1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 #include <algorithm>
47 #include <memory>
48 using namespace llvm;
49
50 #define DEBUG_TYPE "jump-threading"
51
52 STATISTIC(NumThreads, "Number of jumps threaded");
53 STATISTIC(NumFolds, "Number of terminators folded");
54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
55
56 static cl::opt<unsigned>
57 BBDuplicateThreshold("jump-threading-threshold",
58 cl::desc("Max block size to duplicate for jump threading"),
59 cl::init(6), cl::Hidden);
60
61 static cl::opt<unsigned>
62 ImplicationSearchThreshold(
63 "jump-threading-implication-search-threshold",
64 cl::desc("The number of predecessors to search for a stronger "
65 "condition to use to thread over a weaker condition"),
66 cl::init(3), cl::Hidden);
67
68 namespace {
69 // These are at global scope so static functions can use them too.
70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
72
73 // This is used to keep track of what kind of constant we're currently hoping
74 // to find.
75 enum ConstantPreference {
76 WantInteger,
77 WantBlockAddress
78 };
79
80 /// This pass performs 'jump threading', which looks at blocks that have
81 /// multiple predecessors and multiple successors. If one or more of the
82 /// predecessors of the block can be proven to always jump to one of the
83 /// successors, we forward the edge from the predecessor to the successor by
84 /// duplicating the contents of this block.
85 ///
86 /// An example of when this can occur is code like this:
87 ///
88 /// if () { ...
89 /// X = 4;
90 /// }
91 /// if (X < 3) {
92 ///
93 /// In this case, the unconditional branch at the end of the first if can be
94 /// revectored to the false side of the second if.
95 ///
96 class JumpThreading : public FunctionPass {
97 TargetLibraryInfo *TLI;
98 LazyValueInfo *LVI;
99 std::unique_ptr<BlockFrequencyInfo> BFI;
100 std::unique_ptr<BranchProbabilityInfo> BPI;
101 bool HasProfileData;
102 #ifdef NDEBUG
103 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
104 #else
105 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
106 #endif
107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
108
109 unsigned BBDupThreshold;
110
111 // RAII helper for updating the recursion stack.
112 struct RecursionSetRemover {
113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
114 std::pair<Value*, BasicBlock*> ThePair;
115
RecursionSetRemover__anonaccc34270111::JumpThreading::RecursionSetRemover116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
117 std::pair<Value*, BasicBlock*> P)
118 : TheSet(S), ThePair(P) { }
119
~RecursionSetRemover__anonaccc34270111::JumpThreading::RecursionSetRemover120 ~RecursionSetRemover() {
121 TheSet.erase(ThePair);
122 }
123 };
124 public:
125 static char ID; // Pass identification
JumpThreading(int T=-1)126 JumpThreading(int T = -1) : FunctionPass(ID) {
127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129 }
130
131 bool runOnFunction(Function &F) override;
132
getAnalysisUsage(AnalysisUsage & AU) const133 void getAnalysisUsage(AnalysisUsage &AU) const override {
134 AU.addRequired<LazyValueInfo>();
135 AU.addPreserved<LazyValueInfo>();
136 AU.addPreserved<GlobalsAAWrapperPass>();
137 AU.addRequired<TargetLibraryInfoWrapperPass>();
138 }
139
releaseMemory()140 void releaseMemory() override {
141 BFI.reset();
142 BPI.reset();
143 }
144
145 void FindLoopHeaders(Function &F);
146 bool ProcessBlock(BasicBlock *BB);
147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
148 BasicBlock *SuccBB);
149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
150 const SmallVectorImpl<BasicBlock *> &PredBBs);
151
152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
153 PredValueInfo &Result,
154 ConstantPreference Preference,
155 Instruction *CxtI = nullptr);
156 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
157 ConstantPreference Preference,
158 Instruction *CxtI = nullptr);
159
160 bool ProcessBranchOnPHI(PHINode *PN);
161 bool ProcessBranchOnXOR(BinaryOperator *BO);
162 bool ProcessImpliedCondition(BasicBlock *BB);
163
164 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
165 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
166
167 private:
168 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
169 const char *Suffix);
170 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB,
171 BasicBlock *NewBB, BasicBlock *SuccBB);
172 };
173 }
174
175 char JumpThreading::ID = 0;
176 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
177 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)178 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
179 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
180 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
181 "Jump Threading", false, false)
182
183 // Public interface to the Jump Threading pass
184 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
185
186 /// runOnFunction - Top level algorithm.
187 ///
runOnFunction(Function & F)188 bool JumpThreading::runOnFunction(Function &F) {
189 if (skipOptnoneFunction(F))
190 return false;
191
192 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
193 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
194 LVI = &getAnalysis<LazyValueInfo>();
195 BFI.reset();
196 BPI.reset();
197 // When profile data is available, we need to update edge weights after
198 // successful jump threading, which requires both BPI and BFI being available.
199 HasProfileData = F.getEntryCount().hasValue();
200 if (HasProfileData) {
201 LoopInfo LI{DominatorTree(F)};
202 BPI.reset(new BranchProbabilityInfo(F, LI));
203 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
204 }
205
206 // Remove unreachable blocks from function as they may result in infinite
207 // loop. We do threading if we found something profitable. Jump threading a
208 // branch can create other opportunities. If these opportunities form a cycle
209 // i.e. if any jump threading is undoing previous threading in the path, then
210 // we will loop forever. We take care of this issue by not jump threading for
211 // back edges. This works for normal cases but not for unreachable blocks as
212 // they may have cycle with no back edge.
213 removeUnreachableBlocks(F);
214
215 FindLoopHeaders(F);
216
217 bool Changed, EverChanged = false;
218 do {
219 Changed = false;
220 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
221 BasicBlock *BB = &*I;
222 // Thread all of the branches we can over this block.
223 while (ProcessBlock(BB))
224 Changed = true;
225
226 ++I;
227
228 // If the block is trivially dead, zap it. This eliminates the successor
229 // edges which simplifies the CFG.
230 if (pred_empty(BB) &&
231 BB != &BB->getParent()->getEntryBlock()) {
232 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
233 << "' with terminator: " << *BB->getTerminator() << '\n');
234 LoopHeaders.erase(BB);
235 LVI->eraseBlock(BB);
236 DeleteDeadBlock(BB);
237 Changed = true;
238 continue;
239 }
240
241 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
242
243 // Can't thread an unconditional jump, but if the block is "almost
244 // empty", we can replace uses of it with uses of the successor and make
245 // this dead.
246 if (BI && BI->isUnconditional() &&
247 BB != &BB->getParent()->getEntryBlock() &&
248 // If the terminator is the only non-phi instruction, try to nuke it.
249 BB->getFirstNonPHIOrDbg()->isTerminator()) {
250 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
251 // block, we have to make sure it isn't in the LoopHeaders set. We
252 // reinsert afterward if needed.
253 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
254 BasicBlock *Succ = BI->getSuccessor(0);
255
256 // FIXME: It is always conservatively correct to drop the info
257 // for a block even if it doesn't get erased. This isn't totally
258 // awesome, but it allows us to use AssertingVH to prevent nasty
259 // dangling pointer issues within LazyValueInfo.
260 LVI->eraseBlock(BB);
261 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
262 Changed = true;
263 // If we deleted BB and BB was the header of a loop, then the
264 // successor is now the header of the loop.
265 BB = Succ;
266 }
267
268 if (ErasedFromLoopHeaders)
269 LoopHeaders.insert(BB);
270 }
271 }
272 EverChanged |= Changed;
273 } while (Changed);
274
275 LoopHeaders.clear();
276 return EverChanged;
277 }
278
279 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
280 /// thread across it. Stop scanning the block when passing the threshold.
getJumpThreadDuplicationCost(const BasicBlock * BB,unsigned Threshold)281 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
282 unsigned Threshold) {
283 /// Ignore PHI nodes, these will be flattened when duplication happens.
