1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Return true if the value is cheaper to scalarize than it is to leave as a
26 /// vector operation. isConstant indicates whether we're extracting one known
27 /// element. If false we're extracting a variable index.
cheapToScalarize(Value * V,bool isConstant)28 static bool cheapToScalarize(Value *V, bool isConstant) {
29   if (Constant *C = dyn_cast<Constant>(V)) {
30     if (isConstant) return true;
31 
32     // If all elts are the same, we can extract it and use any of the values.
33     if (Constant *Op0 = C->getAggregateElement(0U)) {
34       for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
35            ++i)
36         if (C->getAggregateElement(i) != Op0)
37           return false;
38       return true;
39     }
40   }
41   Instruction *I = dyn_cast<Instruction>(V);
42   if (!I) return false;
43 
44   // Insert element gets simplified to the inserted element or is deleted if
45   // this is constant idx extract element and its a constant idx insertelt.
46   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
47       isa<ConstantInt>(I->getOperand(2)))
48     return true;
49   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
50     return true;
51   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
52     if (BO->hasOneUse() &&
53         (cheapToScalarize(BO->getOperand(0), isConstant) ||
54          cheapToScalarize(BO->getOperand(1), isConstant)))
55       return true;
56   if (CmpInst *CI = dyn_cast<CmpInst>(I))
57     if (CI->hasOneUse() &&
58         (cheapToScalarize(CI->getOperand(0), isConstant) ||
59          cheapToScalarize(CI->getOperand(1), isConstant)))
60       return true;
61 
62   return false;
63 }
64 
65 // If we have a PHI node with a vector type that has only 2 uses: feed
66 // itself and be an operand of extractelement at a constant location,
67 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
69   // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
70   if (!PN->hasNUses(2))
71     return nullptr;
72 
73   // If so, it's known at this point that one operand is PHI and the other is
74   // an extractelement node. Find the PHI user that is not the extractelement
75   // node.
76   auto iu = PN->user_begin();
77   Instruction *PHIUser = dyn_cast<Instruction>(*iu);
78   if (PHIUser == cast<Instruction>(&EI))
79     PHIUser = cast<Instruction>(*(++iu));
80 
81   // Verify that this PHI user has one use, which is the PHI itself,
82   // and that it is a binary operation which is cheap to scalarize.
83   // otherwise return NULL.
84   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
85       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
86     return nullptr;
87 
88   // Create a scalar PHI node that will replace the vector PHI node
89   // just before the current PHI node.
90   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
91       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
92   // Scalarize each PHI operand.
93   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
94     Value *PHIInVal = PN->getIncomingValue(i);
95     BasicBlock *inBB = PN->getIncomingBlock(i);
96     Value *Elt = EI.getIndexOperand();
97     // If the operand is the PHI induction variable:
98     if (PHIInVal == PHIUser) {
99       // Scalarize the binary operation. Its first operand is the
100       // scalar PHI, and the second operand is extracted from the other
101       // vector operand.
102       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
103       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
104       Value *Op = InsertNewInstWith(
105           ExtractElementInst::Create(B0->getOperand(opId), Elt,
106                                      B0->getOperand(opId)->getName() + ".Elt"),
107           *B0);
108       Value *newPHIUser = InsertNewInstWith(
109           BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
110       scalarPHI->addIncoming(newPHIUser, inBB);
111     } else {
112       // Scalarize PHI input:
113       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
114       // Insert the new instruction into the predecessor basic block.
115       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
116       BasicBlock::iterator InsertPos;
117       if (pos && !isa<PHINode>(pos)) {
118         InsertPos = ++pos->getIterator();
119       } else {
120         InsertPos = inBB->getFirstInsertionPt();
121       }
122 
123       InsertNewInstWith(newEI, *InsertPos);
124 
125       scalarPHI->addIncoming(newEI, inBB);
126     }
127   }
128   return ReplaceInstUsesWith(EI, scalarPHI);
129 }
130 
visitExtractElementInst(ExtractElementInst & EI)131 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
132   if (Value *V = SimplifyExtractElementInst(
133           EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC))
134     return ReplaceInstUsesWith(EI, V);
135 
136   // If vector val is constant with all elements the same, replace EI with
137   // that element.  We handle a known element # below.
138   if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
139     if (cheapToScalarize(C, false))
140       return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
141 
142   // If extracting a specified index from the vector, see if we can recursively
143   // find a previously computed scalar that was inserted into the vector.
144   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
145     unsigned IndexVal = IdxC->getZExtValue();
146     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
147 
148     // InstSimplify handles cases where the index is invalid.
149     assert(IndexVal < VectorWidth);
150 
151     // This instruction only demands the single element from the input vector.
152     // If the input vector has a single use, simplify it based on this use
153     // property.
