1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108   SDValue ExpandBITREVERSE(SDValue Op);
109 
110   /// \brief Implements vector promotion.
111   ///
112   /// This is essentially just bitcasting the operands to a different type and
113   /// bitcasting the result back to the original type.
114   SDValue Promote(SDValue Op);
115 
116   /// \brief Implements [SU]INT_TO_FP vector promotion.
117   ///
118   /// This is a [zs]ext of the input operand to the next size up.
119   SDValue PromoteINT_TO_FP(SDValue Op);
120 
121   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
122   ///
123   /// It is promoted to the next size up integer type.  The result is then
124   /// truncated back to the original type.
125   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
126 
127 public:
128   /// \brief Begin legalizer the vector operations in the DAG.
129   bool Run();
VectorLegalizer(SelectionDAG & dag)130   VectorLegalizer(SelectionDAG& dag) :
131       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
132 };
133 
Run()134 bool VectorLegalizer::Run() {
135   // Before we start legalizing vector nodes, check if there are any vectors.
136   bool HasVectors = false;
137   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
138        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
139     // Check if the values of the nodes contain vectors. We don't need to check
140     // the operands because we are going to check their values at some point.
141     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
142          J != E; ++J)
143       HasVectors |= J->isVector();
144 
145     // If we found a vector node we can start the legalization.
146     if (HasVectors)
147       break;
148   }
149 
150   // If this basic block has no vectors then no need to legalize vectors.
151   if (!HasVectors)
152     return false;
153 
154   // The legalize process is inherently a bottom-up recursive process (users
155   // legalize their uses before themselves).  Given infinite stack space, we
156   // could just start legalizing on the root and traverse the whole graph.  In
157   // practice however, this causes us to run out of stack space on large basic
158   // blocks.  To avoid this problem, compute an ordering of the nodes where each
159   // node is only legalized after all of its operands are legalized.
160   DAG.AssignTopologicalOrder();
161   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
162        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
163     LegalizeOp(SDValue(&*I, 0));
164 
165   // Finally, it's possible the root changed.  Get the new root.
166   SDValue OldRoot = DAG.getRoot();
167   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
168   DAG.setRoot(LegalizedNodes[OldRoot]);
169 
170   LegalizedNodes.clear();
171 
172   // Remove dead nodes now.
173   DAG.RemoveDeadNodes();
174 
175   return Changed;
176 }
177 
TranslateLegalizeResults(SDValue Op,SDValue Result)178 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
179   // Generic legalization: just pass the operand through.
180   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
181     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
182   return Result.getValue(Op.getResNo());
183 }
184 
LegalizeOp(SDValue Op)185 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
186   // Note that LegalizeOp may be reentered even from single-use nodes, which
187   // means that we always must cache transformed nodes.
188   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
189   if (I != LegalizedNodes.end()) return I->second;
190 
191   SDNode* Node = Op.getNode();
192 
193   // Legalize the operands
194   SmallVector<SDValue, 8> Ops;
195   for (const SDValue &Op : Node->op_values())
196     Ops.push_back(LegalizeOp(Op));
197 
198   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
199 
200   bool HasVectorValue = false;
201   if (Op.getOpcode() == ISD::LOAD) {
202     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
203     ISD::LoadExtType ExtType = LD->getExtensionType();
204     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
205       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
206                                    LD->getMemoryVT())) {
207       default: llvm_unreachable("This action is not supported yet!");
208       case TargetLowering::Legal:
209         return TranslateLegalizeResults(Op, Result);
210       case TargetLowering::Custom:
211         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
212           if (Lowered == Result)
213             return TranslateLegalizeResults(Op, Lowered);
214           Changed = true;
215           if (Lowered->getNumValues() != Op->getNumValues()) {
216             // This expanded to something other than the load. Assume the
217             // lowering code took care of any chain values, and just handle the
218             // returned value.
