1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 //   memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 //   fpowi
22 // Future integer operation idioms to recognize:
23 //   ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set.  It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop.  This would handle things like:
31 //   void foo(_Complex float *P)
32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/GlobalsModRef.h"
44 #include "llvm/Analysis/LoopPass.h"
45 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
46 #include "llvm/Analysis/ScalarEvolutionExpander.h"
47 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "loop-idiom"
62 
63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65 
66 namespace {
67 
68 class LoopIdiomRecognize : public LoopPass {
69   Loop *CurLoop;
70   AliasAnalysis *AA;
71   DominatorTree *DT;
72   LoopInfo *LI;
73   ScalarEvolution *SE;
74   TargetLibraryInfo *TLI;
75   const TargetTransformInfo *TTI;
76   const DataLayout *DL;
77 
78 public:
79   static char ID;
LoopIdiomRecognize()80   explicit LoopIdiomRecognize() : LoopPass(ID) {
81     initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
82   }
83 
84   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
85 
86   /// This transformation requires natural loop information & requires that
87   /// loop preheaders be inserted into the CFG.
88   ///
getAnalysisUsage(AnalysisUsage & AU) const89   void getAnalysisUsage(AnalysisUsage &AU) const override {
90     AU.addRequired<LoopInfoWrapperPass>();
91     AU.addPreserved<LoopInfoWrapperPass>();
92     AU.addRequiredID(LoopSimplifyID);
93     AU.addPreservedID(LoopSimplifyID);
94     AU.addRequiredID(LCSSAID);
95     AU.addPreservedID(LCSSAID);
96     AU.addRequired<AAResultsWrapperPass>();
97     AU.addPreserved<AAResultsWrapperPass>();
98     AU.addRequired<ScalarEvolutionWrapperPass>();
99     AU.addPreserved<ScalarEvolutionWrapperPass>();
100     AU.addPreserved<SCEVAAWrapperPass>();
101     AU.addRequired<DominatorTreeWrapperPass>();
102     AU.addPreserved<DominatorTreeWrapperPass>();
103     AU.addRequired<TargetLibraryInfoWrapperPass>();
104     AU.addRequired<TargetTransformInfoWrapperPass>();
105     AU.addPreserved<BasicAAWrapperPass>();
106     AU.addPreserved<GlobalsAAWrapperPass>();
107   }
108 
109 private:
110   typedef SmallVector<StoreInst *, 8> StoreList;
111   StoreList StoreRefs;
112 
113   /// \name Countable Loop Idiom Handling
114   /// @{
115 
116   bool runOnCountableLoop();
117   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
118                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
119 
120   void collectStores(BasicBlock *BB);
121   bool isLegalStore(StoreInst *SI);
122   bool processLoopStore(StoreInst *SI, const SCEV *BECount);
123   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
124 
125   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
126                                unsigned StoreAlignment, Value *SplatValue,
127                                Instruction *TheStore, const SCEVAddRecExpr *Ev,
128                                const SCEV *BECount, bool NegStride);
129   bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
130                                   const SCEVAddRecExpr *StoreEv,
131                                   const SCEV *BECount, bool NegStride);
132 
133   /// @}
134   /// \name Noncountable Loop Idiom Handling
135   /// @{
136 
137   bool runOnNoncountableLoop();
138 
139   bool recognizePopcount();
140   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
141                                PHINode *CntPhi, Value *Var);
142 
143   /// @}
144 };
145 
146 } // End anonymous namespace.
147 
148 char LoopIdiomRecognize::ID = 0;
149 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
150                       false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
154 INITIALIZE_PASS_DEPENDENCY(LCSSA)
155 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
158 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
162 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
163                     false, false)
164 
165 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
166 
167 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
168 /// and zero out all the operands of this instruction.  If any of them become
169 /// dead, delete them and the computation tree that feeds them.