154     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
155       APInt UndefElts(VectorWidth, 0);
156       APInt DemandedMask(VectorWidth, 0);
157       DemandedMask.setBit(IndexVal);
158       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
159                                                 UndefElts)) {
160         EI.setOperand(0, V);
161         return &EI;
162       }
163     }
164 
165     // If this extractelement is directly using a bitcast from a vector of
166     // the same number of elements, see if we can find the source element from
167     // it.  In this case, we will end up needing to bitcast the scalars.
168     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
169       if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
170         if (VT->getNumElements() == VectorWidth)
171           if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
172             return new BitCastInst(Elt, EI.getType());
173     }
174 
175     // If there's a vector PHI feeding a scalar use through this extractelement
176     // instruction, try to scalarize the PHI.
177     if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
178       Instruction *scalarPHI = scalarizePHI(EI, PN);
179       if (scalarPHI)
180         return scalarPHI;
181     }
182   }
183 
184   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
185     // Push extractelement into predecessor operation if legal and
186     // profitable to do so.
187     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
188       if (I->hasOneUse() &&
189           cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
190         Value *newEI0 =
191           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
192                                         EI.getName()+".lhs");
193         Value *newEI1 =
194           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
195                                         EI.getName()+".rhs");
196         return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
197       }
198     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
199       // Extracting the inserted element?
200       if (IE->getOperand(2) == EI.getOperand(1))
201         return ReplaceInstUsesWith(EI, IE->getOperand(1));
202       // If the inserted and extracted elements are constants, they must not
203       // be the same value, extract from the pre-inserted value instead.
204       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
205         Worklist.AddValue(EI.getOperand(0));
206         EI.setOperand(0, IE->getOperand(0));
207         return &EI;
208       }
209     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
210       // If this is extracting an element from a shufflevector, figure out where
211       // it came from and extract from the appropriate input element instead.
212       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
213         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
214         Value *Src;
215         unsigned LHSWidth =
216           SVI->getOperand(0)->getType()->getVectorNumElements();
217 
218         if (SrcIdx < 0)
219           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
220         if (SrcIdx < (int)LHSWidth)
221           Src = SVI->getOperand(0);
222         else {
223           SrcIdx -= LHSWidth;
224           Src = SVI->getOperand(1);
225         }
226         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
227         return ExtractElementInst::Create(Src,
228                                           ConstantInt::get(Int32Ty,
229                                                            SrcIdx, false));
230       }
231     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
232       // Canonicalize extractelement(cast) -> cast(extractelement).
233       // Bitcasts can change the number of vector elements, and they cost
234       // nothing.
235       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
236         Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
237                                                   EI.getIndexOperand());
238         Worklist.AddValue(EE);
239         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
240       }
241     } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
242       if (SI->hasOneUse()) {
243         // TODO: For a select on vectors, it might be useful to do this if it
244         // has multiple extractelement uses. For vector select, that seems to
245         // fight the vectorizer.
246 
247         // If we are extracting an element from a vector select or a select on
248         // vectors, create a select on the scalars extracted from the vector
249         // arguments.
250         Value *TrueVal = SI->getTrueValue();
251         Value *FalseVal = SI->getFalseValue();
252 
253         Value *Cond = SI->getCondition();
254         if (Cond->getType()->isVectorTy()) {
255           Cond = Builder->CreateExtractElement(Cond,
256                                                EI.getIndexOperand(),
257                                                Cond->getName() + ".elt");
258         }
259 
260         Value *V1Elem
261           = Builder->CreateExtractElement(TrueVal,
262                                           EI.getIndexOperand(),
263                                           TrueVal->getName() + ".elt");
264 
265         Value *V2Elem
266           = Builder->CreateExtractElement(FalseVal,
267                                           EI.getIndexOperand(),
268                                           FalseVal->getName() + ".elt");
269         return SelectInst::Create(Cond,
270                                   V1Elem,
271                                   V2Elem,
272                                   SI->getName() + ".elt");
273       }
274     }
275   }
276   return nullptr;
277 }
278 
279 /// If V is a shuffle of values that ONLY returns elements from either LHS or
280 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<Constant * > & Mask)281 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
282                                          SmallVectorImpl<Constant*> &Mask) {
283   assert(LHS->getType() == RHS->getType() &&
284          "Invalid CollectSingleShuffleElements");
285   unsigned NumElts = V->getType()->getVectorNumElements();
286 
287   if (isa<UndefValue>(V)) {
288     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
289     return true;
290   }
291 
292   if (V == LHS) {
293     for (unsigned i = 0; i != NumElts; ++i)
294       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
295     return true;
296   }
297 
298   if (V == RHS) {
299     for (unsigned i = 0; i != NumElts; ++i)
300       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
301                                       i+NumElts));
302     return true;
303   }
304 
305   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
306     // If this is an insert of an extract from some other vector, include it.
307     Value *VecOp    = IEI->getOperand(0);
308     Value *ScalarOp = IEI->getOperand(1);
309     Value *IdxOp    = IEI->getOperand(2);
310 
311     if (!isa<ConstantInt>(IdxOp))
312       return false;
313     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
314 
315     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
316       // We can handle this if the vector we are inserting into is
317       // transitively ok.