219             assert(Result.getValue(1).use_empty() &&
220                    "There are still live users of the old chain!");
221             return LegalizeOp(Lowered);
222           }
223           return TranslateLegalizeResults(Op, Lowered);
224         }
225       case TargetLowering::Expand:
226         Changed = true;
227         return LegalizeOp(ExpandLoad(Op));
228       }
229   } else if (Op.getOpcode() == ISD::STORE) {
230     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
231     EVT StVT = ST->getMemoryVT();
232     MVT ValVT = ST->getValue().getSimpleValueType();
233     if (StVT.isVector() && ST->isTruncatingStore())
234       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
235       default: llvm_unreachable("This action is not supported yet!");
236       case TargetLowering::Legal:
237         return TranslateLegalizeResults(Op, Result);
238       case TargetLowering::Custom: {
239         SDValue Lowered = TLI.LowerOperation(Result, DAG);
240         Changed = Lowered != Result;
241         return TranslateLegalizeResults(Op, Lowered);
242       }
243       case TargetLowering::Expand:
244         Changed = true;
245         return LegalizeOp(ExpandStore(Op));
246       }
247   } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
248     HasVectorValue = true;
249 
250   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
251        J != E;
252        ++J)
253     HasVectorValue |= J->isVector();
254   if (!HasVectorValue)
255     return TranslateLegalizeResults(Op, Result);
256 
257   EVT QueryType;
258   switch (Op.getOpcode()) {
259   default:
260     return TranslateLegalizeResults(Op, Result);
261   case ISD::ADD:
262   case ISD::SUB:
263   case ISD::MUL:
264   case ISD::SDIV:
265   case ISD::UDIV:
266   case ISD::SREM:
267   case ISD::UREM:
268   case ISD::SDIVREM:
269   case ISD::UDIVREM:
270   case ISD::FADD:
271   case ISD::FSUB:
272   case ISD::FMUL:
273   case ISD::FDIV:
274   case ISD::FREM:
275   case ISD::AND:
276   case ISD::OR:
277   case ISD::XOR:
278   case ISD::SHL:
279   case ISD::SRA:
280   case ISD::SRL:
281   case ISD::ROTL:
282   case ISD::ROTR:
283   case ISD::BSWAP:
284   case ISD::BITREVERSE:
285   case ISD::CTLZ:
286   case ISD::CTTZ:
287   case ISD::CTLZ_ZERO_UNDEF:
288   case ISD::CTTZ_ZERO_UNDEF:
289   case ISD::CTPOP:
290   case ISD::SELECT:
291   case ISD::VSELECT:
292   case ISD::SELECT_CC:
293   case ISD::SETCC:
294   case ISD::ZERO_EXTEND:
295   case ISD::ANY_EXTEND:
296   case ISD::TRUNCATE:
297   case ISD::SIGN_EXTEND:
298   case ISD::FP_TO_SINT:
299   case ISD::FP_TO_UINT:
300   case ISD::FNEG:
301   case ISD::FABS:
302   case ISD::FMINNUM:
303   case ISD::FMAXNUM:
304   case ISD::FMINNAN:
305   case ISD::FMAXNAN:
306   case ISD::FCOPYSIGN:
307   case ISD::FSQRT:
308   case ISD::FSIN:
309   case ISD::FCOS:
310   case ISD::FPOWI:
311   case ISD::FPOW:
312   case ISD::FLOG:
313   case ISD::FLOG2:
314   case ISD::FLOG10:
315   case ISD::FEXP:
316   case ISD::FEXP2:
317   case ISD::FCEIL:
318   case ISD::FTRUNC:
319   case ISD::FRINT:
320   case ISD::FNEARBYINT:
321   case ISD::FROUND:
322   case ISD::FFLOOR:
323   case ISD::FP_ROUND:
324   case ISD::FP_EXTEND:
325   case ISD::FMA:
326   case ISD::SIGN_EXTEND_INREG:
327   case ISD::ANY_EXTEND_VECTOR_INREG:
328   case ISD::SIGN_EXTEND_VECTOR_INREG:
329   case ISD::ZERO_EXTEND_VECTOR_INREG:
330   case ISD::SMIN:
331   case ISD::SMAX:
332   case ISD::UMIN:
333   case ISD::UMAX:
334     QueryType = Node->getValueType(0);
335     break;
336   case ISD::FP_ROUND_INREG:
337     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
338     break;
339   case ISD::SINT_TO_FP:
340   case ISD::UINT_TO_FP:
341     QueryType = Node->getOperand(0).getValueType();
342     break;
343   case ISD::MSCATTER:
344     QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
345     break;
346   case ISD::MSTORE:
347     QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
348     break;
349   }
350 
351   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
352   default: llvm_unreachable("This action is not supported yet!");
353   case TargetLowering::Promote:
354     Result = Promote(Op);
355     Changed = true;
356     break;
357   case TargetLowering::Legal:
358     break;
359   case TargetLowering::Custom: {
360     SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
361     if (Tmp1.getNode()) {
362       Result = Tmp1;
363       break;
364     }
365     // FALL THROUGH
366   }
367   case TargetLowering::Expand:
368     Result = Expand(Op);
369   }
370 
371   // Make sure that the generated code is itself legal.
