1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JumpScopeChecker class, which is used to diagnose
11 // jumps that enter a protected scope in an invalid way.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "llvm/ADT/BitVector.h"
22 using namespace clang;
23 
24 namespace {
25 
26 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
27 /// into VLA and other protected scopes.  For example, this rejects:
28 ///    goto L;
29 ///    int a[n];
30 ///  L:
31 ///
32 class JumpScopeChecker {
33   Sema &S;
34 
35   /// Permissive - True when recovering from errors, in which case precautions
36   /// are taken to handle incomplete scope information.
37   const bool Permissive;
38 
39   /// GotoScope - This is a record that we use to keep track of all of the
40   /// scopes that are introduced by VLAs and other things that scope jumps like
41   /// gotos.  This scope tree has nothing to do with the source scope tree,
42   /// because you can have multiple VLA scopes per compound statement, and most
43   /// compound statements don't introduce any scopes.
44   struct GotoScope {
45     /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
46     /// the parent scope is the function body.
47     unsigned ParentScope;
48 
49     /// InDiag - The note to emit if there is a jump into this scope.
50     unsigned InDiag;
51 
52     /// OutDiag - The note to emit if there is an indirect jump out
53     /// of this scope.  Direct jumps always clean up their current scope
54     /// in an orderly way.
55     unsigned OutDiag;
56 
57     /// Loc - Location to emit the diagnostic.
58     SourceLocation Loc;
59 
GotoScope__anond99f67050111::JumpScopeChecker::GotoScope60     GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
61               SourceLocation L)
62       : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
63   };
64 
65   SmallVector<GotoScope, 48> Scopes;
66   llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
67   SmallVector<Stmt*, 16> Jumps;
68 
69   SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
70   SmallVector<LabelDecl*, 4> IndirectJumpTargets;
71 public:
72   JumpScopeChecker(Stmt *Body, Sema &S);
73 private:
74   void BuildScopeInformation(Decl *D, unsigned &ParentScope);
75   void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl,
76                              unsigned &ParentScope);
77   void BuildScopeInformation(Stmt *S, unsigned &origParentScope);
78 
79   void VerifyJumps();
80   void VerifyIndirectJumps();
81   void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes);
82   void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
83                             LabelDecl *Target, unsigned TargetScope);
84   void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
85                  unsigned JumpDiag, unsigned JumpDiagWarning,
86                  unsigned JumpDiagCXX98Compat);
87   void CheckGotoStmt(GotoStmt *GS);
88 
89   unsigned GetDeepestCommonScope(unsigned A, unsigned B);
90 };
91 } // end anonymous namespace
92 
93 #define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x)))
94 
JumpScopeChecker(Stmt * Body,Sema & s)95 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s)
96     : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) {
97   // Add a scope entry for function scope.
98   Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
99 
100   // Build information for the top level compound statement, so that we have a
101   // defined scope record for every "goto" and label.
102   unsigned BodyParentScope = 0;
103   BuildScopeInformation(Body, BodyParentScope);
104 
105   // Check that all jumps we saw are kosher.
106   VerifyJumps();
107   VerifyIndirectJumps();
108 }
109 
110 /// GetDeepestCommonScope - Finds the innermost scope enclosing the
111 /// two scopes.
GetDeepestCommonScope(unsigned A,unsigned B)112 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
113   while (A != B) {
114     // Inner scopes are created after outer scopes and therefore have
115     // higher indices.
116     if (A < B) {
117       assert(Scopes[B].ParentScope < B);
118       B = Scopes[B].ParentScope;
119     } else {
120       assert(Scopes[A].ParentScope < A);
121       A = Scopes[A].ParentScope;
122     }
123   }
124   return A;
125 }
126 
127 typedef std::pair<unsigned,unsigned> ScopePair;
128 
129 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
130 /// diagnostic that should be emitted if control goes over it. If not, return 0.
