1NIST/ITL StRD
2Dataset Name:  Lanczos1          (Lanczos1.dat)
3
4File Format:   ASCII
5               Starting Values   (lines 41 to 46)
6               Certified Values  (lines 41 to 51)
7               Data              (lines 61 to 84)
8
9Procedure:     Nonlinear Least Squares Regression
10
11Description:   These data are taken from an example discussed in
12               Lanczos (1956).  The data were generated to 14-digits
13               of accuracy using
14               f(x) = 0.0951*exp(-x) + 0.8607*exp(-3*x)
15                                     + 1.5576*exp(-5*x).
16
17
18Reference:     Lanczos, C. (1956).
19               Applied Analysis.
20               Englewood Cliffs, NJ:  Prentice Hall, pp. 272-280.
21
22
23
24
25Data:          1 Response  (y)
26               1 Predictor (x)
27               24 Observations
28               Average Level of Difficulty
29               Generated Data
30
31Model:         Exponential Class
32               6 Parameters (b1 to b6)
33
34               y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
35
36
37
38          Starting values                  Certified Values
39
40        Start 1     Start 2           Parameter     Standard Deviation
41  b1 =   1.2         0.5           9.5100000027E-02  5.3347304234E-11
42  b2 =   0.3         0.7           1.0000000001E+00  2.7473038179E-10
43  b3 =   5.6         3.6           8.6070000013E-01  1.3576062225E-10
44  b4 =   5.5         4.2           3.0000000002E+00  3.3308253069E-10
45  b5 =   6.5         4             1.5575999998E+00  1.8815731448E-10
46  b6 =   7.6         6.3           5.0000000001E+00  1.1057500538E-10
47
48Residual Sum of Squares:                    1.4307867721E-25
49Residual Standard Deviation:                8.9156129349E-14
50Degrees of Freedom:                                18
51Number of Observations:                            24
52
53
54
55
56
57
58
59
60Data:   y                   x
61       2.513400000000E+00  0.000000000000E+00
62       2.044333373291E+00  5.000000000000E-02
63       1.668404436564E+00  1.000000000000E-01
64       1.366418021208E+00  1.500000000000E-01
65       1.123232487372E+00  2.000000000000E-01
66       9.268897180037E-01  2.500000000000E-01
67       7.679338563728E-01  3.000000000000E-01
68       6.388775523106E-01  3.500000000000E-01
69       5.337835317402E-01  4.000000000000E-01
70       4.479363617347E-01  4.500000000000E-01
71       3.775847884350E-01  5.000000000000E-01
72       3.197393199326E-01  5.500000000000E-01
73       2.720130773746E-01  6.000000000000E-01
74       2.324965529032E-01  6.500000000000E-01
75       1.996589546065E-01  7.000000000000E-01
76       1.722704126914E-01  7.500000000000E-01
77       1.493405660168E-01  8.000000000000E-01
78       1.300700206922E-01  8.500000000000E-01
79       1.138119324644E-01  9.000000000000E-01
80       1.000415587559E-01  9.500000000000E-01
81       8.833209084540E-02  1.000000000000E+00
82       7.833544019350E-02  1.050000000000E+00
83       6.976693743449E-02  1.100000000000E+00
84       6.239312536719E-02  1.150000000000E+00
85