372   if (Result != Op) {
373     Result = LegalizeOp(Result);
374     Changed = true;
375   }
376 
377   // Note that LegalizeOp may be reentered even from single-use nodes, which
378   // means that we always must cache transformed nodes.
379   AddLegalizedOperand(Op, Result);
380   return Result;
381 }
382 
Promote(SDValue Op)383 SDValue VectorLegalizer::Promote(SDValue Op) {
384   // For a few operations there is a specific concept for promotion based on
385   // the operand's type.
386   switch (Op.getOpcode()) {
387   case ISD::SINT_TO_FP:
388   case ISD::UINT_TO_FP:
389     // "Promote" the operation by extending the operand.
390     return PromoteINT_TO_FP(Op);
391   case ISD::FP_TO_UINT:
392   case ISD::FP_TO_SINT:
393     // Promote the operation by extending the operand.
394     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
395   }
396 
397   // There are currently two cases of vector promotion:
398   // 1) Bitcasting a vector of integers to a different type to a vector of the
399   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
400   // 2) Extending a vector of floats to a vector of the same number of larger
401   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
402   MVT VT = Op.getSimpleValueType();
403   assert(Op.getNode()->getNumValues() == 1 &&
404          "Can't promote a vector with multiple results!");
405   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
406   SDLoc dl(Op);
407   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
408 
409   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
410     if (Op.getOperand(j).getValueType().isVector())
411       if (Op.getOperand(j)
412               .getValueType()
413               .getVectorElementType()
414               .isFloatingPoint() &&
415           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
416         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
417       else
418         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
419     else
420       Operands[j] = Op.getOperand(j);
421   }
422 
423   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
424   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
425       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
426        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
427     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
428   else
429     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
430 }
431 
PromoteINT_TO_FP(SDValue Op)432 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
433   // INT_TO_FP operations may require the input operand be promoted even
434   // when the type is otherwise legal.
435   EVT VT = Op.getOperand(0).getValueType();
436   assert(Op.getNode()->getNumValues() == 1 &&
437          "Can't promote a vector with multiple results!");
438 
439   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
440   // by widening the vector w/ the same element width and twice the number
441   // of elements. We want the other way around, the same number of elements,
442   // each twice the width.
443   //
444   // Increase the bitwidth of the element to the next pow-of-two
445   // (which is greater than 8 bits).
446 
447   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
448   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
449   SDLoc dl(Op);
450   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
451 
452   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
453     ISD::SIGN_EXTEND;
454   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
455     if (Op.getOperand(j).getValueType().isVector())
456       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
457     else
458       Operands[j] = Op.getOperand(j);
459   }
460 
461   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
462 }
463 
464 // For FP_TO_INT we promote the result type to a vector type with wider
465 // elements and then truncate the result.  This is different from the default
466 // PromoteVector which uses bitcast to promote thus assumning that the
467 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)468 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
469   assert(Op.getNode()->getNumValues() == 1 &&
470          "Can't promote a vector with multiple results!");
471   EVT VT = Op.getValueType();
472 
473   EVT NewVT;
474   unsigned NewOpc;
475   while (1) {
476     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
477     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
478     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
479       NewOpc = ISD::FP_TO_SINT;
480       break;
481     }
482     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
483       NewOpc = ISD::FP_TO_UINT;
484       break;
485     }
486   }
487 
488   SDLoc loc(Op);
489   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
490   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
491 }
492 
493 
ExpandLoad(SDValue Op)494 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
495   SDLoc dl(Op);
496   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
497   SDValue Chain = LD->getChain();
498   SDValue BasePTR = LD->getBasePtr();
499   EVT SrcVT = LD->getMemoryVT();
500   ISD::LoadExtType ExtType = LD->getExtensionType();
501 
502   SmallVector<SDValue, 8> Vals;
503   SmallVector<SDValue, 8> LoadChains;
504   unsigned NumElem = SrcVT.getVectorNumElements();
505 
506   EVT SrcEltVT = SrcVT.getScalarType();
507   EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
508 
509   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
510     // When elements in a vector is not byte-addressable, we cannot directly
511     // load each element by advancing pointer, which could only address bytes.
