!AllocTy || !AllocTy->isSized())
700     return false;
701   const DataLayout &DL = IC.getDataLayout();
702   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
703 
704   // If there are more indices after the one we might replace with a zero, make
705   // sure they're all non-negative. If any of them are negative, the overall
706   // address being computed might be before the base address determined by the
707   // first non-zero index.
708   auto IsAllNonNegative = [&]() {
709     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
710       bool KnownNonNegative, KnownNegative;
711       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
712                         KnownNegative, 0, MemI);
713       if (KnownNonNegative)
714         continue;
715       return false;
716     }
717 
718     return true;
719   };
720 
721   // FIXME: If the GEP is not inbounds, and there are extra indices after the
722   // one we'll replace, those could cause the address computation to wrap
723   // (rendering the IsAllNonNegative() check below insufficient). We can do
724   // better, ignoring zero indices (and other indices we can prove small
725   // enough not to wrap).
726   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
727     return false;
728 
729   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
730   // also known to be dereferenceable.
731   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
732          IsAllNonNegative();
733 }
734 
735 // If we're indexing into an object with a variable index for the memory
736 // access, but the object has only one element, we can assume that the index
737 // will always be zero. If we replace the GEP, return it.
738 template <typename T>
replaceGEPIdxWithZero(InstCombiner & IC,Value * Ptr,T & MemI)739 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
740                                           T &MemI) {
741   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
742     unsigned Idx;
743     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
744       Instruction *NewGEPI = GEPI->clone();
745       NewGEPI->setOperand(Idx,
746         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
747       NewGEPI->insertBefore(GEPI);
748       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
749       return NewGEPI;
750     }
751   }
752 
753   return nullptr;
754 }
755 
visitLoadInst(LoadInst & LI)756 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
757   Value *Op = LI.getOperand(0);
758 
759   // Try to canonicalize the loaded type.
760   if (Instruction *Res = combineLoadToOperationType(*this, LI))
761     return Res;
762 
763   // Attempt to improve the alignment.
764   unsigned KnownAlign = getOrEnforceKnownAlignment(
765       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
766   unsigned LoadAlign = LI.getAlignment();
767   unsigned EffectiveLoadAlign =
768       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
769 
770   if (KnownAlign > EffectiveLoadAlign)
771     LI.setAlignment(KnownAlign);
772   else if (LoadAlign == 0)
773     LI.setAlignment(EffectiveLoadAlign);
774 
775   // Replace GEP indices if possible.
776   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
777       Worklist.Add(NewGEPI);
778       return &LI;
779   }
780 
781   // None of the following transforms are legal for volatile/atomic loads.
782   // FIXME: Some of it is okay for atomic loads; needs refactoring.
783   if (!LI.isSimple()) return nullptr;
784 
785   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
786     return Res;
787 
788   // Do really simple store-to-load forwarding and load CSE, to catch cases
789   // where there are several consecutive memory accesses to the same location,
790   // separated by a few arithmetic operations.
791   BasicBlock::iterator BBI(LI);
792   AAMDNodes AATags;
793   if (Value *AvailableVal =
794       FindAvailableLoadedValue(Op, LI.getParent(), BBI,
795                                DefMaxInstsToScan, AA, &AATags)) {
796     if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) {
797       unsigned KnownIDs[] = {
798           LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
799           LLVMContext::MD_noalias,         LLVMContext::MD_range,
800           LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
801           LLVMContext::MD_invariant_group, LLVMContext::MD_align,
802           LLVMContext::MD_dereferenceable,
803           LLVMContext::MD_dereferenceable_or_null};
804       combineMetadata(NLI, &LI, KnownIDs);
805     };
806 
807     return ReplaceInstUsesWith(
808         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
809                                             LI.getName() + ".cast"));
810   }
811 
812   // load(gep null, ...) -> unreachable
813   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
814     const Value *GEPI0 = GEPI->getOperand(0);
815     // TODO: Consider a target hook for valid address spaces for this xform.
816     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
817       // Insert a new store to null instruction before the load to indicate
818       // that this code is not reachable.  We do this instead of inserting
819       // an unreachable instruction directly because we cannot modify the
820       // CFG.