GetDiagForGotoScopeDecl(Sema & S,const Decl * D)131 static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D) {
132   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
133     unsigned InDiag = 0;
134     unsigned OutDiag = 0;
135 
136     if (VD->getType()->isVariablyModifiedType())
137       InDiag = diag::note_protected_by_vla;
138 
139     if (VD->hasAttr<BlocksAttr>())
140       return ScopePair(diag::note_protected_by___block,
141                        diag::note_exits___block);
142 
143     if (VD->hasAttr<CleanupAttr>())
144       return ScopePair(diag::note_protected_by_cleanup,
145                        diag::note_exits_cleanup);
146 
147     if (VD->hasLocalStorage()) {
148       switch (VD->getType().isDestructedType()) {
149       case QualType::DK_objc_strong_lifetime:
150         return ScopePair(diag::note_protected_by_objc_strong_init,
151                          diag::note_exits_objc_strong);
152 
153       case QualType::DK_objc_weak_lifetime:
154         return ScopePair(diag::note_protected_by_objc_weak_init,
155                          diag::note_exits_objc_weak);
156 
157       case QualType::DK_cxx_destructor:
158         OutDiag = diag::note_exits_dtor;
159         break;
160 
161       case QualType::DK_none:
162         break;
163       }
164     }
165 
166     const Expr *Init = VD->getInit();
167     if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init) {
168       // C++11 [stmt.dcl]p3:
169       //   A program that jumps from a point where a variable with automatic
170       //   storage duration is not in scope to a point where it is in scope
171       //   is ill-formed unless the variable has scalar type, class type with
172       //   a trivial default constructor and a trivial destructor, a
173       //   cv-qualified version of one of these types, or an array of one of
174       //   the preceding types and is declared without an initializer.
175 
176       // C++03 [stmt.dcl.p3:
177       //   A program that jumps from a point where a local variable
178       //   with automatic storage duration is not in scope to a point
179       //   where it is in scope is ill-formed unless the variable has
180       //   POD type and is declared without an initializer.
181 
182       InDiag = diag::note_protected_by_variable_init;
183 
184       // For a variable of (array of) class type declared without an
185       // initializer, we will have call-style initialization and the initializer
186       // will be the CXXConstructExpr with no intervening nodes.
187       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
188         const CXXConstructorDecl *Ctor = CCE->getConstructor();
189         if (Ctor->isTrivial() && Ctor->isDefaultConstructor() &&
190             VD->getInitStyle() == VarDecl::CallInit) {
191           if (OutDiag)
192             InDiag = diag::note_protected_by_variable_nontriv_destructor;
193           else if (!Ctor->getParent()->isPOD())
194             InDiag = diag::note_protected_by_variable_non_pod;
195           else
196             InDiag = 0;
197         }
198       }
199     }
200 
201     return ScopePair(InDiag, OutDiag);
202   }
203 
204   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
205     if (TD->getUnderlyingType()->isVariablyModifiedType())
206       return ScopePair(isa<TypedefDecl>(TD)
207                            ? diag::note_protected_by_vla_typedef
208                            : diag::note_protected_by_vla_type_alias,
209                        0);
210   }
211 
212   return ScopePair(0U, 0U);
213 }
214 
215 /// \brief Build scope information for a declaration that is part of a DeclStmt.
BuildScopeInformation(Decl * D,unsigned & ParentScope)216 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
217   // If this decl causes a new scope, push and switch to it.
218   std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D);
219   if (Diags.first || Diags.second) {
220     Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
221                                D->getLocation()));
222     ParentScope = Scopes.size()-1;
223   }
224 
225   // If the decl has an initializer, walk it with the potentially new
226   // scope we just installed.
227   if (VarDecl *VD = dyn_cast<VarDecl>(D))
228     if (Expr *Init = VD->getInit())
229       BuildScopeInformation(Init, ParentScope);
230 }
231 
232 /// \brief Build scope information for a captured block literal variables.
BuildScopeInformation(VarDecl * D,const BlockDecl * BDecl,unsigned & ParentScope)233 void JumpScopeChecker::BuildScopeInformation(VarDecl *D,
234                                              const BlockDecl *BDecl,
235                                              unsigned &ParentScope) {
236   // exclude captured __block variables; there's no destructor
237   // associated with the block literal for them.
