1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
38 #include "llvm/Transforms/Utils/ValueMapper.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-rotate"
42 
43 static cl::opt<unsigned>
44 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
45        cl::desc("The default maximum header size for automatic loop rotation"));
46 
47 STATISTIC(NumRotated, "Number of loops rotated");
48 
49 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
50 /// old header into the preheader.  If there were uses of the values produced by
51 /// these instruction that were outside of the loop, we have to insert PHI nodes
52 /// to merge the two values.  Do this now.
RewriteUsesOfClonedInstructions(BasicBlock * OrigHeader,BasicBlock * OrigPreheader,ValueToValueMapTy & ValueMap)53 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
54                                             BasicBlock *OrigPreheader,
55                                             ValueToValueMapTy &ValueMap) {
56   // Remove PHI node entries that are no longer live.
57   BasicBlock::iterator I, E = OrigHeader->end();
58   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
59     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
60 
61   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
62   // as necessary.
63   SSAUpdater SSA;
64   for (I = OrigHeader->begin(); I != E; ++I) {
65     Value *OrigHeaderVal = &*I;
66 
67     // If there are no uses of the value (e.g. because it returns void), there
68     // is nothing to rewrite.
69     if (OrigHeaderVal->use_empty())
70       continue;
71 
72     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
73 
74     // The value now exits in two versions: the initial value in the preheader
75     // and the loop "next" value in the original header.
76     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
77     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
78     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
79 
80     // Visit each use of the OrigHeader instruction.
81     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
82          UE = OrigHeaderVal->use_end(); UI != UE; ) {
83       // Grab the use before incrementing the iterator.
84       Use &U = *UI;
85 
86       // Increment the iterator before removing the use from the list.
87       ++UI;
88 
89       // SSAUpdater can't handle a non-PHI use in the same block as an
90       // earlier def. We can easily handle those cases manually.
91       Instruction *UserInst = cast<Instruction>(U.getUser());
92       if (!isa<PHINode>(UserInst)) {
93         BasicBlock *UserBB = UserInst->getParent();
94 
95         // The original users in the OrigHeader are already using the
96         // original definitions.
97         if (UserBB == OrigHeader)
98           continue;
99 
100         // Users in the OrigPreHeader need to use the value to which the
101         // original definitions are mapped.
102         if (UserBB == OrigPreheader) {
103           U = OrigPreHeaderVal;
104           continue;
105         }
106       }
107 
108       // Anything else can be handled by SSAUpdater.
109       SSA.RewriteUse(U);
110     }
111   }
112 }
113 
114 /// Rotate loop LP. Return true if the loop is rotated.
115 ///
116 /// \param SimplifiedLatch is true if the latch was just folded into the final
117 /// loop exit. In this case we may want to rotate even though the new latch is
118 /// now an exiting branch. This rotation would have happened had the latch not
119 /// been simplified. However, if SimplifiedLatch is false, then we avoid
120 /// rotating loops in which the latch exits to avoid excessive or endless
121 /// rotation. LoopRotate should be repeatable and converge to a canonical
122 /// form. This property is satisfied because simplifying the loop latch can only
123 /// happen once across multiple invocations of the LoopRotate pass.
rotateLoop(Loop * L,unsigned MaxHeaderSize,LoopInfo * LI,const TargetTransformInfo * TTI,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE,bool SimplifiedLatch)124 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
125                        const TargetTransformInfo *TTI, AssumptionCache *AC,
126                        DominatorTree *DT, ScalarEvolution *SE,
127                        bool SimplifiedLatch) {
128   // If the loop has only one block then there is not much to rotate.
129   if (L->getBlocks().size() == 1)
130     return false;
131 
132   BasicBlock *OrigHeader = L->getHeader();
133   BasicBlock *OrigLatch = L->getLoopLatch();
134 
135   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
136   if (!BI || BI->isUnconditional())
137     return false;
138 
139   // If the loop header is not one of the loop exiting blocks then
140   // either this loop is already rotated or it is not
141   // suitable for loop rotation transformations.
142   if (!L->isLoopExiting(OrigHeader))
143     return false;
144 
145   // If the loop latch already contains a branch that leaves the loop then the
146   // loop is already rotated.