170 ///
deleteDeadInstruction(Instruction * I,const TargetLibraryInfo * TLI)171 static void deleteDeadInstruction(Instruction *I,
172                                   const TargetLibraryInfo *TLI) {
173   SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end());
174   I->replaceAllUsesWith(UndefValue::get(I->getType()));
175   I->eraseFromParent();
176   for (Value *Op : Operands)
177     RecursivelyDeleteTriviallyDeadInstructions(Op, TLI);
178 }
179 
180 //===----------------------------------------------------------------------===//
181 //
182 //          Implementation of LoopIdiomRecognize
183 //
184 //===----------------------------------------------------------------------===//
185 
runOnLoop(Loop * L,LPPassManager & LPM)186 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
187   if (skipOptnoneFunction(L))
188     return false;
189 
190   CurLoop = L;
191   // If the loop could not be converted to canonical form, it must have an
192   // indirectbr in it, just give up.
193   if (!L->getLoopPreheader())
194     return false;
195 
196   // Disable loop idiom recognition if the function's name is a common idiom.
197   StringRef Name = L->getHeader()->getParent()->getName();
198   if (Name == "memset" || Name == "memcpy")
199     return false;
200 
201   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
202   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
203   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
204   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
205   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
206   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
207       *CurLoop->getHeader()->getParent());
208   DL = &CurLoop->getHeader()->getModule()->getDataLayout();
209 
210   if (SE->hasLoopInvariantBackedgeTakenCount(L))
211     return runOnCountableLoop();
212 
213   return runOnNoncountableLoop();
214 }
215 
runOnCountableLoop()216 bool LoopIdiomRecognize::runOnCountableLoop() {
217   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
218   assert(!isa<SCEVCouldNotCompute>(BECount) &&
219          "runOnCountableLoop() called on a loop without a predictable"
220          "backedge-taken count");
221 
222   // If this loop executes exactly one time, then it should be peeled, not
223   // optimized by this pass.
224   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
225     if (BECst->getAPInt() == 0)
226       return false;
227 
228   SmallVector<BasicBlock *, 8> ExitBlocks;
229   CurLoop->getUniqueExitBlocks(ExitBlocks);
230 
231   DEBUG(dbgs() << "loop-idiom Scanning: F["
232                << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
233                << CurLoop->getHeader()->getName() << "\n");
234 
235   bool MadeChange = false;
236   // Scan all the blocks in the loop that are not in subloops.
237   for (auto *BB : CurLoop->getBlocks()) {
238     // Ignore blocks in subloops.
239     if (LI->getLoopFor(BB) != CurLoop)
240       continue;
241 
242     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
243   }
244   return MadeChange;
245 }
246 
getStoreSizeInBytes(StoreInst * SI,const DataLayout * DL)247 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
248   uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
249   assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
250          "Don't overflow unsigned.");
251   return (unsigned)SizeInBits >> 3;
252 }
253 
getStoreStride(const SCEVAddRecExpr * StoreEv)254 static unsigned getStoreStride(const SCEVAddRecExpr *StoreEv) {
255   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
256   return ConstStride->getAPInt().getZExtValue();
257 }
258 
259 /// getMemSetPatternValue - If a strided store of the specified value is safe to
260 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
261 /// be passed in.  Otherwise, return null.
262 ///
263 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
264 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout * DL)265 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
266   // If the value isn't a constant, we can't promote it to being in a constant
267   // array.  We could theoretically do a store to an alloca or something, but
268   // that doesn't seem worthwhile.
269   Constant *C = dyn_cast<Constant>(V);
270   if (!C)
271     return nullptr;
272 
273   // Only handle simple values that are a power of two bytes in size.
274   uint64_t Size = DL->getTypeSizeInBits(V->getType());
275   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
276     return nullptr;
277 
278   // Don't care enough about darwin/ppc to implement this.
279   if (DL->isBigEndian())
280     return nullptr;
281 
282   // Convert to size in bytes.
283   Size /= 8;
284 
285   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
286   // if the top and bottom are the same (e.g. for vectors and large integers).
287   if (Size > 16)
288     return nullptr;
289 
290   // If the constant is exactly 16 bytes, just use it.
291   if (Size == 16)
292     return C;
293 
294   // Otherwise, we'll use an array of the constants.
295   unsigned ArraySize = 16 / Size;
296   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
297   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
298 }
299 
isLegalStore(StoreInst * SI)300 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
301   // Don't touch volatile stores.