238   if (D->hasAttr<BlocksAttr>())
239     return;
240   QualType T = D->getType();
241   QualType::DestructionKind destructKind = T.isDestructedType();
242   if (destructKind != QualType::DK_none) {
243     std::pair<unsigned,unsigned> Diags;
244     switch (destructKind) {
245       case QualType::DK_cxx_destructor:
246         Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
247                           diag::note_exits_block_captures_cxx_obj);
248         break;
249       case QualType::DK_objc_strong_lifetime:
250         Diags = ScopePair(diag::note_enters_block_captures_strong,
251                           diag::note_exits_block_captures_strong);
252         break;
253       case QualType::DK_objc_weak_lifetime:
254         Diags = ScopePair(diag::note_enters_block_captures_weak,
255                           diag::note_exits_block_captures_weak);
256         break;
257       case QualType::DK_none:
258         llvm_unreachable("non-lifetime captured variable");
259     }
260     SourceLocation Loc = D->getLocation();
261     if (Loc.isInvalid())
262       Loc = BDecl->getLocation();
263     Scopes.push_back(GotoScope(ParentScope,
264                                Diags.first, Diags.second, Loc));
265     ParentScope = Scopes.size()-1;
266   }
267 }
268 
269 /// BuildScopeInformation - The statements from CI to CE are known to form a
270 /// coherent VLA scope with a specified parent node.  Walk through the
271 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
272 /// walking the AST as needed.
BuildScopeInformation(Stmt * S,unsigned & origParentScope)273 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) {
274   // If this is a statement, rather than an expression, scopes within it don't
275   // propagate out into the enclosing scope.  Otherwise we have to worry
276   // about block literals, which have the lifetime of their enclosing statement.
277   unsigned independentParentScope = origParentScope;
278   unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S))
279                             ? origParentScope : independentParentScope);
280 
281   bool SkipFirstSubStmt = false;
282 
283   // If we found a label, remember that it is in ParentScope scope.
284   switch (S->getStmtClass()) {
285   case Stmt::AddrLabelExprClass:
286     IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
287     break;
288 
289   case Stmt::IndirectGotoStmtClass:
290     // "goto *&&lbl;" is a special case which we treat as equivalent
291     // to a normal goto.  In addition, we don't calculate scope in the
292     // operand (to avoid recording the address-of-label use), which
293     // works only because of the restricted set of expressions which
294     // we detect as constant targets.
295     if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
296       LabelAndGotoScopes[S] = ParentScope;
297       Jumps.push_back(S);
298       return;
299     }
300 
301     LabelAndGotoScopes[S] = ParentScope;
302     IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
303     break;
304 
305   case Stmt::SwitchStmtClass:
306     // Evaluate the condition variable before entering the scope of the switch
307     // statement.
308     if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
309       BuildScopeInformation(Var, ParentScope);
310       SkipFirstSubStmt = true;
311     }
312     // Fall through
313 
314   case Stmt::GotoStmtClass:
315     // Remember both what scope a goto is in as well as the fact that we have
316     // it.  This makes the second scan not have to walk the AST again.
317     LabelAndGotoScopes[S] = ParentScope;
318     Jumps.push_back(S);
319     break;
320 
321   case Stmt::CXXTryStmtClass: {
322     CXXTryStmt *TS = cast<CXXTryStmt>(S);
323     unsigned newParentScope;
324     Scopes.push_back(GotoScope(ParentScope,
325                                diag::note_protected_by_cxx_try,
326                                diag::note_exits_cxx_try,
327                                TS->getSourceRange().getBegin()));
328     if (Stmt *TryBlock = TS->getTryBlock())
329       BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
330 
331     // Jump from the catch into the try is not allowed either.
