1 //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachO-specific dumper for llvm-objdump.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm-objdump.h"
15 #include "llvm-c/Disassembler.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/config.h"
21 #include "llvm/DebugInfo/DIContext.h"
22 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCDisassembler.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCInstPrinter.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/Object/MachO.h"
33 #include "llvm/Object/MachOUniversal.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/FormattedStream.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/LEB128.h"
42 #include "llvm/Support/MachO.h"
43 #include "llvm/Support/MemoryBuffer.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/TargetSelect.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <system_error>
50
51 #if HAVE_CXXABI_H
52 #include <cxxabi.h>
53 #endif
54
55 using namespace llvm;
56 using namespace object;
57
58 static cl::opt<bool>
59 UseDbg("g",
60 cl::desc("Print line information from debug info if available"));
61
62 static cl::opt<std::string> DSYMFile("dsym",
63 cl::desc("Use .dSYM file for debug info"));
64
65 static cl::opt<bool> FullLeadingAddr("full-leading-addr",
66 cl::desc("Print full leading address"));
67
68 static cl::opt<bool> NoLeadingAddr("no-leading-addr",
69 cl::desc("Print no leading address"));
70
71 cl::opt<bool> llvm::UniversalHeaders("universal-headers",
72 cl::desc("Print Mach-O universal headers "
73 "(requires -macho)"));
74
75 cl::opt<bool>
76 llvm::ArchiveHeaders("archive-headers",
77 cl::desc("Print archive headers for Mach-O archives "
78 "(requires -macho)"));
79
80 cl::opt<bool>
81 ArchiveMemberOffsets("archive-member-offsets",
82 cl::desc("Print the offset to each archive member for "
83 "Mach-O archives (requires -macho and "
84 "-archive-headers)"));
85
86 cl::opt<bool>
87 llvm::IndirectSymbols("indirect-symbols",
88 cl::desc("Print indirect symbol table for Mach-O "
89 "objects (requires -macho)"));
90
91 cl::opt<bool>
92 llvm::DataInCode("data-in-code",
93 cl::desc("Print the data in code table for Mach-O objects "
94 "(requires -macho)"));
95
96 cl::opt<bool>
97 llvm::LinkOptHints("link-opt-hints",
98 cl::desc("Print the linker optimization hints for "
99 "Mach-O objects (requires -macho)"));
100
101 cl::opt<bool>
102 llvm::InfoPlist("info-plist",
103 cl::desc("Print the info plist section as strings for "
104 "Mach-O objects (requires -macho)"));
105
106 cl::opt<bool>
107 llvm::DylibsUsed("dylibs-used",
108 cl::desc("Print the shared libraries used for linked "
109 "Mach-O files (requires -macho)"));
110
111 cl::opt<bool>
112 llvm::DylibId("dylib-id",
113 cl::desc("Print the shared library's id for the dylib Mach-O "
114 "file (requires -macho)"));
115
116 cl::opt<bool>
117 llvm::NonVerbose("non-verbose",
118 cl::desc("Print the info for Mach-O objects in "
119 "non-verbose or numeric form (requires -macho)"));
120
121 cl::opt<bool>
122 llvm::ObjcMetaData("objc-meta-data",
123 cl::desc("Print the Objective-C runtime meta data for "
124 "Mach-O files (requires -macho)"));
125
126 cl::opt<std::string> llvm::DisSymName(
127 "dis-symname",
128 cl::desc("disassemble just this symbol's instructions (requires -macho"));
129
130 static cl::opt<bool> NoSymbolicOperands(
131 "no-symbolic-operands",
132 cl::desc("do not symbolic operands when disassembling (requires -macho)"));
133
134 static cl::list<std::string>
135 ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
136 cl::ZeroOrMore);
137
138 bool ArchAll = false;
139
140 static std::string ThumbTripleName;
141
GetTarget(const MachOObjectFile * MachOObj,const char ** McpuDefault,const Target ** ThumbTarget)142 static const Target *GetTarget(const MachOObjectFile *MachOObj,
143 const char **McpuDefault,
144 const Target **ThumbTarget) {
145 // Figure out the target triple.
146 if (TripleName.empty()) {
147 llvm::Triple TT("unknown-unknown-unknown");
148 llvm::Triple ThumbTriple = Triple();
149 TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
150 TripleName = TT.str();
151 ThumbTripleName = ThumbTriple.str();
152 }
153
154 // Get the target specific parser.
155 std::string Error;
156 const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
157 if (TheTarget && ThumbTripleName.empty())
158 return TheTarget;
159
160 *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
161 if (*ThumbTarget)
162 return TheTarget;
163
164 errs() << "llvm-objdump: error: unable to get target for '";
165 if (!TheTarget)
166 errs() << TripleName;
167 else
168 errs() << ThumbTripleName;
169 errs() << "', see --version and --triple.\n";
170 return nullptr;
171 }
172
173 struct SymbolSorter {
operator ()SymbolSorter174 bool operator()(const SymbolRef &A, const SymbolRef &B) {
175 uint64_t AAddr = (A.getType() != SymbolRef::ST_Function) ? 0 : A.getValue();
176 uint64_t BAddr = (B.getType() != SymbolRef::ST_Function) ? 0 : B.getValue();
177 return AAddr < BAddr;
178 }
179 };
180
181 // Types for the storted data in code table that is built before disassembly
182 // and the predicate function to sort them.
183 typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
184 typedef std::vector<DiceTableEntry> DiceTable;
185 typedef DiceTable::iterator dice_table_iterator;
186
187 // This is used to search for a data in code table entry for the PC being
188 // disassembled. The j parameter has the PC in j.first. A single data in code
189 // table entry can cover many bytes for each of its Kind's. So if the offset,
190 // aka the i.first value, of the data in code table entry plus its Length
191 // covers the PC being searched for this will return true. If not it will
192 // return false.
compareDiceTableEntries(const DiceTableEntry & i,const DiceTableEntry & j)193 static bool compareDiceTableEntries(const DiceTableEntry &i,
194 const DiceTableEntry &j) {
195 uint16_t Length;
196 i.second.getLength(Length);
197
198 return j.first >= i.first && j.first < i.first + Length;
199 }
200
DumpDataInCode(const uint8_t * bytes,uint64_t Length,unsigned short Kind)201 static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
202 unsigned short Kind) {
203 uint32_t Value, Size = 1;
204
205 switch (Kind) {
206 default:
207 case MachO::DICE_KIND_DATA:
208 if (Length >= 4) {
209 if (!NoShowRawInsn)
210 dumpBytes(makeArrayRef(bytes, 4), outs());
211 Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
212 outs() << "\t.long " << Value;
213 Size = 4;
214 } else if (Length >= 2) {
215 if (!NoShowRawInsn)
216 dumpBytes(makeArrayRef(bytes, 2), outs());
217 Value = bytes[1] << 8 | bytes[0];
218 outs() << "\t.short " << Value;
219 Size = 2;
220 } else {
221 if (!NoShowRawInsn)
222 dumpBytes(makeArrayRef(bytes, 2), outs());
223 Value = bytes[0];
224 outs() << "\t.byte " << Value;
225 Size = 1;
226 }
227 if (Kind == MachO::DICE_KIND_DATA)
228 outs() << "\t@ KIND_DATA\n";
229 else
230 outs() << "\t@ data in code kind = " << Kind << "\n";
231 break;
232 case MachO::DICE_KIND_JUMP_TABLE8:
233 if (!NoShowRawInsn)
234 dumpBytes(makeArrayRef(bytes, 1), outs());
235 Value = bytes[0];
236 outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
237 Size = 1;
238 break;
239 case MachO::DICE_KIND_JUMP_TABLE16:
240 if (!NoShowRawInsn)
241 dumpBytes(makeArrayRef(bytes, 2), outs());
242 Value = bytes[1] << 8 | bytes[0];
243 outs() << "\t.short " << format("%5u", Value & 0xffff)
244 << "\t@ KIND_JUMP_TABLE16\n";
245 Size = 2;
246 break;
247 case MachO::DICE_KIND_JUMP_TABLE32:
248 case MachO::DICE_KIND_ABS_JUMP_TABLE32:
249 if (!NoShowRawInsn)
250 dumpBytes(makeArrayRef(bytes, 4), outs());
251 Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
252 outs() << "\t.long " << Value;
253 if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
254 outs() << "\t@ KIND_JUMP_TABLE32\n";
255 else
256 outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
257 Size = 4;
258 break;
259 }
260 return Size;
261 }
262
getSectionsAndSymbols(MachOObjectFile * MachOObj,std::vector<SectionRef> & Sections,std::vector<SymbolRef> & Symbols,SmallVectorImpl<uint64_t> & FoundFns,uint64_t & BaseSegmentAddress)263 static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
264 std::vector<SectionRef> &Sections,
265 std::vector<SymbolRef> &Symbols,
266 SmallVectorImpl<uint64_t> &FoundFns,
267 uint64_t &BaseSegmentAddress) {
268 for (const SymbolRef &Symbol : MachOObj->symbols()) {
269 ErrorOr<StringRef> SymName = Symbol.getName();
270 if (std::error_code EC = SymName.getError())
271 report_fatal_error(EC.message());
272 if (!SymName->startswith("ltmp"))
273 Symbols.push_back(Symbol);
274 }
275
276 for (const SectionRef &Section : MachOObj->sections()) {
277 StringRef SectName;
278 Section.getName(SectName);
279 Sections.push_back(Section);
280 }
281
282 bool BaseSegmentAddressSet = false;
283 for (const auto &Command : MachOObj->load_commands()) {
284 if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
285 // We found a function starts segment, parse the addresses for later
286 // consumption.