302   if (!SI->isSimple())
303     return false;
304 
305   Value *StoredVal = SI->getValueOperand();
306   Value *StorePtr = SI->getPointerOperand();
307 
308   // Reject stores that are so large that they overflow an unsigned.
309   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
310   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
311     return false;
312 
313   // See if the pointer expression is an AddRec like {base,+,1} on the current
314   // loop, which indicates a strided store.  If we have something else, it's a
315   // random store we can't handle.
316   const SCEVAddRecExpr *StoreEv =
317       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
318   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
319     return false;
320 
321   // Check to see if we have a constant stride.
322   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
323     return false;
324 
325   return true;
326 }
327 
collectStores(BasicBlock * BB)328 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
329   StoreRefs.clear();
330   for (Instruction &I : *BB) {
331     StoreInst *SI = dyn_cast<StoreInst>(&I);
332     if (!SI)
333       continue;
334 
335     // Make sure this is a strided store with a constant stride.
336     if (!isLegalStore(SI))
337       continue;
338 
339     // Save the store locations.
340     StoreRefs.push_back(SI);
341   }
342 }
343 
344 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
345 /// with the specified backedge count.  This block is known to be in the current
346 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)347 bool LoopIdiomRecognize::runOnLoopBlock(
348     BasicBlock *BB, const SCEV *BECount,
349     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
350   // We can only promote stores in this block if they are unconditionally
351   // executed in the loop.  For a block to be unconditionally executed, it has
352   // to dominate all the exit blocks of the loop.  Verify this now.
353   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
354     if (!DT->dominates(BB, ExitBlocks[i]))
355       return false;
356 
357   bool MadeChange = false;
358   // Look for store instructions, which may be optimized to memset/memcpy.
359   collectStores(BB);
360   for (auto &SI : StoreRefs)
361     MadeChange |= processLoopStore(SI, BECount);
362 
363   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
364     Instruction *Inst = &*I++;
365     // Look for memset instructions, which may be optimized to a larger memset.
366     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
367       WeakVH InstPtr(&*I);
368       if (!processLoopMemSet(MSI, BECount))
369         continue;
370       MadeChange = true;
371 
372       // If processing the memset invalidated our iterator, start over from the
373       // top of the block.
374       if (!InstPtr)
375         I = BB->begin();
376       continue;
377     }
378   }
379 
380   return MadeChange;
381 }
382 
383 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
processLoopStore(StoreInst * SI,const SCEV * BECount)384 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
385   assert(SI->isSimple() && "Expected only non-volatile stores.");
386 
387   Value *StoredVal = SI->getValueOperand();
388   Value *StorePtr = SI->getPointerOperand();
389 
390   // Check to see if the stride matches the size of the store.  If so, then we
391   // know that every byte is touched in the loop.
392   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
393   unsigned Stride = getStoreStride(StoreEv);
394   unsigned StoreSize = getStoreSizeInBytes(SI, DL);
395   if (StoreSize != Stride && StoreSize != -Stride)
396     return false;
397 
398   bool NegStride = StoreSize == -Stride;
399 
400   // See if we can optimize just this store in isolation.
401   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
402                               StoredVal, SI, StoreEv, BECount, NegStride))
403     return true;
404 
405   // Optimize the store into a memcpy, if it feeds an similarly strided load.
406   return processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, BECount, NegStride);
407 }
408 
409 /// processLoopMemSet - See if this memset can be promoted to a large memset.
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)410 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
411                                            const SCEV *BECount) {
412   // We can only handle non-volatile memsets with a constant size.
413   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
414     return false;
415 
416   // If we're not allowed to hack on memset, we fail.
417   if (!TLI->has(LibFunc::memset))
418     return false;
419 
420   Value *Pointer = MSI->getDest();
421 
422   // See if the pointer expression is an AddRec like {base,+,1} on the current
423   // loop, which indicates a strided store.  If we have something else, it's a
424   // random store we can't handle.
425   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
426   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
427     return false;
428 
429   // Reject memsets that are so large that they overflow an unsigned.