821       new StoreInst(UndefValue::get(LI.getType()),
822                     Constant::getNullValue(Op->getType()), &LI);
823       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
824     }
825   }
826 
827   // load null/undef -> unreachable
828   // TODO: Consider a target hook for valid address spaces for this xform.
829   if (isa<UndefValue>(Op) ||
830       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
831     // Insert a new store to null instruction before the load to indicate that
832     // this code is not reachable.  We do this instead of inserting an
833     // unreachable instruction directly because we cannot modify the CFG.
834     new StoreInst(UndefValue::get(LI.getType()),
835                   Constant::getNullValue(Op->getType()), &LI);
836     return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
837   }
838 
839   if (Op->hasOneUse()) {
840     // Change select and PHI nodes to select values instead of addresses: this
841     // helps alias analysis out a lot, allows many others simplifications, and
842     // exposes redundancy in the code.
843     //
844     // Note that we cannot do the transformation unless we know that the
845     // introduced loads cannot trap!  Something like this is valid as long as
846     // the condition is always false: load (select bool %C, int* null, int* %G),
847     // but it would not be valid if we transformed it to load from null
848     // unconditionally.
849     //
850     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
851       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
852       unsigned Align = LI.getAlignment();
853       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
854           isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
855         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
856                                            SI->getOperand(1)->getName()+".val");
857         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
858                                            SI->getOperand(2)->getName()+".val");
859         V1->setAlignment(Align);
860         V2->setAlignment(Align);
861         return SelectInst::Create(SI->getCondition(), V1, V2);
862       }
863 
864       // load (select (cond, null, P)) -> load P
865       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
866           LI.getPointerAddressSpace() == 0) {
867         LI.setOperand(0, SI->getOperand(2));
868         return &LI;
869       }
870 
871       // load (select (cond, P, null)) -> load P
872       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
873           LI.getPointerAddressSpace() == 0) {
874         LI.setOperand(0, SI->getOperand(1));
875         return &LI;
876       }
877     }
878   }
879   return nullptr;
880 }
881 
882 /// \brief Combine stores to match the type of value being stored.
883 ///
884 /// The core idea here is that the memory does not have any intrinsic type and
885 /// where we can we should match the type of a store to the type of value being
886 /// stored.
887 ///
888 /// However, this routine must never change the width of a store or the number of
889 /// stores as that would introduce a semantic change. This combine is expected to
890 /// be a semantic no-op which just allows stores to more closely model the types
891 /// of their incoming values.
892 ///
893 /// Currently, we also refuse to change the precise type used for an atomic or
894 /// volatile store. This is debatable, and might be reasonable to change later.
895 /// However, it is risky in case some backend or other part of LLVM is relying
896 /// on the exact type stored to select appropriate atomic operations.
897 ///
898 /// \returns true if the store was successfully combined away. This indicates
899 /// the caller must erase the store instruction. We have to let the caller erase
900 /// the store instruction as otherwise there is no way to signal whether it was
901 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
combineStoreToValueType(InstCombiner & IC,StoreInst & SI)902 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
903   // FIXME: We could probably with some care handle both volatile and atomic
904   // stores here but it isn't clear that this is important.
905   if (!SI.isSimple())
906     return false;
907 
908   Value *V = SI.getValueOperand();
909 
910   // Fold away bit casts of the stored value by storing the original type.
911   if (auto *BC = dyn_cast<BitCastInst>(V)) {
912     V = BC->getOperand(0);
913     combineStoreToNewValue(IC, SI, V);
914     return true;
915   }
916 
917   // FIXME: We should also canonicalize loads of vectors when their elements are
918   // cast to other types.
919   return false;
920 }
921 
unpackStoreToAggregate(InstCombiner & IC,StoreInst & SI)922 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
923   // FIXME: We could probably with some care handle both volatile and atomic
924   // stores here but it isn't clear that this is important.
