1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types. For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33
34 namespace {
35 class VectorLegalizer {
36 SelectionDAG& DAG;
37 const TargetLowering &TLI;
38 bool Changed; // Keep track of whether anything changed
39
40 /// For nodes that are of legal width, and that have more than one use, this
41 /// map indicates what regularized operand to use. This allows us to avoid
42 /// legalizing the same thing more than once.
43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44
45 /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46 void AddLegalizedOperand(SDValue From, SDValue To) {
47 LegalizedNodes.insert(std::make_pair(From, To));
48 // If someone requests legalization of the new node, return itself.
49 if (From != To)
50 LegalizedNodes.insert(std::make_pair(To, To));
51 }
52
53 /// \brief Legalizes the given node.
54 SDValue LegalizeOp(SDValue Op);
55
56 /// \brief Assuming the node is legal, "legalize" the results.
57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58
59 /// \brief Implements unrolling a VSETCC.
60 SDValue UnrollVSETCC(SDValue Op);
61
62 /// \brief Implement expand-based legalization of vector operations.
63 ///
64 /// This is just a high-level routine to dispatch to specific code paths for
65 /// operations to legalize them.
66 SDValue Expand(SDValue Op);
67
68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69 /// FSUB isn't legal.
70 ///
71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74
75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76 SDValue ExpandSEXTINREG(SDValue Op);
77
78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79 ///
80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81 /// type. The contents of the bits in the extended part of each element are
82 /// undef.
83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84
85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86 ///
87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88 /// type, then shifts left and arithmetic shifts right to introduce a sign
89 /// extension.
90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91
92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93 ///
94 /// Shuffles the low lanes of the operand into place and blends zeros into
95 /// the remaining lanes, finally bitcasting to the proper type.
96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97
98 /// \brief Expand bswap of vectors into a shuffle if legal.
99 SDValue ExpandBSWAP(SDValue Op);
100
101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102 /// supported by the target.
103 SDValue ExpandVSELECT(SDValue Op);
104 SDValue ExpandSELECT(SDValue Op);
105 SDValue ExpandLoad(SDValue Op);
106 SDValue ExpandStore(SDValue Op);
107 SDValue ExpandFNEG(SDValue Op);
108 SDValue ExpandBITREVERSE(SDValue Op);
109
110 /// \brief Implements vector promotion.
111 ///
112 /// This is essentially just bitcasting the operands to a different type and
113 /// bitcasting the result back to the original type.
114 SDValue Promote(SDValue Op);
115
116 /// \brief Implements [SU]INT_TO_FP vector promotion.
117 ///
118 /// This is a [zs]ext of the input operand to the next size up.
119 SDValue PromoteINT_TO_FP(SDValue Op);
120
121 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
122 ///
123 /// It is promoted to the next size up integer type. The result is then
124 /// truncated back to the original type.
125 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
126
127 public:
128 /// \brief Begin legalizer the vector operations in the DAG.
129 bool Run();
VectorLegalizer(SelectionDAG & dag)130 VectorLegalizer(SelectionDAG& dag) :
131 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
132 };
133
Run()134 bool VectorLegalizer::Run() {
135 // Before we start legalizing vector nodes, check if there are any vectors.
136 bool HasVectors = false;
137 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
138 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
139 // Check if the values of the nodes contain vectors. We don't need to check
140 // the operands because we are going to check their values at some point.
141 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
142 J != E; ++J)
143 HasVectors |= J->isVector();
144
145 // If we found a vector node we can start the legalization.
146 if (HasVectors)
147 break;
148 }
149
150 // If this basic block has no vectors then no need to legalize vectors.
151 if (!HasVectors)
152 return false;
153
154 // The legalize process is inherently a bottom-up recursive process (users
155 // legalize their uses before themselves). Given infinite stack space, we
156 // could just start legalizing on the root and traverse the whole graph. In
157 // practice however, this causes us to run out of stack space on large basic
158 // blocks. To avoid this problem, compute an ordering of the nodes where each
159 // node is only legalized after all of its operands are legalized.