284 BasicBlock::const_iterator I(BB->getFirstNonPHI());
285
286 // FIXME: THREADING will delete values that are just used to compute the
287 // branch, so they shouldn't count against the duplication cost.
288
289 // Sum up the cost of each instruction until we get to the terminator. Don't
290 // include the terminator because the copy won't include it.
291 unsigned Size = 0;
292 for (; !isa<TerminatorInst>(I); ++I) {
293
294 // Stop scanning the block if we've reached the threshold.
295 if (Size > Threshold)
296 return Size;
297
298 // Debugger intrinsics don't incur code size.
299 if (isa<DbgInfoIntrinsic>(I)) continue;
300
301 // If this is a pointer->pointer bitcast, it is free.
302 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
303 continue;
304
305 // Bail out if this instruction gives back a token type, it is not possible
306 // to duplicate it if it is used outside this BB.
307 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
308 return ~0U;
309
310 // All other instructions count for at least one unit.
311 ++Size;
312
313 // Calls are more expensive. If they are non-intrinsic calls, we model them
314 // as having cost of 4. If they are a non-vector intrinsic, we model them
315 // as having cost of 2 total, and if they are a vector intrinsic, we model
316 // them as having cost 1.
317 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
318 if (CI->cannotDuplicate() || CI->isConvergent())
319 // Blocks with NoDuplicate are modelled as having infinite cost, so they
320 // are never duplicated.
321 return ~0U;
322 else if (!isa<IntrinsicInst>(CI))
323 Size += 3;
324 else if (!CI->getType()->isVectorTy())
325 Size += 1;
326 }
327 }
328
329 // Threading through a switch statement is particularly profitable. If this
330 // block ends in a switch, decrease its cost to make it more likely to happen.
331 if (isa<SwitchInst>(I))
332 Size = Size > 6 ? Size-6 : 0;
333
334 // The same holds for indirect branches, but slightly more so.
335 if (isa<IndirectBrInst>(I))
336 Size = Size > 8 ? Size-8 : 0;
337
338 return Size;
339 }
340
341 /// FindLoopHeaders - We do not want jump threading to turn proper loop
342 /// structures into irreducible loops. Doing this breaks up the loop nesting
343 /// hierarchy and pessimizes later transformations. To prevent this from
344 /// happening, we first have to find the loop headers. Here we approximate this
345 /// by finding targets of backedges in the CFG.
346 ///
347 /// Note that there definitely are cases when we want to allow threading of
348 /// edges across a loop header. For example, threading a jump from outside the
349 /// loop (the preheader) to an exit block of the loop is definitely profitable.
350 /// It is also almost always profitable to thread backedges from within the loop
351 /// to exit blocks, and is often profitable to thread backedges to other blocks
352 /// within the loop (forming a nested loop). This simple analysis is not rich
353 /// enough to track all of these properties and keep it up-to-date as the CFG
354 /// mutates, so we don't allow any of these transformations.
355 ///
FindLoopHeaders(Function & F)356 void JumpThreading::FindLoopHeaders(Function &F) {
357 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
358 FindFunctionBackedges(F, Edges);
359
360 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
361 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
362 }
363
364 /// getKnownConstant - Helper method to determine if we can thread over a
365 /// terminator with the given value as its condition, and if so what value to
366 /// use for that. What kind of value this is depends on whether we want an
367 /// integer or a block address, but an undef is always accepted.
368 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)369 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
370 if (!Val)
371 return nullptr;
372
373 // Undef is "known" enough.
374 if (UndefValue *U = dyn_cast<UndefValue>(Val))
375 return U;
376
377 if (Preference == WantBlockAddress)
378 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
379
380 return dyn_cast<ConstantInt>(Val);
381 }
382
383 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
384 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
385 /// in any of our predecessors. If so, return the known list of value and pred
386 /// BB in the result vector.
387 ///
388 /// This returns true if there were any known values.
389 ///
390 bool JumpThreading::
ComputeValueKnownInPredecessors(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,Instruction * CxtI)391 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
392 ConstantPreference Preference,
393 Instruction *CxtI) {
394 // This method walks up use-def chains recursively. Because of this, we could
395 // get into an infinite loop going around loops in the use-def chain. To
396 // prevent this, keep track of what (value, block) pairs we've already visited
397 // and terminate the search if we loop back to them
398 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
399 return false;
400
401 // An RAII help to remove this pair from the recursion set once the recursion
402 // stack pops back out again.
403 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
404
405 // If V is a constant, then it is known in all predecessors.
406 if (Constant *KC = getKnownConstant(V, Preference)) {
407 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
408 Result.push_back(std::make_pair(KC, *PI));
409
410 return true;
411 }
412
413 // If V is a non-instruction value, or an instruction in a different block,
414 // then it can't be derived from a PHI.
415 Instruction *I = dyn_cast<Instruction>(V);
416 if (!I || I->getParent() != BB) {
417
418 // Okay, if this is a live-in value, see if it has a known value at the end
419 // of any of our predecessors.
420 //
421 // FIXME: This should be an edge property, not a block end property.
422 /// TODO: Per PR2563, we could infer value range information about a
423 /// predecessor based on its terminator.
424 //
425 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
426 // "I" is a non-local compare-with-a-constant instruction. This would be
427 // able to handle value inequalities better, for example if the compare is
428 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
429 // Perhaps getConstantOnEdge should be smart enough to do this?
430
431 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
432 BasicBlock *P = *PI;
433 // If the value is known by LazyValueInfo to be a constant in a
434 // predecessor, use that information to try to thread this block.
435 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
436 if (Constant *KC = getKnownConstant(PredCst, Preference))
437 Result.push_back(std::make_pair(KC, P));
438 }
439
440 return !Result.empty();
441 }
442
443 /// If I is a PHI node, then we know the incoming values for any constants.
444 if (PHINode *PN = dyn_cast<PHINode>(I)) {
445 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
446 Value *InVal = PN->getIncomingValue(i);
447 if (Constant *KC = getKnownConstant(InVal, Preference)) {
448 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
449 } else {
450 Constant *CI = LVI->getConstantOnEdge(InVal,
451 PN->getIncomingBlock(i),
452 BB, CxtI);
453 if (Constant *KC = getKnownConstant(CI, Preference))
454 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
455 }
456 }
457
458 return !Result.empty();
459 }
460
461 PredValueInfoTy LHSVals, RHSVals;
462
463 // Handle some boolean conditions.
464 if (I->getType()->getPrimitiveSizeInBits() == 1) {
465 assert(Preference == WantInteger && "One-bit non-integer type?");
466 // X | true -> true
467 // X & false -> false
468 if (I->getOpcode() == Instruction::Or ||
469 I->getOpcode() == Instruction::And) {
470 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
471 WantInteger, CxtI);
472 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
473 WantInteger, CxtI);
474
475 if (LHSVals.empty() && RHSVals.empty())
476 return false;
477
478 ConstantInt *InterestingVal;
479 if (I->getOpcode() == Instruction::Or)
480 InterestingVal = ConstantInt::getTrue(I->getContext());
481 else
482 InterestingVal = ConstantInt::getFalse(I->getContext());
483
484 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
485
486 // Scan for the sentinel. If we find an undef, force it to the
487 // interesting value: x|undef -> true and x&undef -> false.