332     for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
333       CXXCatchStmt *CS = TS->getHandler(I);
334       Scopes.push_back(GotoScope(ParentScope,
335                                  diag::note_protected_by_cxx_catch,
336                                  diag::note_exits_cxx_catch,
337                                  CS->getSourceRange().getBegin()));
338       BuildScopeInformation(CS->getHandlerBlock(),
339                             (newParentScope = Scopes.size()-1));
340     }
341     return;
342   }
343 
344   case Stmt::SEHTryStmtClass: {
345     SEHTryStmt *TS = cast<SEHTryStmt>(S);
346     unsigned newParentScope;
347     Scopes.push_back(GotoScope(ParentScope,
348                                diag::note_protected_by_seh_try,
349                                diag::note_exits_seh_try,
350                                TS->getSourceRange().getBegin()));
351     if (Stmt *TryBlock = TS->getTryBlock())
352       BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
353 
354     // Jump from __except or __finally into the __try are not allowed either.
355     if (SEHExceptStmt *Except = TS->getExceptHandler()) {
356       Scopes.push_back(GotoScope(ParentScope,
357                                  diag::note_protected_by_seh_except,
358                                  diag::note_exits_seh_except,
359                                  Except->getSourceRange().getBegin()));
360       BuildScopeInformation(Except->getBlock(),
361                             (newParentScope = Scopes.size()-1));
362     } else if (SEHFinallyStmt *Finally = TS->getFinallyHandler()) {
363       Scopes.push_back(GotoScope(ParentScope,
364                                  diag::note_protected_by_seh_finally,
365                                  diag::note_exits_seh_finally,
366                                  Finally->getSourceRange().getBegin()));
367       BuildScopeInformation(Finally->getBlock(),
368                             (newParentScope = Scopes.size()-1));
369     }
370 
371     return;
372   }
373 
374   default:
375     break;
376   }
377 
378   for (Stmt *SubStmt : S->children()) {
379     if (SkipFirstSubStmt) {
380       SkipFirstSubStmt = false;
381       continue;
382     }
383 
384     if (!SubStmt) continue;
385 
386     // Cases, labels, and defaults aren't "scope parents".  It's also
387     // important to handle these iteratively instead of recursively in
388     // order to avoid blowing out the stack.
389     while (true) {
390       Stmt *Next;
391       if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
392         Next = CS->getSubStmt();
393       else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
394         Next = DS->getSubStmt();
395       else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
396         Next = LS->getSubStmt();
397       else
398         break;
399 
400       LabelAndGotoScopes[SubStmt] = ParentScope;
401       SubStmt = Next;
402     }
403 
404     // If this is a declstmt with a VLA definition, it defines a scope from here
405     // to the end of the containing context.
406     if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
407       // The decl statement creates a scope if any of the decls in it are VLAs
408       // or have the cleanup attribute.
409       for (auto *I : DS->decls())
410         BuildScopeInformation(I, ParentScope);
411       continue;
412     }
413     // Disallow jumps into any part of an @try statement by pushing a scope and
414     // walking all sub-stmts in that scope.
415     if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
416       unsigned newParentScope;
417       // Recursively walk the AST for the @try part.
418       Scopes.push_back(GotoScope(ParentScope,
419                                  diag::note_protected_by_objc_try,
420                                  diag::note_exits_objc_try,
421                                  AT->getAtTryLoc()));
422       if (Stmt *TryPart = AT->getTryBody())
423         BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1));
424 
425       // Jump from the catch to the finally or try is not valid.
426       for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
427         ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
428         Scopes.push_back(GotoScope(ParentScope,
429                                    diag::note_protected_by_objc_catch,
430                                    diag::note_exits_objc_catch,
431                                    AC->getAtCatchLoc()));
432         // @catches are nested and it isn't
433         BuildScopeInformation(AC->getCatchBody(),
434                               (newParentScope = Scopes.size()-1));
435       }
436 
437       // Jump from the finally to the try or catch is not valid.
438       if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
439         Scopes.push_back(GotoScope(ParentScope,
440                                    diag::note_protected_by_objc_finally,
441                                    diag::note_exits_objc_finally,
442                                    AF->getAtFinallyLoc()));
443         BuildScopeInformation(AF, (newParentScope = Scopes.size()-1));
444       }
445 
446       continue;
447     }
448 
449     unsigned newParentScope;
450     // Disallow jumps into the protected statement of an @synchronized, but
451     // allow jumps into the object expression it protects.