160 DAG.AssignTopologicalOrder();
161 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
162 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
163 LegalizeOp(SDValue(&*I, 0));
164
165 // Finally, it's possible the root changed. Get the new root.
166 SDValue OldRoot = DAG.getRoot();
167 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
168 DAG.setRoot(LegalizedNodes[OldRoot]);
169
170 LegalizedNodes.clear();
171
172 // Remove dead nodes now.
173 DAG.RemoveDeadNodes();
174
175 return Changed;
176 }
177
TranslateLegalizeResults(SDValue Op,SDValue Result)178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
179 // Generic legalization: just pass the operand through.
180 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
181 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
182 return Result.getValue(Op.getResNo());
183 }
184
LegalizeOp(SDValue Op)185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
186 // Note that LegalizeOp may be reentered even from single-use nodes, which
187 // means that we always must cache transformed nodes.
188 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
189 if (I != LegalizedNodes.end()) return I->second;
190
191 SDNode* Node = Op.getNode();
192
193 // Legalize the operands
194 SmallVector<SDValue, 8> Ops;
195 for (const SDValue &Op : Node->op_values())
196 Ops.push_back(LegalizeOp(Op));
197
198 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
199
200 bool HasVectorValue = false;
201 if (Op.getOpcode() == ISD::LOAD) {
202 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
203 ISD::LoadExtType ExtType = LD->getExtensionType();
204 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
205 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
206 LD->getMemoryVT())) {
207 default: llvm_unreachable("This action is not supported yet!");
208 case TargetLowering::Legal:
209 return TranslateLegalizeResults(Op, Result);
210 case TargetLowering::Custom:
211 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
212 if (Lowered == Result)
213 return TranslateLegalizeResults(Op, Lowered);
214 Changed = true;
215 if (Lowered->getNumValues() != Op->getNumValues()) {
216 // This expanded to something other than the load. Assume the
217 // lowering code took care of any chain values, and just handle the
218 // returned value.
219 assert(Result.getValue(1).use_empty() &&
220 "There are still live users of the old chain!");
221 return LegalizeOp(Lowered);
222 }
223 return TranslateLegalizeResults(Op, Lowered);
224 }
225 case TargetLowering::Expand:
226 Changed = true;
227 return LegalizeOp(ExpandLoad(Op));
228 }
229 } else if (Op.getOpcode() == ISD::STORE) {
230 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
231 EVT StVT = ST->getMemoryVT();
232 MVT ValVT = ST->getValue().getSimpleValueType();
233 if (StVT.isVector() && ST->isTruncatingStore())
234 switch (TLI.getTruncStoreAction(ValVT, StVT)) {
235 default: llvm_unreachable("This action is not supported yet!");
236 case TargetLowering::Legal:
237 return TranslateLegalizeResults(Op, Result);
238 case TargetLowering::Custom: {
239 SDValue Lowered = TLI.LowerOperation(Result, DAG);
240 Changed = Lowered != Result;
241 return TranslateLegalizeResults(Op, Lowered);
242 }
243 case TargetLowering::Expand:
244 Changed = true;
245 return LegalizeOp(ExpandStore(Op));
246 }
247 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
248 HasVectorValue = true;
249
250 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
251 J != E;
252 ++J)
253 HasVectorValue |= J->isVector();
254 if (!HasVectorValue)