925   if (!SI.isSimple())
926     return false;
927 
928   Value *V = SI.getValueOperand();
929   Type *T = V->getType();
930 
931   if (!T->isAggregateType())
932     return false;
933 
934   if (auto *ST = dyn_cast<StructType>(T)) {
935     // If the struct only have one element, we unpack.
936     unsigned Count = ST->getNumElements();
937     if (Count == 1) {
938       V = IC.Builder->CreateExtractValue(V, 0);
939       combineStoreToNewValue(IC, SI, V);
940       return true;
941     }
942 
943     // We don't want to break loads with padding here as we'd loose
944     // the knowledge that padding exists for the rest of the pipeline.
945     const DataLayout &DL = IC.getDataLayout();
946     auto *SL = DL.getStructLayout(ST);
947     if (SL->hasPadding())
948       return false;
949 
950     SmallString<16> EltName = V->getName();
951     EltName += ".elt";
952     auto *Addr = SI.getPointerOperand();
953     SmallString<16> AddrName = Addr->getName();
954     AddrName += ".repack";
955     auto *IdxType = Type::getInt32Ty(ST->getContext());
956     auto *Zero = ConstantInt::get(IdxType, 0);
957     for (unsigned i = 0; i < Count; i++) {
958       Value *Indices[2] = {
959         Zero,
960         ConstantInt::get(IdxType, i),
961       };
962       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), AddrName);
963       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
964       IC.Builder->CreateStore(Val, Ptr);
965     }
966 
967     return true;
968   }
969 
970   if (auto *AT = dyn_cast<ArrayType>(T)) {
971     // If the array only have one element, we unpack.
972     if (AT->getNumElements() == 1) {
973       V = IC.Builder->CreateExtractValue(V, 0);
974       combineStoreToNewValue(IC, SI, V);
975       return true;
976     }
977   }
978 
979   return false;
980 }
981 
982 /// equivalentAddressValues - Test if A and B will obviously have the same
983 /// value. This includes recognizing that %t0 and %t1 will have the same
984 /// value in code like this:
985 ///   %t0 = getelementptr \@a, 0, 3
986 ///   store i32 0, i32* %t0
987 ///   %t1 = getelementptr \@a, 0, 3
988 ///   %t2 = load i32* %t1
989 ///
equivalentAddressValues(Value * A,Value * B)990 static bool equivalentAddressValues(Value *A, Value *B) {
991   // Test if the values are trivially equivalent.
992   if (A == B) return true;
993 
994   // Test if the values come form identical arithmetic instructions.
995   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
996   // its only used to compare two uses within the same basic block, which
997   // means that they'll always either have the same value or one of them
998   // will have an undefined value.
999   if (isa<BinaryOperator>(A) ||
1000       isa<CastInst>(A) ||
1001       isa<PHINode>(A) ||
1002       isa<GetElementPtrInst>(A))
1003     if (Instruction *BI = dyn_cast<Instruction>(B))
1004       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1005         return true;
1006 
1007   // Otherwise they may not be equivalent.
1008   return false;
1009 }
1010 
visitStoreInst(StoreInst & SI)1011 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1012   Value *Val = SI.getOperand(0);
1013   Value *Ptr = SI.getOperand(1);
1014 
1015   // Try to canonicalize the stored type.
1016   if (combineStoreToValueType(*this, SI))
1017     return EraseInstFromFunction(SI);
1018 
1019   // Attempt to improve the alignment.
1020   unsigned KnownAlign = getOrEnforceKnownAlignment(
1021       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
1022   unsigned StoreAlign = SI.getAlignment();
1023   unsigned EffectiveStoreAlign =
1024       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1025 
1026   if (KnownAlign > EffectiveStoreAlign)
1027     SI.setAlignment(KnownAlign);
1028   else if (StoreAlign == 0)
1029     SI.setAlignment(EffectiveStoreAlign);
1030 
1031   // Try to canonicalize the stored type.
1032   if (unpackStoreToAggregate(*this, SI))
1033     return EraseInstFromFunction(SI);
1034 
1035   // Replace GEP indices if possible.
1036   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1037       Worklist.Add(NewGEPI);
1038       return &SI;
1039   }
1040 
1041   // Don't hack volatile/ordered stores.