147   if (!OrigLatch)
148     return false;
149 
150   // Rotate if either the loop latch does *not* exit the loop, or if the loop
151   // latch was just simplified.
152   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
153     return false;
154 
155   // Check size of original header and reject loop if it is very big or we can't
156   // duplicate blocks inside it.
157   {
158     SmallPtrSet<const Value *, 32> EphValues;
159     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
160 
161     CodeMetrics Metrics;
162     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
163     if (Metrics.notDuplicatable) {
164       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
165             << " instructions: "; L->dump());
166       return false;
167     }
168     if (Metrics.NumInsts > MaxHeaderSize)
169       return false;
170   }
171 
172   // Now, this loop is suitable for rotation.
173   BasicBlock *OrigPreheader = L->getLoopPreheader();
174 
175   // If the loop could not be converted to canonical form, it must have an
176   // indirectbr in it, just give up.
177   if (!OrigPreheader)
178     return false;
179 
180   // Anything ScalarEvolution may know about this loop or the PHI nodes
181   // in its header will soon be invalidated.
182   if (SE)
183     SE->forgetLoop(L);
184 
185   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
186 
187   // Find new Loop header. NewHeader is a Header's one and only successor
188   // that is inside loop.  Header's other successor is outside the
189   // loop.  Otherwise loop is not suitable for rotation.
190   BasicBlock *Exit = BI->getSuccessor(0);
191   BasicBlock *NewHeader = BI->getSuccessor(1);
192   if (L->contains(Exit))
193     std::swap(Exit, NewHeader);
194   assert(NewHeader && "Unable to determine new loop header");
195   assert(L->contains(NewHeader) && !L->contains(Exit) &&
196          "Unable to determine loop header and exit blocks");
197 
198   // This code assumes that the new header has exactly one predecessor.
199   // Remove any single-entry PHI nodes in it.
200   assert(NewHeader->getSinglePredecessor() &&
201          "New header doesn't have one pred!");
202   FoldSingleEntryPHINodes(NewHeader);
203 
204   // Begin by walking OrigHeader and populating ValueMap with an entry for
205   // each Instruction.
206   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
207   ValueToValueMapTy ValueMap;
208 
209   // For PHI nodes, the value available in OldPreHeader is just the
210   // incoming value from OldPreHeader.
211   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
212     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
213 
214   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
215 
216   // For the rest of the instructions, either hoist to the OrigPreheader if
217   // possible or create a clone in the OldPreHeader if not.
218   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
219   while (I != E) {
220     Instruction *Inst = &*I++;
221 
222     // If the instruction's operands are invariant and it doesn't read or write
223     // memory, then it is safe to hoist.  Doing this doesn't change the order of
224     // execution in the preheader, but does prevent the instruction from
225     // executing in each iteration of the loop.  This means it is safe to hoist
226     // something that might trap, but isn't safe to hoist something that reads
227     // memory (without proving that the loop doesn't write).
228     if (L->hasLoopInvariantOperands(Inst) &&
229         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
230         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
231         !isa<AllocaInst>(Inst)) {
232       Inst->moveBefore(LoopEntryBranch);
233       continue;
234     }
235 
236     // Otherwise, create a duplicate of the instruction.
237     Instruction *C = Inst->clone();
238 
239     // Eagerly remap the operands of the instruction.
240     RemapInstruction(C, ValueMap,
241                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
242 
243     // With the operands remapped, see if the instruction constant folds or is
244     // otherwise simplifyable.  This commonly occurs because the entry from PHI
245     // nodes allows icmps and other instructions to fold.
246     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
247     Value *V = SimplifyInstruction(C, DL);
248     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
249       // If so, then delete the temporary instruction and stick the folded value
250       // in the map.
251       delete C;
252       ValueMap[Inst] = V;
253     } else {
254       // Otherwise, stick the new instruction into the new block!
255       C->setName(Inst->getName());
256       C->insertBefore(LoopEntryBranch);
257       ValueMap[Inst] = C;
258     }
259   }
260 
261   // Along with all the other instructions, we just cloned OrigHeader's
262   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
263   // successors by duplicating their incoming values for OrigHeader.