255 return TranslateLegalizeResults(Op, Result);
256
257 EVT QueryType;
258 switch (Op.getOpcode()) {
259 default:
260 return TranslateLegalizeResults(Op, Result);
261 case ISD::ADD:
262 case ISD::SUB:
263 case ISD::MUL:
264 case ISD::SDIV:
265 case ISD::UDIV:
266 case ISD::SREM:
267 case ISD::UREM:
268 case ISD::SDIVREM:
269 case ISD::UDIVREM:
270 case ISD::FADD:
271 case ISD::FSUB:
272 case ISD::FMUL:
273 case ISD::FDIV:
274 case ISD::FREM:
275 case ISD::AND:
276 case ISD::OR:
277 case ISD::XOR:
278 case ISD::SHL:
279 case ISD::SRA:
280 case ISD::SRL:
281 case ISD::ROTL:
282 case ISD::ROTR:
283 case ISD::BSWAP:
284 case ISD::BITREVERSE:
285 case ISD::CTLZ:
286 case ISD::CTTZ:
287 case ISD::CTLZ_ZERO_UNDEF:
288 case ISD::CTTZ_ZERO_UNDEF:
289 case ISD::CTPOP:
290 case ISD::SELECT:
291 case ISD::VSELECT:
292 case ISD::SELECT_CC:
293 case ISD::SETCC:
294 case ISD::ZERO_EXTEND:
295 case ISD::ANY_EXTEND:
296 case ISD::TRUNCATE:
297 case ISD::SIGN_EXTEND:
298 case ISD::FP_TO_SINT:
299 case ISD::FP_TO_UINT:
300 case ISD::FNEG:
301 case ISD::FABS:
302 case ISD::FMINNUM:
303 case ISD::FMAXNUM:
304 case ISD::FMINNAN:
305 case ISD::FMAXNAN:
306 case ISD::FCOPYSIGN:
307 case ISD::FSQRT:
308 case ISD::FSIN:
309 case ISD::FCOS:
310 case ISD::FPOWI:
311 case ISD::FPOW:
312 case ISD::FLOG:
313 case ISD::FLOG2:
314 case ISD::FLOG10:
315 case ISD::FEXP:
316 case ISD::FEXP2:
317 case ISD::FCEIL:
318 case ISD::FTRUNC:
319 case ISD::FRINT:
320 case ISD::FNEARBYINT:
321 case ISD::FROUND:
322 case ISD::FFLOOR:
323 case ISD::FP_ROUND:
324 case ISD::FP_EXTEND:
325 case ISD::FMA:
326 case ISD::SIGN_EXTEND_INREG:
327 case ISD::ANY_EXTEND_VECTOR_INREG:
328 case ISD::SIGN_EXTEND_VECTOR_INREG:
329 case ISD::ZERO_EXTEND_VECTOR_INREG:
330 case ISD::SMIN:
331 case ISD::SMAX:
332 case ISD::UMIN:
333 case ISD::UMAX:
334 QueryType = Node->getValueType(0);
335 break;
336 case ISD::FP_ROUND_INREG:
337 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
338 break;
339 case ISD::SINT_TO_FP:
340 case ISD::UINT_TO_FP:
341 QueryType = Node->getOperand(0).getValueType();
342 break;
343 case ISD::MSCATTER:
344 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
345 break;
346 case ISD::MSTORE:
347 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
348 break;
349 }
350
351 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
352 default: llvm_unreachable("This action is not supported yet!");
353 case TargetLowering::Promote:
354 Result = Promote(Op);
355 Changed = true;
356 break;
357 case TargetLowering::Legal:
358 break;
359 case TargetLowering::Custom: {
360 SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
361 if (Tmp1.getNode()) {
362 Result = Tmp1;
363 break;
364 }
365 // FALL THROUGH
366 }
367 case TargetLowering::Expand:
368 Result = Expand(Op);
369 }
370
371 // Make sure that the generated code is itself legal.
372 if (Result != Op) {
373 Result = LegalizeOp(Result);
374 Changed = true;
375 }
376
377 // Note that LegalizeOp may be reentered even from single-use nodes, which
378 // means that we always must cache transformed nodes.
379 AddLegalizedOperand(Op, Result);
380 return Result;
381 }
382
Promote(SDValue Op)383 SDValue VectorLegalizer::Promote(SDValue Op) {
384 // For a few operations there is a specific concept for promotion based on
385 // the operand's type.
386 switch (Op.getOpcode()) {
387 case ISD::SINT_TO_FP:
388 case ISD::UINT_TO_FP:
389 // "Promote" the operation by extending the operand.
390 return PromoteINT_TO_FP(Op);
391 case ISD::FP_TO_UINT:
392 case ISD::FP_TO_SINT:
393 // Promote the operation by extending the operand.