430   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
431   if ((SizeInBytes >> 32) != 0)
432     return false;
433 
434   // Check to see if the stride matches the size of the memset.  If so, then we
435   // know that every byte is touched in the loop.
436   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
437 
438   // TODO: Could also handle negative stride here someday, that will require the
439   // validity check in mayLoopAccessLocation to be updated though.
440   if (!Stride || MSI->getLength() != Stride->getValue())
441     return false;
442 
443   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
444                                  MSI->getAlignment(), MSI->getValue(), MSI, Ev,
445                                  BECount, /*NegStride=*/false);
446 }
447 
448 /// mayLoopAccessLocation - Return true if the specified loop might access the
449 /// specified pointer location, which is a loop-strided access.  The 'Access'
450 /// argument specifies what the verboten forms of access are (read or write).
mayLoopAccessLocation(Value * Ptr,ModRefInfo Access,Loop * L,const SCEV * BECount,unsigned StoreSize,AliasAnalysis & AA,Instruction * IgnoredStore)451 static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
452                                   const SCEV *BECount, unsigned StoreSize,
453                                   AliasAnalysis &AA,
454                                   Instruction *IgnoredStore) {
455   // Get the location that may be stored across the loop.  Since the access is
456   // strided positively through memory, we say that the modified location starts
457   // at the pointer and has infinite size.
458   uint64_t AccessSize = MemoryLocation::UnknownSize;
459 
460   // If the loop iterates a fixed number of times, we can refine the access size
461   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
462   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
463     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
464 
465   // TODO: For this to be really effective, we have to dive into the pointer
466   // operand in the store.  Store to &A[i] of 100 will always return may alias
467   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
468   // which will then no-alias a store to &A[100].
469   MemoryLocation StoreLoc(Ptr, AccessSize);
470 
471   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
472        ++BI)
473     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
474       if (&*I != IgnoredStore && (AA.getModRefInfo(&*I, StoreLoc) & Access))
475         return true;
476 
477   return false;
478 }
479 
480 // If we have a negative stride, Start refers to the end of the memory location
481 // we're trying to memset.  Therefore, we need to recompute the base pointer,
482 // which is just Start - BECount*Size.
getStartForNegStride(const SCEV * Start,const SCEV * BECount,Type * IntPtr,unsigned StoreSize,ScalarEvolution * SE)483 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
484                                         Type *IntPtr, unsigned StoreSize,
485                                         ScalarEvolution *SE) {
486   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
487   if (StoreSize != 1)
488     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
489                            SCEV::FlagNUW);
490   return SE->getMinusSCEV(Start, Index);
491 }
492 
493 /// processLoopStridedStore - We see a strided store of some value.  If we can
494 /// transform this into a memset or memset_pattern in the loop preheader, do so.
processLoopStridedStore(Value * DestPtr,unsigned StoreSize,unsigned StoreAlignment,Value * StoredVal,Instruction * TheStore,const SCEVAddRecExpr * Ev,const SCEV * BECount,bool NegStride)495 bool LoopIdiomRecognize::processLoopStridedStore(
496     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
497     Value *StoredVal, Instruction *TheStore, const SCEVAddRecExpr *Ev,
498     const SCEV *BECount, bool NegStride) {
499 
500   // If the stored value is a byte-wise value (like i32 -1), then it may be
501   // turned into a memset of i8 -1, assuming that all the consecutive bytes
502   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
503   // but it can be turned into memset_pattern if the target supports it.
504   Value *SplatValue = isBytewiseValue(StoredVal);
505   Constant *PatternValue = nullptr;
506   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
507 
508   // If we're allowed to form a memset, and the stored value would be acceptable
509   // for memset, use it.
510   if (SplatValue && TLI->has(LibFunc::memset) &&
511       // Verify that the stored value is loop invariant.  If not, we can't
512       // promote the memset.
513       CurLoop->isLoopInvariant(SplatValue)) {
514     // Keep and use SplatValue.
515     PatternValue = nullptr;
516   } else if (DestAS == 0 && TLI->has(LibFunc::memset_pattern16) &&
517              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
518     // Don't create memset_pattern16s with address spaces.
519     // It looks like we can use PatternValue!