1042   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1043   if (!SI.isUnordered()) return nullptr;
1044 
1045   // If the RHS is an alloca with a single use, zapify the store, making the
1046   // alloca dead.
1047   if (Ptr->hasOneUse()) {
1048     if (isa<AllocaInst>(Ptr))
1049       return EraseInstFromFunction(SI);
1050     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1051       if (isa<AllocaInst>(GEP->getOperand(0))) {
1052         if (GEP->getOperand(0)->hasOneUse())
1053           return EraseInstFromFunction(SI);
1054       }
1055     }
1056   }
1057 
1058   // Do really simple DSE, to catch cases where there are several consecutive
1059   // stores to the same location, separated by a few arithmetic operations. This
1060   // situation often occurs with bitfield accesses.
1061   BasicBlock::iterator BBI(SI);
1062   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1063        --ScanInsts) {
1064     --BBI;
1065     // Don't count debug info directives, lest they affect codegen,
1066     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1067     if (isa<DbgInfoIntrinsic>(BBI) ||
1068         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1069       ScanInsts++;
1070       continue;
1071     }
1072 
1073     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1074       // Prev store isn't volatile, and stores to the same location?
1075       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1076                                                         SI.getOperand(1))) {
1077         ++NumDeadStore;
1078         ++BBI;
1079         EraseInstFromFunction(*PrevSI);
1080         continue;
1081       }
1082       break;
1083     }
1084 
1085     // If this is a load, we have to stop.  However, if the loaded value is from
1086     // the pointer we're loading and is producing the pointer we're storing,
1087     // then *this* store is dead (X = load P; store X -> P).
1088     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1089       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1090         assert(SI.isUnordered() && "can't eliminate ordering operation");
1091         return EraseInstFromFunction(SI);
1092       }
1093 
1094       // Otherwise, this is a load from some other location.  Stores before it
1095       // may not be dead.
1096       break;
1097     }
1098 
1099     // Don't skip over loads or things that can modify memory.
1100     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1101       break;
1102   }
1103 
1104   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1105   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1106     if (!isa<UndefValue>(Val)) {
1107       SI.setOperand(0, UndefValue::get(Val->getType()));
1108       if (Instruction *U = dyn_cast<Instruction>(Val))
1109         Worklist.Add(U);  // Dropped a use.
1110     }
1111     return nullptr;  // Do not modify these!
1112   }
1113 
1114   // store undef, Ptr -> noop
1115   if (isa<UndefValue>(Val))
1116     return EraseInstFromFunction(SI);
1117 
1118   // The code below needs to be audited and adjusted for unordered atomics
1119   if (!SI.isSimple())
1120     return nullptr;
1121 
1122   // If this store is the last instruction in the basic block (possibly
1123   // excepting debug info instructions), and if the block ends with an
1124   // unconditional branch, try to move it to the successor block.
1125   BBI = SI.getIterator();
1126   do {
1127     ++BBI;
1128   } while (isa<DbgInfoIntrinsic>(BBI) ||
1129            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1130   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1131     if (BI->isUnconditional())
1132       if (SimplifyStoreAtEndOfBlock(SI))
1133         return nullptr;  // xform done!
1134 
1135   return nullptr;
1136 }
1137 
1138 /// SimplifyStoreAtEndOfBlock - Turn things like:
1139 ///   if () { *P = v1; } else { *P = v2 }
1140 /// into a phi node with a store in the successor.
1141 ///
1142 /// Simplify things like:
1143 ///   *P = v1; if () { *P = v2; }
1144 /// into a phi node with a store in the successor.
1145 ///
SimplifyStoreAtEndOfBlock(StoreInst & SI)1146 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1147   BasicBlock *StoreBB = SI.getParent();
1148 
1149   // Check to see if the successor block has exactly two incoming edges.  If
1150   // so, see if the other predecessor contains a store to the same location.
1151   // if so, insert a PHI node (if needed) and move the stores down.
1152   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1153 
1154   // Determine whether Dest has exactly two predecessors and, if so, compute
1155   // the other predecessor.