452     if (ObjCAtSynchronizedStmt *AS =
453             dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)) {
454       // Recursively walk the AST for the @synchronized object expr, it is
455       // evaluated in the normal scope.
456       BuildScopeInformation(AS->getSynchExpr(), ParentScope);
457 
458       // Recursively walk the AST for the @synchronized part, protected by a new
459       // scope.
460       Scopes.push_back(GotoScope(ParentScope,
461                                  diag::note_protected_by_objc_synchronized,
462                                  diag::note_exits_objc_synchronized,
463                                  AS->getAtSynchronizedLoc()));
464       BuildScopeInformation(AS->getSynchBody(),
465                             (newParentScope = Scopes.size()-1));
466       continue;
467     }
468 
469     // Disallow jumps into the protected statement of an @autoreleasepool.
470     if (ObjCAutoreleasePoolStmt *AS =
471             dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)) {
472       // Recursively walk the AST for the @autoreleasepool part, protected by a
473       // new scope.
474       Scopes.push_back(GotoScope(ParentScope,
475                                  diag::note_protected_by_objc_autoreleasepool,
476                                  diag::note_exits_objc_autoreleasepool,
477                                  AS->getAtLoc()));
478       BuildScopeInformation(AS->getSubStmt(),
479                             (newParentScope = Scopes.size() - 1));
480       continue;
481     }
482 
483     // Disallow jumps past full-expressions that use blocks with
484     // non-trivial cleanups of their captures.  This is theoretically
485     // implementable but a lot of work which we haven't felt up to doing.
486     if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(SubStmt)) {
487       for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) {
488         const BlockDecl *BDecl = EWC->getObject(i);
489         for (const auto &CI : BDecl->captures()) {
490           VarDecl *variable = CI.getVariable();
491           BuildScopeInformation(variable, BDecl, ParentScope);
492         }
493       }
494     }
495 
496     // Disallow jumps out of scopes containing temporaries lifetime-extended to
497     // automatic storage duration.
498     if (MaterializeTemporaryExpr *MTE =
499             dyn_cast<MaterializeTemporaryExpr>(SubStmt)) {
500       if (MTE->getStorageDuration() == SD_Automatic) {
501         SmallVector<const Expr *, 4> CommaLHS;
502         SmallVector<SubobjectAdjustment, 4> Adjustments;
503         const Expr *ExtendedObject =
504             MTE->GetTemporaryExpr()->skipRValueSubobjectAdjustments(
505                 CommaLHS, Adjustments);
506         if (ExtendedObject->getType().isDestructedType()) {
507           Scopes.push_back(GotoScope(ParentScope, 0,
508                                      diag::note_exits_temporary_dtor,
509                                      ExtendedObject->getExprLoc()));
510           ParentScope = Scopes.size()-1;
511         }
512       }
513     }
514 
515     // Recursively walk the AST.
516     BuildScopeInformation(SubStmt, ParentScope);
517   }
518 }
519 
520 /// VerifyJumps - Verify each element of the Jumps array to see if they are
521 /// valid, emitting diagnostics if not.
VerifyJumps()522 void JumpScopeChecker::VerifyJumps() {
523   while (!Jumps.empty()) {
524     Stmt *Jump = Jumps.pop_back_val();
525 
526     // With a goto,
527     if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
528       // The label may not have a statement if it's coming from inline MS ASM.
529       if (GS->getLabel()->getStmt()) {
530         CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
531                   diag::err_goto_into_protected_scope,
532                   diag::ext_goto_into_protected_scope,
533                   diag::warn_cxx98_compat_goto_into_protected_scope);
534       }
535       CheckGotoStmt(GS);
536       continue;
537     }
538 
539     // We only get indirect gotos here when they have a constant target.
