1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/LoopPass.h"
36 #include "llvm/Analysis/ScalarEvolution.h"
37 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/PredIteratorCache.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Transforms/Utils/LoopUtils.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 using namespace llvm;
47
48 #define DEBUG_TYPE "lcssa"
49
50 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
51
52 /// Return true if the specified block is in the list.
isExitBlock(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & ExitBlocks)53 static bool isExitBlock(BasicBlock *BB,
54 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
55 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
56 if (ExitBlocks[i] == BB)
57 return true;
58 return false;
59 }
60
61 /// Given an instruction in the loop, check to see if it has any uses that are
62 /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the
63 /// uses.
processInstruction(Loop & L,Instruction & Inst,DominatorTree & DT,const SmallVectorImpl<BasicBlock * > & ExitBlocks,PredIteratorCache & PredCache,LoopInfo * LI)64 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
65 const SmallVectorImpl<BasicBlock *> &ExitBlocks,
66 PredIteratorCache &PredCache, LoopInfo *LI) {
67 SmallVector<Use *, 16> UsesToRewrite;
68
69 // Tokens cannot be used in PHI nodes, so we skip over them.
70 // We can run into tokens which are live out of a loop with catchswitch
71 // instructions in Windows EH if the catchswitch has one catchpad which
72 // is inside the loop and another which is not.
73 if (Inst.getType()->isTokenTy())
74 return false;
75
76 BasicBlock *InstBB = Inst.getParent();
77
78 for (Use &U : Inst.uses()) {
79 Instruction *User = cast<Instruction>(U.getUser());
80 BasicBlock *UserBB = User->getParent();
81 if (PHINode *PN = dyn_cast<PHINode>(User))
82 UserBB = PN->getIncomingBlock(U);
83
84 if (InstBB != UserBB && !L.contains(UserBB))
85 UsesToRewrite.push_back(&U);
86 }
87
88 // If there are no uses outside the loop, exit with no change.
89 if (UsesToRewrite.empty())
90 return false;
91
92 ++NumLCSSA; // We are applying the transformation
93
94 // Invoke instructions are special in that their result value is not available
95 // along their unwind edge. The code below tests to see whether DomBB
96 // dominates the value, so adjust DomBB to the normal destination block,
97 // which is effectively where the value is first usable.
98 BasicBlock *DomBB = Inst.getParent();
99 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
100 DomBB = Inv->getNormalDest();
101
102 DomTreeNode *DomNode = DT.getNode(DomBB);
103
104 SmallVector<PHINode *, 16> AddedPHIs;
105 SmallVector<PHINode *, 8> PostProcessPHIs;
106
107 SSAUpdater SSAUpdate;
108 SSAUpdate.Initialize(Inst.getType(), Inst.getName());
109
110 // Insert the LCSSA phi's into all of the exit blocks dominated by the
111 // value, and add them to the Phi's map.
112 for (BasicBlock *ExitBB : ExitBlocks) {
113 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
114 continue;
115
116 // If we already inserted something for this BB, don't reprocess it.
117 if (SSAUpdate.HasValueForBlock(ExitBB))
118 continue;
119
120 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
121 Inst.getName() + ".lcssa", &ExitBB->front());
122
123 // Add inputs from inside the loop for this PHI.
124 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
125 PN->addIncoming(&Inst, Pred);
126
127 // If the exit block has a predecessor not within the loop, arrange for
128 // the incoming value use corresponding to that predecessor to be
129 // rewritten in terms of a different LCSSA PHI.
130 if (!L.contains(Pred))
131 UsesToRewrite.push_back(
132 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
133 PN->getNumIncomingValues() - 1)));
134 }
135
136 AddedPHIs.push_back(PN);
137
138 // Remember that this phi makes the value alive in this block.
139 SSAUpdate.AddAvailableValue(ExitBB, PN);
140
141 // LoopSimplify might fail to simplify some loops (e.g. when indirect
142 // branches are involved). In such situations, it might happen that an exit
143 // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
144 // PHIs in such an exit block, we are also inserting PHIs into L2's header.
145 // This could break LCSSA form for L2 because these inserted PHIs can also
146 // have uses outside of L2. Remember all PHIs in such situation as to
147 // revisit than later on. FIXME: Remove this if indirectbr support into
148 // LoopSimplify gets improved.
149 if (auto *OtherLoop = LI->getLoopFor(ExitBB))
150 if (!L.contains(OtherLoop))
151 PostProcessPHIs.push_back(PN);
152 }
153
154 // Rewrite all uses outside the loop in terms of the new PHIs we just
155 // inserted.
156 for (Use *UseToRewrite : UsesToRewrite) {
157 // If this use is in an exit block, rewrite to use the newly inserted PHI.
158 // This is required for correctness because SSAUpdate doesn't handle uses in
159 // the same block. It assumes the PHI we inserted is at the end of the
160 // block.
161 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
162 BasicBlock *UserBB = User->getParent();
163 if (PHINode *PN = dyn_cast<PHINode>(User))
164 UserBB = PN->getIncomingBlock(*UseToRewrite);
165
166 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
167 // Tell the VHs that the uses changed. This updates SCEV's caches.
168 if (UseToRewrite->get()->hasValueHandle())
169 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
170 UseToRewrite->set(&UserBB->front());
171 continue;
172 }
173
174 // Otherwise, do full PHI insertion.