394 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
395 }
396
397 // There are currently two cases of vector promotion:
398 // 1) Bitcasting a vector of integers to a different type to a vector of the
399 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
400 // 2) Extending a vector of floats to a vector of the same number of larger
401 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
402 MVT VT = Op.getSimpleValueType();
403 assert(Op.getNode()->getNumValues() == 1 &&
404 "Can't promote a vector with multiple results!");
405 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
406 SDLoc dl(Op);
407 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
408
409 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
410 if (Op.getOperand(j).getValueType().isVector())
411 if (Op.getOperand(j)
412 .getValueType()
413 .getVectorElementType()
414 .isFloatingPoint() &&
415 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
416 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
417 else
418 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
419 else
420 Operands[j] = Op.getOperand(j);
421 }
422
423 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
424 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
425 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
426 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
427 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
428 else
429 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
430 }
431
PromoteINT_TO_FP(SDValue Op)432 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
433 // INT_TO_FP operations may require the input operand be promoted even
434 // when the type is otherwise legal.
435 EVT VT = Op.getOperand(0).getValueType();
436 assert(Op.getNode()->getNumValues() == 1 &&
437 "Can't promote a vector with multiple results!");
438
439 // Normal getTypeToPromoteTo() doesn't work here, as that will promote
440 // by widening the vector w/ the same element width and twice the number
441 // of elements. We want the other way around, the same number of elements,
442 // each twice the width.
443 //
444 // Increase the bitwidth of the element to the next pow-of-two
445 // (which is greater than 8 bits).
446
447 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
448 assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
449 SDLoc dl(Op);
450 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
451
452 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
453 ISD::SIGN_EXTEND;
454 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
455 if (Op.getOperand(j).getValueType().isVector())
456 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
457 else
458 Operands[j] = Op.getOperand(j);
459 }
460
461 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
462 }
463
464 // For FP_TO_INT we promote the result type to a vector type with wider
465 // elements and then truncate the result. This is different from the default
466 // PromoteVector which uses bitcast to promote thus assumning that the
467 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)468 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
469 assert(Op.getNode()->getNumValues() == 1 &&
470 "Can't promote a vector with multiple results!");
471 EVT VT = Op.getValueType();
472
473 EVT NewVT;
474 unsigned NewOpc;
475 while (1) {
476 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
477 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
478 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
479 NewOpc = ISD::FP_TO_SINT;
480 break;
481 }
482 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
483 NewOpc = ISD::FP_TO_UINT;
484 break;
485 }
486 }
487
488 SDLoc loc(Op);
489 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
490 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
491 }
492
493
ExpandLoad(SDValue Op)494 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
495 SDLoc dl(Op);
496 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
497 SDValue Chain = LD->getChain();
498 SDValue BasePTR = LD->getBasePtr();
499 EVT SrcVT = LD->getMemoryVT();
500 ISD::LoadExtType ExtType = LD->getExtensionType();
501
502 SmallVector<SDValue, 8> Vals;
503 SmallVector<SDValue, 8> LoadChains;
504 unsigned NumElem = SrcVT.getVectorNumElements();
505
506 EVT SrcEltVT = SrcVT.getScalarType();
507 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
508
509 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
510 // When elements in a vector is not byte-addressable, we cannot directly
511 // load each element by advancing pointer, which could only address bytes.
512 // Instead, we load all significant words, mask bits off, and concatenate
513 // them to form each element. Finally, they are extended to destination
514 // scalar type to build the destination vector.
515 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
516
517 assert(WideVT.isRound() &&
518 "Could not handle the sophisticated case when the widest integer is"
519 " not power of 2.");
520 assert(WideVT.bitsGE(SrcEltVT) &&
521 "Type is not legalized?");
522
523 unsigned WideBytes = WideVT.getStoreSize();
524 unsigned Offset = 0;
525 unsigned RemainingBytes = SrcVT.getStoreSize();
526 SmallVector<SDValue, 8> LoadVals;
527
528 while (RemainingBytes > 0) {
529 SDValue ScalarLoad;
530 unsigned LoadBytes = WideBytes;