488 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
489 if (LHSVals[i].first == InterestingVal ||
490 isa<UndefValue>(LHSVals[i].first)) {
491 Result.push_back(LHSVals[i]);
492 Result.back().first = InterestingVal;
493 LHSKnownBBs.insert(LHSVals[i].second);
494 }
495 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
496 if (RHSVals[i].first == InterestingVal ||
497 isa<UndefValue>(RHSVals[i].first)) {
498 // If we already inferred a value for this block on the LHS, don't
499 // re-add it.
500 if (!LHSKnownBBs.count(RHSVals[i].second)) {
501 Result.push_back(RHSVals[i]);
502 Result.back().first = InterestingVal;
503 }
504 }
505
506 return !Result.empty();
507 }
508
509 // Handle the NOT form of XOR.
510 if (I->getOpcode() == Instruction::Xor &&
511 isa<ConstantInt>(I->getOperand(1)) &&
512 cast<ConstantInt>(I->getOperand(1))->isOne()) {
513 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
514 WantInteger, CxtI);
515 if (Result.empty())
516 return false;
517
518 // Invert the known values.
519 for (unsigned i = 0, e = Result.size(); i != e; ++i)
520 Result[i].first = ConstantExpr::getNot(Result[i].first);
521
522 return true;
523 }
524
525 // Try to simplify some other binary operator values.
526 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
527 assert(Preference != WantBlockAddress
528 && "A binary operator creating a block address?");
529 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
530 PredValueInfoTy LHSVals;
531 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
532 WantInteger, CxtI);
533
534 // Try to use constant folding to simplify the binary operator.
535 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
536 Constant *V = LHSVals[i].first;
537 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
538
539 if (Constant *KC = getKnownConstant(Folded, WantInteger))
540 Result.push_back(std::make_pair(KC, LHSVals[i].second));
541 }
542 }
543
544 return !Result.empty();
545 }
546
547 // Handle compare with phi operand, where the PHI is defined in this block.
548 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
549 assert(Preference == WantInteger && "Compares only produce integers");
550 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
551 if (PN && PN->getParent() == BB) {
552 const DataLayout &DL = PN->getModule()->getDataLayout();
553 // We can do this simplification if any comparisons fold to true or false.
554 // See if any do.
555 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
556 BasicBlock *PredBB = PN->getIncomingBlock(i);
557 Value *LHS = PN->getIncomingValue(i);
558 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
559
560 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
561 if (!Res) {
562 if (!isa<Constant>(RHS))
563 continue;
564
565 LazyValueInfo::Tristate
566 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
567 cast<Constant>(RHS), PredBB, BB,
568 CxtI ? CxtI : Cmp);
569 if (ResT == LazyValueInfo::Unknown)
570 continue;
571 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
572 }
573
574 if (Constant *KC = getKnownConstant(Res, WantInteger))
575 Result.push_back(std::make_pair(KC, PredBB));
576 }
577
578 return !Result.empty();
579 }
580
581 // If comparing a live-in value against a constant, see if we know the
582 // live-in value on any predecessors.
583 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
584 if (!isa<Instruction>(Cmp->getOperand(0)) ||
585 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
586 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
587
588 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
589 BasicBlock *P = *PI;
590 // If the value is known by LazyValueInfo to be a constant in a
591 // predecessor, use that information to try to thread this block.
592 LazyValueInfo::Tristate Res =
593 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
594 RHSCst, P, BB, CxtI ? CxtI : Cmp);
595 if (Res == LazyValueInfo::Unknown)
596 continue;
597
598 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
599 Result.push_back(std::make_pair(ResC, P));
600 }
601
602 return !Result.empty();
603 }
604
605 // Try to find a constant value for the LHS of a comparison,
606 // and evaluate it statically if we can.
607 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
608 PredValueInfoTy LHSVals;
609 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
610 WantInteger, CxtI);
611
612 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
613 Constant *V = LHSVals[i].first;
614 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
615 V, CmpConst);
616 if (Constant *KC = getKnownConstant(Folded, WantInteger))
617 Result.push_back(std::make_pair(KC, LHSVals[i].second));
618 }
619
620 return !Result.empty();
621 }
622 }
623 }
624
625 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
626 // Handle select instructions where at least one operand is a known constant
627 // and we can figure out the condition value for any predecessor block.
628 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
629 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
630 PredValueInfoTy Conds;
631 if ((TrueVal || FalseVal) &&
632 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
633 WantInteger, CxtI)) {
634 for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
635 Constant *Cond = Conds[i].first;
636
637 // Figure out what value to use for the condition.
638 bool KnownCond;
639 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
640 // A known boolean.
641 KnownCond = CI->isOne();
642 } else {
643 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
644 // Either operand will do, so be sure to pick the one that's a known
645 // constant.
646 // FIXME: Do this more cleverly if both values are known constants?
647 KnownCond = (TrueVal != nullptr);
648 }
649
650 // See if the select has a known constant value for this predecessor.
651 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
652 Result.push_back(std::make_pair(Val, Conds[i].second));
653 }
654
655 return !Result.empty();
656 }
657 }
658
659 // If all else fails, see if LVI can figure out a constant value for us.
660 Constant *CI = LVI->getConstant(V, BB, CxtI);
661 if (Constant *KC = getKnownConstant(CI, Preference)) {
662 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
663 Result.push_back(std::make_pair(KC, *PI));
664 }
665
666 return !Result.empty();
667 }
668
669
670
671 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
672 /// in an undefined jump, decide which block is best to revector to.
673 ///
674 /// Since we can pick an arbitrary destination, we pick the successor with the
675 /// fewest predecessors. This should reduce the in-degree of the others.
676 ///
GetBestDestForJumpOnUndef(BasicBlock * BB)677 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
678 TerminatorInst *BBTerm = BB->getTerminator();
679 unsigned MinSucc = 0;
680 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
681 // Compute the successor with the minimum number of predecessors.
682 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
683 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
684 TestBB = BBTerm->getSuccessor(i);
685 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
686 if (NumPreds < MinNumPreds) {
687 MinSucc = i;
688 MinNumPreds = NumPreds;
689 }
690 }
691
692 return MinSucc;
693 }
694
hasAddressTakenAndUsed(BasicBlock * BB)695 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
696 if (!BB->hasAddressTaken()) return false;
697
698 // If the block has its address taken, it may be a tree of dead constants
699 // hanging off of it. These shouldn't keep the block alive.
700 BlockAddress *BA = BlockAddress::get(BB);
701 BA->removeDeadConstantUsers();
702 return !BA->use_empty();
703 }
704
705 /// ProcessBlock - If there are any predecessors whose control can be threaded
706 /// through to a successor, transform them now.
ProcessBlock(BasicBlock * BB)707 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
708 // If the block is trivially dead, just return and let the caller nuke it.
709 // This simplifies other transformations.
710 if (pred_empty(BB) &&
711 BB != &BB->getParent()->getEntryBlock())
712 return false;
713
714 // If this block has a single predecessor, and if that pred has a single
715 // successor, merge the blocks. This encourages recursive jump threading
716 // because now the condition in this block can be threaded through
717 // predecessors of our predecessor block.
718 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
719 const TerminatorInst *TI = SinglePred->getTerminator();
720 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
721 SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
722 // If SinglePred was a loop header, BB becomes one.
723 if (LoopHeaders.erase(SinglePred))
724 LoopHeaders.insert(BB);
725
726 LVI->eraseBlock(SinglePred);
727 MergeBasicBlockIntoOnlyPred(BB);
728
729 return true;
730 }
731 }
732
733 // What kind of constant we're looking for.
734 ConstantPreference Preference = WantInteger;
735
736 // Look to see if the terminator is a conditional branch, switch or indirect
737 // branch, if not we can't thread it.
738 Value *Condition;
739 Instruction *Terminator = BB->getTerminator();
740 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
741 // Can't thread an unconditional jump.