540     if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
541       LabelDecl *Target = IGS->getConstantTarget();
542       CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
543                 diag::err_goto_into_protected_scope,
544                 diag::ext_goto_into_protected_scope,
545                 diag::warn_cxx98_compat_goto_into_protected_scope);
546       continue;
547     }
548 
549     SwitchStmt *SS = cast<SwitchStmt>(Jump);
550     for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
551          SC = SC->getNextSwitchCase()) {
552       if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC)))
553         continue;
554       SourceLocation Loc;
555       if (CaseStmt *CS = dyn_cast<CaseStmt>(SC))
556         Loc = CS->getLocStart();
557       else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC))
558         Loc = DS->getLocStart();
559       else
560         Loc = SC->getLocStart();
561       CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0,
562                 diag::warn_cxx98_compat_switch_into_protected_scope);
563     }
564   }
565 }
566 
567 /// VerifyIndirectJumps - Verify whether any possible indirect jump
568 /// might cross a protection boundary.  Unlike direct jumps, indirect
569 /// jumps count cleanups as protection boundaries:  since there's no
570 /// way to know where the jump is going, we can't implicitly run the
571 /// right cleanups the way we can with direct jumps.
572 ///
573 /// Thus, an indirect jump is "trivial" if it bypasses no
574 /// initializations and no teardowns.  More formally, an indirect jump
575 /// from A to B is trivial if the path out from A to DCA(A,B) is
576 /// trivial and the path in from DCA(A,B) to B is trivial, where
577 /// DCA(A,B) is the deepest common ancestor of A and B.
578 /// Jump-triviality is transitive but asymmetric.
579 ///
580 /// A path in is trivial if none of the entered scopes have an InDiag.
581 /// A path out is trivial is none of the exited scopes have an OutDiag.
582 ///
583 /// Under these definitions, this function checks that the indirect
584 /// jump between A and B is trivial for every indirect goto statement A
585 /// and every label B whose address was taken in the function.
VerifyIndirectJumps()586 void JumpScopeChecker::VerifyIndirectJumps() {
587   if (IndirectJumps.empty()) return;
588 
589   // If there aren't any address-of-label expressions in this function,
590   // complain about the first indirect goto.
591   if (IndirectJumpTargets.empty()) {
592     S.Diag(IndirectJumps[0]->getGotoLoc(),
593            diag::err_indirect_goto_without_addrlabel);
594     return;
595   }
596 
597   // Collect a single representative of every scope containing an
598   // indirect goto.  For most code bases, this substantially cuts
599   // down on the number of jump sites we'll have to consider later.
600   typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
601   SmallVector<JumpScope, 32> JumpScopes;
602   {
603     llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
604     for (SmallVectorImpl<IndirectGotoStmt*>::iterator
605            I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
606       IndirectGotoStmt *IG = *I;
607       if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG)))
608         continue;
609       unsigned IGScope = LabelAndGotoScopes[IG];
610       IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
611       if (!Entry) Entry = IG;
612     }
613     JumpScopes.reserve(JumpScopesMap.size());
614     for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
615            I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
616       JumpScopes.push_back(*I);
617   }
618 
619   // Collect a single representative of every scope containing a
620   // label whose address was taken somewhere in the function.
621   // For most code bases, there will be only one such scope.
622   llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
623   for (SmallVectorImpl<LabelDecl*>::iterator
624          I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
625        I != E; ++I) {
626     LabelDecl *TheLabel = *I;
627     if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt())))
628       continue;
629     unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
630     LabelDecl *&Target = TargetScopes[LabelScope];
631     if (!Target) Target = TheLabel;
632   }
633 
634   // For each target scope, make sure it's trivially reachable from
635   // every scope containing a jump site.
636   //
637   // A path between scopes always consists of exitting zero or more
638   // scopes, then entering zero or more scopes.  We build a set of
639   // of scopes S from which the target scope can be trivially
640   // entered, then verify that every jump scope can be trivially
641   // exitted to reach a scope in S.
642   llvm::BitVector Reachable(Scopes.size(), false);
643   for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
644          TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
645     unsigned TargetScope = TI->first;
646     LabelDecl *TargetLabel = TI->second;
647 
648     Reachable.reset();
649 
650     // Mark all the enclosing scopes from which you can safely jump
651     // into the target scope.  'Min' will end up being the index of
652     // the shallowest such scope.