512     // Instead, we load all significant words, mask bits off, and concatenate
513     // them to form each element. Finally, they are extended to destination
514     // scalar type to build the destination vector.
515     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
516 
517     assert(WideVT.isRound() &&
518            "Could not handle the sophisticated case when the widest integer is"
519            " not power of 2.");
520     assert(WideVT.bitsGE(SrcEltVT) &&
521            "Type is not legalized?");
522 
523     unsigned WideBytes = WideVT.getStoreSize();
524     unsigned Offset = 0;
525     unsigned RemainingBytes = SrcVT.getStoreSize();
526     SmallVector<SDValue, 8> LoadVals;
527 
528     while (RemainingBytes > 0) {
529       SDValue ScalarLoad;
530       unsigned LoadBytes = WideBytes;
531 
532       if (RemainingBytes >= LoadBytes) {
533         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
534                                  LD->getPointerInfo().getWithOffset(Offset),
535                                  LD->isVolatile(), LD->isNonTemporal(),
536                                  LD->isInvariant(),
537                                  MinAlign(LD->getAlignment(), Offset),
538                                  LD->getAAInfo());
539       } else {
540         EVT LoadVT = WideVT;
541         while (RemainingBytes < LoadBytes) {
542           LoadBytes >>= 1; // Reduce the load size by half.
543           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
544         }
545         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
546                                     LD->getPointerInfo().getWithOffset(Offset),
547                                     LoadVT, LD->isVolatile(),
548                                     LD->isNonTemporal(), LD->isInvariant(),
549                                     MinAlign(LD->getAlignment(), Offset),
550                                     LD->getAAInfo());
551       }
552 
553       RemainingBytes -= LoadBytes;
554       Offset += LoadBytes;
555       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
556                             DAG.getConstant(LoadBytes, dl,
557                                             BasePTR.getValueType()));
558 
559       LoadVals.push_back(ScalarLoad.getValue(0));
560       LoadChains.push_back(ScalarLoad.getValue(1));
561     }
562 
563     // Extract bits, pack and extend/trunc them into destination type.
564     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
565     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
566 
567     unsigned BitOffset = 0;
568     unsigned WideIdx = 0;
569     unsigned WideBits = WideVT.getSizeInBits();
570 
571     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
572       SDValue Lo, Hi, ShAmt;
573 
574       if (BitOffset < WideBits) {
575         ShAmt = DAG.getConstant(
576             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
577         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
578         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
579       }
580 
581       BitOffset += SrcEltBits;
582       if (BitOffset >= WideBits) {
583         WideIdx++;
584         BitOffset -= WideBits;
585         if (BitOffset > 0) {
586           ShAmt = DAG.getConstant(
587               SrcEltBits - BitOffset, dl,
588               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
589           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
590           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
591         }
592       }
593 
594       if (Hi.getNode())
595         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
596 
597       switch (ExtType) {
598       default: llvm_unreachable("Unknown extended-load op!");
599       case ISD::EXTLOAD:
600         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
601         break;
602       case ISD::ZEXTLOAD:
603         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
604         break;
605       case ISD::SEXTLOAD:
606         ShAmt =
607             DAG.getConstant(WideBits - SrcEltBits, dl,
608                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
609         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
610         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
611         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
612         break;
613       }
614       Vals.push_back(Lo);
615     }
616   } else {
617     unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
618 
619     for (unsigned Idx=0; Idx<NumElem; Idx++) {
620       SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
621                 Op.getNode()->getValueType(0).getScalarType(),
622                 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
623                 SrcVT.getScalarType(),
624                 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
625                 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
626 
627       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
628                          DAG.getConstant(Stride, dl, BasePTR.getValueType()));
629 
630       Vals.push_back(ScalarLoad.getValue(0));
631       LoadChains.push_back(ScalarLoad.getValue(1));
632     }
633   }
634 
635   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
636   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
637                               Op.getNode()->getValueType(0), Vals);
638 
639   AddLegalizedOperand(Op.getValue(0), Value);
640   AddLegalizedOperand(Op.getValue(1), NewChain);
641 
642   return (Op.getResNo() ? NewChain : Value);
643 }
644 
ExpandStore(SDValue Op)645 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
646   SDLoc dl(Op);
647   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
648   SDValue Chain = ST->getChain();
649   SDValue BasePTR = ST->getBasePtr();
650   SDValue Value = ST->getValue();
651   EVT StVT = ST->getMemoryVT();
652 
653   unsigned Alignment = ST->getAlignment();
654   bool isVolatile = ST->isVolatile();
655   bool isNonTemporal = ST->isNonTemporal();
656   AAMDNodes AAInfo = ST->getAAInfo();
657 
658   unsigned NumElem = StVT.getVectorNumElements();
659   // The type of the data we want to save
660   EVT RegVT = Value.getValueType();
661   EVT RegSclVT = RegVT.getScalarType();
662   // The type of data as saved in memory.