520     SplatValue = nullptr;
521   } else {
522     // Otherwise, this isn't an idiom we can transform.  For example, we can't
523     // do anything with a 3-byte store.
524     return false;
525   }
526 
527   // The trip count of the loop and the base pointer of the addrec SCEV is
528   // guaranteed to be loop invariant, which means that it should dominate the
529   // header.  This allows us to insert code for it in the preheader.
530   BasicBlock *Preheader = CurLoop->getLoopPreheader();
531   IRBuilder<> Builder(Preheader->getTerminator());
532   SCEVExpander Expander(*SE, *DL, "loop-idiom");
533 
534   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
535   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
536 
537   const SCEV *Start = Ev->getStart();
538   // Handle negative strided loops.
539   if (NegStride)
540     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
541 
542   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
543   // this into a memset in the loop preheader now if we want.  However, this
544   // would be unsafe to do if there is anything else in the loop that may read
545   // or write to the aliased location.  Check for any overlap by generating the
546   // base pointer and checking the region.
547   Value *BasePtr =
548       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
549   if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
550                             *AA, TheStore)) {
551     Expander.clear();
552     // If we generated new code for the base pointer, clean up.
553     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
554     return false;
555   }
556 
557   // Okay, everything looks good, insert the memset.
558 
559   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
560   // pointer size if it isn't already.
561   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
562 
563   const SCEV *NumBytesS =
564       SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
565   if (StoreSize != 1) {
566     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
567                                SCEV::FlagNUW);
568   }
569 
570   Value *NumBytes =
571       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
572 
573   CallInst *NewCall;
574   if (SplatValue) {
575     NewCall =
576         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
577   } else {
578     // Everything is emitted in default address space
579     Type *Int8PtrTy = DestInt8PtrTy;
580 
581     Module *M = TheStore->getModule();
582     Value *MSP =
583         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
584                                Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr);
585 
586     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
587     // an constant array of 16-bytes.  Plop the value into a mergable global.
588     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
589                                             GlobalValue::PrivateLinkage,
590                                             PatternValue, ".memset_pattern");
591     GV->setUnnamedAddr(true); // Ok to merge these.
592     GV->setAlignment(16);
593     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
594     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
595   }
596 
597   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
598                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
599   NewCall->setDebugLoc(TheStore->getDebugLoc());
600 
601   // Okay, the memset has been formed.  Zap the original store and anything that
602   // feeds into it.
603   deleteDeadInstruction(TheStore, TLI);
604   ++NumMemSet;
605   return true;
606 }
607 
608 /// If the stored value is a strided load in the same loop with the same stride
609 /// this may be transformable into a memcpy.  This kicks in for stuff like
610 ///   for (i) A[i] = B[i];
processLoopStoreOfLoopLoad(StoreInst * SI,unsigned StoreSize,const SCEVAddRecExpr * StoreEv,const SCEV * BECount,bool NegStride)611 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
612     StoreInst *SI, unsigned StoreSize, const SCEVAddRecExpr *StoreEv,
613     const SCEV *BECount, bool NegStride) {
614   // If we're not allowed to form memcpy, we fail.
615   if (!TLI->has(LibFunc::memcpy))
616     return false;
617 
618   // The store must be feeding a non-volatile load.
619   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
620   if (!LI || !LI->isSimple())
621     return false;
622 
623   // See if the pointer expression is an AddRec like {base,+,1} on the current
624   // loop, which indicates a strided load.  If we have something else, it's a
625   // random load we can't handle.
626   const SCEVAddRecExpr *LoadEv =
627       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
628   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
629     return false;
630 
631   // The store and load must share the same stride.
632   if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
633     return false;
634 
635   // The trip count of the loop and the base pointer of the addrec SCEV is
636   // guaranteed to be loop invariant, which means that it should dominate the
637   // header.  This allows us to insert code for it in the preheader.
638   BasicBlock *Preheader = CurLoop->getLoopPreheader();
639   IRBuilder<> Builder(Preheader->getTerminator());
640   SCEVExpander Expander(*SE, *DL, "loop-idiom");
641 
642   const SCEV *StrStart = StoreEv->getStart();
643   unsigned StrAS = SI->getPointerAddressSpace();
644   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
645 
646   // Handle negative strided loops.