287 MachO::linkedit_data_command LLC =
288 MachOObj->getLinkeditDataLoadCommand(Command);
289
290 MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
291 } else if (Command.C.cmd == MachO::LC_SEGMENT) {
292 MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
293 StringRef SegName = SLC.segname;
294 if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
295 BaseSegmentAddressSet = true;
296 BaseSegmentAddress = SLC.vmaddr;
297 }
298 }
299 }
300 }
301
PrintIndirectSymbolTable(MachOObjectFile * O,bool verbose,uint32_t n,uint32_t count,uint32_t stride,uint64_t addr)302 static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
303 uint32_t n, uint32_t count,
304 uint32_t stride, uint64_t addr) {
305 MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
306 uint32_t nindirectsyms = Dysymtab.nindirectsyms;
307 if (n > nindirectsyms)
308 outs() << " (entries start past the end of the indirect symbol "
309 "table) (reserved1 field greater than the table size)";
310 else if (n + count > nindirectsyms)
311 outs() << " (entries extends past the end of the indirect symbol "
312 "table)";
313 outs() << "\n";
314 uint32_t cputype = O->getHeader().cputype;
315 if (cputype & MachO::CPU_ARCH_ABI64)
316 outs() << "address index";
317 else
318 outs() << "address index";
319 if (verbose)
320 outs() << " name\n";
321 else
322 outs() << "\n";
323 for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
324 if (cputype & MachO::CPU_ARCH_ABI64)
325 outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
326 else
327 outs() << format("0x%08" PRIx32, addr + j * stride) << " ";
328 MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
329 uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
330 if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
331 outs() << "LOCAL\n";
332 continue;
333 }
334 if (indirect_symbol ==
335 (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
336 outs() << "LOCAL ABSOLUTE\n";
337 continue;
338 }
339 if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
340 outs() << "ABSOLUTE\n";
341 continue;
342 }
343 outs() << format("%5u ", indirect_symbol);
344 if (verbose) {
345 MachO::symtab_command Symtab = O->getSymtabLoadCommand();
346 if (indirect_symbol < Symtab.nsyms) {
347 symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
348 SymbolRef Symbol = *Sym;
349 ErrorOr<StringRef> SymName = Symbol.getName();
350 if (std::error_code EC = SymName.getError())
351 report_fatal_error(EC.message());
352 outs() << *SymName;
353 } else {
354 outs() << "?";
355 }
356 }
357 outs() << "\n";
358 }
359 }
360
PrintIndirectSymbols(MachOObjectFile * O,bool verbose)361 static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
362 for (const auto &Load : O->load_commands()) {
363 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
364 MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
365 for (unsigned J = 0; J < Seg.nsects; ++J) {
366 MachO::section_64 Sec = O->getSection64(Load, J);
367 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
368 if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
369 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
370 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
371 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
372 section_type == MachO::S_SYMBOL_STUBS) {
373 uint32_t stride;
374 if (section_type == MachO::S_SYMBOL_STUBS)
375 stride = Sec.reserved2;
376 else
377 stride = 8;
378 if (stride == 0) {
379 outs() << "Can't print indirect symbols for (" << Sec.segname << ","
380 << Sec.sectname << ") "
381 << "(size of stubs in reserved2 field is zero)\n";
382 continue;
383 }
384 uint32_t count = Sec.size / stride;
385 outs() << "Indirect symbols for (" << Sec.segname << ","
386 << Sec.sectname << ") " << count << " entries";
387 uint32_t n = Sec.reserved1;
388 PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
389 }
390 }
391 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
392 MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
393 for (unsigned J = 0; J < Seg.nsects; ++J) {
394 MachO::section Sec = O->getSection(Load, J);
395 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
396 if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
397 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
398 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
399 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
400 section_type == MachO::S_SYMBOL_STUBS) {
401 uint32_t stride;
402 if (section_type == MachO::S_SYMBOL_STUBS)
403 stride = Sec.reserved2;
404 else
405 stride = 4;
406 if (stride == 0) {
407 outs() << "Can't print indirect symbols for (" << Sec.segname << ","
408 << Sec.sectname << ") "
409 << "(size of stubs in reserved2 field is zero)\n";
410 continue;
411 }
412 uint32_t count = Sec.size / stride;
413 outs() << "Indirect symbols for (" << Sec.segname << ","
414 << Sec.sectname << ") " << count << " entries";
415 uint32_t n = Sec.reserved1;
416 PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
417 }
418 }
419 }
420 }
421 }
422
PrintDataInCodeTable(MachOObjectFile * O,bool verbose)423 static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
424 MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
425 uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
426 outs() << "Data in code table (" << nentries << " entries)\n";
427 outs() << "offset length kind\n";
428 for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
429 ++DI) {
430 uint32_t Offset;
431 DI->getOffset(Offset);
432 outs() << format("0x%08" PRIx32, Offset) << " ";
433 uint16_t Length;
434 DI->getLength(Length);
435 outs() << format("%6u", Length) << " ";
436 uint16_t Kind;
437 DI->getKind(Kind);
438 if (verbose) {
439 switch (Kind) {
440 case MachO::DICE_KIND_DATA:
441 outs() << "DATA";
442 break;
443 case MachO::DICE_KIND_JUMP_TABLE8:
444 outs() << "JUMP_TABLE8";
445 break;
446 case MachO::DICE_KIND_JUMP_TABLE16:
447 outs() << "JUMP_TABLE16";
448 break;
449 case MachO::DICE_KIND_JUMP_TABLE32:
450 outs() << "JUMP_TABLE32";
451 break;
452 case MachO::DICE_KIND_ABS_JUMP_TABLE32:
453 outs() << "ABS_JUMP_TABLE32";
454 break;
455 default:
456 outs() << format("0x%04" PRIx32, Kind);
457 break;
458 }
459 } else
460 outs() << format("0x%04" PRIx32, Kind);
461 outs() << "\n";
462 }
463 }
464
PrintLinkOptHints(MachOObjectFile * O)465 static void PrintLinkOptHints(MachOObjectFile *O) {
466 MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
467 const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
468 uint32_t nloh = LohLC.datasize;
469 outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
470 for (uint32_t i = 0; i < nloh;) {
471 unsigned n;
472 uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
473 i += n;
474 outs() << " identifier " << identifier << " ";
475 if (i >= nloh)
476 return;
477 switch (identifier) {
478 case 1:
479 outs() << "AdrpAdrp\n";
480 break;
481 case 2:
482 outs() << "AdrpLdr\n";
483 break;
484 case 3:
485 outs() << "AdrpAddLdr\n";
486 break;
487 case 4:
488 outs() << "AdrpLdrGotLdr\n";
489 break;
490 case 5:
491 outs() << "AdrpAddStr\n";
492 break;
493 case 6:
494 outs() << "AdrpLdrGotStr\n";
495 break;
496 case 7:
497 outs() << "AdrpAdd\n";
498 break;
499 case 8:
500 outs() << "AdrpLdrGot\n";
501 break;
502 default:
503 outs() << "Unknown identifier value\n";
504 break;
505 }
506 uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
507 i += n;
508 outs() << " narguments " << narguments << "\n";
509 if (i >= nloh)
510 return;
511
512 for (uint32_t j = 0; j < narguments; j++) {
513 uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
514 i += n;
515 outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
516 if (i >= nloh)
517 return;
518 }
519 }
520 }
521
PrintDylibs(MachOObjectFile * O,bool JustId)522 static void PrintDylibs(MachOObjectFile *O, bool JustId) {
523 unsigned Index = 0;
524 for (const auto &Load : O->load_commands()) {
525 if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
526 (!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
527 Load.C.cmd == MachO::LC_LOAD_DYLIB ||
528 Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
529 Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
530 Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
531 Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
532 MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
533 if (dl.dylib.name < dl.cmdsize) {
534 const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
535 if (JustId)
536 outs() << p << "\n";
537 else {
538 outs() << "\t" << p;
539 outs() << " (compatibility version "
540 << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
541 << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
542 << (dl.dylib.compatibility_version & 0xff) << ",";
543 outs() << " current version "
544 << ((dl.dylib.current_version >> 16) & 0xffff) << "."