264   TerminatorInst *TI = OrigHeader->getTerminator();
265   for (BasicBlock *SuccBB : TI->successors())
266     for (BasicBlock::iterator BI = SuccBB->begin();
267          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
268       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
269 
270   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
271   // OrigPreHeader's old terminator (the original branch into the loop), and
272   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
273   LoopEntryBranch->eraseFromParent();
274 
275   // If there were any uses of instructions in the duplicated block outside the
276   // loop, update them, inserting PHI nodes as required
277   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
278 
279   // NewHeader is now the header of the loop.
280   L->moveToHeader(NewHeader);
281   assert(L->getHeader() == NewHeader && "Latch block is our new header");
282 
283 
284   // At this point, we've finished our major CFG changes.  As part of cloning
285   // the loop into the preheader we've simplified instructions and the
286   // duplicated conditional branch may now be branching on a constant.  If it is
287   // branching on a constant and if that constant means that we enter the loop,
288   // then we fold away the cond branch to an uncond branch.  This simplifies the
289   // loop in cases important for nested loops, and it also means we don't have
290   // to split as many edges.
291   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
292   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
293   if (!isa<ConstantInt>(PHBI->getCondition()) ||
294       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
295           != NewHeader) {
296     // The conditional branch can't be folded, handle the general case.
297     // Update DominatorTree to reflect the CFG change we just made.  Then split
298     // edges as necessary to preserve LoopSimplify form.
299     if (DT) {
300       // Everything that was dominated by the old loop header is now dominated
301       // by the original loop preheader. Conceptually the header was merged
302       // into the preheader, even though we reuse the actual block as a new
303       // loop latch.
304       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
305       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
306                                                    OrigHeaderNode->end());
307       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
308       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
309         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
310 
311       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
312       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
313 
314       // Update OrigHeader to be dominated by the new header block.
315       DT->changeImmediateDominator(OrigHeader, OrigLatch);
316     }
317 
318     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
319     // thus is not a preheader anymore.
320     // Split the edge to form a real preheader.
321     BasicBlock *NewPH = SplitCriticalEdge(
322         OrigPreheader, NewHeader,
323         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
324     NewPH->setName(NewHeader->getName() + ".lr.ph");
325 
326     // Preserve canonical loop form, which means that 'Exit' should have only
327     // one predecessor. Note that Exit could be an exit block for multiple
328     // nested loops, causing both of the edges to now be critical and need to
329     // be split.
330     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
331     bool SplitLatchEdge = false;
332     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
333                                                  PE = ExitPreds.end();
334          PI != PE; ++PI) {
335       // We only need to split loop exit edges.
336       Loop *PredLoop = LI->getLoopFor(*PI);
337       if (!PredLoop || PredLoop->contains(Exit))
338         continue;
339       if (isa<IndirectBrInst>((*PI)->getTerminator()))
340         continue;
341       SplitLatchEdge |= L->getLoopLatch() == *PI;
342       BasicBlock *ExitSplit = SplitCriticalEdge(
343           *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
344       ExitSplit->moveBefore(Exit);
345     }
346     assert(SplitLatchEdge &&
347            "Despite splitting all preds, failed to split latch exit?");
348   } else {
349     // We can fold the conditional branch in the preheader, this makes things
350     // simpler. The first step is to remove the extra edge to the Exit block.
351     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
352     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
353     NewBI->setDebugLoc(PHBI->getDebugLoc());
354     PHBI->eraseFromParent();
355 
356     // With our CFG finalized, update DomTree if it is available.
357     if (DT) {
358       // Update OrigHeader to be dominated by the new header block.
359       DT->changeImmediateDominator(NewHeader, OrigPreheader);
360       DT->changeImmediateDominator(OrigHeader, OrigLatch);
361 
362       // Brute force incremental dominator tree update. Call
363       // findNearestCommonDominator on all CFG predecessors of each child of the
364       // original header.
365       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
366       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
367                                                    OrigHeaderNode->end());
368       bool Changed;
369       do {
370         Changed = false;
371         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
372           DomTreeNode *Node = HeaderChildren[I];
373           BasicBlock *BB = Node->getBlock();
374 
375           pred_iterator PI = pred_begin(BB);
376           BasicBlock *NearestDom = *PI;
377           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
378             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
379 
380           // Remember if this changes the DomTree.