647   if (NegStride)
648     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
649 
650   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
651   // this into a memcpy in the loop preheader now if we want.  However, this
652   // would be unsafe to do if there is anything else in the loop that may read
653   // or write the memory region we're storing to.  This includes the load that
654   // feeds the stores.  Check for an alias by generating the base address and
655   // checking everything.
656   Value *StoreBasePtr = Expander.expandCodeFor(
657       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
658 
659   if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
660                             StoreSize, *AA, SI)) {
661     Expander.clear();
662     // If we generated new code for the base pointer, clean up.
663     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
664     return false;
665   }
666 
667   const SCEV *LdStart = LoadEv->getStart();
668   unsigned LdAS = LI->getPointerAddressSpace();
669 
670   // Handle negative strided loops.
671   if (NegStride)
672     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
673 
674   // For a memcpy, we have to make sure that the input array is not being
675   // mutated by the loop.
676   Value *LoadBasePtr = Expander.expandCodeFor(
677       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
678 
679   if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
680                             *AA, SI)) {
681     Expander.clear();
682     // If we generated new code for the base pointer, clean up.
683     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
684     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
685     return false;
686   }
687 
688   // Okay, everything is safe, we can transform this!
689 
690   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
691   // pointer size if it isn't already.
692   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
693 
694   const SCEV *NumBytesS =
695       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
696   if (StoreSize != 1)
697     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
698                                SCEV::FlagNUW);
699 
700   Value *NumBytes =
701       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
702 
703   CallInst *NewCall =
704       Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
705                            std::min(SI->getAlignment(), LI->getAlignment()));
706   NewCall->setDebugLoc(SI->getDebugLoc());
707 
708   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
709                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
710                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
711 
712   // Okay, the memcpy has been formed.  Zap the original store and anything that
713   // feeds into it.
714   deleteDeadInstruction(SI, TLI);
715   ++NumMemCpy;
716   return true;
717 }
718 
runOnNoncountableLoop()719 bool LoopIdiomRecognize::runOnNoncountableLoop() {
720   return recognizePopcount();
721 }
722 
723 /// Check if the given conditional branch is based on the comparison between
724 /// a variable and zero, and if the variable is non-zero, the control yields to
725 /// the loop entry. If the branch matches the behavior, the variable involved
726 /// in the comparion is returned. This function will be called to see if the
727 /// precondition and postcondition of the loop are in desirable form.
matchCondition(BranchInst * BI,BasicBlock * LoopEntry)728 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
729   if (!BI || !BI->isConditional())
730     return nullptr;
731 
732   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
733   if (!Cond)
734     return nullptr;
735 
736   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
737   if (!CmpZero || !CmpZero->isZero())
738     return nullptr;
739 
740   ICmpInst::Predicate Pred = Cond->getPredicate();
741   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
742       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
743     return Cond->getOperand(0);
744 
745   return nullptr;
746 }
747 
748 /// Return true iff the idiom is detected in the loop.
749 ///
750 /// Additionally:
751 /// 1) \p CntInst is set to the instruction counting the population bit.
752 /// 2) \p CntPhi is set to the corresponding phi node.
753 /// 3) \p Var is set to the value whose population bits are being counted.
754 ///
755 /// The core idiom we are trying to detect is:
756 /// \code
757 ///    if (x0 != 0)
758 ///      goto loop-exit // the precondition of the loop
759 ///    cnt0 = init-val;
760 ///    do {
761 ///       x1 = phi (x0, x2);
762 ///       cnt1 = phi(cnt0, cnt2);
763 ///
764 ///       cnt2 = cnt1 + 1;
765 ///        ...
766 ///       x2 = x1 & (x1 - 1);
767 ///        ...
768 ///    } while(x != 0);
769 ///
770 /// loop-exit:
771 /// \endcode
detectPopcountIdiom(Loop * CurLoop,BasicBlock * PreCondBB,Instruction * & CntInst,PHINode * & CntPhi,Value * & Var)772 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
773                                 Instruction *&CntInst, PHINode *&CntPhi,
774                                 Value *&Var) {
775   // step 1: Check to see if the look-back branch match this pattern:
776   //    "if (a!=0) goto loop-entry".