545 << ((dl.dylib.current_version >> 8) & 0xff) << "."
546 << (dl.dylib.current_version & 0xff) << ")\n";
547 }
548 } else {
549 outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
550 if (Load.C.cmd == MachO::LC_ID_DYLIB)
551 outs() << "LC_ID_DYLIB ";
552 else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
553 outs() << "LC_LOAD_DYLIB ";
554 else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
555 outs() << "LC_LOAD_WEAK_DYLIB ";
556 else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
557 outs() << "LC_LAZY_LOAD_DYLIB ";
558 else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
559 outs() << "LC_REEXPORT_DYLIB ";
560 else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
561 outs() << "LC_LOAD_UPWARD_DYLIB ";
562 else
563 outs() << "LC_??? ";
564 outs() << "command " << Index++ << "\n";
565 }
566 }
567 }
568 }
569
570 typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
571
CreateSymbolAddressMap(MachOObjectFile * O,SymbolAddressMap * AddrMap)572 static void CreateSymbolAddressMap(MachOObjectFile *O,
573 SymbolAddressMap *AddrMap) {
574 // Create a map of symbol addresses to symbol names.
575 for (const SymbolRef &Symbol : O->symbols()) {
576 SymbolRef::Type ST = Symbol.getType();
577 if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
578 ST == SymbolRef::ST_Other) {
579 uint64_t Address = Symbol.getValue();
580 ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
581 if (std::error_code EC = SymNameOrErr.getError())
582 report_fatal_error(EC.message());
583 StringRef SymName = *SymNameOrErr;
584 if (!SymName.startswith(".objc"))
585 (*AddrMap)[Address] = SymName;
586 }
587 }
588 }
589
590 // GuessSymbolName is passed the address of what might be a symbol and a
591 // pointer to the SymbolAddressMap. It returns the name of a symbol
592 // with that address or nullptr if no symbol is found with that address.
GuessSymbolName(uint64_t value,SymbolAddressMap * AddrMap)593 static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
594 const char *SymbolName = nullptr;
595 // A DenseMap can't lookup up some values.
596 if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
597 StringRef name = AddrMap->lookup(value);
598 if (!name.empty())
599 SymbolName = name.data();
600 }
601 return SymbolName;
602 }
603
DumpCstringChar(const char c)604 static void DumpCstringChar(const char c) {
605 char p[2];
606 p[0] = c;
607 p[1] = '\0';
608 outs().write_escaped(p);
609 }
610
DumpCstringSection(MachOObjectFile * O,const char * sect,uint32_t sect_size,uint64_t sect_addr,bool print_addresses)611 static void DumpCstringSection(MachOObjectFile *O, const char *sect,
612 uint32_t sect_size, uint64_t sect_addr,
613 bool print_addresses) {
614 for (uint32_t i = 0; i < sect_size; i++) {
615 if (print_addresses) {
616 if (O->is64Bit())
617 outs() << format("%016" PRIx64, sect_addr + i) << " ";
618 else
619 outs() << format("%08" PRIx64, sect_addr + i) << " ";
620 }
621 for (; i < sect_size && sect[i] != '\0'; i++)
622 DumpCstringChar(sect[i]);
623 if (i < sect_size && sect[i] == '\0')
624 outs() << "\n";
625 }
626 }
627
DumpLiteral4(uint32_t l,float f)628 static void DumpLiteral4(uint32_t l, float f) {
629 outs() << format("0x%08" PRIx32, l);
630 if ((l & 0x7f800000) != 0x7f800000)
631 outs() << format(" (%.16e)\n", f);
632 else {
633 if (l == 0x7f800000)
634 outs() << " (+Infinity)\n";
635 else if (l == 0xff800000)
636 outs() << " (-Infinity)\n";
637 else if ((l & 0x00400000) == 0x00400000)
638 outs() << " (non-signaling Not-a-Number)\n";
639 else
640 outs() << " (signaling Not-a-Number)\n";
641 }
642 }
643
DumpLiteral4Section(MachOObjectFile * O,const char * sect,uint32_t sect_size,uint64_t sect_addr,bool print_addresses)644 static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
645 uint32_t sect_size, uint64_t sect_addr,
646 bool print_addresses) {
647 for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
648 if (print_addresses) {
649 if (O->is64Bit())
650 outs() << format("%016" PRIx64, sect_addr + i) << " ";
651 else
652 outs() << format("%08" PRIx64, sect_addr + i) << " ";
653 }
654 float f;
655 memcpy(&f, sect + i, sizeof(float));
656 if (O->isLittleEndian() != sys::IsLittleEndianHost)
657 sys::swapByteOrder(f);
658 uint32_t l;
659 memcpy(&l, sect + i, sizeof(uint32_t));
660 if (O->isLittleEndian() != sys::IsLittleEndianHost)
661 sys::swapByteOrder(l);
662 DumpLiteral4(l, f);
663 }
664 }
665
DumpLiteral8(MachOObjectFile * O,uint32_t l0,uint32_t l1,double d)666 static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
667 double d) {
668 outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
669 uint32_t Hi, Lo;
670 Hi = (O->isLittleEndian()) ? l1 : l0;
671 Lo = (O->isLittleEndian()) ? l0 : l1;
672
673 // Hi is the high word, so this is equivalent to if(isfinite(d))
674 if ((Hi & 0x7ff00000) != 0x7ff00000)
675 outs() << format(" (%.16e)\n", d);
676 else {
677 if (Hi == 0x7ff00000 && Lo == 0)
678 outs() << " (+Infinity)\n";
679 else if (Hi == 0xfff00000 && Lo == 0)
680 outs() << " (-Infinity)\n";
681 else if ((Hi & 0x00080000) == 0x00080000)
682 outs() << " (non-signaling Not-a-Number)\n";
683 else
684 outs() << " (signaling Not-a-Number)\n";
685 }
686 }
687