531
532 if (RemainingBytes >= LoadBytes) {
533 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
534 LD->getPointerInfo().getWithOffset(Offset),
535 LD->isVolatile(), LD->isNonTemporal(),
536 LD->isInvariant(),
537 MinAlign(LD->getAlignment(), Offset),
538 LD->getAAInfo());
539 } else {
540 EVT LoadVT = WideVT;
541 while (RemainingBytes < LoadBytes) {
542 LoadBytes >>= 1; // Reduce the load size by half.
543 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
544 }
545 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
546 LD->getPointerInfo().getWithOffset(Offset),
547 LoadVT, LD->isVolatile(),
548 LD->isNonTemporal(), LD->isInvariant(),
549 MinAlign(LD->getAlignment(), Offset),
550 LD->getAAInfo());
551 }
552
553 RemainingBytes -= LoadBytes;
554 Offset += LoadBytes;
555 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
556 DAG.getConstant(LoadBytes, dl,
557 BasePTR.getValueType()));
558
559 LoadVals.push_back(ScalarLoad.getValue(0));
560 LoadChains.push_back(ScalarLoad.getValue(1));
561 }
562
563 // Extract bits, pack and extend/trunc them into destination type.
564 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
565 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
566
567 unsigned BitOffset = 0;
568 unsigned WideIdx = 0;
569 unsigned WideBits = WideVT.getSizeInBits();
570
571 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
572 SDValue Lo, Hi, ShAmt;
573
574 if (BitOffset < WideBits) {
575 ShAmt = DAG.getConstant(
576 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
577 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
578 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
579 }
580
581 BitOffset += SrcEltBits;
582 if (BitOffset >= WideBits) {
583 WideIdx++;
584 BitOffset -= WideBits;
585 if (BitOffset > 0) {
586 ShAmt = DAG.getConstant(
587 SrcEltBits - BitOffset, dl,
588 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
589 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
590 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
591 }
592 }
593
594 if (Hi.getNode())
595 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
596
597 switch (ExtType) {
598 default: llvm_unreachable("Unknown extended-load op!");
599 case ISD::EXTLOAD:
600 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
601 break;
602 case ISD::ZEXTLOAD:
603 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
604 break;
605 case ISD::SEXTLOAD:
606 ShAmt =
607 DAG.getConstant(WideBits - SrcEltBits, dl,
608 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
609 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
610 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
611 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
612 break;
613 }
614 Vals.push_back(Lo);
615 }
616 } else {
617 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
618
619 for (unsigned Idx=0; Idx<NumElem; Idx++) {
620 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
621 Op.getNode()->getValueType(0).getScalarType(),
622 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
623 SrcVT.getScalarType(),
624 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
625 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
626
627 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
628 DAG.getConstant(Stride, dl, BasePTR.getValueType()));
629
630 Vals.push_back(ScalarLoad.getValue(0));
631 LoadChains.push_back(ScalarLoad.getValue(1));
632 }
633 }
634
635 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
636 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
637 Op.getNode()->getValueType(0), Vals);
638
639 AddLegalizedOperand(Op.getValue(0), Value);
640 AddLegalizedOperand(Op.getValue(1), NewChain);
641
642 return (Op.getResNo() ? NewChain : Value);
643 }
644
ExpandStore(SDValue Op)645 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
646 SDLoc dl(Op);
647 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
648 SDValue Chain = ST->getChain();
649 SDValue BasePTR = ST->getBasePtr();
650 SDValue Value = ST->getValue();
651 EVT StVT = ST->getMemoryVT();
652
653 unsigned Alignment = ST->getAlignment();
654 bool isVolatile = ST->isVolatile();
655 bool isNonTemporal = ST->isNonTemporal();
656 AAMDNodes AAInfo = ST->getAAInfo();
657
658 unsigned NumElem = StVT.getVectorNumElements();
659 // The type of the data we want to save
660 EVT RegVT = Value.getValueType();
661 EVT RegSclVT = RegVT.getScalarType();
662 // The type of data as saved in memory.
663 EVT MemSclVT = StVT.getScalarType();
664
665 // Cast floats into integers
666 unsigned ScalarSize = MemSclVT.getSizeInBits();
667
668 // Round odd types to the next pow of two.