777   BasicBlock *LoopEntry;
778   Instruction *DefX2, *CountInst;
779   Value *VarX1, *VarX0;
780   PHINode *PhiX, *CountPhi;
781 
782   DefX2 = CountInst = nullptr;
783   VarX1 = VarX0 = nullptr;
784   PhiX = CountPhi = nullptr;
785   LoopEntry = *(CurLoop->block_begin());
786 
787   // step 1: Check if the loop-back branch is in desirable form.
788   {
789     if (Value *T = matchCondition(
790             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
791       DefX2 = dyn_cast<Instruction>(T);
792     else
793       return false;
794   }
795 
796   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
797   {
798     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
799       return false;
800 
801     BinaryOperator *SubOneOp;
802 
803     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
804       VarX1 = DefX2->getOperand(1);
805     else {
806       VarX1 = DefX2->getOperand(0);
807       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
808     }
809     if (!SubOneOp)
810       return false;
811 
812     Instruction *SubInst = cast<Instruction>(SubOneOp);
813     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
814     if (!Dec ||
815         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
816           (SubInst->getOpcode() == Instruction::Add &&
817            Dec->isAllOnesValue()))) {
818       return false;
819     }
820   }
821 
822   // step 3: Check the recurrence of variable X
823   {
824     PhiX = dyn_cast<PHINode>(VarX1);
825     if (!PhiX ||
826         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
827       return false;
828     }
829   }
830 
831   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
832   {
833     CountInst = nullptr;
834     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
835                               IterE = LoopEntry->end();
836          Iter != IterE; Iter++) {
837       Instruction *Inst = &*Iter;
838       if (Inst->getOpcode() != Instruction::Add)
839         continue;
840 
841       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
842       if (!Inc || !Inc->isOne())
843         continue;
844 
845       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
846       if (!Phi || Phi->getParent() != LoopEntry)
847         continue;
848 
849       // Check if the result of the instruction is live of the loop.
850       bool LiveOutLoop = false;
851       for (User *U : Inst->users()) {
852         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
853           LiveOutLoop = true;
854           break;
855         }
856       }
857 
858       if (LiveOutLoop) {
859         CountInst = Inst;
860         CountPhi = Phi;
861         break;
862       }
863     }
864 
865     if (!CountInst)
866       return false;
867   }
868 
869   // step 5: check if the precondition is in this form:
870   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
871   {
872     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
873     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
874     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
875       return false;
876 
877     CntInst = CountInst;
878     CntPhi = CountPhi;
879     Var = T;
880   }
881 
882   return true;
883 }
884 
885 /// Recognizes a population count idiom in a non-countable loop.
886 ///
887 /// If detected, transforms the relevant code to issue the popcount intrinsic
888 /// function call, and returns true; otherwise, returns false.
recognizePopcount()889 bool LoopIdiomRecognize::recognizePopcount() {
890   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
891     return false;
892 
893   // Counting population are usually conducted by few arithmetic instructions.
894   // Such instructions can be easily "absorbed" by vacant slots in a
895   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
896   // in a compact loop.
897 
898   // Give up if the loop has multiple blocks or multiple backedges.
899   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
900     return false;
901 
902   BasicBlock *LoopBody = *(CurLoop->block_begin());
903   if (LoopBody->size() >= 20) {
904     // The loop is too big, bail out.
905     return false;
906   }
907 
908   // It should have a preheader containing nothing but an unconditional branch.
909   BasicBlock *PH = CurLoop->getLoopPreheader();
910   if (!PH)
911     return false;
912   if (&PH->front() != PH->getTerminator())
913     return false;
914   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
915   if (!EntryBI || EntryBI->isConditional())
916     return false;
917 
918   // It should have a precondition block where the generated popcount instrinsic
919   // function can be inserted.
