1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/IR/Dominators.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "loop-delete"
27
28 STATISTIC(NumDeleted, "Number of loops deleted");
29
30 namespace {
31 class LoopDeletion : public LoopPass {
32 public:
33 static char ID; // Pass ID, replacement for typeid
LoopDeletion()34 LoopDeletion() : LoopPass(ID) {
35 initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
36 }
37
38 // Possibly eliminate loop L if it is dead.
39 bool runOnLoop(Loop *L, LPPassManager &) override;
40
getAnalysisUsage(AnalysisUsage & AU) const41 void getAnalysisUsage(AnalysisUsage &AU) const override {
42 AU.addRequired<DominatorTreeWrapperPass>();
43 AU.addRequired<LoopInfoWrapperPass>();
44 AU.addRequired<ScalarEvolutionWrapperPass>();
45 AU.addRequiredID(LoopSimplifyID);
46 AU.addRequiredID(LCSSAID);
47
48 AU.addPreserved<ScalarEvolutionWrapperPass>();
49 AU.addPreserved<DominatorTreeWrapperPass>();
50 AU.addPreserved<LoopInfoWrapperPass>();
51 AU.addPreserved<GlobalsAAWrapperPass>();
52 AU.addPreservedID(LoopSimplifyID);
53 AU.addPreservedID(LCSSAID);
54 }
55
56 private:
57 bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
58 SmallVectorImpl<BasicBlock *> &exitBlocks,
59 bool &Changed, BasicBlock *Preheader);
60
61 };
62 }
63
64 char LoopDeletion::ID = 0;
65 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
66 "Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)67 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
69 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
71 INITIALIZE_PASS_DEPENDENCY(LCSSA)
72 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
73 "Delete dead loops", false, false)
74
75 Pass *llvm::createLoopDeletionPass() {
76 return new LoopDeletion();
77 }
78
79 /// isLoopDead - Determined if a loop is dead. This assumes that we've already
80 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
81 /// form.
isLoopDead(Loop * L,SmallVectorImpl<BasicBlock * > & exitingBlocks,SmallVectorImpl<BasicBlock * > & exitBlocks,bool & Changed,BasicBlock * Preheader)82 bool LoopDeletion::isLoopDead(Loop *L,
83 SmallVectorImpl<BasicBlock *> &exitingBlocks,
84 SmallVectorImpl<BasicBlock *> &exitBlocks,
85 bool &Changed, BasicBlock *Preheader) {
86 BasicBlock *exitBlock = exitBlocks[0];
87
88 // Make sure that all PHI entries coming from the loop are loop invariant.
89 // Because the code is in LCSSA form, any values used outside of the loop
90 // must pass through a PHI in the exit block, meaning that this check is
91 // sufficient to guarantee that no loop-variant values are used outside
92 // of the loop.
93 BasicBlock::iterator BI = exitBlock->begin();
94 while (PHINode *P = dyn_cast<PHINode>(BI)) {
95 Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
96
97 // Make sure all exiting blocks produce the same incoming value for the exit
98 // block. If there are different incoming values for different exiting
99 // blocks, then it is impossible to statically determine which value should
100 // be used.
101 for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
102 if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
103 return false;
104 }
105
106 if (Instruction *I = dyn_cast<Instruction>(incoming))
107 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
108 return false;
109
110 ++BI;
111 }
112
113 // Make sure that no instructions in the block have potential side-effects.
114 // This includes instructions that could write to memory, and loads that are
115 // marked volatile. This could be made more aggressive by using aliasing
116 // information to identify readonly and readnone calls.
117 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
118 LI != LE; ++LI) {
119 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
120 BI != BE; ++BI) {
121 if (BI->mayHaveSideEffects())
122 return false;
123 }
124 }
125
126 return true;
127 }
128
129 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
130 /// observable behavior of the program other than finite running time. Note
131 /// we do ensure that this never remove a loop that might be infinite, as doing
132 /// so could change the halting/non-halting nature of a program.
133 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
134 /// in order to make various safety checks work.
runOnLoop(Loop * L,LPPassManager &)135 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &) {
136 if (skipOptnoneFunction(L))
137 return false;
138
139 // We can only remove the loop if there is a preheader that we can
140 // branch from after removing it.