318       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
319         // If so, update the mask to reflect the inserted undef.
320         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
321         return true;
322       }
323     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
324       if (isa<ConstantInt>(EI->getOperand(1))) {
325         unsigned ExtractedIdx =
326         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
327         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
328 
329         // This must be extracting from either LHS or RHS.
330         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
331           // We can handle this if the vector we are inserting into is
332           // transitively ok.
333           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
334             // If so, update the mask to reflect the inserted value.
335             if (EI->getOperand(0) == LHS) {
336               Mask[InsertedIdx % NumElts] =
337               ConstantInt::get(Type::getInt32Ty(V->getContext()),
338                                ExtractedIdx);
339             } else {
340               assert(EI->getOperand(0) == RHS);
341               Mask[InsertedIdx % NumElts] =
342               ConstantInt::get(Type::getInt32Ty(V->getContext()),
343                                ExtractedIdx + NumLHSElts);
344             }
345             return true;
346           }
347         }
348       }
349     }
350   }
351 
352   return false;
353 }
354 
355 
356 /// We are building a shuffle to create V, which is a sequence of insertelement,
357 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
358 /// not rely on the second vector source. Return a std::pair containing the
359 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
360 /// parameter as required.
361 ///
362 /// Note: we intentionally don't try to fold earlier shuffles since they have
363 /// often been chosen carefully to be efficiently implementable on the target.
364 typedef std::pair<Value *, Value *> ShuffleOps;
365 
collectShuffleElements(Value * V,SmallVectorImpl<Constant * > & Mask,Value * PermittedRHS)366 static ShuffleOps collectShuffleElements(Value *V,
367                                          SmallVectorImpl<Constant *> &Mask,
368                                          Value *PermittedRHS) {
369   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
370   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
371 
372   if (isa<UndefValue>(V)) {
373     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374     return std::make_pair(
375         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
376   }
377 
378   if (isa<ConstantAggregateZero>(V)) {
379     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
380     return std::make_pair(V, nullptr);
381   }
382 
383   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
384     // If this is an insert of an extract from some other vector, include it.
385     Value *VecOp    = IEI->getOperand(0);
386     Value *ScalarOp = IEI->getOperand(1);
387     Value *IdxOp    = IEI->getOperand(2);
388 
389     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
390       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
391         unsigned ExtractedIdx =
392           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
393         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
394 
395         // Either the extracted from or inserted into vector must be RHSVec,
396         // otherwise we'd end up with a shuffle of three inputs.
397         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
398           Value *RHS = EI->getOperand(0);
399           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS);
400           assert(LR.second == nullptr || LR.second == RHS);
401 
402           if (LR.first->getType() != RHS->getType()) {
403             // We tried our best, but we can't find anything compatible with RHS
404             // further up the chain. Return a trivial shuffle.
405             for (unsigned i = 0; i < NumElts; ++i)
406               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
407             return std::make_pair(V, nullptr);
408           }
409 
410           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
411           Mask[InsertedIdx % NumElts] =
412             ConstantInt::get(Type::getInt32Ty(V->getContext()),
413                              NumLHSElts+ExtractedIdx);
414           return std::make_pair(LR.first, RHS);
415         }
416 
417         if (VecOp == PermittedRHS) {
418           // We've gone as far as we can: anything on the other side of the
419           // extractelement will already have been converted into a shuffle.
420           unsigned NumLHSElts =
421               EI->getOperand(0)->getType()->getVectorNumElements();
422           for (unsigned i = 0; i != NumElts; ++i)
423             Mask.push_back(ConstantInt::get(
424                 Type::getInt32Ty(V->getContext()),
425                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
426           return std::make_pair(EI->getOperand(0), PermittedRHS);
427         }
428 
429         // If this insertelement is a chain that comes from exactly these two
430         // vectors, return the vector and the effective shuffle.
431         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
432             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
433                                          Mask))
434           return std::make_pair(EI->getOperand(0), PermittedRHS);
435       }
436     }
437   }
438 
439   // Otherwise, we can't do anything fancy. Return an identity vector.
440   for (unsigned i = 0; i != NumElts; ++i)
441     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
442   return std::make_pair(V, nullptr);
443 }
444 
445 /// Try to find redundant insertvalue instructions, like the following ones:
446 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
447 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
448 /// Here the second instruction inserts values at the same indices, as the
449 /// first one, making the first one redundant.
450 /// It should be transformed to:
451 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)452 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
453   bool IsRedundant = false;
454   ArrayRef<unsigned int> FirstIndices = I.getIndices();
455 
456   // If there is a chain of insertvalue instructions (each of them except the
457   // last one has only one use and it's another insertvalue insn from this
458   // chain), check if any of the 'children' uses the same indices as the first
459   // instruction. In this case, the first one is redundant.