381           if (Node->getIDom()->getBlock() != NearestDom) {
382             DT->changeImmediateDominator(BB, NearestDom);
383             Changed = true;
384           }
385         }
386 
387       // If the dominator changed, this may have an effect on other
388       // predecessors, continue until we reach a fixpoint.
389       } while (Changed);
390     }
391   }
392 
393   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
394   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
395 
396   // Now that the CFG and DomTree are in a consistent state again, try to merge
397   // the OrigHeader block into OrigLatch.  This will succeed if they are
398   // connected by an unconditional branch.  This is just a cleanup so the
399   // emitted code isn't too gross in this common case.
400   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
401 
402   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
403 
404   ++NumRotated;
405   return true;
406 }
407 
408 /// Determine whether the instructions in this range may be safely and cheaply
409 /// speculated. This is not an important enough situation to develop complex
410 /// heuristics. We handle a single arithmetic instruction along with any type
411 /// conversions.
shouldSpeculateInstrs(BasicBlock::iterator Begin,BasicBlock::iterator End,Loop * L)412 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
413                                   BasicBlock::iterator End, Loop *L) {
414   bool seenIncrement = false;
415   bool MultiExitLoop = false;
416 
417   if (!L->getExitingBlock())
418     MultiExitLoop = true;
419 
420   for (BasicBlock::iterator I = Begin; I != End; ++I) {
421 
422     if (!isSafeToSpeculativelyExecute(&*I))
423       return false;
424 
425     if (isa<DbgInfoIntrinsic>(I))
426       continue;
427 
428     switch (I->getOpcode()) {
429     default:
430       return false;
431     case Instruction::GetElementPtr:
432       // GEPs are cheap if all indices are constant.
433       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
434         return false;
435       // fall-thru to increment case
436     case Instruction::Add:
437     case Instruction::Sub:
438     case Instruction::And:
439     case Instruction::Or:
440     case Instruction::Xor:
441     case Instruction::Shl:
442     case Instruction::LShr:
443     case Instruction::AShr: {
444       Value *IVOpnd = !isa<Constant>(I->getOperand(0))
445                           ? I->getOperand(0)
446                           : !isa<Constant>(I->getOperand(1))
447                                 ? I->getOperand(1)
448                                 : nullptr;
449       if (!IVOpnd)
450         return false;
451 
452       // If increment operand is used outside of the loop, this speculation
453       // could cause extra live range interference.
454       if (MultiExitLoop) {
455         for (User *UseI : IVOpnd->users()) {
456           auto *UserInst = cast<Instruction>(UseI);
457           if (!L->contains(UserInst))
458             return false;
459         }
460       }
461 
462       if (seenIncrement)
463         return false;
464       seenIncrement = true;
465       break;
466     }
467     case Instruction::Trunc:
468     case Instruction::ZExt:
469     case Instruction::SExt:
470       // ignore type conversions
471       break;
472     }
473   }
474   return true;
475 }
476 
477 /// Fold the loop tail into the loop exit by speculating the loop tail
478 /// instructions. Typically, this is a single post-increment. In the case of a
479 /// simple 2-block loop, hoisting the increment can be much better than
480 /// duplicating the entire loop header. In the case of loops with early exits,
481 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
482 /// canonical form so downstream passes can handle it.
483 ///
484 /// I don't believe this invalidates SCEV.
simplifyLoopLatch(Loop * L,LoopInfo * LI,DominatorTree * DT)485 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) {
486   BasicBlock *Latch = L->getLoopLatch();
487   if (!Latch || Latch->hasAddressTaken())
488     return false;
489 
490   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
491   if (!Jmp || !Jmp->isUnconditional())
492     return false;
493 
494   BasicBlock *LastExit = Latch->getSinglePredecessor();
495   if (!LastExit || !L->isLoopExiting(LastExit))
496     return false;
497 
498   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
499   if (!BI)
500     return false;
501 
502   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
503     return false;
504 
505   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
506         << LastExit->getName() << "\n");
507 
508   // Hoist the instructions from Latch into LastExit.