669 if (!isPowerOf2_32(ScalarSize))
670 ScalarSize = NextPowerOf2(ScalarSize);
671
672 // Store Stride in bytes
673 unsigned Stride = ScalarSize/8;
674 // Extract each of the elements from the original vector
675 // and save them into memory individually.
676 SmallVector<SDValue, 8> Stores;
677 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
678 SDValue Ex = DAG.getNode(
679 ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
680 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
681
682 // This scalar TruncStore may be illegal, but we legalize it later.
683 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
684 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
685 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
686 AAInfo);
687
688 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
689 DAG.getConstant(Stride, dl, BasePTR.getValueType()));
690
691 Stores.push_back(Store);
692 }
693 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
694 AddLegalizedOperand(Op, TF);
695 return TF;
696 }
697
Expand(SDValue Op)698 SDValue VectorLegalizer::Expand(SDValue Op) {
699 switch (Op->getOpcode()) {
700 case ISD::SIGN_EXTEND_INREG:
701 return ExpandSEXTINREG(Op);
702 case ISD::ANY_EXTEND_VECTOR_INREG:
703 return ExpandANY_EXTEND_VECTOR_INREG(Op);
704 case ISD::SIGN_EXTEND_VECTOR_INREG:
705 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
706 case ISD::ZERO_EXTEND_VECTOR_INREG:
707 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
708 case ISD::BSWAP:
709 return ExpandBSWAP(Op);
710 case ISD::VSELECT:
711 return ExpandVSELECT(Op);
712 case ISD::SELECT:
713 return ExpandSELECT(Op);
714 case ISD::UINT_TO_FP:
715 return ExpandUINT_TO_FLOAT(Op);
716 case ISD::FNEG:
717 return ExpandFNEG(Op);
718 case ISD::SETCC:
719 return UnrollVSETCC(Op);
720 case ISD::BITREVERSE:
721 return ExpandBITREVERSE(Op);
722 default:
723 return DAG.UnrollVectorOp(Op.getNode());
724 }
725 }
726
ExpandSELECT(SDValue Op)727 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
728 // Lower a select instruction where the condition is a scalar and the
729 // operands are vectors. Lower this select to VSELECT and implement it
730 // using XOR AND OR. The selector bit is broadcasted.
731 EVT VT = Op.getValueType();
732 SDLoc DL(Op);
733
734 SDValue Mask = Op.getOperand(0);
735 SDValue Op1 = Op.getOperand(1);
736 SDValue Op2 = Op.getOperand(2);
737
738 assert(VT.isVector() && !Mask.getValueType().isVector()
739 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
740
741 unsigned NumElem = VT.getVectorNumElements();
742
743 // If we can't even use the basic vector operations of
744 // AND,OR,XOR, we will have to scalarize the op.
745 // Notice that the operation may be 'promoted' which means that it is
746 // 'bitcasted' to another type which is handled.
747 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
748 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
749 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
750 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
751 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
752 return DAG.UnrollVectorOp(Op.getNode());
753
754 // Generate a mask operand.
755 EVT MaskTy = VT.changeVectorElementTypeToInteger();
756
757 // What is the size of each element in the vector mask.
758 EVT BitTy = MaskTy.getScalarType();
759
760 Mask = DAG.getSelect(DL, BitTy, Mask,
761 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
762 BitTy),
763 DAG.getConstant(0, DL, BitTy));
764
765 // Broadcast the mask so that the entire vector is all-one or all zero.
766 SmallVector<SDValue, 8> Ops(NumElem, Mask);
767 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
768
769 // Bitcast the operands to be the same type as the mask.
770 // This is needed when we select between FP types because
771 // the mask is a vector of integers.
772 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
773 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
774
775 SDValue AllOnes = DAG.getConstant(
776 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
777 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
778
779 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
780 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
781 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
782 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
783 }
784
ExpandSEXTINREG(SDValue Op)785 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
786 EVT VT = Op.getValueType();
787
788 // Make sure that the SRA and SHL instructions are available.