460   Value *V = &I;
461   unsigned Depth = 0;
462   while (V->hasOneUse() && Depth < 10) {
463     User *U = V->user_back();
464     auto UserInsInst = dyn_cast<InsertValueInst>(U);
465     if (!UserInsInst || U->getOperand(0) != V)
466       break;
467     if (UserInsInst->getIndices() == FirstIndices) {
468       IsRedundant = true;
469       break;
470     }
471     V = UserInsInst;
472     Depth++;
473   }
474 
475   if (IsRedundant)
476     return ReplaceInstUsesWith(I, I.getOperand(0));
477   return nullptr;
478 }
479 
visitInsertElementInst(InsertElementInst & IE)480 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
481   Value *VecOp    = IE.getOperand(0);
482   Value *ScalarOp = IE.getOperand(1);
483   Value *IdxOp    = IE.getOperand(2);
484 
485   // Inserting an undef or into an undefined place, remove this.
486   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
487     ReplaceInstUsesWith(IE, VecOp);
488 
489   // If the inserted element was extracted from some other vector, and if the
490   // indexes are constant, try to turn this into a shufflevector operation.
491   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
492     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
493       unsigned NumInsertVectorElts = IE.getType()->getNumElements();
494       unsigned NumExtractVectorElts =
495           EI->getOperand(0)->getType()->getVectorNumElements();
496       unsigned ExtractedIdx =
497         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
498       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
499 
500       if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
501         return ReplaceInstUsesWith(IE, VecOp);
502 
503       if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
504         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
505 
506       // If we are extracting a value from a vector, then inserting it right
507       // back into the same place, just use the input vector.
508       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
509         return ReplaceInstUsesWith(IE, VecOp);
510 
511       // If this insertelement isn't used by some other insertelement, turn it
512       // (and any insertelements it points to), into one big shuffle.
513       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
514         SmallVector<Constant*, 16> Mask;
515         ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr);
516 
517         // The proposed shuffle may be trivial, in which case we shouldn't
518         // perform the combine.
519         if (LR.first != &IE && LR.second != &IE) {
520           // We now have a shuffle of LHS, RHS, Mask.
521           if (LR.second == nullptr)
522             LR.second = UndefValue::get(LR.first->getType());
523           return new ShuffleVectorInst(LR.first, LR.second,
524                                        ConstantVector::get(Mask));
525         }
526       }
527     }
528   }
529 
530   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
531   APInt UndefElts(VWidth, 0);
532   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
533   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
534     if (V != &IE)
535       return ReplaceInstUsesWith(IE, V);
536     return &IE;
537   }
538 
539   return nullptr;
540 }
541 
542 /// Return true if we can evaluate the specified expression tree if the vector
543 /// elements were shuffled in a different order.
CanEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)544 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
545                                 unsigned Depth = 5) {
546   // We can always reorder the elements of a constant.
547   if (isa<Constant>(V))
548     return true;
549 
550   // We won't reorder vector arguments. No IPO here.
551   Instruction *I = dyn_cast<Instruction>(V);
552   if (!I) return false;
553 
554   // Two users may expect different orders of the elements. Don't try it.
555   if (!I->hasOneUse())
556     return false;
557 
558   if (Depth == 0) return false;
559 
560   switch (I->getOpcode()) {
561     case Instruction::Add:
562     case Instruction::FAdd:
563     case Instruction::Sub:
564     case Instruction::FSub:
565     case Instruction::Mul:
566     case Instruction::FMul:
567     case Instruction::UDiv:
568     case Instruction::SDiv:
569     case Instruction::FDiv:
570     case Instruction::URem:
571     case Instruction::SRem:
572     case Instruction::FRem:
573     case Instruction::Shl:
574     case Instruction::LShr:
575     case Instruction::AShr:
576     case Instruction::And:
577     case Instruction::Or:
578     case Instruction::Xor:
579     case Instruction::ICmp:
580     case Instruction::FCmp:
581     case Instruction::Trunc:
582     case Instruction::ZExt:
583     case Instruction::SExt:
584     case Instruction::FPToUI:
585     case Instruction::FPToSI:
586     case Instruction::UIToFP:
587     case Instruction::SIToFP:
588     case Instruction::FPTrunc:
589     case Instruction::FPExt:
590     case Instruction::GetElementPtr: {
591       for (Value *Operand : I->operands()) {
592         if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
593           return false;
594       }
595       return true;
596     }
597     case Instruction::InsertElement: {
598       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
599       if (!CI) return false;
600       int ElementNumber = CI->getLimitedValue();
601 
602       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
603       // can't put an element into multiple indices.
604       bool SeenOnce = false;
605       for (int i = 0, e = Mask.size(); i != e; ++i) {
606         if (Mask[i] == ElementNumber) {
607           if (SeenOnce)
608             return false;
609           SeenOnce = true;
610         }
611       }
612       return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
613     }
614   }
615   return false;
616 }
617 
618 /// Rebuild a new instruction just like 'I' but with the new operands given.