663   EVT MemSclVT = StVT.getScalarType();
664 
665   // Cast floats into integers
666   unsigned ScalarSize = MemSclVT.getSizeInBits();
667 
668   // Round odd types to the next pow of two.
669   if (!isPowerOf2_32(ScalarSize))
670     ScalarSize = NextPowerOf2(ScalarSize);
671 
672   // Store Stride in bytes
673   unsigned Stride = ScalarSize/8;
674   // Extract each of the elements from the original vector
675   // and save them into memory individually.
676   SmallVector<SDValue, 8> Stores;
677   for (unsigned Idx = 0; Idx < NumElem; Idx++) {
678     SDValue Ex = DAG.getNode(
679         ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
680         DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
681 
682     // This scalar TruncStore may be illegal, but we legalize it later.
683     SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
684                ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
685                isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
686                AAInfo);
687 
688     BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
689                           DAG.getConstant(Stride, dl, BasePTR.getValueType()));
690 
691     Stores.push_back(Store);
692   }
693   SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
694   AddLegalizedOperand(Op, TF);
695   return TF;
696 }
697 
Expand(SDValue Op)698 SDValue VectorLegalizer::Expand(SDValue Op) {
699   switch (Op->getOpcode()) {
700   case ISD::SIGN_EXTEND_INREG:
701     return ExpandSEXTINREG(Op);
702   case ISD::ANY_EXTEND_VECTOR_INREG:
703     return ExpandANY_EXTEND_VECTOR_INREG(Op);
704   case ISD::SIGN_EXTEND_VECTOR_INREG:
705     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
706   case ISD::ZERO_EXTEND_VECTOR_INREG:
707     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
708   case ISD::BSWAP:
709     return ExpandBSWAP(Op);
710   case ISD::VSELECT:
711     return ExpandVSELECT(Op);
712   case ISD::SELECT:
713     return ExpandSELECT(Op);
714   case ISD::UINT_TO_FP:
715     return ExpandUINT_TO_FLOAT(Op);
716   case ISD::FNEG:
717     return ExpandFNEG(Op);
718   case ISD::SETCC:
719     return UnrollVSETCC(Op);
720   case ISD::BITREVERSE:
721     return ExpandBITREVERSE(Op);
722   default:
723     return DAG.UnrollVectorOp(Op.getNode());
724   }
725 }
726 
ExpandSELECT(SDValue Op)727 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
728   // Lower a select instruction where the condition is a scalar and the
729   // operands are vectors. Lower this select to VSELECT and implement it
730   // using XOR AND OR. The selector bit is broadcasted.
731   EVT VT = Op.getValueType();
732   SDLoc DL(Op);
733 
734   SDValue Mask = Op.getOperand(0);
735   SDValue Op1 = Op.getOperand(1);
736   SDValue Op2 = Op.getOperand(2);
737 
738   assert(VT.isVector() && !Mask.getValueType().isVector()
739          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
740 
741   unsigned NumElem = VT.getVectorNumElements();
742 
743   // If we can't even use the basic vector operations of
744   // AND,OR,XOR, we will have to scalarize the op.
745   // Notice that the operation may be 'promoted' which means that it is
746   // 'bitcasted' to another type which is handled.
747   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
748   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
749       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
750       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
751       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
752     return DAG.UnrollVectorOp(Op.getNode());
753 
754   // Generate a mask operand.
755   EVT MaskTy = VT.changeVectorElementTypeToInteger();
756 
757   // What is the size of each element in the vector mask.
758   EVT BitTy = MaskTy.getScalarType();
759 
760   Mask = DAG.getSelect(DL, BitTy, Mask,
761           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
762                           BitTy),
763           DAG.getConstant(0, DL, BitTy));
764 
765   // Broadcast the mask so that the entire vector is all-one or all zero.
766   SmallVector<SDValue, 8> Ops(NumElem, Mask);
767   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
768 
769   // Bitcast the operands to be the same type as the mask.