742 if (BI->isUnconditional()) return false;
743 Condition = BI->getCondition();
744 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
745 Condition = SI->getCondition();
746 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
747 // Can't thread indirect branch with no successors.
748 if (IB->getNumSuccessors() == 0) return false;
749 Condition = IB->getAddress()->stripPointerCasts();
750 Preference = WantBlockAddress;
751 } else {
752 return false; // Must be an invoke.
753 }
754
755 // Run constant folding to see if we can reduce the condition to a simple
756 // constant.
757 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
758 Value *SimpleVal =
759 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
760 if (SimpleVal) {
761 I->replaceAllUsesWith(SimpleVal);
762 I->eraseFromParent();
763 Condition = SimpleVal;
764 }
765 }
766
767 // If the terminator is branching on an undef, we can pick any of the
768 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
769 if (isa<UndefValue>(Condition)) {
770 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
771
772 // Fold the branch/switch.
773 TerminatorInst *BBTerm = BB->getTerminator();
774 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
775 if (i == BestSucc) continue;
776 BBTerm->getSuccessor(i)->removePredecessor(BB, true);
777 }
778
779 DEBUG(dbgs() << " In block '" << BB->getName()
780 << "' folding undef terminator: " << *BBTerm << '\n');
781 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
782 BBTerm->eraseFromParent();
783 return true;
784 }
785
786 // If the terminator of this block is branching on a constant, simplify the
787 // terminator to an unconditional branch. This can occur due to threading in
788 // other blocks.
789 if (getKnownConstant(Condition, Preference)) {
790 DEBUG(dbgs() << " In block '" << BB->getName()
791 << "' folding terminator: " << *BB->getTerminator() << '\n');
792 ++NumFolds;
793 ConstantFoldTerminator(BB, true);
794 return true;
795 }
796
797 Instruction *CondInst = dyn_cast<Instruction>(Condition);
798
799 // All the rest of our checks depend on the condition being an instruction.
800 if (!CondInst) {
801 // FIXME: Unify this with code below.
802 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
803 return true;
804 return false;
805 }
806
807
808 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
809 // If we're branching on a conditional, LVI might be able to determine
810 // it's value at the branch instruction. We only handle comparisons
811 // against a constant at this time.
812 // TODO: This should be extended to handle switches as well.
813 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
814 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
815 if (CondBr && CondConst && CondBr->isConditional()) {
816 LazyValueInfo::Tristate Ret =
817 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
818 CondConst, CondBr);
819 if (Ret != LazyValueInfo::Unknown) {
820 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
821 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
822 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
823 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
824 CondBr->eraseFromParent();
825 if (CondCmp->use_empty())
826 CondCmp->eraseFromParent();
827 else if (CondCmp->getParent() == BB) {
828 // If the fact we just learned is true for all uses of the
829 // condition, replace it with a constant value
830 auto *CI = Ret == LazyValueInfo::True ?
831 ConstantInt::getTrue(CondCmp->getType()) :
832 ConstantInt::getFalse(CondCmp->getType());
833 CondCmp->replaceAllUsesWith(CI);
834 CondCmp->eraseFromParent();
835 }
836 return true;
837 }
838 }
839
840 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
841 return true;
842 }
843
844 // Check for some cases that are worth simplifying. Right now we want to look
845 // for loads that are used by a switch or by the condition for the branch. If
846 // we see one, check to see if it's partially redundant. If so, insert a PHI
847 // which can then be used to thread the values.
848 //
849 Value *SimplifyValue = CondInst;
850 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
851 if (isa<Constant>(CondCmp->getOperand(1)))
852 SimplifyValue = CondCmp->getOperand(0);
853
854 // TODO: There are other places where load PRE would be profitable, such as
855 // more complex comparisons.
856 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
857 if (SimplifyPartiallyRedundantLoad(LI))
858 return true;
859
860
861 // Handle a variety of cases where we are branching on something derived from
862 // a PHI node in the current block. If we can prove that any predecessors
863 // compute a predictable value based on a PHI node, thread those predecessors.
864 //
865 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
866 return true;
867
868 // If this is an otherwise-unfoldable branch on a phi node in the current
869 // block, see if we can simplify.
870 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
871 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
872 return ProcessBranchOnPHI(PN);
873
874
875 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
876 if (CondInst->getOpcode() == Instruction::Xor &&
877 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
878 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
879
880 // Search for a stronger dominating condition that can be used to simplify a
881 // conditional branch leaving BB.
882 if (ProcessImpliedCondition(BB))
883 return true;
884
885 return false;
886 }
887
ProcessImpliedCondition(BasicBlock * BB)888 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) {
889 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
890 if (!BI || !BI->isConditional())
891 return false;
892
893 Value *Cond = BI->getCondition();
894 BasicBlock *CurrentBB = BB;
895 BasicBlock *CurrentPred = BB->getSinglePredecessor();
896 unsigned Iter = 0;
897
898 auto &DL = BB->getModule()->getDataLayout();
899
900 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
901 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
902 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB)
903 return false;
904
905 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) {
906 BI->getSuccessor(1)->removePredecessor(BB);
907 BranchInst::Create(BI->getSuccessor(0), BI);
908 BI->eraseFromParent();
909 return true;
910 }
911 CurrentBB = CurrentPred;
912 CurrentPred = CurrentBB->getSinglePredecessor();
913 }
914
915 return false;
916 }
917
918 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
919 /// load instruction, eliminate it by replacing it with a PHI node. This is an
920 /// important optimization that encourages jump threading, and needs to be run
921 /// interlaced with other jump threading tasks.
SimplifyPartiallyRedundantLoad(LoadInst * LI)922 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
923 // Don't hack volatile/atomic loads.
924 if (!LI->isSimple()) return false;
925
926 // If the load is defined in a block with exactly one predecessor, it can't be
927 // partially redundant.
928 BasicBlock *LoadBB = LI->getParent();
929 if (LoadBB->getSinglePredecessor())
930 return false;
931
932 // If the load is defined in an EH pad, it can't be partially redundant,
933 // because the edges between the invoke and the EH pad cannot have other
934 // instructions between them.
935 if (LoadBB->isEHPad())
936 return false;
937
938 Value *LoadedPtr = LI->getOperand(0);
939
940 // If the loaded operand is defined in the LoadBB, it can't be available.
941 // TODO: Could do simple PHI translation, that would be fun :)
942 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
943 if (PtrOp->getParent() == LoadBB)
944 return false;
945
946 // Scan a few instructions up from the load, to see if it is obviously live at
947 // the entry to its block.
948 BasicBlock::iterator BBIt(LI);
949
950 if (Value *AvailableVal =
951 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) {
952 // If the value of the load is locally available within the block, just use
953 // it. This frequently occurs for reg2mem'd allocas.
954 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
955
956 // If the returned value is the load itself, replace with an undef. This can
957 // only happen in dead loops.
958 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
959 if (AvailableVal->getType() != LI->getType())
960 AvailableVal =
961 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
962 LI->replaceAllUsesWith(AvailableVal);
963 LI->eraseFromParent();
964 return true;
965 }
966
967 // Otherwise, if we scanned the whole block and got to the top of the block,
968 // we know the block is locally transparent to the load. If not, something
969 // might clobber its value.
970 if (BBIt != LoadBB->begin())
971 return false;
972
973 // If all of the loads and stores that feed the value have the same AA tags,
974 // then we can propagate them onto any newly inserted loads.
975 AAMDNodes AATags;
976 LI->getAAMetadata(AATags);
977
978 SmallPtrSet<BasicBlock*, 8> PredsScanned;
979 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
980 AvailablePredsTy AvailablePreds;
981 BasicBlock *OneUnavailablePred = nullptr;
982
983 // If we got here, the loaded value is transparent through to the start of the
984 // block. Check to see if it is available in any of the predecessor blocks.