619 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)620 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
621   // We don't want to use the IRBuilder here because we want the replacement
622   // instructions to appear next to 'I', not the builder's insertion point.
623   switch (I->getOpcode()) {
624     case Instruction::Add:
625     case Instruction::FAdd:
626     case Instruction::Sub:
627     case Instruction::FSub:
628     case Instruction::Mul:
629     case Instruction::FMul:
630     case Instruction::UDiv:
631     case Instruction::SDiv:
632     case Instruction::FDiv:
633     case Instruction::URem:
634     case Instruction::SRem:
635     case Instruction::FRem:
636     case Instruction::Shl:
637     case Instruction::LShr:
638     case Instruction::AShr:
639     case Instruction::And:
640     case Instruction::Or:
641     case Instruction::Xor: {
642       BinaryOperator *BO = cast<BinaryOperator>(I);
643       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
644       BinaryOperator *New =
645           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
646                                  NewOps[0], NewOps[1], "", BO);
647       if (isa<OverflowingBinaryOperator>(BO)) {
648         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
649         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
650       }
651       if (isa<PossiblyExactOperator>(BO)) {
652         New->setIsExact(BO->isExact());
653       }
654       if (isa<FPMathOperator>(BO))
655         New->copyFastMathFlags(I);
656       return New;
657     }
658     case Instruction::ICmp:
659       assert(NewOps.size() == 2 && "icmp with #ops != 2");
660       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
661                           NewOps[0], NewOps[1]);
662     case Instruction::FCmp:
663       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
664       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
665                           NewOps[0], NewOps[1]);
666     case Instruction::Trunc:
667     case Instruction::ZExt:
668     case Instruction::SExt:
669     case Instruction::FPToUI:
670     case Instruction::FPToSI:
671     case Instruction::UIToFP:
672     case Instruction::SIToFP:
673     case Instruction::FPTrunc:
674     case Instruction::FPExt: {
675       // It's possible that the mask has a different number of elements from
676       // the original cast. We recompute the destination type to match the mask.
677       Type *DestTy =
678           VectorType::get(I->getType()->getScalarType(),
679                           NewOps[0]->getType()->getVectorNumElements());
680       assert(NewOps.size() == 1 && "cast with #ops != 1");
681       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
682                               "", I);
683     }
684     case Instruction::GetElementPtr: {
685       Value *Ptr = NewOps[0];
686       ArrayRef<Value*> Idx = NewOps.slice(1);
687       GetElementPtrInst *GEP = GetElementPtrInst::Create(
688           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
689       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
690       return GEP;
691     }
692   }
693   llvm_unreachable("failed to rebuild vector instructions");
694 }
695 
696 Value *
EvaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)697 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
698   // Mask.size() does not need to be equal to the number of vector elements.
699 
700   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
701   if (isa<UndefValue>(V)) {
702     return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
703                                            Mask.size()));
704   }
705   if (isa<ConstantAggregateZero>(V)) {
706     return ConstantAggregateZero::get(
707                VectorType::get(V->getType()->getScalarType(),
708                                Mask.size()));
709   }
710   if (Constant *C = dyn_cast<Constant>(V)) {
711     SmallVector<Constant *, 16> MaskValues;
712     for (int i = 0, e = Mask.size(); i != e; ++i) {
713       if (Mask[i] == -1)
714         MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
715       else
716         MaskValues.push_back(Builder->getInt32(Mask[i]));
717     }
718     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
719                                           ConstantVector::get(MaskValues));
720   }
721 
722   Instruction *I = cast<Instruction>(V);
723   switch (I->getOpcode()) {
724     case Instruction::Add:
725     case Instruction::FAdd:
726     case Instruction::Sub:
727     case Instruction::FSub:
728     case Instruction::Mul:
729     case Instruction::FMul:
730     case Instruction::UDiv:
731     case Instruction::SDiv:
732     case Instruction::FDiv:
733     case Instruction::URem:
734     case Instruction::SRem:
735     case Instruction::FRem:
736     case Instruction::Shl:
737     case Instruction::LShr:
738     case Instruction::AShr:
739     case Instruction::And:
740     case Instruction::Or:
741     case Instruction::Xor:
742     case Instruction::ICmp:
743     case Instruction::FCmp:
744     case Instruction::Trunc:
745     case Instruction::ZExt:
746     case Instruction::SExt:
747     case Instruction::FPToUI:
748     case Instruction::FPToSI:
749     case Instruction::UIToFP:
750     case Instruction::SIToFP:
751     case Instruction::FPTrunc:
752     case Instruction::FPExt:
753     case Instruction::Select:
754     case Instruction::GetElementPtr: {
755       SmallVector<Value*, 8> NewOps;
756       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
757       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
758         Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
759         NewOps.push_back(V);
760         NeedsRebuild |= (V != I->getOperand(i));
761       }
762       if (NeedsRebuild) {
763         return buildNew(I, NewOps);
764       }
765       return I;
766     }
767     case Instruction::InsertElement: {
768       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
769 
770       // The insertelement was inserting at Element. Figure out which element
771       // that becomes after shuffling. The answer is guaranteed to be unique
772       // by CanEvaluateShuffled.