770   // This is needed when we select between FP types because
771   // the mask is a vector of integers.
772   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
773   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
774 
775   SDValue AllOnes = DAG.getConstant(
776             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
777   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
778 
779   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
780   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
781   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
782   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
783 }
784 
ExpandSEXTINREG(SDValue Op)785 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
786   EVT VT = Op.getValueType();
787 
788   // Make sure that the SRA and SHL instructions are available.
789   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
790       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
791     return DAG.UnrollVectorOp(Op.getNode());
792 
793   SDLoc DL(Op);
794   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
795 
796   unsigned BW = VT.getScalarType().getSizeInBits();
797   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
798   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
799 
800   Op = Op.getOperand(0);
801   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
802   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
803 }
804 
805 // Generically expand a vector anyext in register to a shuffle of the relevant
806 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)807 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
808   SDLoc DL(Op);
809   EVT VT = Op.getValueType();
810   int NumElements = VT.getVectorNumElements();
811   SDValue Src = Op.getOperand(0);
812   EVT SrcVT = Src.getValueType();
813   int NumSrcElements = SrcVT.getVectorNumElements();
814 
815   // Build a base mask of undef shuffles.
816   SmallVector<int, 16> ShuffleMask;
817   ShuffleMask.resize(NumSrcElements, -1);
818 
819   // Place the extended lanes into the correct locations.
820   int ExtLaneScale = NumSrcElements / NumElements;
821   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
822   for (int i = 0; i < NumElements; ++i)
823     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
824 
825   return DAG.getNode(
826       ISD::BITCAST, DL, VT,
827       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
828 }
829 
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)830 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
831   SDLoc DL(Op);
832   EVT VT = Op.getValueType();
833   SDValue Src = Op.getOperand(0);
834   EVT SrcVT = Src.getValueType();
835 
836   // First build an any-extend node which can be legalized above when we
837   // recurse through it.
838   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
839 
840   // Now we need sign extend. Do this by shifting the elements. Even if these
841   // aren't legal operations, they have a better chance of being legalized
842   // without full scalarization than the sign extension does.
843   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
844   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
845   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
846   return DAG.getNode(ISD::SRA, DL, VT,
847                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
848                      ShiftAmount);
849 }
850 
851 // Generically expand a vector zext in register to a shuffle of the relevant
852 // lanes into the appropriate locations, a blend of zero into the high bits,
853 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)854 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
855   SDLoc DL(Op);
856   EVT VT = Op.getValueType();
857   int NumElements = VT.getVectorNumElements();
858   SDValue Src = Op.getOperand(0);
859   EVT SrcVT = Src.getValueType();
860   int NumSrcElements = SrcVT.getVectorNumElements();
861 
862   // Build up a zero vector to blend into this one.
863   EVT SrcScalarVT = SrcVT.getScalarType();
864   SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
865   SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
866   SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
867 
868   // Shuffle the incoming lanes into the correct position, and pull all other
869   // lanes from the zero vector.
870   SmallVector<int, 16> ShuffleMask;
871   ShuffleMask.reserve(NumSrcElements);
872   for (int i = 0; i < NumSrcElements; ++i)
873     ShuffleMask.push_back(i);
874 
875   int ExtLaneScale = NumSrcElements / NumElements;
876   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
877   for (int i = 0; i < NumElements; ++i)
878     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
879 
880   return DAG.getNode(ISD::BITCAST, DL, VT,
881                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
882 }
883 
ExpandBSWAP(SDValue Op)884 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
885   EVT VT = Op.getValueType();
886 
887   // Generate a byte wise shuffle mask for the BSWAP.
888   SmallVector<int, 16> ShuffleMask;
889   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
890   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
891     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
892       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
893 
894   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
895 
896   // Only emit a shuffle if the mask is legal.
897   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
898     return DAG.UnrollVectorOp(Op.getNode());
899 
900   SDLoc DL(Op);
901   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
902   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
903                             ShuffleMask.data());
904   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
905 }
906 
ExpandBITREVERSE(SDValue Op)907 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
908   EVT VT = Op.getValueType();
909 
910   // If we have the scalar operation, it's probably cheaper to unroll it.
911   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
912     return DAG.UnrollVectorOp(Op.getNode());
913 
914   // If we have the appropriate vector bit operations, it is better to use them
915   // than unrolling and expanding each component.