DumpLiteral8Section(MachOObjectFile * O,const char * sect,uint32_t sect_size,uint64_t sect_addr,bool print_addresses)688 static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
689 uint32_t sect_size, uint64_t sect_addr,
690 bool print_addresses) {
691 for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
692 if (print_addresses) {
693 if (O->is64Bit())
694 outs() << format("%016" PRIx64, sect_addr + i) << " ";
695 else
696 outs() << format("%08" PRIx64, sect_addr + i) << " ";
697 }
698 double d;
699 memcpy(&d, sect + i, sizeof(double));
700 if (O->isLittleEndian() != sys::IsLittleEndianHost)
701 sys::swapByteOrder(d);
702 uint32_t l0, l1;
703 memcpy(&l0, sect + i, sizeof(uint32_t));
704 memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
705 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
706 sys::swapByteOrder(l0);
707 sys::swapByteOrder(l1);
708 }
709 DumpLiteral8(O, l0, l1, d);
710 }
711 }
712
DumpLiteral16(uint32_t l0,uint32_t l1,uint32_t l2,uint32_t l3)713 static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
714 outs() << format("0x%08" PRIx32, l0) << " ";
715 outs() << format("0x%08" PRIx32, l1) << " ";
716 outs() << format("0x%08" PRIx32, l2) << " ";
717 outs() << format("0x%08" PRIx32, l3) << "\n";
718 }
719
DumpLiteral16Section(MachOObjectFile * O,const char * sect,uint32_t sect_size,uint64_t sect_addr,bool print_addresses)720 static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
721 uint32_t sect_size, uint64_t sect_addr,
722 bool print_addresses) {
723 for (uint32_t i = 0; i < sect_size; i += 16) {
724 if (print_addresses) {
725 if (O->is64Bit())
726 outs() << format("%016" PRIx64, sect_addr + i) << " ";
727 else
728 outs() << format("%08" PRIx64, sect_addr + i) << " ";
729 }
730 uint32_t l0, l1, l2, l3;
731 memcpy(&l0, sect + i, sizeof(uint32_t));
732 memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
733 memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
734 memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
735 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
736 sys::swapByteOrder(l0);
737 sys::swapByteOrder(l1);
738 sys::swapByteOrder(l2);
739 sys::swapByteOrder(l3);
740 }
741 DumpLiteral16(l0, l1, l2, l3);
742 }
743 }
744
DumpLiteralPointerSection(MachOObjectFile * O,const SectionRef & Section,const char * sect,uint32_t sect_size,uint64_t sect_addr,bool print_addresses)745 static void DumpLiteralPointerSection(MachOObjectFile *O,
746 const SectionRef &Section,
747 const char *sect, uint32_t sect_size,
748 uint64_t sect_addr,
749 bool print_addresses) {
750 // Collect the literal sections in this Mach-O file.
751 std::vector<SectionRef> LiteralSections;
752 for (const SectionRef &Section : O->sections()) {
753 DataRefImpl Ref = Section.getRawDataRefImpl();
754 uint32_t section_type;
755 if (O->is64Bit()) {
756 const MachO::section_64 Sec = O->getSection64(Ref);
757 section_type = Sec.flags & MachO::SECTION_TYPE;
758 } else {
759 const MachO::section Sec = O->getSection(Ref);
760 section_type = Sec.flags & MachO::SECTION_TYPE;
761 }
762 if (section_type == MachO::S_CSTRING_LITERALS ||
763 section_type == MachO::S_4BYTE_LITERALS ||
764 section_type == MachO::S_8BYTE_LITERALS ||
765 section_type == MachO::S_16BYTE_LITERALS)
766 LiteralSections.push_back(Section);
767 }
768
769 // Set the size of the literal pointer.
770 uint32_t lp_size = O->is64Bit() ? 8 : 4;
771
772 // Collect the external relocation symbols for the literal pointers.
773 std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
774 for (const RelocationRef &Reloc : Section.relocations()) {
775 DataRefImpl Rel;
776 MachO::any_relocation_info RE;
777 bool isExtern = false;
778 Rel = Reloc.getRawDataRefImpl();
779 RE = O->getRelocation(Rel);
780 isExtern = O->getPlainRelocationExternal(RE);
781 if (isExtern) {
782 uint64_t RelocOffset = Reloc.getOffset();
783 symbol_iterator RelocSym = Reloc.getSymbol();
784 Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
785 }
786 }
787 array_pod_sort(Relocs.begin(), Relocs.end());
788
789 // Dump each literal pointer.
790 for (uint32_t i = 0; i < sect_size; i += lp_size) {
791 if (print_addresses) {
792 if (O->is64Bit())
793 outs() << format("%016" PRIx64, sect_addr + i) << " ";
794 else
795 outs() << format("%08" PRIx64, sect_addr + i) << " ";
796 }
797 uint64_t lp;
798 if (O->is64Bit()) {
799 memcpy(&lp, sect + i, sizeof(uint64_t));
800 if (O->isLittleEndian() != sys::IsLittleEndianHost)
801 sys::swapByteOrder(lp);
802 } else {
803 uint32_t li;
804 memcpy(&li, sect + i, sizeof(uint32_t));
805 if (O->isLittleEndian() != sys::IsLittleEndianHost)
806 sys::swapByteOrder(li);
807 lp = li;
808 }
809
810 // First look for an external relocation entry for this literal pointer.
811 auto Reloc = std::find_if(
812 Relocs.begin(), Relocs.end(),
813 [&](const std::pair<uint64_t, SymbolRef> &P) { return P.first == i; });
814 if (Reloc != Relocs.end()) {
815 symbol_iterator RelocSym = Reloc->second;
816 ErrorOr<StringRef> SymName = RelocSym->getName();
817 if (std::error_code EC = SymName.getError())
818 report_fatal_error(EC.message());
819 outs() << "external relocation entry for symbol:" << *SymName << "\n";
820 continue;
821 }
822
823 // For local references see what the section the literal pointer points to.