773       bool Found = false;
774       int Index = 0;
775       for (int e = Mask.size(); Index != e; ++Index) {
776         if (Mask[Index] == Element) {
777           Found = true;
778           break;
779         }
780       }
781 
782       // If element is not in Mask, no need to handle the operand 1 (element to
783       // be inserted). Just evaluate values in operand 0 according to Mask.
784       if (!Found)
785         return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
786 
787       Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
788       return InsertElementInst::Create(V, I->getOperand(1),
789                                        Builder->getInt32(Index), "", I);
790     }
791   }
792   llvm_unreachable("failed to reorder elements of vector instruction!");
793 }
794 
recognizeIdentityMask(const SmallVectorImpl<int> & Mask,bool & isLHSID,bool & isRHSID)795 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
796                                   bool &isLHSID, bool &isRHSID) {
797   isLHSID = isRHSID = true;
798 
799   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
800     if (Mask[i] < 0) continue;  // Ignore undef values.
801     // Is this an identity shuffle of the LHS value?
802     isLHSID &= (Mask[i] == (int)i);
803 
804     // Is this an identity shuffle of the RHS value?
805     isRHSID &= (Mask[i]-e == i);
806   }
807 }
808 
809 // Returns true if the shuffle is extracting a contiguous range of values from
810 // LHS, for example:
811 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
812 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
813 //   Shuffles to:  |EE|FF|GG|HH|
814 //                 +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,SmallVector<int,16> & Mask)815 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
816                                        SmallVector<int, 16> &Mask) {
817   unsigned LHSElems =
818       cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
819   unsigned MaskElems = Mask.size();
820   unsigned BegIdx = Mask.front();
821   unsigned EndIdx = Mask.back();
822   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
823     return false;
824   for (unsigned I = 0; I != MaskElems; ++I)
825     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
826       return false;
827   return true;
828 }
829 
visitShuffleVectorInst(ShuffleVectorInst & SVI)830 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
831   Value *LHS = SVI.getOperand(0);
832   Value *RHS = SVI.getOperand(1);
833   SmallVector<int, 16> Mask = SVI.getShuffleMask();
834   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
835 
836   bool MadeChange = false;
837 
838   // Undefined shuffle mask -> undefined value.
839   if (isa<UndefValue>(SVI.getOperand(2)))
840     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
841 
842   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
843 
844   APInt UndefElts(VWidth, 0);
845   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
846   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
847     if (V != &SVI)
848       return ReplaceInstUsesWith(SVI, V);
849     LHS = SVI.getOperand(0);
850     RHS = SVI.getOperand(1);
851     MadeChange = true;
852   }
853 
854   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
855 
856   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
857   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
858   if (LHS == RHS || isa<UndefValue>(LHS)) {
859     if (isa<UndefValue>(LHS) && LHS == RHS) {
860       // shuffle(undef,undef,mask) -> undef.
861       Value *Result = (VWidth == LHSWidth)
862                       ? LHS : UndefValue::get(SVI.getType());
863       return ReplaceInstUsesWith(SVI, Result);
864     }
865 
866     // Remap any references to RHS to use LHS.
867     SmallVector<Constant*, 16> Elts;
868     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
869       if (Mask[i] < 0) {
870         Elts.push_back(UndefValue::get(Int32Ty));
871         continue;
872       }
873 
874       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
875           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
876         Mask[i] = -1;     // Turn into undef.
877         Elts.push_back(UndefValue::get(Int32Ty));
878       } else {
879         Mask[i] = Mask[i] % e;  // Force to LHS.
880         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
881       }
882     }
883     SVI.setOperand(0, SVI.getOperand(1));
884     SVI.setOperand(1, UndefValue::get(RHS->getType()));
885     SVI.setOperand(2, ConstantVector::get(Elts));
886     LHS = SVI.getOperand(0);
887     RHS = SVI.getOperand(1);
888     MadeChange = true;
889   }
890 
891   if (VWidth == LHSWidth) {
892     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
893     bool isLHSID, isRHSID;
894     recognizeIdentityMask(Mask, isLHSID, isRHSID);
895 
896     // Eliminate identity shuffles.
897     if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
898     if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
899   }
900 
901   if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
902     Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
903     return ReplaceInstUsesWith(SVI, V);
904   }
905 
906   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
907   // a non-vector type. We can instead bitcast the original vector followed by
908   // an extract of the desired element:
909   //
910   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
911   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
912   //   %1 = bitcast <4 x i8> %sroa to i32
913   // Becomes:
914   //   %bc = bitcast <16 x i8> %in to <4 x i32>
915   //   %ext = extractelement <4 x i32> %bc, i32 0
916   //
917   // If the shuffle is extracting a contiguous range of values from the input
918   // vector then each use which is a bitcast of the extracted size can be
919   // replaced. This will work if the vector types are compatible, and the begin
920   // index is aligned to a value in the casted vector type. If the begin index
921   // isn't aligned then we can shuffle the original vector (keeping the same
922   // vector type) before extracting.