653     unsigned Min = TargetScope;
654     while (true) {
655       Reachable.set(Min);
656 
657       // Don't go beyond the outermost scope.
658       if (Min == 0) break;
659 
660       // Stop if we can't trivially enter the current scope.
661       if (Scopes[Min].InDiag) break;
662 
663       Min = Scopes[Min].ParentScope;
664     }
665 
666     // Walk through all the jump sites, checking that they can trivially
667     // reach this label scope.
668     for (SmallVectorImpl<JumpScope>::iterator
669            I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
670       unsigned Scope = I->first;
671 
672       // Walk out the "scope chain" for this scope, looking for a scope
673       // we've marked reachable.  For well-formed code this amortizes
674       // to O(JumpScopes.size() / Scopes.size()):  we only iterate
675       // when we see something unmarked, and in well-formed code we
676       // mark everything we iterate past.
677       bool IsReachable = false;
678       while (true) {
679         if (Reachable.test(Scope)) {
680           // If we find something reachable, mark all the scopes we just
681           // walked through as reachable.
682           for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
683             Reachable.set(S);
684           IsReachable = true;
685           break;
686         }
687 
688         // Don't walk out if we've reached the top-level scope or we've
689         // gotten shallower than the shallowest reachable scope.
690         if (Scope == 0 || Scope < Min) break;
691 
692         // Don't walk out through an out-diagnostic.
693         if (Scopes[Scope].OutDiag) break;
694 
695         Scope = Scopes[Scope].ParentScope;
696       }
697 
698       // Only diagnose if we didn't find something.
699       if (IsReachable) continue;
700 
701       DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
702     }
703   }
704 }
705 
706 /// Return true if a particular error+note combination must be downgraded to a
707 /// warning in Microsoft mode.
IsMicrosoftJumpWarning(unsigned JumpDiag,unsigned InDiagNote)708 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) {
709   return (JumpDiag == diag::err_goto_into_protected_scope &&
710          (InDiagNote == diag::note_protected_by_variable_init ||
711           InDiagNote == diag::note_protected_by_variable_nontriv_destructor));
712 }
713 
714 /// Return true if a particular note should be downgraded to a compatibility
715 /// warning in C++11 mode.
IsCXX98CompatWarning(Sema & S,unsigned InDiagNote)716 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) {
717   return S.getLangOpts().CPlusPlus11 &&
718          InDiagNote == diag::note_protected_by_variable_non_pod;
719 }
720 
721 /// Produce primary diagnostic for an indirect jump statement.
DiagnoseIndirectJumpStmt(Sema & S,IndirectGotoStmt * Jump,LabelDecl * Target,bool & Diagnosed)722 static void DiagnoseIndirectJumpStmt(Sema &S, IndirectGotoStmt *Jump,
723                                      LabelDecl *Target, bool &Diagnosed) {
724   if (Diagnosed)
725     return;
726   S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
727   S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
728   Diagnosed = true;
729 }
730 
731 /// Produce note diagnostics for a jump into a protected scope.
NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes)732 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) {
733   if (CHECK_PERMISSIVE(ToScopes.empty()))
734     return;
735   for (unsigned I = 0, E = ToScopes.size(); I != E; ++I)
736     if (Scopes[ToScopes[I]].InDiag)
737       S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag);
738 }
739 
740 /// Diagnose an indirect jump which is known to cross scopes.
DiagnoseIndirectJump(IndirectGotoStmt * Jump,unsigned JumpScope,LabelDecl * Target,unsigned TargetScope)741 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
742                                             unsigned JumpScope,
743                                             LabelDecl *Target,
744                                             unsigned TargetScope) {
745   if (CHECK_PERMISSIVE(JumpScope == TargetScope))
746     return;
747 
748   unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
749   bool Diagnosed = false;
750 
751   // Walk out the scope chain until we reach the common ancestor.