824 auto Sect = std::find_if(LiteralSections.begin(), LiteralSections.end(),
825 [&](const SectionRef &R) {
826 return lp >= R.getAddress() &&
827 lp < R.getAddress() + R.getSize();
828 });
829 if (Sect == LiteralSections.end()) {
830 outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n";
831 continue;
832 }
833
834 uint64_t SectAddress = Sect->getAddress();
835 uint64_t SectSize = Sect->getSize();
836
837 StringRef SectName;
838 Sect->getName(SectName);
839 DataRefImpl Ref = Sect->getRawDataRefImpl();
840 StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
841 outs() << SegmentName << ":" << SectName << ":";
842
843 uint32_t section_type;
844 if (O->is64Bit()) {
845 const MachO::section_64 Sec = O->getSection64(Ref);
846 section_type = Sec.flags & MachO::SECTION_TYPE;
847 } else {
848 const MachO::section Sec = O->getSection(Ref);
849 section_type = Sec.flags & MachO::SECTION_TYPE;
850 }
851
852 StringRef BytesStr;
853 Sect->getContents(BytesStr);
854 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
855
856 switch (section_type) {
857 case MachO::S_CSTRING_LITERALS:
858 for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
859 i++) {
860 DumpCstringChar(Contents[i]);
861 }
862 outs() << "\n";
863 break;
864 case MachO::S_4BYTE_LITERALS:
865 float f;
866 memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
867 uint32_t l;
868 memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
869 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
870 sys::swapByteOrder(f);
871 sys::swapByteOrder(l);
872 }
873 DumpLiteral4(l, f);
874 break;
875 case MachO::S_8BYTE_LITERALS: {
876 double d;
877 memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
878 uint32_t l0, l1;
879 memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
880 memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
881 sizeof(uint32_t));
882 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
883 sys::swapByteOrder(f);
884 sys::swapByteOrder(l0);
885 sys::swapByteOrder(l1);
886 }
887 DumpLiteral8(O, l0, l1, d);
888 break;
889 }
890 case MachO::S_16BYTE_LITERALS: {
891 uint32_t l0, l1, l2, l3;
892 memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
893 memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
894 sizeof(uint32_t));
895 memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
896 sizeof(uint32_t));
897 memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
898 sizeof(uint32_t));
899 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
900 sys::swapByteOrder(l0);
901 sys::swapByteOrder(l1);
902 sys::swapByteOrder(l2);
903 sys::swapByteOrder(l3);
904 }
905 DumpLiteral16(l0, l1, l2, l3);
906 break;
907 }
908 }
909 }
910 }
911
DumpInitTermPointerSection(MachOObjectFile * O,const char * sect,uint32_t sect_size,uint64_t sect_addr,SymbolAddressMap * AddrMap,bool verbose)912 static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
913 uint32_t sect_size, uint64_t sect_addr,
914 SymbolAddressMap *AddrMap,
915 bool verbose) {
916 uint32_t stride;
917 stride = (O->is64Bit()) ? sizeof(uint64_t) : sizeof(uint32_t);
918 for (uint32_t i = 0; i < sect_size; i += stride) {
919 const char *SymbolName = nullptr;
920 if (O->is64Bit()) {
921 outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
922 uint64_t pointer_value;
923 memcpy(&pointer_value, sect + i, stride);
924 if (O->isLittleEndian() != sys::IsLittleEndianHost)
925 sys::swapByteOrder(pointer_value);
926 outs() << format("0x%016" PRIx64, pointer_value);
927 if (verbose)
928 SymbolName = GuessSymbolName(pointer_value, AddrMap);
929 } else {
930 outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
931 uint32_t pointer_value;
932 memcpy(&pointer_value, sect + i, stride);
933 if (O->isLittleEndian() != sys::IsLittleEndianHost)
934 sys::swapByteOrder(pointer_value);
935 outs() << format("0x%08" PRIx32, pointer_value);
936 if (verbose)
937 SymbolName = GuessSymbolName(pointer_value, AddrMap);
938 }
939 if (SymbolName)
940 outs() << " " << SymbolName;
941 outs() << "\n";
942 }
943 }
944
DumpRawSectionContents(MachOObjectFile * O,const char * sect,uint32_t size,uint64_t addr)945 static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
946 uint32_t size, uint64_t addr) {
947 uint32_t cputype = O->getHeader().cputype;
948 if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
949 uint32_t j;
950 for (uint32_t i = 0; i < size; i += j, addr += j) {
951 if (O->is64Bit())
952 outs() << format("%016" PRIx64, addr) << "\t";
953 else
954 outs() << format("%08" PRIx64, addr) << "\t";
955 for (j = 0; j < 16 && i + j < size; j++) {
956 uint8_t byte_word = *(sect + i + j);
957 outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
958 }
959 outs() << "\n";
960 }
961 } else {
962 uint32_t j;
963 for (uint32_t i = 0; i < size; i += j, addr += j) {
964 if (O->is64Bit())
965 outs() << format("%016" PRIx64, addr) << "\t";
966 else
967 outs() << format("%08" PRIx64, sect) << "\t";
968 for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
969 j += sizeof(int32_t)) {
970 if (i + j + sizeof(int32_t) < size) {
971 uint32_t long_word;
972 memcpy(&long_word, sect + i + j, sizeof(int32_t));
973 if (O->isLittleEndian() != sys::IsLittleEndianHost)
974 sys::swapByteOrder(long_word);
975 outs() << format("%08" PRIx32, long_word) << " ";
976 } else {
977 for (uint32_t k = 0; i + j + k < size; k++) {
978 uint8_t byte_word = *(sect + i + j);
979 outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
980 }
981 }
982 }
983 outs() << "\n";
984 }
985 }
986 }
987
988 static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
989 StringRef DisSegName, StringRef DisSectName);
990 static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
991 uint32_t size, uint32_t addr);
992
DumpSectionContents(StringRef Filename,MachOObjectFile * O,bool verbose)993 static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
994 bool verbose) {
995 SymbolAddressMap AddrMap;
996 if (verbose)
997 CreateSymbolAddressMap(O, &AddrMap);
998
999 for (unsigned i = 0; i < FilterSections.size(); ++i) {
1000 StringRef DumpSection = FilterSections[i];
1001 std::pair<StringRef, StringRef> DumpSegSectName;
1002 DumpSegSectName = DumpSection.split(',');
1003 StringRef DumpSegName, DumpSectName;
1004 if (DumpSegSectName.second.size()) {
1005 DumpSegName = DumpSegSectName.first;
1006 DumpSectName = DumpSegSectName.second;
1007 } else {
1008 DumpSegName = "";
1009 DumpSectName = DumpSegSectName.first;
1010 }
1011 for (const SectionRef &Section : O->sections()) {
1012 StringRef SectName;
1013 Section.getName(SectName);
1014 DataRefImpl Ref = Section.getRawDataRefImpl();
1015 StringRef SegName = O->getSectionFinalSegmentName(Ref);
1016 if ((DumpSegName.empty() || SegName == DumpSegName) &&
1017 (SectName == DumpSectName)) {
1018
1019 uint32_t section_flags;
1020 if (O->is64Bit()) {
1021 const MachO::section_64 Sec = O->getSection64(Ref);
1022 section_flags = Sec.flags;
1023
1024 } else {
1025 const MachO::section Sec = O->getSection(Ref);
1026 section_flags = Sec.flags;
1027 }
1028 uint32_t section_type = section_flags & MachO::SECTION_TYPE;
1029
1030 StringRef BytesStr;
1031 Section.getContents(BytesStr);
1032 const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1033 uint32_t sect_size = BytesStr.size();
1034 uint64_t sect_addr = Section.getAddress();
1035
1036 outs() << "Contents of (" << SegName << "," << SectName
1037 << ") section\n";
1038
1039 if (verbose) {
1040 if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
1041 (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
1042 DisassembleMachO(Filename, O, SegName, SectName);
1043 continue;
1044 }
1045 if (SegName == "__TEXT" && SectName == "__info_plist") {
1046 outs() << sect;
1047 continue;
1048 }
1049 if (SegName == "__OBJC" && SectName == "__protocol") {
1050 DumpProtocolSection(O, sect, sect_size, sect_addr);
1051 continue;
1052 }
1053 switch (section_type) {
1054 case MachO::S_REGULAR:
1055 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1056 break;
1057 case MachO::S_ZEROFILL:
1058 outs() << "zerofill section and has no contents in the file\n";
1059 break;
1060 case MachO::S_CSTRING_LITERALS:
1061 DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1062 break;
1063 case MachO::S_4BYTE_LITERALS:
1064 DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1065 break;
1066 case MachO::S_8BYTE_LITERALS:
1067 DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1068 break;
1069 case MachO::S_16BYTE_LITERALS:
1070 DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1071 break;
1072 case MachO::S_LITERAL_POINTERS:
1073 DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
1074 !NoLeadingAddr);
1075 break;
1076 case MachO::S_MOD_INIT_FUNC_POINTERS:
1077 case MachO::S_MOD_TERM_FUNC_POINTERS:
1078 DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
1079 verbose);
1080 break;
1081 default:
1082 outs() << "Unknown section type ("
1083 << format("0x%08" PRIx32, section_type) << ")\n";
1084 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1085 break;
1086 }
1087 } else {
1088 if (section_type == MachO::S_ZEROFILL)
1089 outs() << "zerofill section and has no contents in the file\n";
1090 else
1091 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1092 }
1093 }
1094 }
1095 }
1096 }
1097
DumpInfoPlistSectionContents(StringRef Filename,MachOObjectFile * O)1098 static void DumpInfoPlistSectionContents(StringRef Filename,
1099 MachOObjectFile *O) {
1100 for (const SectionRef &Section : O->sections()) {
1101 StringRef SectName;
1102 Section.getName(SectName);
1103 DataRefImpl Ref = Section.getRawDataRefImpl();
1104 StringRef SegName = O->getSectionFinalSegmentName(Ref);
1105 if (SegName == "__TEXT" && SectName == "__info_plist") {
1106 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
1107 StringRef BytesStr;
1108 Section.getContents(BytesStr);
1109 const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1110 outs() << sect;
1111 return;
1112 }
1113 }
1114 }
1115
1116 // checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
1117 // and if it is and there is a list of architecture flags is specified then
1118 // check to make sure this Mach-O file is one of those architectures or all
1119 // architectures were specified. If not then an error is generated and this
1120 // routine returns false. Else it returns true.