923   //
924   // This code will bail out if the target type is fundamentally incompatible
925   // with vectors of the source type.
926   //
927   // Example of <16 x i8>, target type i32:
928   // Index range [4,8):         v-----------v Will work.
929   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
930   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
931   //     <4 x i32>: |           |           |           |           |
932   //                +-----------+-----------+-----------+-----------+
933   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
934   // Target type i40:           ^--------------^ Won't work, bail.
935   if (isShuffleExtractingFromLHS(SVI, Mask)) {
936     Value *V = LHS;
937     unsigned MaskElems = Mask.size();
938     unsigned BegIdx = Mask.front();
939     VectorType *SrcTy = cast<VectorType>(V->getType());
940     unsigned VecBitWidth = SrcTy->getBitWidth();
941     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
942     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
943     unsigned SrcNumElems = SrcTy->getNumElements();
944     SmallVector<BitCastInst *, 8> BCs;
945     DenseMap<Type *, Value *> NewBCs;
946     for (User *U : SVI.users())
947       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
948         if (!BC->use_empty())
949           // Only visit bitcasts that weren't previously handled.
950           BCs.push_back(BC);
951     for (BitCastInst *BC : BCs) {
952       Type *TgtTy = BC->getDestTy();
953       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
954       if (!TgtElemBitWidth)
955         continue;
956       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
957       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
958       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
959       if (!VecBitWidthsEqual)
960         continue;
961       if (!VectorType::isValidElementType(TgtTy))
962         continue;
963       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
964       if (!BegIsAligned) {
965         // Shuffle the input so [0,NumElements) contains the output, and
966         // [NumElems,SrcNumElems) is undef.
967         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
968                                                 UndefValue::get(Int32Ty));
969         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
970           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
971         V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()),
972                                          ConstantVector::get(ShuffleMask),
973                                          SVI.getName() + ".extract");
974         BegIdx = 0;
975       }
976       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
977       assert(SrcElemsPerTgtElem);
978       BegIdx /= SrcElemsPerTgtElem;
979       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
980       auto *NewBC =
981           BCAlreadyExists
982               ? NewBCs[CastSrcTy]
983               : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
984       if (!BCAlreadyExists)
985         NewBCs[CastSrcTy] = NewBC;
986       auto *Ext = Builder->CreateExtractElement(
987           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
988       // The shufflevector isn't being replaced: the bitcast that used it
989       // is. InstCombine will visit the newly-created instructions.
990       ReplaceInstUsesWith(*BC, Ext);
991       MadeChange = true;
992     }
993   }
994 
995   // If the LHS is a shufflevector itself, see if we can combine it with this
996   // one without producing an unusual shuffle.
997   // Cases that might be simplified:
998   // 1.
999   // x1=shuffle(v1,v2,mask1)
1000   //  x=shuffle(x1,undef,mask)
1001   //        ==>
1002   //  x=shuffle(v1,undef,newMask)
1003   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1004   // 2.
1005   // x1=shuffle(v1,undef,mask1)
1006   //  x=shuffle(x1,x2,mask)
1007   // where v1.size() == mask1.size()
1008   //        ==>
1009   //  x=shuffle(v1,x2,newMask)
1010   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1011   // 3.
1012   // x2=shuffle(v2,undef,mask2)
1013   //  x=shuffle(x1,x2,mask)
1014   // where v2.size() == mask2.size()
1015   //        ==>
1016   //  x=shuffle(x1,v2,newMask)
1017   // newMask[i] = (mask[i] < x1.size())
1018   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1019   // 4.