789 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
790 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
791 return DAG.UnrollVectorOp(Op.getNode());
792
793 SDLoc DL(Op);
794 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
795
796 unsigned BW = VT.getScalarType().getSizeInBits();
797 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
798 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
799
800 Op = Op.getOperand(0);
801 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
802 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
803 }
804
805 // Generically expand a vector anyext in register to a shuffle of the relevant
806 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)807 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
808 SDLoc DL(Op);
809 EVT VT = Op.getValueType();
810 int NumElements = VT.getVectorNumElements();
811 SDValue Src = Op.getOperand(0);
812 EVT SrcVT = Src.getValueType();
813 int NumSrcElements = SrcVT.getVectorNumElements();
814
815 // Build a base mask of undef shuffles.
816 SmallVector<int, 16> ShuffleMask;
817 ShuffleMask.resize(NumSrcElements, -1);
818
819 // Place the extended lanes into the correct locations.
820 int ExtLaneScale = NumSrcElements / NumElements;
821 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
822 for (int i = 0; i < NumElements; ++i)
823 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
824
825 return DAG.getNode(
826 ISD::BITCAST, DL, VT,
827 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
828 }
829
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)830 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
831 SDLoc DL(Op);
832 EVT VT = Op.getValueType();
833 SDValue Src = Op.getOperand(0);
834 EVT SrcVT = Src.getValueType();
835
836 // First build an any-extend node which can be legalized above when we
837 // recurse through it.
838 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
839
840 // Now we need sign extend. Do this by shifting the elements. Even if these
841 // aren't legal operations, they have a better chance of being legalized
842 // without full scalarization than the sign extension does.
843 unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
844 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
845 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
846 return DAG.getNode(ISD::SRA, DL, VT,
847 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
848 ShiftAmount);
849 }
850
851 // Generically expand a vector zext in register to a shuffle of the relevant
852 // lanes into the appropriate locations, a blend of zero into the high bits,
853 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)854 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
855 SDLoc DL(Op);
856 EVT VT = Op.getValueType();
857 int NumElements = VT.getVectorNumElements();
858 SDValue Src = Op.getOperand(0);
859 EVT SrcVT = Src.getValueType();
860 int NumSrcElements = SrcVT.getVectorNumElements();
861
862 // Build up a zero vector to blend into this one.
863 EVT SrcScalarVT = SrcVT.getScalarType();
864 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
865 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
866 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
867
868 // Shuffle the incoming lanes into the correct position, and pull all other
869 // lanes from the zero vector.
870 SmallVector<int, 16> ShuffleMask;
871 ShuffleMask.reserve(NumSrcElements);
872 for (int i = 0; i < NumSrcElements; ++i)
873 ShuffleMask.push_back(i);
874
875 int ExtLaneScale = NumSrcElements / NumElements;
876 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
877 for (int i = 0; i < NumElements; ++i)
878 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
879
880 return DAG.getNode(ISD::BITCAST, DL, VT,
881 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
882 }
883
ExpandBSWAP(SDValue Op)884 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
885 EVT VT = Op.getValueType();
886
887 // Generate a byte wise shuffle mask for the BSWAP.
888 SmallVector<int, 16> ShuffleMask;
889 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
890 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
891 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
892 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
893
894 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
895
896 // Only emit a shuffle if the mask is legal.
897 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
898 return DAG.UnrollVectorOp(Op.getNode());
899
900 SDLoc DL(Op);
901 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
902 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
903 ShuffleMask.data());
904 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
905 }
906
ExpandBITREVERSE(SDValue Op)907 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
908 EVT VT = Op.getValueType();
909
910 // If we have the scalar operation, it's probably cheaper to unroll it.
911 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
912 return DAG.UnrollVectorOp(Op.getNode());
913
914 // If we have the appropriate vector bit operations, it is better to use them
915 // than unrolling and expanding each component.
916 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
917 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
918 !TLI.isOperationLegalOrCustom(ISD::AND, VT) ||
919 !TLI.isOperationLegalOrCustom(ISD::OR, VT))
920 return DAG.UnrollVectorOp(Op.getNode());
921
922 // Let LegalizeDAG handle this later.