985 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
986 PI != PE; ++PI) {
987 BasicBlock *PredBB = *PI;
988
989 // If we already scanned this predecessor, skip it.
990 if (!PredsScanned.insert(PredBB).second)
991 continue;
992
993 // Scan the predecessor to see if the value is available in the pred.
994 BBIt = PredBB->end();
995 AAMDNodes ThisAATags;
996 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt,
997 DefMaxInstsToScan,
998 nullptr, &ThisAATags);
999 if (!PredAvailable) {
1000 OneUnavailablePred = PredBB;
1001 continue;
1002 }
1003
1004 // If AA tags disagree or are not present, forget about them.
1005 if (AATags != ThisAATags) AATags = AAMDNodes();
1006
1007 // If so, this load is partially redundant. Remember this info so that we
1008 // can create a PHI node.
1009 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1010 }
1011
1012 // If the loaded value isn't available in any predecessor, it isn't partially
1013 // redundant.
1014 if (AvailablePreds.empty()) return false;
1015
1016 // Okay, the loaded value is available in at least one (and maybe all!)
1017 // predecessors. If the value is unavailable in more than one unique
1018 // predecessor, we want to insert a merge block for those common predecessors.
1019 // This ensures that we only have to insert one reload, thus not increasing
1020 // code size.
1021 BasicBlock *UnavailablePred = nullptr;
1022
1023 // If there is exactly one predecessor where the value is unavailable, the
1024 // already computed 'OneUnavailablePred' block is it. If it ends in an
1025 // unconditional branch, we know that it isn't a critical edge.
1026 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1027 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1028 UnavailablePred = OneUnavailablePred;
1029 } else if (PredsScanned.size() != AvailablePreds.size()) {
1030 // Otherwise, we had multiple unavailable predecessors or we had a critical
1031 // edge from the one.
1032 SmallVector<BasicBlock*, 8> PredsToSplit;
1033 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1034
1035 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
1036 AvailablePredSet.insert(AvailablePreds[i].first);
1037
1038 // Add all the unavailable predecessors to the PredsToSplit list.
1039 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
1040 PI != PE; ++PI) {
1041 BasicBlock *P = *PI;
1042 // If the predecessor is an indirect goto, we can't split the edge.
1043 if (isa<IndirectBrInst>(P->getTerminator()))
1044 return false;
1045
1046 if (!AvailablePredSet.count(P))
1047 PredsToSplit.push_back(P);
1048 }
1049
1050 // Split them out to their own block.
1051 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1052 }
1053
1054 // If the value isn't available in all predecessors, then there will be
1055 // exactly one where it isn't available. Insert a load on that edge and add
1056 // it to the AvailablePreds list.
1057 if (UnavailablePred) {
1058 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1059 "Can't handle critical edge here!");
1060 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1061 LI->getAlignment(),
1062 UnavailablePred->getTerminator());
1063 NewVal->setDebugLoc(LI->getDebugLoc());
1064 if (AATags)
1065 NewVal->setAAMetadata(AATags);
1066
1067 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1068 }
1069
1070 // Now we know that each predecessor of this block has a value in
1071 // AvailablePreds, sort them for efficient access as we're walking the preds.
1072 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1073
1074 // Create a PHI node at the start of the block for the PRE'd load value.
1075 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1076 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1077 &LoadBB->front());
1078 PN->takeName(LI);
1079 PN->setDebugLoc(LI->getDebugLoc());
1080
1081 // Insert new entries into the PHI for each predecessor. A single block may
1082 // have multiple entries here.
1083 for (pred_iterator PI = PB; PI != PE; ++PI) {
1084 BasicBlock *P = *PI;
1085 AvailablePredsTy::iterator I =
1086 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1087 std::make_pair(P, (Value*)nullptr));
1088
1089 assert(I != AvailablePreds.end() && I->first == P &&
1090 "Didn't find entry for predecessor!");
1091
1092 // If we have an available predecessor but it requires casting, insert the
1093 // cast in the predecessor and use the cast. Note that we have to update the
1094 // AvailablePreds vector as we go so that all of the PHI entries for this
1095 // predecessor use the same bitcast.
1096 Value *&PredV = I->second;
1097 if (PredV->getType() != LI->getType())
1098 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1099 P->getTerminator());
1100
1101 PN->addIncoming(PredV, I->first);
1102 }
1103
1104 //cerr << "PRE: " << *LI << *PN << "\n";
1105
1106 LI->replaceAllUsesWith(PN);
1107 LI->eraseFromParent();
1108
1109 return true;
1110 }
1111
1112 /// FindMostPopularDest - The specified list contains multiple possible
1113 /// threadable destinations. Pick the one that occurs the most frequently in
1114 /// the list.
1115 static BasicBlock *
FindMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1116 FindMostPopularDest(BasicBlock *BB,
1117 const SmallVectorImpl<std::pair<BasicBlock*,
1118 BasicBlock*> > &PredToDestList) {
1119 assert(!PredToDestList.empty());
1120
1121 // Determine popularity. If there are multiple possible destinations, we
1122 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1123 // blocks with known and real destinations to threading undef. We'll handle
1124 // them later if interesting.
1125 DenseMap<BasicBlock*, unsigned> DestPopularity;
1126 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1127 if (PredToDestList[i].second)
1128 DestPopularity[PredToDestList[i].second]++;
1129
1130 // Find the most popular dest.
1131 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1132 BasicBlock *MostPopularDest = DPI->first;
1133 unsigned Popularity = DPI->second;
1134 SmallVector<BasicBlock*, 4> SamePopularity;
1135
1136 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1137 // If the popularity of this entry isn't higher than the popularity we've
1138 // seen so far, ignore it.
1139 if (DPI->second < Popularity)
1140 ; // ignore.
1141 else if (DPI->second == Popularity) {
1142 // If it is the same as what we've seen so far, keep track of it.
1143 SamePopularity.push_back(DPI->first);
1144 } else {
1145 // If it is more popular, remember it.
1146 SamePopularity.clear();
1147 MostPopularDest = DPI->first;
1148 Popularity = DPI->second;
1149 }
1150 }
1151
1152 // Okay, now we know the most popular destination. If there is more than one
1153 // destination, we need to determine one. This is arbitrary, but we need
1154 // to make a deterministic decision. Pick the first one that appears in the
1155 // successor list.
1156 if (!SamePopularity.empty()) {
1157 SamePopularity.push_back(MostPopularDest);
1158 TerminatorInst *TI = BB->getTerminator();
1159 for (unsigned i = 0; ; ++i) {
1160 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1161
1162 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1163 TI->getSuccessor(i)) == SamePopularity.end())
1164 continue;
1165
1166 MostPopularDest = TI->getSuccessor(i);
1167 break;
1168 }
1169 }
1170
1171 // Okay, we have finally picked the most popular destination.
1172 return MostPopularDest;
1173 }
1174
ProcessThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1175 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1176 ConstantPreference Preference,
1177 Instruction *CxtI) {
1178 // If threading this would thread across a loop header, don't even try to
1179 // thread the edge.
1180 if (LoopHeaders.count(BB))
1181 return false;
1182
1183 PredValueInfoTy PredValues;
1184 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1185 return false;
1186
1187 assert(!PredValues.empty() &&
1188 "ComputeValueKnownInPredecessors returned true with no values");
1189
1190 DEBUG(dbgs() << "IN BB: " << *BB;
1191 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1192 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
1193 << *PredValues[i].first
1194 << " for pred '" << PredValues[i].second->getName() << "'.\n";
1195 });
1196
1197 // Decide what we want to thread through. Convert our list of known values to
1198 // a list of known destinations for each pred. This also discards duplicate
1199 // predecessors and keeps track of the undefined inputs (which are represented
1200 // as a null dest in the PredToDestList).