checkMachOAndArchFlags(ObjectFile * O,StringRef Filename)1121 static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
1122 if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
1123 MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
1124 bool ArchFound = false;
1125 MachO::mach_header H;
1126 MachO::mach_header_64 H_64;
1127 Triple T;
1128 if (MachO->is64Bit()) {
1129 H_64 = MachO->MachOObjectFile::getHeader64();
1130 T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
1131 } else {
1132 H = MachO->MachOObjectFile::getHeader();
1133 T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
1134 }
1135 unsigned i;
1136 for (i = 0; i < ArchFlags.size(); ++i) {
1137 if (ArchFlags[i] == T.getArchName())
1138 ArchFound = true;
1139 break;
1140 }
1141 if (!ArchFound) {
1142 errs() << "llvm-objdump: file: " + Filename + " does not contain "
1143 << "architecture: " + ArchFlags[i] + "\n";
1144 return false;
1145 }
1146 }
1147 return true;
1148 }
1149
1150 static void printObjcMetaData(MachOObjectFile *O, bool verbose);
1151
1152 // ProcessMachO() is passed a single opened Mach-O file, which may be an
1153 // archive member and or in a slice of a universal file. It prints the
1154 // the file name and header info and then processes it according to the
1155 // command line options.
ProcessMachO(StringRef Filename,MachOObjectFile * MachOOF,StringRef ArchiveMemberName=StringRef (),StringRef ArchitectureName=StringRef ())1156 static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
1157 StringRef ArchiveMemberName = StringRef(),
1158 StringRef ArchitectureName = StringRef()) {
1159 // If we are doing some processing here on the Mach-O file print the header
1160 // info. And don't print it otherwise like in the case of printing the
1161 // UniversalHeaders or ArchiveHeaders.
1162 if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind ||
1163 LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
1164 DylibsUsed || DylibId || ObjcMetaData || (FilterSections.size() != 0)) {
1165 outs() << Filename;
1166 if (!ArchiveMemberName.empty())
1167 outs() << '(' << ArchiveMemberName << ')';
1168 if (!ArchitectureName.empty())
1169 outs() << " (architecture " << ArchitectureName << ")";
1170 outs() << ":\n";
1171 }
1172
1173 if (Disassemble)
1174 DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
1175 if (IndirectSymbols)
1176 PrintIndirectSymbols(MachOOF, !NonVerbose);
1177 if (DataInCode)
1178 PrintDataInCodeTable(MachOOF, !NonVerbose);
1179 if (LinkOptHints)
1180 PrintLinkOptHints(MachOOF);
1181 if (Relocations)
1182 PrintRelocations(MachOOF);
1183 if (SectionHeaders)
1184 PrintSectionHeaders(MachOOF);
1185 if (SectionContents)
1186 PrintSectionContents(MachOOF);
1187 if (FilterSections.size() != 0)
1188 DumpSectionContents(Filename, MachOOF, !NonVerbose);
1189 if (InfoPlist)
1190 DumpInfoPlistSectionContents(Filename, MachOOF);
1191 if (DylibsUsed)
1192 PrintDylibs(MachOOF, false);
1193 if (DylibId)
1194 PrintDylibs(MachOOF, true);
1195 if (SymbolTable)
1196 PrintSymbolTable(MachOOF);
1197 if (UnwindInfo)
1198 printMachOUnwindInfo(MachOOF);
1199 if (PrivateHeaders)
1200 printMachOFileHeader(MachOOF);
1201 if (ObjcMetaData)
1202 printObjcMetaData(MachOOF, !NonVerbose);
1203 if (ExportsTrie)
1204 printExportsTrie(MachOOF);
1205 if (Rebase)
1206 printRebaseTable(MachOOF);
1207 if (Bind)
1208 printBindTable(MachOOF);
1209 if (LazyBind)
1210 printLazyBindTable(MachOOF);
1211 if (WeakBind)
1212 printWeakBindTable(MachOOF);
1213 }
1214
1215 // printUnknownCPUType() helps print_fat_headers for unknown CPU's.
printUnknownCPUType(uint32_t cputype,uint32_t cpusubtype)1216 static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
1217 outs() << " cputype (" << cputype << ")\n";
1218 outs() << " cpusubtype (" << cpusubtype << ")\n";
1219 }
1220
1221 // printCPUType() helps print_fat_headers by printing the cputype and
1222 // pusubtype (symbolically for the one's it knows about).
printCPUType(uint32_t cputype,uint32_t cpusubtype)1223 static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
1224 switch (cputype) {
1225 case MachO::CPU_TYPE_I386:
1226 switch (cpusubtype) {
1227 case MachO::CPU_SUBTYPE_I386_ALL:
1228 outs() << " cputype CPU_TYPE_I386\n";
1229 outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n";
1230 break;
1231 default:
1232 printUnknownCPUType(cputype, cpusubtype);
1233 break;
1234 }
1235 break;
1236 case MachO::CPU_TYPE_X86_64:
1237 switch (cpusubtype) {
1238 case MachO::CPU_SUBTYPE_X86_64_ALL:
1239 outs() << " cputype CPU_TYPE_X86_64\n";
1240 outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
1241 break;
1242 case MachO::CPU_SUBTYPE_X86_64_H:
1243 outs() << " cputype CPU_TYPE_X86_64\n";
1244 outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n";
1245 break;
1246 default:
1247 printUnknownCPUType(cputype, cpusubtype);
1248 break;
1249 }
1250 break;
1251 case MachO::CPU_TYPE_ARM:
1252 switch (cpusubtype) {
1253 case MachO::CPU_SUBTYPE_ARM_ALL:
1254 outs() << " cputype CPU_TYPE_ARM\n";
1255 outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n";
1256 break;
1257 case MachO::CPU_SUBTYPE_ARM_V4T:
1258 outs() << " cputype CPU_TYPE_ARM\n";
1259 outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n";
1260 break;
1261 case MachO::CPU_SUBTYPE_ARM_V5TEJ:
1262 outs() << " cputype CPU_TYPE_ARM\n";
1263 outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
1264 break;
1265 case MachO::CPU_SUBTYPE_ARM_XSCALE:
1266 outs() << " cputype CPU_TYPE_ARM\n";
1267 outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
1268 break;
1269 case MachO::CPU_SUBTYPE_ARM_V6:
1270 outs() << " cputype CPU_TYPE_ARM\n";
1271 outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n";
1272 break;
1273 case MachO::CPU_SUBTYPE_ARM_V6M:
1274 outs() << " cputype CPU_TYPE_ARM\n";
1275 outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n";
1276 break;
1277 case MachO::CPU_SUBTYPE_ARM_V7:
1278 outs() << " cputype CPU_TYPE_ARM\n";
1279 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n";
1280 break;
1281 case MachO::CPU_SUBTYPE_ARM_V7EM:
1282 outs() << " cputype CPU_TYPE_ARM\n";
1283 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
1284 break;
1285 case MachO::CPU_SUBTYPE_ARM_V7K:
1286 outs() << " cputype CPU_TYPE_ARM\n";
1287 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n";
1288 break;
1289 case MachO::CPU_SUBTYPE_ARM_V7M:
1290 outs() << " cputype CPU_TYPE_ARM\n";
1291 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n";
1292 break;
1293 case MachO::CPU_SUBTYPE_ARM_V7S:
1294 outs() << " cputype CPU_TYPE_ARM\n";
1295 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n";
1296 break;
1297 default:
1298 printUnknownCPUType(cputype, cpusubtype);
1299 break;
1300 }
1301 break;
1302 case MachO::CPU_TYPE_ARM64:
1303 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
1304 case MachO::CPU_SUBTYPE_ARM64_ALL:
1305 outs() << " cputype CPU_TYPE_ARM64\n";
1306 outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
1307 break;
1308 default:
1309 printUnknownCPUType(cputype, cpusubtype);
1310 break;
1311 }
1312 break;
1313 default:
1314 printUnknownCPUType(cputype, cpusubtype);
1315 break;
1316 }
1317 }
1318
printMachOUniversalHeaders(const object::MachOUniversalBinary * UB,bool verbose)1319 static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