920   auto *PreCondBB = PH->getSinglePredecessor();
921   if (!PreCondBB)
922     return false;
923   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
924   if (!PreCondBI || PreCondBI->isUnconditional())
925     return false;
926 
927   Instruction *CntInst;
928   PHINode *CntPhi;
929   Value *Val;
930   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
931     return false;
932 
933   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
934   return true;
935 }
936 
createPopcntIntrinsic(IRBuilder<> & IRBuilder,Value * Val,DebugLoc DL)937 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
938                                        DebugLoc DL) {
939   Value *Ops[] = {Val};
940   Type *Tys[] = {Val->getType()};
941 
942   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
943   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
944   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
945   CI->setDebugLoc(DL);
946 
947   return CI;
948 }
949 
transformLoopToPopcount(BasicBlock * PreCondBB,Instruction * CntInst,PHINode * CntPhi,Value * Var)950 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
951                                                  Instruction *CntInst,
952                                                  PHINode *CntPhi, Value *Var) {
953   BasicBlock *PreHead = CurLoop->getLoopPreheader();
954   auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
955   const DebugLoc DL = CntInst->getDebugLoc();
956 
957   // Assuming before transformation, the loop is following:
958   //  if (x) // the precondition
959   //     do { cnt++; x &= x - 1; } while(x);
960 
961   // Step 1: Insert the ctpop instruction at the end of the precondition block
962   IRBuilder<> Builder(PreCondBr);
963   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
964   {
965     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
966     NewCount = PopCntZext =
967         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
968 
969     if (NewCount != PopCnt)
970       (cast<Instruction>(NewCount))->setDebugLoc(DL);
971 
972     // TripCnt is exactly the number of iterations the loop has
973     TripCnt = NewCount;
974 
975     // If the population counter's initial value is not zero, insert Add Inst.
976     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
977     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
978     if (!InitConst || !InitConst->isZero()) {
979       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
980       (cast<Instruction>(NewCount))->setDebugLoc(DL);
981     }
982   }
983 
984   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
985   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
986   //   function would be partial dead code, and downstream passes will drag
987   //   it back from the precondition block to the preheader.
988   {
989     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
990 
991     Value *Opnd0 = PopCntZext;
992     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
993     if (PreCond->getOperand(0) != Var)
994       std::swap(Opnd0, Opnd1);
995 
996     ICmpInst *NewPreCond = cast<ICmpInst>(
997         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
998     PreCondBr->setCondition(NewPreCond);
999 
1000     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1001   }
1002 
1003   // Step 3: Note that the population count is exactly the trip count of the
1004   // loop in question, which enable us to to convert the loop from noncountable
1005   // loop into a countable one. The benefit is twofold:
1006   //
1007   //  - If the loop only counts population, the entire loop becomes dead after
1008   //    the transformation. It is a lot easier to prove a countable loop dead
1009   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1010   //    isn't dead even if it computes nothing useful. In general, DCE needs
1011   //    to prove a noncountable loop finite before safely delete it.)
1012   //
1013   //  - If the loop also performs something else, it remains alive.
1014   //    Since it is transformed to countable form, it can be aggressively
1015   //    optimized by some optimizations which are in general not applicable
1016   //    to a noncountable loop.
1017   //
1018   // After this step, this loop (conceptually) would look like following:
1019   //   newcnt = __builtin_ctpop(x);
1020   //   t = newcnt;
1021   //   if (x)
1022   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1023   BasicBlock *Body = *(CurLoop->block_begin());
1024   {
1025     auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
1026     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1027     Type *Ty = TripCnt->getType();
1028 
1029     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1030 
1031     Builder.SetInsertPoint(LbCond);
1032     Instruction *TcDec = cast<Instruction>(
1033         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1034                           "tcdec", false, true));
1035 
1036     TcPhi->addIncoming(TripCnt, PreHead);
1037     TcPhi->addIncoming(TcDec, Body);
1038 
1039     CmpInst::Predicate Pred =
1040         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1041     LbCond->setPredicate(Pred);
1042     LbCond->setOperand(0, TcDec);
1043     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1044   }
1045 
1046   // Step 4: All the references to the original population counter outside
1047   //  the loop are replaced with the NewCount -- the value returned from
1048   //  __builtin_ctpop().
1049   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1050 
1051   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1052   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1053   SE->forgetLoop(CurLoop);
1054 }
1055