1201 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1202 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1203
1204 BasicBlock *OnlyDest = nullptr;
1205 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1206
1207 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1208 BasicBlock *Pred = PredValues[i].second;
1209 if (!SeenPreds.insert(Pred).second)
1210 continue; // Duplicate predecessor entry.
1211
1212 // If the predecessor ends with an indirect goto, we can't change its
1213 // destination.
1214 if (isa<IndirectBrInst>(Pred->getTerminator()))
1215 continue;
1216
1217 Constant *Val = PredValues[i].first;
1218
1219 BasicBlock *DestBB;
1220 if (isa<UndefValue>(Val))
1221 DestBB = nullptr;
1222 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1223 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1224 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1225 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1226 } else {
1227 assert(isa<IndirectBrInst>(BB->getTerminator())
1228 && "Unexpected terminator");
1229 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1230 }
1231
1232 // If we have exactly one destination, remember it for efficiency below.
1233 if (PredToDestList.empty())
1234 OnlyDest = DestBB;
1235 else if (OnlyDest != DestBB)
1236 OnlyDest = MultipleDestSentinel;
1237
1238 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1239 }
1240
1241 // If all edges were unthreadable, we fail.
1242 if (PredToDestList.empty())
1243 return false;
1244
1245 // Determine which is the most common successor. If we have many inputs and
1246 // this block is a switch, we want to start by threading the batch that goes
1247 // to the most popular destination first. If we only know about one
1248 // threadable destination (the common case) we can avoid this.
1249 BasicBlock *MostPopularDest = OnlyDest;
1250
1251 if (MostPopularDest == MultipleDestSentinel)
1252 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1253
1254 // Now that we know what the most popular destination is, factor all
1255 // predecessors that will jump to it into a single predecessor.
1256 SmallVector<BasicBlock*, 16> PredsToFactor;
1257 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1258 if (PredToDestList[i].second == MostPopularDest) {
1259 BasicBlock *Pred = PredToDestList[i].first;
1260
1261 // This predecessor may be a switch or something else that has multiple
1262 // edges to the block. Factor each of these edges by listing them
1263 // according to # occurrences in PredsToFactor.
1264 TerminatorInst *PredTI = Pred->getTerminator();
1265 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1266 if (PredTI->getSuccessor(i) == BB)
1267 PredsToFactor.push_back(Pred);
1268 }
1269
1270 // If the threadable edges are branching on an undefined value, we get to pick
1271 // the destination that these predecessors should get to.
1272 if (!MostPopularDest)
1273 MostPopularDest = BB->getTerminator()->
1274 getSuccessor(GetBestDestForJumpOnUndef(BB));
1275
1276 // Ok, try to thread it!
1277 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1278 }
1279
1280 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1281 /// a PHI node in the current block. See if there are any simplifications we
1282 /// can do based on inputs to the phi node.
1283 ///
ProcessBranchOnPHI(PHINode * PN)1284 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1285 BasicBlock *BB = PN->getParent();
1286
1287 // TODO: We could make use of this to do it once for blocks with common PHI
1288 // values.
1289 SmallVector<BasicBlock*, 1> PredBBs;
1290 PredBBs.resize(1);
1291
1292 // If any of the predecessor blocks end in an unconditional branch, we can
1293 // *duplicate* the conditional branch into that block in order to further
1294 // encourage jump threading and to eliminate cases where we have branch on a
1295 // phi of an icmp (branch on icmp is much better).
1296 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1297 BasicBlock *PredBB = PN->getIncomingBlock(i);
1298 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1299 if (PredBr->isUnconditional()) {
1300 PredBBs[0] = PredBB;
1301 // Try to duplicate BB into PredBB.
1302 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1303 return true;
1304 }
1305 }
1306
1307 return false;
1308 }
1309
1310 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1311 /// a xor instruction in the current block. See if there are any
1312 /// simplifications we can do based on inputs to the xor.
1313 ///
ProcessBranchOnXOR(BinaryOperator * BO)1314 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1315 BasicBlock *BB = BO->getParent();
1316
1317 // If either the LHS or RHS of the xor is a constant, don't do this
1318 // optimization.
1319 if (isa<ConstantInt>(BO->getOperand(0)) ||
1320 isa<ConstantInt>(BO->getOperand(1)))
1321 return false;
1322
1323 // If the first instruction in BB isn't a phi, we won't be able to infer
1324 // anything special about any particular predecessor.
1325 if (!isa<PHINode>(BB->front()))
1326 return false;
1327
1328 // If we have a xor as the branch input to this block, and we know that the
1329 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1330 // the condition into the predecessor and fix that value to true, saving some
1331 // logical ops on that path and encouraging other paths to simplify.
1332 //
1333 // This copies something like this:
1334 //
1335 // BB:
1336 // %X = phi i1 [1], [%X']
1337 // %Y = icmp eq i32 %A, %B
1338 // %Z = xor i1 %X, %Y
1339 // br i1 %Z, ...
1340 //
1341 // Into:
1342 // BB':
1343 // %Y = icmp ne i32 %A, %B
1344 // br i1 %Y, ...
1345
1346 PredValueInfoTy XorOpValues;
1347 bool isLHS = true;
1348 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1349 WantInteger, BO)) {
1350 assert(XorOpValues.empty());
1351 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1352 WantInteger, BO))
1353 return false;
1354 isLHS = false;
1355 }
1356
1357 assert(!XorOpValues.empty() &&
1358 "ComputeValueKnownInPredecessors returned true with no values");
1359
1360 // Scan the information to see which is most popular: true or false. The
1361 // predecessors can be of the set true, false, or undef.
1362 unsigned NumTrue = 0, NumFalse = 0;
1363 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1364 if (isa<UndefValue>(XorOpValues[i].first))
1365 // Ignore undefs for the count.
1366 continue;
1367 if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1368 ++NumFalse;
1369 else
1370 ++NumTrue;
1371 }
1372
1373 // Determine which value to split on, true, false, or undef if neither.
1374 ConstantInt *SplitVal = nullptr;
1375 if (NumTrue > NumFalse)
1376 SplitVal = ConstantInt::getTrue(BB->getContext());
1377 else if (NumTrue != 0 || NumFalse != 0)
1378 SplitVal = ConstantInt::getFalse(BB->getContext());
1379
1380 // Collect all of the blocks that this can be folded into so that we can
1381 // factor this once and clone it once.
1382 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1383 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1384 if (XorOpValues[i].first != SplitVal &&
1385 !isa<UndefValue>(XorOpValues[i].first))
1386 continue;
1387
1388 BlocksToFoldInto.push_back(XorOpValues[i].second);
1389 }
1390
1391 // If we inferred a value for all of the predecessors, then duplication won't
1392 // help us. However, we can just replace the LHS or RHS with the constant.
1393 if (BlocksToFoldInto.size() ==
1394 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1395 if (!SplitVal) {
1396 // If all preds provide undef, just nuke the xor, because it is undef too.
1397 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1398 BO->eraseFromParent();
1399 } else if (SplitVal->isZero()) {
1400 // If all preds provide 0, replace the xor with the other input.
1401 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1402 BO->eraseFromParent();
1403 } else {
1404 // If all preds provide 1, set the computed value to 1.
1405 BO->setOperand(!isLHS, SplitVal);
1406 }
1407
1408 return true;
1409 }
1410
1411 // Try to duplicate BB into PredBB.