1320 bool verbose) {
1321 outs() << "Fat headers\n";
1322 if (verbose)
1323 outs() << "fat_magic FAT_MAGIC\n";
1324 else
1325 outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";
1326
1327 uint32_t nfat_arch = UB->getNumberOfObjects();
1328 StringRef Buf = UB->getData();
1329 uint64_t size = Buf.size();
1330 uint64_t big_size = sizeof(struct MachO::fat_header) +
1331 nfat_arch * sizeof(struct MachO::fat_arch);
1332 outs() << "nfat_arch " << UB->getNumberOfObjects();
1333 if (nfat_arch == 0)
1334 outs() << " (malformed, contains zero architecture types)\n";
1335 else if (big_size > size)
1336 outs() << " (malformed, architectures past end of file)\n";
1337 else
1338 outs() << "\n";
1339
1340 for (uint32_t i = 0; i < nfat_arch; ++i) {
1341 MachOUniversalBinary::ObjectForArch OFA(UB, i);
1342 uint32_t cputype = OFA.getCPUType();
1343 uint32_t cpusubtype = OFA.getCPUSubType();
1344 outs() << "architecture ";
1345 for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
1346 MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
1347 uint32_t other_cputype = other_OFA.getCPUType();
1348 uint32_t other_cpusubtype = other_OFA.getCPUSubType();
1349 if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
1350 (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
1351 (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
1352 outs() << "(illegal duplicate architecture) ";
1353 break;
1354 }
1355 }
1356 if (verbose) {
1357 outs() << OFA.getArchTypeName() << "\n";
1358 printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
1359 } else {
1360 outs() << i << "\n";
1361 outs() << " cputype " << cputype << "\n";
1362 outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
1363 << "\n";
1364 }
1365 if (verbose &&
1366 (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
1367 outs() << " capabilities CPU_SUBTYPE_LIB64\n";
1368 else
1369 outs() << " capabilities "
1370 << format("0x%" PRIx32,
1371 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
1372 outs() << " offset " << OFA.getOffset();
1373 if (OFA.getOffset() > size)
1374 outs() << " (past end of file)";
1375 if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
1376 outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
1377 outs() << "\n";
1378 outs() << " size " << OFA.getSize();
1379 big_size = OFA.getOffset() + OFA.getSize();
1380 if (big_size > size)
1381 outs() << " (past end of file)";
1382 outs() << "\n";
1383 outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
1384 << ")\n";
1385 }
1386 }
1387
printArchiveChild(const Archive::Child & C,bool verbose,bool print_offset)1388 static void printArchiveChild(const Archive::Child &C, bool verbose,
1389 bool print_offset) {
1390 if (print_offset)
1391 outs() << C.getChildOffset() << "\t";
1392 sys::fs::perms Mode = C.getAccessMode();
1393 if (verbose) {
1394 // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
1395 // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
1396 outs() << "-";
1397 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1398 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1399 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1400 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1401 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1402 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1403 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1404 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1405 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1406 } else {
1407 outs() << format("0%o ", Mode);
1408 }
1409
1410 unsigned UID = C.getUID();
1411 outs() << format("%3d/", UID);
1412 unsigned GID = C.getGID();
1413 outs() << format("%-3d ", GID);
1414 ErrorOr<uint64_t> Size = C.getRawSize();
1415 if (std::error_code EC = Size.getError())
1416 report_fatal_error(EC.message());
1417 outs() << format("%5" PRId64, Size.get()) << " ";
1418
1419 StringRef RawLastModified = C.getRawLastModified();
1420 if (verbose) {
1421 unsigned Seconds;
1422 if (RawLastModified.getAsInteger(10, Seconds))
1423 outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified;
1424 else {
1425 // Since cime(3) returns a 26 character string of the form:
1426 // "Sun Sep 16 01:03:52 1973\n\0"
1427 // just print 24 characters.
1428 time_t t = Seconds;
1429 outs() << format("%.24s ", ctime(&t));
1430 }
1431 } else {
1432 outs() << RawLastModified << " ";
1433 }
1434
1435 if (verbose) {
1436 ErrorOr<StringRef> NameOrErr = C.getName();
1437 if (NameOrErr.getError()) {
1438 StringRef RawName = C.getRawName();
1439 outs() << RawName << "\n";
1440 } else {
1441 StringRef Name = NameOrErr.get();
1442 outs() << Name << "\n";
1443 }
1444 } else {
1445 StringRef RawName = C.getRawName();
1446 outs() << RawName << "\n";
1447 }
1448 }
1449
printArchiveHeaders(Archive * A,bool verbose,bool print_offset)1450 static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) {
1451 for (Archive::child_iterator I = A->child_begin(false), E = A->child_end();
1452 I != E; ++I) {
1453 if (std::error_code EC = I->getError())
1454 report_fatal_error(EC.message());
1455 const Archive::Child &C = **I;
1456 printArchiveChild(C, verbose, print_offset);
1457 }
1458 }
1459
1460 // ParseInputMachO() parses the named Mach-O file in Filename and handles the
1461 // -arch flags selecting just those slices as specified by them and also parses
1462 // archive files. Then for each individual Mach-O file ProcessMachO() is
1463 // called to process the file based on the command line options.
ParseInputMachO(StringRef Filename)1464 void llvm::ParseInputMachO(StringRef Filename) {
1465 // Check for -arch all and verifiy the -arch flags are valid.
1466 for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1467 if (ArchFlags[i] == "all") {
1468 ArchAll = true;
1469 } else {
1470 if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
1471 errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
1472 "'for the -arch option\n";
1473 return;
1474 }
1475 }
1476 }
1477
1478 // Attempt to open the binary.
1479 ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
1480 if (std::error_code EC = BinaryOrErr.getError()) {
1481 errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n";
1482 return;
1483 }
1484 Binary &Bin = *BinaryOrErr.get().getBinary();
1485
1486 if (Archive *A = dyn_cast<Archive>(&Bin)) {
1487 outs() << "Archive : " << Filename << "\n";
1488 if (ArchiveHeaders)
1489 printArchiveHeaders(A, !NonVerbose, ArchiveMemberOffsets);
1490 for (Archive::child_iterator I = A->child_begin(), E = A->child_end();
1491 I != E; ++I) {
1492 if (std::error_code EC = I->getError())
1493 report_error(Filename, EC);
1494 auto &C = I->get();
1495 ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1496 if (ChildOrErr.getError())
1497 continue;
1498 if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1499 if (!checkMachOAndArchFlags(O, Filename))
1500 return;
1501 ProcessMachO(Filename, O, O->getFileName());
1502 }
1503 }
1504 return;
1505 }
1506 if (UniversalHeaders) {
1507 if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
1508 printMachOUniversalHeaders(UB, !NonVerbose);
1509 }
1510 if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
1511 // If we have a list of architecture flags specified dump only those.