175 SSAUpdate.RewriteUse(*UseToRewrite);
176 }
177
178 // Post process PHI instructions that were inserted into another disjoint loop
179 // and update their exits properly.
180 for (auto *I : PostProcessPHIs) {
181 if (I->use_empty())
182 continue;
183
184 BasicBlock *PHIBB = I->getParent();
185 Loop *OtherLoop = LI->getLoopFor(PHIBB);
186 SmallVector<BasicBlock *, 8> EBs;
187 OtherLoop->getExitBlocks(EBs);
188 if (EBs.empty())
189 continue;
190
191 // Recurse and re-process each PHI instruction. FIXME: we should really
192 // convert this entire thing to a worklist approach where we process a
193 // vector of instructions...
194 processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
195 }
196
197 // Remove PHI nodes that did not have any uses rewritten.
198 for (PHINode *PN : AddedPHIs)
199 if (PN->use_empty())
200 PN->eraseFromParent();
201
202 return true;
203 }
204
205 /// Return true if the specified block dominates at least
206 /// one of the blocks in the specified list.
207 static bool
blockDominatesAnExit(BasicBlock * BB,DominatorTree & DT,const SmallVectorImpl<BasicBlock * > & ExitBlocks)208 blockDominatesAnExit(BasicBlock *BB,
209 DominatorTree &DT,
210 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
211 DomTreeNode *DomNode = DT.getNode(BB);
212 for (BasicBlock *ExitBB : ExitBlocks)
213 if (DT.dominates(DomNode, DT.getNode(ExitBB)))
214 return true;
215
216 return false;
217 }
218
formLCSSA(Loop & L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE)219 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
220 ScalarEvolution *SE) {
221 bool Changed = false;
222
223 // Get the set of exiting blocks.
224 SmallVector<BasicBlock *, 8> ExitBlocks;
225 L.getExitBlocks(ExitBlocks);
226
227 if (ExitBlocks.empty())
228 return false;
229
230 PredIteratorCache PredCache;
231
232 // Look at all the instructions in the loop, checking to see if they have uses
233 // outside the loop. If so, rewrite those uses.
234 for (BasicBlock *BB : L.blocks()) {
235 // For large loops, avoid use-scanning by using dominance information: In
236 // particular, if a block does not dominate any of the loop exits, then none
237 // of the values defined in the block could be used outside the loop.
238 if (!blockDominatesAnExit(BB, DT, ExitBlocks))
239 continue;
240
241 for (Instruction &I : *BB) {
242 // Reject two common cases fast: instructions with no uses (like stores)
243 // and instructions with one use that is in the same block as this.
244 if (I.use_empty() ||
245 (I.hasOneUse() && I.user_back()->getParent() == BB &&
246 !isa<PHINode>(I.user_back())))
247 continue;
248
249 Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI);
250 }
251 }
252
253 // If we modified the code, remove any caches about the loop from SCEV to
254 // avoid dangling entries.
255 // FIXME: This is a big hammer, can we clear the cache more selectively?
256 if (SE && Changed)
257 SE->forgetLoop(&L);
258
259 assert(L.isLCSSAForm(DT));
260
261 return Changed;
262 }
263
264 /// Process a loop nest depth first.
formLCSSARecursively(Loop & L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE)265 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
266 ScalarEvolution *SE) {
267 bool Changed = false;
268
269 // Recurse depth-first through inner loops.
270 for (Loop *SubLoop : L.getSubLoops())
271 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
272
273 Changed |= formLCSSA(L, DT, LI, SE);
274 return Changed;
275 }
276
277 namespace {
278 struct LCSSA : public FunctionPass {
279 static char ID; // Pass identification, replacement for typeid
LCSSA__anon74a42f660111::LCSSA280 LCSSA() : FunctionPass(ID) {
281 initializeLCSSAPass(*PassRegistry::getPassRegistry());
282 }
283
284 // Cached analysis information for the current function.
285 DominatorTree *DT;
286 LoopInfo *LI;
287 ScalarEvolution *SE;
288
289 bool runOnFunction(Function &F) override;
290
291 /// This transformation requires natural loop information & requires that
292 /// loop preheaders be inserted into the CFG. It maintains both of these,
293 /// as well as the CFG. It also requires dominator information.
getAnalysisUsage__anon74a42f660111::LCSSA294 void getAnalysisUsage(AnalysisUsage &AU) const override {
295 AU.setPreservesCFG();
296
297 AU.addRequired<DominatorTreeWrapperPass>();
298 AU.addRequired<LoopInfoWrapperPass>();
299 AU.addPreservedID(LoopSimplifyID);
300 AU.addPreserved<AAResultsWrapperPass>();
301 AU.addPreserved<GlobalsAAWrapperPass>();
302 AU.addPreserved<ScalarEvolutionWrapperPass>();
303 AU.addPreserved<SCEVAAWrapperPass>();
304 }
305 };
306 }
307
308 char LCSSA::ID = 0;
309 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
311 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
312 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
313 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
314 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
315
316 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
317 char &llvm::LCSSAID = LCSSA::ID;
318
319
320 /// Process all loops in the function, inner-most out.
runOnFunction(Function & F)321 bool LCSSA::runOnFunction(Function &F) {
322 bool Changed = false;
323 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
324 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
325 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
326 SE = SEWP ? &SEWP->getSE() : nullptr;
327
328 // Simplify each loop nest in the function.
329 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
330 Changed |= formLCSSARecursively(**I, *DT, LI, SE);
331
332 return Changed;
333 }
334
335