1412 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1413 }
1414
1415
1416 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1417 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1418 /// NewPred using the entries from OldPred (suitably mapped).
AddPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1419 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1420 BasicBlock *OldPred,
1421 BasicBlock *NewPred,
1422 DenseMap<Instruction*, Value*> &ValueMap) {
1423 for (BasicBlock::iterator PNI = PHIBB->begin();
1424 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1425 // Ok, we have a PHI node. Figure out what the incoming value was for the
1426 // DestBlock.
1427 Value *IV = PN->getIncomingValueForBlock(OldPred);
1428
1429 // Remap the value if necessary.
1430 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1431 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1432 if (I != ValueMap.end())
1433 IV = I->second;
1434 }
1435
1436 PN->addIncoming(IV, NewPred);
1437 }
1438 }
1439
1440 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1441 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1442 /// across BB. Transform the IR to reflect this change.
ThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)1443 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1444 const SmallVectorImpl<BasicBlock*> &PredBBs,
1445 BasicBlock *SuccBB) {
1446 // If threading to the same block as we come from, we would infinite loop.
1447 if (SuccBB == BB) {
1448 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1449 << "' - would thread to self!\n");
1450 return false;
1451 }
1452
1453 // If threading this would thread across a loop header, don't thread the edge.
1454 // See the comments above FindLoopHeaders for justifications and caveats.
1455 if (LoopHeaders.count(BB)) {
1456 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
1457 << "' to dest BB '" << SuccBB->getName()
1458 << "' - it might create an irreducible loop!\n");
1459 return false;
1460 }
1461
1462 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1463 if (JumpThreadCost > BBDupThreshold) {
1464 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1465 << "' - Cost is too high: " << JumpThreadCost << "\n");
1466 return false;
1467 }
1468
1469 // And finally, do it! Start by factoring the predecessors if needed.
1470 BasicBlock *PredBB;
1471 if (PredBBs.size() == 1)
1472 PredBB = PredBBs[0];
1473 else {
1474 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1475 << " common predecessors.\n");
1476 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1477 }
1478
1479 // And finally, do it!
1480 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
1481 << SuccBB->getName() << "' with cost: " << JumpThreadCost
1482 << ", across block:\n "
1483 << *BB << "\n");
1484
1485 LVI->threadEdge(PredBB, BB, SuccBB);
1486
1487 // We are going to have to map operands from the original BB block to the new
1488 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1489 // account for entry from PredBB.
1490 DenseMap<Instruction*, Value*> ValueMapping;
1491
1492 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1493 BB->getName()+".thread",
1494 BB->getParent(), BB);
1495 NewBB->moveAfter(PredBB);
1496
1497 // Set the block frequency of NewBB.
1498 if (HasProfileData) {
1499 auto NewBBFreq =
1500 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1501 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1502 }
1503
1504 BasicBlock::iterator BI = BB->begin();
1505 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1506 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1507
1508 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1509 // mapping and using it to remap operands in the cloned instructions.
1510 for (; !isa<TerminatorInst>(BI); ++BI) {
1511 Instruction *New = BI->clone();
1512 New->setName(BI->getName());
1513 NewBB->getInstList().push_back(New);
1514 ValueMapping[&*BI] = New;
1515
1516 // Remap operands to patch up intra-block references.
1517 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1518 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1519 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1520 if (I != ValueMapping.end())
1521 New->setOperand(i, I->second);
1522 }
1523 }
1524
1525 // We didn't copy the terminator from BB over to NewBB, because there is now
1526 // an unconditional jump to SuccBB. Insert the unconditional jump.
1527 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1528 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1529
1530 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1531 // PHI nodes for NewBB now.
1532 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1533
1534 // If there were values defined in BB that are used outside the block, then we
1535 // now have to update all uses of the value to use either the original value,
1536 // the cloned value, or some PHI derived value. This can require arbitrary
1537 // PHI insertion, of which we are prepared to do, clean these up now.
1538 SSAUpdater SSAUpdate;
1539 SmallVector<Use*, 16> UsesToRename;
1540 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1541 // Scan all uses of this instruction to see if it is used outside of its
1542 // block, and if so, record them in UsesToRename.
1543 for (Use &U : I->uses()) {
1544 Instruction *User = cast<Instruction>(U.getUser());
1545 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1546 if (UserPN->getIncomingBlock(U) == BB)
1547 continue;
1548 } else if (User->getParent() == BB)
1549 continue;
1550
1551 UsesToRename.push_back(&U);
1552 }
1553
1554 // If there are no uses outside the block, we're done with this instruction.
1555 if (UsesToRename.empty())
1556 continue;
1557
1558 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1559
1560 // We found a use of I outside of BB. Rename all uses of I that are outside
1561 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1562 // with the two values we know.
1563 SSAUpdate.Initialize(I->getType(), I->getName());
1564 SSAUpdate.AddAvailableValue(BB, &*I);
1565 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]);
1566
1567 while (!UsesToRename.empty())
1568 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1569 DEBUG(dbgs() << "\n");
1570 }
1571
1572
1573 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1574 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1575 // us to simplify any PHI nodes in BB.
1576 TerminatorInst *PredTerm = PredBB->getTerminator();
1577 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1578 if (PredTerm->getSuccessor(i) == BB) {
1579 BB->removePredecessor(PredBB, true);
1580 PredTerm->setSuccessor(i, NewBB);
1581 }
1582
1583 // At this point, the IR is fully up to date and consistent. Do a quick scan
1584 // over the new instructions and zap any that are constants or dead. This
1585 // frequently happens because of phi translation.
1586 SimplifyInstructionsInBlock(NewBB, TLI);
1587
1588 // Update the edge weight from BB to SuccBB, which should be less than before.
1589 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1590
1591 // Threaded an edge!
1592 ++NumThreads;
1593 return true;
1594 }
1595
1596 /// Create a new basic block that will be the predecessor of BB and successor of
1597 /// all blocks in Preds. When profile data is availble, update the frequency of
1598 /// this new block.
SplitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)1599 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB,
1600 ArrayRef<BasicBlock *> Preds,
1601 const char *Suffix) {
1602 // Collect the frequencies of all predecessors of BB, which will be used to
1603 // update the edge weight on BB->SuccBB.
1604 BlockFrequency PredBBFreq(0);
1605 if (HasProfileData)
1606 for (auto Pred : Preds)
1607 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1608
1609 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1610
1611 // Set the block frequency of the newly created PredBB, which is the sum of
1612 // frequencies of Preds.
1613 if (HasProfileData)
1614 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1615 return PredBB;
1616 }
1617
1618 /// Update the block frequency of BB and branch weight and the metadata on the
1619 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1620 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
UpdateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)1621 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1622 BasicBlock *BB,
1623 BasicBlock *NewBB,
1624 BasicBlock *SuccBB) {
1625 if (!HasProfileData)
1626 return;
1627
1628 assert(BFI && BPI && "BFI & BPI should have been created here");
1629
1630 // As the edge from PredBB to BB is deleted, we have to update the block
1631 // frequency of BB.
1632 auto BBOrigFreq = BFI->getBlockFreq(BB);
1633 auto NewBBFreq = BFI->getBlockFreq(NewBB);
1634 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1635 auto BBNewFreq = BBOrigFreq - NewBBFreq;
1636 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1637
1638 // Collect updated outgoing edges' frequencies from BB and use them to update
1639 // edge weights.