752   for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
753     if (Scopes[I].OutDiag) {
754       DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
755       S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
756     }
757 
758   SmallVector<unsigned, 10> ToScopesCXX98Compat;
759 
760   // Now walk into the scopes containing the label whose address was taken.
761   for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
762     if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
763       ToScopesCXX98Compat.push_back(I);
764     else if (Scopes[I].InDiag) {
765       DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
766       S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
767     }
768 
769   // Diagnose this jump if it would be ill-formed in C++98.
770   if (!Diagnosed && !ToScopesCXX98Compat.empty()) {
771     S.Diag(Jump->getGotoLoc(),
772            diag::warn_cxx98_compat_indirect_goto_in_protected_scope);
773     S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
774     NoteJumpIntoScopes(ToScopesCXX98Compat);
775   }
776 }
777 
778 /// CheckJump - Validate that the specified jump statement is valid: that it is
779 /// jumping within or out of its current scope, not into a deeper one.
CheckJump(Stmt * From,Stmt * To,SourceLocation DiagLoc,unsigned JumpDiagError,unsigned JumpDiagWarning,unsigned JumpDiagCXX98Compat)780 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
781                                unsigned JumpDiagError, unsigned JumpDiagWarning,
782                                  unsigned JumpDiagCXX98Compat) {
783   if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From)))
784     return;
785   if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To)))
786     return;
787 
788   unsigned FromScope = LabelAndGotoScopes[From];
789   unsigned ToScope = LabelAndGotoScopes[To];
790 
791   // Common case: exactly the same scope, which is fine.
792   if (FromScope == ToScope) return;
793 
794   // Warn on gotos out of __finally blocks.
795   if (isa<GotoStmt>(From) || isa<IndirectGotoStmt>(From)) {
796     // If FromScope > ToScope, FromScope is more nested and the jump goes to a
797     // less nested scope.  Check if it crosses a __finally along the way.
798     for (unsigned I = FromScope; I > ToScope; I = Scopes[I].ParentScope) {
799       if (Scopes[I].InDiag == diag::note_protected_by_seh_finally) {
800         S.Diag(From->getLocStart(), diag::warn_jump_out_of_seh_finally);
801         break;
802       }
803     }
804   }
805 
806   unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
807 
808   // It's okay to jump out from a nested scope.
809   if (CommonScope == ToScope) return;
810 
811   // Pull out (and reverse) any scopes we might need to diagnose skipping.
812   SmallVector<unsigned, 10> ToScopesCXX98Compat;
813   SmallVector<unsigned, 10> ToScopesError;
814   SmallVector<unsigned, 10> ToScopesWarning;
815   for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) {
816     if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 &&
817         IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag))
818       ToScopesWarning.push_back(I);
819     else if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
820       ToScopesCXX98Compat.push_back(I);
821     else if (Scopes[I].InDiag)
822       ToScopesError.push_back(I);
823   }
824 
825   // Handle warnings.
826   if (!ToScopesWarning.empty()) {
827     S.Diag(DiagLoc, JumpDiagWarning);
828     NoteJumpIntoScopes(ToScopesWarning);
829   }
830 
831   // Handle errors.
832   if (!ToScopesError.empty()) {
833     S.Diag(DiagLoc, JumpDiagError);
834     NoteJumpIntoScopes(ToScopesError);
835   }
836 
837   // Handle -Wc++98-compat warnings if the jump is well-formed.
838   if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) {
839     S.Diag(DiagLoc, JumpDiagCXX98Compat);
840     NoteJumpIntoScopes(ToScopesCXX98Compat);
841   }
842 }
843 
CheckGotoStmt(GotoStmt * GS)844 void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) {
845   if (GS->getLabel()->isMSAsmLabel()) {
846     S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label)
847         << GS->getLabel()->getIdentifier();
848     S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label)
849         << GS->getLabel()->getIdentifier();
850   }
851 }
852 
DiagnoseInvalidJumps(Stmt * Body)853 void Sema::DiagnoseInvalidJumps(Stmt *Body) {
854   (void)JumpScopeChecker(Body, *this);
855 }
856