509   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
510                                  Latch->begin(), Jmp->getIterator());
511 
512   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
513   BasicBlock *Header = Jmp->getSuccessor(0);
514   assert(Header == L->getHeader() && "expected a backward branch");
515 
516   // Remove Latch from the CFG so that LastExit becomes the new Latch.
517   BI->setSuccessor(FallThruPath, Header);
518   Latch->replaceSuccessorsPhiUsesWith(LastExit);
519   Jmp->eraseFromParent();
520 
521   // Nuke the Latch block.
522   assert(Latch->empty() && "unable to evacuate Latch");
523   LI->removeBlock(Latch);
524   if (DT)
525     DT->eraseNode(Latch);
526   Latch->eraseFromParent();
527   return true;
528 }
529 
530 /// Rotate \c L as many times as possible. Return true if the loop is rotated
531 /// at least once.
iterativelyRotateLoop(Loop * L,unsigned MaxHeaderSize,LoopInfo * LI,const TargetTransformInfo * TTI,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE)532 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
533                                   const TargetTransformInfo *TTI,
534                                   AssumptionCache *AC, DominatorTree *DT,
535                                   ScalarEvolution *SE) {
536   // Save the loop metadata.
537   MDNode *LoopMD = L->getLoopID();
538 
539   // Simplify the loop latch before attempting to rotate the header
540   // upward. Rotation may not be needed if the loop tail can be folded into the
541   // loop exit.
542   bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT);
543 
544   // One loop can be rotated multiple times.
545   bool MadeChange = false;
546   while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) {
547     MadeChange = true;
548     SimplifiedLatch = false;
549   }
550 
551   // Restore the loop metadata.
552   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
553   if ((MadeChange || SimplifiedLatch) && LoopMD)
554     L->setLoopID(LoopMD);
555 
556   return MadeChange;
557 }
558 
559 namespace {
560 
561 class LoopRotate : public LoopPass {
562   unsigned MaxHeaderSize;
563 
564 public:
565   static char ID; // Pass ID, replacement for typeid
LoopRotate(int SpecifiedMaxHeaderSize=-1)566   LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
567     initializeLoopRotatePass(*PassRegistry::getPassRegistry());
568     if (SpecifiedMaxHeaderSize == -1)
569       MaxHeaderSize = DefaultRotationThreshold;
570     else
571       MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
572   }
573 
574   // LCSSA form makes instruction renaming easier.
getAnalysisUsage(AnalysisUsage & AU) const575   void getAnalysisUsage(AnalysisUsage &AU) const override {
576     AU.addPreserved<AAResultsWrapperPass>();
577     AU.addRequired<AssumptionCacheTracker>();
578     AU.addPreserved<DominatorTreeWrapperPass>();
579     AU.addRequired<LoopInfoWrapperPass>();
580     AU.addPreserved<LoopInfoWrapperPass>();
581     AU.addRequiredID(LoopSimplifyID);
582     AU.addPreservedID(LoopSimplifyID);
583     AU.addRequiredID(LCSSAID);
584     AU.addPreservedID(LCSSAID);
585     AU.addPreserved<ScalarEvolutionWrapperPass>();
586     AU.addPreserved<SCEVAAWrapperPass>();
587     AU.addRequired<TargetTransformInfoWrapperPass>();
588     AU.addPreserved<BasicAAWrapperPass>();
589     AU.addPreserved<GlobalsAAWrapperPass>();
590   }
591 
runOnLoop(Loop * L,LPPassManager & LPM)592   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
593     if (skipOptnoneFunction(L))
594       return false;
595     Function &F = *L->getHeader()->getParent();
596 
597     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
598     const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
599     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
600     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
601     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
602     auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
603     auto *SE = SEWP ? &SEWP->getSE() : nullptr;
604 
605     return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE);
606   }
607 };
608 }
609 
610 char LoopRotate::ID = 0;
611 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)612 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
613 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
614 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
615 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
616 INITIALIZE_PASS_DEPENDENCY(LCSSA)
617 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
618 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
619 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
620 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
621 
622 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
623   return new LoopRotate(MaxHeaderSize);
624 }
625