1640 SmallVector<uint64_t, 4> BBSuccFreq;
1641 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
1642 auto SuccFreq = (*I == SuccBB)
1643 ? BB2SuccBBFreq - NewBBFreq
1644 : BBOrigFreq * BPI->getEdgeProbability(BB, *I);
1645 BBSuccFreq.push_back(SuccFreq.getFrequency());
1646 }
1647
1648 // Normalize edge weights in Weights64 so that the sum of them can fit in
1649 BranchProbability::normalizeEdgeWeights(BBSuccFreq.begin(), BBSuccFreq.end());
1650
1651 SmallVector<uint32_t, 4> Weights;
1652 for (auto Freq : BBSuccFreq)
1653 Weights.push_back(static_cast<uint32_t>(Freq));
1654
1655 // Update edge weights in BPI.
1656 for (int I = 0, E = Weights.size(); I < E; I++)
1657 BPI->setEdgeWeight(BB, I, Weights[I]);
1658
1659 if (Weights.size() >= 2) {
1660 auto TI = BB->getTerminator();
1661 TI->setMetadata(
1662 LLVMContext::MD_prof,
1663 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1664 }
1665 }
1666
1667 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1668 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1669 /// If we can duplicate the contents of BB up into PredBB do so now, this
1670 /// improves the odds that the branch will be on an analyzable instruction like
1671 /// a compare.
DuplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)1672 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1673 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1674 assert(!PredBBs.empty() && "Can't handle an empty set");
1675
1676 // If BB is a loop header, then duplicating this block outside the loop would
1677 // cause us to transform this into an irreducible loop, don't do this.
1678 // See the comments above FindLoopHeaders for justifications and caveats.
1679 if (LoopHeaders.count(BB)) {
1680 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
1681 << "' into predecessor block '" << PredBBs[0]->getName()
1682 << "' - it might create an irreducible loop!\n");
1683 return false;
1684 }
1685
1686 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1687 if (DuplicationCost > BBDupThreshold) {
1688 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
1689 << "' - Cost is too high: " << DuplicationCost << "\n");
1690 return false;
1691 }
1692
1693 // And finally, do it! Start by factoring the predecessors if needed.
1694 BasicBlock *PredBB;
1695 if (PredBBs.size() == 1)
1696 PredBB = PredBBs[0];
1697 else {
1698 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1699 << " common predecessors.\n");
1700 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1701 }
1702
1703 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1704 // of PredBB.
1705 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
1706 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1707 << DuplicationCost << " block is:" << *BB << "\n");
1708
1709 // Unless PredBB ends with an unconditional branch, split the edge so that we
1710 // can just clone the bits from BB into the end of the new PredBB.
1711 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1712
1713 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1714 PredBB = SplitEdge(PredBB, BB);
1715 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1716 }
1717
1718 // We are going to have to map operands from the original BB block into the
1719 // PredBB block. Evaluate PHI nodes in BB.
1720 DenseMap<Instruction*, Value*> ValueMapping;
1721
1722 BasicBlock::iterator BI = BB->begin();
1723 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1724 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1725 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1726 // mapping and using it to remap operands in the cloned instructions.
1727 for (; BI != BB->end(); ++BI) {
1728 Instruction *New = BI->clone();
1729
1730 // Remap operands to patch up intra-block references.
1731 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1732 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1733 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1734 if (I != ValueMapping.end())
1735 New->setOperand(i, I->second);
1736 }
1737
1738 // If this instruction can be simplified after the operands are updated,
1739 // just use the simplified value instead. This frequently happens due to
1740 // phi translation.
1741 if (Value *IV =
1742 SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1743 delete New;
1744 ValueMapping[&*BI] = IV;
1745 } else {
1746 // Otherwise, insert the new instruction into the block.
1747 New->setName(BI->getName());
1748 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1749 ValueMapping[&*BI] = New;
1750 }
1751 }
1752
1753 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1754 // add entries to the PHI nodes for branch from PredBB now.
1755 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1756 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1757 ValueMapping);
1758 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1759 ValueMapping);
1760
1761 // If there were values defined in BB that are used outside the block, then we
1762 // now have to update all uses of the value to use either the original value,
1763 // the cloned value, or some PHI derived value. This can require arbitrary
1764 // PHI insertion, of which we are prepared to do, clean these up now.
1765 SSAUpdater SSAUpdate;
1766 SmallVector<Use*, 16> UsesToRename;
1767 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1768 // Scan all uses of this instruction to see if it is used outside of its
1769 // block, and if so, record them in UsesToRename.
1770 for (Use &U : I->uses()) {
1771 Instruction *User = cast<Instruction>(U.getUser());
1772 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1773 if (UserPN->getIncomingBlock(U) == BB)
1774 continue;
1775 } else if (User->getParent() == BB)
1776 continue;
1777
1778 UsesToRename.push_back(&U);
1779 }
1780
1781 // If there are no uses outside the block, we're done with this instruction.
1782 if (UsesToRename.empty())
1783 continue;
1784
1785 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1786
1787 // We found a use of I outside of BB. Rename all uses of I that are outside
1788 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1789 // with the two values we know.
1790 SSAUpdate.Initialize(I->getType(), I->getName());
1791 SSAUpdate.AddAvailableValue(BB, &*I);
1792 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]);
1793
1794 while (!UsesToRename.empty())
1795 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1796 DEBUG(dbgs() << "\n");
1797 }
1798
1799 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1800 // that we nuked.
1801 BB->removePredecessor(PredBB, true);
1802
1803 // Remove the unconditional branch at the end of the PredBB block.
1804 OldPredBranch->eraseFromParent();
1805
1806 ++NumDupes;
1807 return true;
1808 }
1809
1810 /// TryToUnfoldSelect - Look for blocks of the form
1811 /// bb1:
1812 /// %a = select
1813 /// br bb
1814 ///
1815 /// bb2:
1816 /// %p = phi [%a, %bb] ...
1817 /// %c = icmp %p
1818 /// br i1 %c
1819 ///
1820 /// And expand the select into a branch structure if one of its arms allows %c
1821 /// to be folded. This later enables threading from bb1 over bb2.
TryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)1822 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1823 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1824 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1825 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1826
1827 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1828 CondLHS->getParent() != BB)
1829 return false;
1830
1831 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1832 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1833 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1834
1835 // Look if one of the incoming values is a select in the corresponding
1836 // predecessor.
1837 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1838 continue;
1839
1840 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1841 if (!PredTerm || !PredTerm->isUnconditional())
1842 continue;
1843
1844 // Now check if one of the select values would allow us to constant fold the
1845 // terminator in BB. We don't do the transform if both sides fold, those
1846 // cases will be threaded in any case.
1847 LazyValueInfo::Tristate LHSFolds =
1848 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1849 CondRHS, Pred, BB, CondCmp);
1850 LazyValueInfo::Tristate RHSFolds =
1851 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1852 CondRHS, Pred, BB, CondCmp);
1853 if ((LHSFolds != LazyValueInfo::Unknown ||
1854 RHSFolds != LazyValueInfo::Unknown) &&
1855 LHSFolds != RHSFolds) {
1856 // Expand the select.
1857 //
1858 // Pred --
1859 // | v
1860 // | NewBB
1861 // | |
1862 // |-----
1863 // v
1864 // BB
1865 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1866 BB->getParent(), BB);
1867 // Move the unconditional branch to NewBB.
1868 PredTerm->removeFromParent();
1869 NewBB->getInstList().insert(NewBB->end(), PredTerm);
1870 // Create a conditional branch and update PHI nodes.
1871 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1872 CondLHS->setIncomingValue(I, SI->getFalseValue());
1873 CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1874 // The select is now dead.
1875 SI->eraseFromParent();
1876
1877 // Update any other PHI nodes in BB.
1878 for (BasicBlock::iterator BI = BB->begin();
1879 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1880 if (Phi != CondLHS)
1881 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1882 return true;
1883 }
1884 }
1885 return false;
1886 }
1887