916   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
917       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
918       !TLI.isOperationLegalOrCustom(ISD::AND, VT) ||
919       !TLI.isOperationLegalOrCustom(ISD::OR, VT))
920     return DAG.UnrollVectorOp(Op.getNode());
921 
922   // Let LegalizeDAG handle this later.
923   return Op;
924 }
925 
ExpandVSELECT(SDValue Op)926 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
927   // Implement VSELECT in terms of XOR, AND, OR
928   // on platforms which do not support blend natively.
929   SDLoc DL(Op);
930 
931   SDValue Mask = Op.getOperand(0);
932   SDValue Op1 = Op.getOperand(1);
933   SDValue Op2 = Op.getOperand(2);
934 
935   EVT VT = Mask.getValueType();
936 
937   // If we can't even use the basic vector operations of
938   // AND,OR,XOR, we will have to scalarize the op.
939   // Notice that the operation may be 'promoted' which means that it is
940   // 'bitcasted' to another type which is handled.
941   // This operation also isn't safe with AND, OR, XOR when the boolean
942   // type is 0/1 as we need an all ones vector constant to mask with.
943   // FIXME: Sign extend 1 to all ones if thats legal on the target.
944   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
945       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
946       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
947       TLI.getBooleanContents(Op1.getValueType()) !=
948           TargetLowering::ZeroOrNegativeOneBooleanContent)
949     return DAG.UnrollVectorOp(Op.getNode());
950 
951   // If the mask and the type are different sizes, unroll the vector op. This
952   // can occur when getSetCCResultType returns something that is different in
953   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
954   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
955     return DAG.UnrollVectorOp(Op.getNode());
956 
957   // Bitcast the operands to be the same type as the mask.
958   // This is needed when we select between FP types because
959   // the mask is a vector of integers.
960   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
961   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
962 
963   SDValue AllOnes = DAG.getConstant(
964     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
965   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
966 
967   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
968   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
969   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
970   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
971 }
972 
ExpandUINT_TO_FLOAT(SDValue Op)973 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
974   EVT VT = Op.getOperand(0).getValueType();
975   SDLoc DL(Op);
976 
977   // Make sure that the SINT_TO_FP and SRL instructions are available.
978   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
979       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
980     return DAG.UnrollVectorOp(Op.getNode());
981 
982  EVT SVT = VT.getScalarType();
983   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
984       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
985 
986   unsigned BW = SVT.getSizeInBits();
987   SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
988 
989   // Constants to clear the upper part of the word.
990   // Notice that we can also use SHL+SHR, but using a constant is slightly
991   // faster on x86.
992   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
993   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
994 
995   // Two to the power of half-word-size.
996   SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
997 
998   // Clear upper part of LO, lower HI
999   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1000   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1001 
1002   // Convert hi and lo to floats
1003   // Convert the hi part back to the upper values
1004   // TODO: Can any fast-math-flags be set on these nodes?
1005   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1006           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1007   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1008 
1009   // Add the two halves
1010   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1011 }
1012 
1013 
ExpandFNEG(SDValue Op)1014 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1015   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1016     SDLoc DL(Op);
1017     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1018     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1019     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1020                        Zero, Op.getOperand(0));
1021   }
1022   return DAG.UnrollVectorOp(Op.getNode());
1023 }
1024 
UnrollVSETCC(SDValue Op)1025 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1026   EVT VT = Op.getValueType();
1027   unsigned NumElems = VT.getVectorNumElements();
1028   EVT EltVT = VT.getVectorElementType();
1029   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1030   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1031   SDLoc dl(Op);
1032   SmallVector<SDValue, 8> Ops(NumElems);
1033   for (unsigned i = 0; i < NumElems; ++i) {
1034     SDValue LHSElem = DAG.getNode(
1035         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1036         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1037     SDValue RHSElem = DAG.getNode(
1038         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1039         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1040     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1041                          TLI.getSetCCResultType(DAG.getDataLayout(),
1042                                                 *DAG.getContext(), TmpEltVT),
1043                          LHSElem, RHSElem, CC);
1044     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1045                            DAG.getConstant(APInt::getAllOnesValue
1046                                            (EltVT.getSizeInBits()), dl, EltVT),
1047                            DAG.getConstant(0, dl, EltVT));
1048   }
1049   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1050 }
1051 
1052 }
1053 
LegalizeVectors()1054 bool SelectionDAG::LegalizeVectors() {
1055   return VectorLegalizer(*this).Run();
1056 }
1057