923 return Op;
924 }
925
ExpandVSELECT(SDValue Op)926 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
927 // Implement VSELECT in terms of XOR, AND, OR
928 // on platforms which do not support blend natively.
929 SDLoc DL(Op);
930
931 SDValue Mask = Op.getOperand(0);
932 SDValue Op1 = Op.getOperand(1);
933 SDValue Op2 = Op.getOperand(2);
934
935 EVT VT = Mask.getValueType();
936
937 // If we can't even use the basic vector operations of
938 // AND,OR,XOR, we will have to scalarize the op.
939 // Notice that the operation may be 'promoted' which means that it is
940 // 'bitcasted' to another type which is handled.
941 // This operation also isn't safe with AND, OR, XOR when the boolean
942 // type is 0/1 as we need an all ones vector constant to mask with.
943 // FIXME: Sign extend 1 to all ones if thats legal on the target.
944 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
945 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
946 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
947 TLI.getBooleanContents(Op1.getValueType()) !=
948 TargetLowering::ZeroOrNegativeOneBooleanContent)
949 return DAG.UnrollVectorOp(Op.getNode());
950
951 // If the mask and the type are different sizes, unroll the vector op. This
952 // can occur when getSetCCResultType returns something that is different in
953 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
954 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
955 return DAG.UnrollVectorOp(Op.getNode());
956
957 // Bitcast the operands to be the same type as the mask.
958 // This is needed when we select between FP types because
959 // the mask is a vector of integers.
960 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
961 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
962
963 SDValue AllOnes = DAG.getConstant(
964 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
965 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
966
967 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
968 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
969 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
970 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
971 }
972
ExpandUINT_TO_FLOAT(SDValue Op)973 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
974 EVT VT = Op.getOperand(0).getValueType();
975 SDLoc DL(Op);
976
977 // Make sure that the SINT_TO_FP and SRL instructions are available.
978 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
979 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
980 return DAG.UnrollVectorOp(Op.getNode());
981
982 EVT SVT = VT.getScalarType();
983 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
984 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
985
986 unsigned BW = SVT.getSizeInBits();
987 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
988
989 // Constants to clear the upper part of the word.
990 // Notice that we can also use SHL+SHR, but using a constant is slightly
991 // faster on x86.
992 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
993 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
994
995 // Two to the power of half-word-size.
996 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
997
998 // Clear upper part of LO, lower HI
999 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1000 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1001
1002 // Convert hi and lo to floats
1003 // Convert the hi part back to the upper values
1004 // TODO: Can any fast-math-flags be set on these nodes?
1005 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1006 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1007 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1008
1009 // Add the two halves
1010 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1011 }
1012
1013
ExpandFNEG(SDValue Op)1014 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1015 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1016 SDLoc DL(Op);
1017 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1018 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1019 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1020 Zero, Op.getOperand(0));
1021 }
1022 return DAG.UnrollVectorOp(Op.getNode());
1023 }
1024
UnrollVSETCC(SDValue Op)1025 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1026 EVT VT = Op.getValueType();
1027 unsigned NumElems = VT.getVectorNumElements();
1028 EVT EltVT = VT.getVectorElementType();
1029 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1030 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1031 SDLoc dl(Op);
1032 SmallVector<SDValue, 8> Ops(NumElems);
1033 for (unsigned i = 0; i < NumElems; ++i) {
1034 SDValue LHSElem = DAG.getNode(
1035 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1036 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1037 SDValue RHSElem = DAG.getNode(
1038 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1039 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1040 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1041 TLI.getSetCCResultType(DAG.getDataLayout(),
1042 *DAG.getContext(), TmpEltVT),
1043 LHSElem, RHSElem, CC);
1044 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1045 DAG.getConstant(APInt::getAllOnesValue
1046 (EltVT.getSizeInBits()), dl, EltVT),
1047 DAG.getConstant(0, dl, EltVT));
1048 }
1049 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1050 }
1051
1052 }
1053
LegalizeVectors()1054 bool SelectionDAG::LegalizeVectors() {
1055 return VectorLegalizer(*this).Run();
1056 }
1057