141 BasicBlock *preheader = L->getLoopPreheader();
142 if (!preheader)
143 return false;
144
145 // If LoopSimplify form is not available, stay out of trouble.
146 if (!L->hasDedicatedExits())
147 return false;
148
149 // We can't remove loops that contain subloops. If the subloops were dead,
150 // they would already have been removed in earlier executions of this pass.
151 if (L->begin() != L->end())
152 return false;
153
154 SmallVector<BasicBlock*, 4> exitingBlocks;
155 L->getExitingBlocks(exitingBlocks);
156
157 SmallVector<BasicBlock*, 4> exitBlocks;
158 L->getUniqueExitBlocks(exitBlocks);
159
160 // We require that the loop only have a single exit block. Otherwise, we'd
161 // be in the situation of needing to be able to solve statically which exit
162 // block will be branched to, or trying to preserve the branching logic in
163 // a loop invariant manner.
164 if (exitBlocks.size() != 1)
165 return false;
166
167 // Finally, we have to check that the loop really is dead.
168 bool Changed = false;
169 if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
170 return Changed;
171
172 // Don't remove loops for which we can't solve the trip count.
173 // They could be infinite, in which case we'd be changing program behavior.
174 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
175 const SCEV *S = SE.getMaxBackedgeTakenCount(L);
176 if (isa<SCEVCouldNotCompute>(S))
177 return Changed;
178
179 // Now that we know the removal is safe, remove the loop by changing the
180 // branch from the preheader to go to the single exit block.
181 BasicBlock *exitBlock = exitBlocks[0];
182
183 // Because we're deleting a large chunk of code at once, the sequence in which
184 // we remove things is very important to avoid invalidation issues. Don't
185 // mess with this unless you have good reason and know what you're doing.
186
187 // Tell ScalarEvolution that the loop is deleted. Do this before
188 // deleting the loop so that ScalarEvolution can look at the loop
189 // to determine what it needs to clean up.
190 SE.forgetLoop(L);
191
192 // Connect the preheader directly to the exit block.
193 TerminatorInst *TI = preheader->getTerminator();
194 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
195
196 // Rewrite phis in the exit block to get their inputs from
197 // the preheader instead of the exiting block.
198 BasicBlock *exitingBlock = exitingBlocks[0];
199 BasicBlock::iterator BI = exitBlock->begin();
200 while (PHINode *P = dyn_cast<PHINode>(BI)) {
201 int j = P->getBasicBlockIndex(exitingBlock);
202 assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
203 P->setIncomingBlock(j, preheader);
204 for (unsigned i = 1; i < exitingBlocks.size(); ++i)
205 P->removeIncomingValue(exitingBlocks[i]);
206 ++BI;
207 }
208
209 // Update the dominator tree and remove the instructions and blocks that will
210 // be deleted from the reference counting scheme.
211 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
212 SmallVector<DomTreeNode*, 8> ChildNodes;
213 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
214 LI != LE; ++LI) {
215 // Move all of the block's children to be children of the preheader, which
216 // allows us to remove the domtree entry for the block.
217 ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
218 for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
219 DE = ChildNodes.end(); DI != DE; ++DI) {
220 DT.changeImmediateDominator(*DI, DT[preheader]);
221 }
222
223 ChildNodes.clear();
224 DT.eraseNode(*LI);
225
226 // Remove the block from the reference counting scheme, so that we can
227 // delete it freely later.
228 (*LI)->dropAllReferences();
229 }
230
231 // Erase the instructions and the blocks without having to worry
232 // about ordering because we already dropped the references.
233 // NOTE: This iteration is safe because erasing the block does not remove its
234 // entry from the loop's block list. We do that in the next section.
235 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
236 LI != LE; ++LI)
237 (*LI)->eraseFromParent();
238
239 // Finally, the blocks from loopinfo. This has to happen late because
240 // otherwise our loop iterators won't work.
241 LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
242 SmallPtrSet<BasicBlock*, 8> blocks;
243 blocks.insert(L->block_begin(), L->block_end());
244 for (BasicBlock *BB : blocks)
245 loopInfo.removeBlock(BB);
246
247 // The last step is to update LoopInfo now that we've eliminated this loop.
248 loopInfo.updateUnloop(L);
249 Changed = true;
250
251 ++NumDeleted;
252
253 return Changed;
254 }
255