1020   // x1=shuffle(v1,undef,mask1)
1021   // x2=shuffle(v2,undef,mask2)
1022   //  x=shuffle(x1,x2,mask)
1023   // where v1.size() == v2.size()
1024   //        ==>
1025   //  x=shuffle(v1,v2,newMask)
1026   // newMask[i] = (mask[i] < x1.size())
1027   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1028   //
1029   // Here we are really conservative:
1030   // we are absolutely afraid of producing a shuffle mask not in the input
1031   // program, because the code gen may not be smart enough to turn a merged
1032   // shuffle into two specific shuffles: it may produce worse code.  As such,
1033   // we only merge two shuffles if the result is either a splat or one of the
1034   // input shuffle masks.  In this case, merging the shuffles just removes
1035   // one instruction, which we know is safe.  This is good for things like
1036   // turning: (splat(splat)) -> splat, or
1037   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1038   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1039   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1040   if (LHSShuffle)
1041     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1042       LHSShuffle = nullptr;
1043   if (RHSShuffle)
1044     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1045       RHSShuffle = nullptr;
1046   if (!LHSShuffle && !RHSShuffle)
1047     return MadeChange ? &SVI : nullptr;
1048 
1049   Value* LHSOp0 = nullptr;
1050   Value* LHSOp1 = nullptr;
1051   Value* RHSOp0 = nullptr;
1052   unsigned LHSOp0Width = 0;
1053   unsigned RHSOp0Width = 0;
1054   if (LHSShuffle) {
1055     LHSOp0 = LHSShuffle->getOperand(0);
1056     LHSOp1 = LHSShuffle->getOperand(1);
1057     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
1058   }
1059   if (RHSShuffle) {
1060     RHSOp0 = RHSShuffle->getOperand(0);
1061     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
1062   }
1063   Value* newLHS = LHS;
1064   Value* newRHS = RHS;
1065   if (LHSShuffle) {
1066     // case 1
1067     if (isa<UndefValue>(RHS)) {
1068       newLHS = LHSOp0;
1069       newRHS = LHSOp1;
1070     }
1071     // case 2 or 4
1072     else if (LHSOp0Width == LHSWidth) {
1073       newLHS = LHSOp0;
1074     }
1075   }
1076   // case 3 or 4
1077   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1078     newRHS = RHSOp0;
1079   }
1080   // case 4
1081   if (LHSOp0 == RHSOp0) {
1082     newLHS = LHSOp0;
1083     newRHS = nullptr;
1084   }
1085 
1086   if (newLHS == LHS && newRHS == RHS)
1087     return MadeChange ? &SVI : nullptr;
1088 
1089   SmallVector<int, 16> LHSMask;
1090   SmallVector<int, 16> RHSMask;
1091   if (newLHS != LHS)
1092     LHSMask = LHSShuffle->getShuffleMask();
1093   if (RHSShuffle && newRHS != RHS)
1094     RHSMask = RHSShuffle->getShuffleMask();
1095 
1096   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1097   SmallVector<int, 16> newMask;
1098   bool isSplat = true;
1099   int SplatElt = -1;
1100   // Create a new mask for the new ShuffleVectorInst so that the new
1101   // ShuffleVectorInst is equivalent to the original one.
1102   for (unsigned i = 0; i < VWidth; ++i) {
1103     int eltMask;
1104     if (Mask[i] < 0) {
1105       // This element is an undef value.
1106       eltMask = -1;
1107     } else if (Mask[i] < (int)LHSWidth) {
1108       // This element is from left hand side vector operand.
1109       //
1110       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1111       // new mask value for the element.
1112       if (newLHS != LHS) {
1113         eltMask = LHSMask[Mask[i]];
1114         // If the value selected is an undef value, explicitly specify it
1115         // with a -1 mask value.
1116         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1117           eltMask = -1;
1118       } else
1119         eltMask = Mask[i];
1120     } else {
1121       // This element is from right hand side vector operand
1122       //
1123       // If the value selected is an undef value, explicitly specify it
1124       // with a -1 mask value. (case 1)
1125       if (isa<UndefValue>(RHS))
1126         eltMask = -1;
1127       // If RHS is going to be replaced (case 3 or 4), calculate the
1128       // new mask value for the element.
1129       else if (newRHS != RHS) {
1130         eltMask = RHSMask[Mask[i]-LHSWidth];
1131         // If the value selected is an undef value, explicitly specify it
1132         // with a -1 mask value.
1133         if (eltMask >= (int)RHSOp0Width) {
1134           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1135                  && "should have been check above");
1136           eltMask = -1;
1137         }
1138       } else
1139         eltMask = Mask[i]-LHSWidth;
1140 
1141       // If LHS's width is changed, shift the mask value accordingly.
1142       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1143       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1144       // If newRHS == newLHS, we want to remap any references from newRHS to
1145       // newLHS so that we can properly identify splats that may occur due to
1146       // obfuscation across the two vectors.
1147       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1148         eltMask += newLHSWidth;
1149     }
1150 
1151     // Check if this could still be a splat.
1152     if (eltMask >= 0) {
1153       if (SplatElt >= 0 && SplatElt != eltMask)
1154         isSplat = false;
1155       SplatElt = eltMask;
1156     }
1157 
1158     newMask.push_back(eltMask);
1159   }
1160 
1161   // If the result mask is equal to one of the original shuffle masks,
1162   // or is a splat, do the replacement.
1163   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1164     SmallVector<Constant*, 16> Elts;
1165     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1166       if (newMask[i] < 0) {
1167         Elts.push_back(UndefValue::get(Int32Ty));
1168       } else {
1169         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1170       }
1171     }
1172     if (!newRHS)
1173       newRHS = UndefValue::get(newLHS->getType());
1174     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1175   }
1176 
1177   // If the result mask is an identity, replace uses of this instruction with
1178   // corresponding argument.
1179   bool isLHSID, isRHSID;
1180   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1181   if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS);
1182   if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS);
1183 
1184   return MadeChange ? &SVI : nullptr;
1185 }
1186