1156   pred_iterator PI = pred_begin(DestBB);
1157   BasicBlock *P = *PI;
1158   BasicBlock *OtherBB = nullptr;
1159 
1160   if (P != StoreBB)
1161     OtherBB = P;
1162 
1163   if (++PI == pred_end(DestBB))
1164     return false;
1165 
1166   P = *PI;
1167   if (P != StoreBB) {
1168     if (OtherBB)
1169       return false;
1170     OtherBB = P;
1171   }
1172   if (++PI != pred_end(DestBB))
1173     return false;
1174 
1175   // Bail out if all the relevant blocks aren't distinct (this can happen,
1176   // for example, if SI is in an infinite loop)
1177   if (StoreBB == DestBB || OtherBB == DestBB)
1178     return false;
1179 
1180   // Verify that the other block ends in a branch and is not otherwise empty.
1181   BasicBlock::iterator BBI(OtherBB->getTerminator());
1182   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1183   if (!OtherBr || BBI == OtherBB->begin())
1184     return false;
1185 
1186   // If the other block ends in an unconditional branch, check for the 'if then
1187   // else' case.  there is an instruction before the branch.
1188   StoreInst *OtherStore = nullptr;
1189   if (OtherBr->isUnconditional()) {
1190     --BBI;
1191     // Skip over debugging info.
1192     while (isa<DbgInfoIntrinsic>(BBI) ||
1193            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1194       if (BBI==OtherBB->begin())
1195         return false;
1196       --BBI;
1197     }
1198     // If this isn't a store, isn't a store to the same location, or is not the
1199     // right kind of store, bail out.
1200     OtherStore = dyn_cast<StoreInst>(BBI);
1201     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1202         !SI.isSameOperationAs(OtherStore))
1203       return false;
1204   } else {
1205     // Otherwise, the other block ended with a conditional branch. If one of the
1206     // destinations is StoreBB, then we have the if/then case.
1207     if (OtherBr->getSuccessor(0) != StoreBB &&
1208         OtherBr->getSuccessor(1) != StoreBB)
1209       return false;
1210 
1211     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1212     // if/then triangle.  See if there is a store to the same ptr as SI that
1213     // lives in OtherBB.
1214     for (;; --BBI) {
1215       // Check to see if we find the matching store.
1216       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1217         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1218             !SI.isSameOperationAs(OtherStore))
1219           return false;
1220         break;
1221       }
1222       // If we find something that may be using or overwriting the stored
1223       // value, or if we run out of instructions, we can't do the xform.
1224       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1225           BBI == OtherBB->begin())
1226         return false;
1227     }
1228 
1229     // In order to eliminate the store in OtherBr, we have to
1230     // make sure nothing reads or overwrites the stored value in
1231     // StoreBB.
1232     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1233       // FIXME: This should really be AA driven.
1234       if (I->mayReadFromMemory() || I->mayWriteToMemory())
1235         return false;
1236     }
1237   }
1238 
1239   // Insert a PHI node now if we need it.
1240   Value *MergedVal = OtherStore->getOperand(0);
1241   if (MergedVal != SI.getOperand(0)) {
1242     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1243     PN->addIncoming(SI.getOperand(0), SI.getParent());
1244     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1245     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1246   }
1247 
1248   // Advance to a place where it is safe to insert the new store and
1249   // insert it.
1250   BBI = DestBB->getFirstInsertionPt();
1251   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1252                                    SI.isVolatile(),
1253                                    SI.getAlignment(),
1254                                    SI.getOrdering(),
1255                                    SI.getSynchScope());
1256   InsertNewInstBefore(NewSI, *BBI);
1257   NewSI->setDebugLoc(OtherStore->getDebugLoc());
1258 
1259   // If the two stores had AA tags, merge them.
1260   AAMDNodes AATags;
1261   SI.getAAMetadata(AATags);
1262   if (AATags) {
1263     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1264     NewSI->setAAMetadata(AATags);
1265   }
1266 
1267   // Nuke the old stores.
1268   EraseInstFromFunction(SI);
1269   EraseInstFromFunction(*OtherStore);
1270   return true;
1271 }
1272