1512 if (!ArchAll && ArchFlags.size() != 0) {
1513 // Look for a slice in the universal binary that matches each ArchFlag.
1514 bool ArchFound;
1515 for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1516 ArchFound = false;
1517 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1518 E = UB->end_objects();
1519 I != E; ++I) {
1520 if (ArchFlags[i] == I->getArchTypeName()) {
1521 ArchFound = true;
1522 ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
1523 I->getAsObjectFile();
1524 std::string ArchitectureName = "";
1525 if (ArchFlags.size() > 1)
1526 ArchitectureName = I->getArchTypeName();
1527 if (ObjOrErr) {
1528 ObjectFile &O = *ObjOrErr.get();
1529 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1530 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1531 } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
1532 I->getAsArchive()) {
1533 std::unique_ptr<Archive> &A = *AOrErr;
1534 outs() << "Archive : " << Filename;
1535 if (!ArchitectureName.empty())
1536 outs() << " (architecture " << ArchitectureName << ")";
1537 outs() << "\n";
1538 if (ArchiveHeaders)
1539 printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
1540 for (Archive::child_iterator AI = A->child_begin(),
1541 AE = A->child_end();
1542 AI != AE; ++AI) {
1543 if (std::error_code EC = AI->getError())
1544 report_error(Filename, EC);
1545 auto &C = AI->get();
1546 ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1547 if (ChildOrErr.getError())
1548 continue;
1549 if (MachOObjectFile *O =
1550 dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1551 ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
1552 }
1553 }
1554 }
1555 }
1556 if (!ArchFound) {
1557 errs() << "llvm-objdump: file: " + Filename + " does not contain "
1558 << "architecture: " + ArchFlags[i] + "\n";
1559 return;
1560 }
1561 }
1562 return;
1563 }
1564 // No architecture flags were specified so if this contains a slice that
1565 // matches the host architecture dump only that.
1566 if (!ArchAll) {
1567 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1568 E = UB->end_objects();
1569 I != E; ++I) {
1570 if (MachOObjectFile::getHostArch().getArchName() ==
1571 I->getArchTypeName()) {
1572 ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1573 std::string ArchiveName;
1574 ArchiveName.clear();
1575 if (ObjOrErr) {
1576 ObjectFile &O = *ObjOrErr.get();
1577 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1578 ProcessMachO(Filename, MachOOF);
1579 } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
1580 I->getAsArchive()) {
1581 std::unique_ptr<Archive> &A = *AOrErr;
1582 outs() << "Archive : " << Filename << "\n";
1583 if (ArchiveHeaders)
1584 printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
1585 for (Archive::child_iterator AI = A->child_begin(),
1586 AE = A->child_end();
1587 AI != AE; ++AI) {
1588 if (std::error_code EC = AI->getError())
1589 report_error(Filename, EC);
1590 auto &C = AI->get();
1591 ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1592 if (ChildOrErr.getError())
1593 continue;
1594 if (MachOObjectFile *O =
1595 dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1596 ProcessMachO(Filename, O, O->getFileName());
1597 }
1598 }
1599 return;
1600 }
1601 }
1602 }
1603 // Either all architectures have been specified or none have been specified
1604 // and this does not contain the host architecture so dump all the slices.
1605 bool moreThanOneArch = UB->getNumberOfObjects() > 1;
1606 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1607 E = UB->end_objects();
1608 I != E; ++I) {
1609 ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1610 std::string ArchitectureName = "";
1611 if (moreThanOneArch)
1612 ArchitectureName = I->getArchTypeName();
1613 if (ObjOrErr) {
1614 ObjectFile &Obj = *ObjOrErr.get();
1615 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
1616 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1617 } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) {
1618 std::unique_ptr<Archive> &A = *AOrErr;
1619 outs() << "Archive : " << Filename;
1620 if (!ArchitectureName.empty())
1621 outs() << " (architecture " << ArchitectureName << ")";
1622 outs() << "\n";
1623 if (ArchiveHeaders)
1624 printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
1625 for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end();
1626 AI != AE; ++AI) {
1627 if (std::error_code EC = AI->getError())
1628 report_error(Filename, EC);
1629 auto &C = AI->get();
1630 ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1631 if (ChildOrErr.getError())
1632 continue;
1633 if (MachOObjectFile *O =
1634 dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1635 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
1636 ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
1637 ArchitectureName);
1638 }
1639 }
1640 }
1641 }
1642 return;
1643 }
1644 if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
1645 if (!checkMachOAndArchFlags(O, Filename))
1646 return;
1647 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
1648 ProcessMachO(Filename, MachOOF);
1649 } else
1650 errs() << "llvm-objdump: '" << Filename << "': "
1651 << "Object is not a Mach-O file type.\n";
1652 } else
1653 report_error(Filename, object_error::invalid_file_type);
1654 }
1655
1656 typedef std::pair<uint64_t, const char *> BindInfoEntry;
1657 typedef std::vector<BindInfoEntry> BindTable;
1658 typedef BindTable::iterator bind_table_iterator;
1659
1660 // The block of info used by the Symbolizer call backs.
1661 struct DisassembleInfo {
1662 bool verbose;
1663 MachOObjectFile *O;
1664 SectionRef S;
1665 SymbolAddressMap *AddrMap;
1666 std::vector<SectionRef> *Sections;
1667 const char *class_name;
1668 const char *selector_name;
1669 char *method;
1670 char *demangled_name;
1671 uint64_t adrp_addr;
1672 uint32_t adrp_inst;
1673 BindTable *bindtable;
1674 uint32_t depth;
1675 };
1676
1677 // SymbolizerGetOpInfo() is the operand information call back function.
1678 // This is called to get the symbolic information for operand(s) of an
1679 // instruction when it is being done. This routine does this from
1680 // the relocation information, symbol table, etc. That block of information
1681 // is a pointer to the struct DisassembleInfo that was passed when the
1682 // disassembler context was created and passed to back to here when
1683 // called back by the disassembler for instruction operands that could have
1684 // relocation information. The address of the instruction containing operand is
1685 // at the Pc parameter. The immediate value the operand has is passed in
1686 // op_info->Value and is at Offset past the start of the instruction and has a
1687 // byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
1688 // LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
1689 // names and addends of the symbolic expression to add for the operand. The
1690 // value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
1691 // information is returned then this function returns 1 else it returns 0.
SymbolizerGetOpInfo(void * DisInfo,uint64_t Pc,uint64_t Offset,uint64_t Size,int TagType,void * TagBuf)1692 static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
1693 uint64_t Size, int TagType, void *TagBuf) {
1694 struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
1695 struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
1696 uint64_t value = op_info->Value;
1697
1698 // Make sure all fields returned are zero if we don't set them.
1699 memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
1700 op_info->Value = value;
1701
1702 // If the TagType is not the value 1 which it code knows about or if no
1703 // verbose symbolic information is wanted then just return 0, indicating no
1704 // information is being returned.
1705 if (TagType != 1 || !info->verbose)
1706 return 0;
1707
1708 unsigned int Arch = info->O->getArch();
1709 if (Arch == Triple::x86) {
1710 if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1711 return 0;
1712 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1713 // TODO:
1714 // Search the external relocation entries of a fully linked image
1715 // (if any) for an entry that matches this segment offset.
1716 // uint32_t seg_offset = (Pc + Offset);
1717 return 0;
1718 }
1719 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1720 // for an entry for this section offset.
1721 uint32_t sect_addr = info->S.getAddress();
1722 uint32_t sect_offset = (Pc + Offset) - sect_addr;
1723 bool reloc_found = false;
1724 DataRefImpl Rel;
1725 MachO::any_relocation_info RE;
1726 bool isExtern = false;
1727 SymbolRef Symbol;
1728 bool r_scattered = false;
1729 uint32_t r_value, pair_r_value, r_type;
1730 for (const RelocationRef &Reloc : info->S.relocations()) {
1731 uint64_t RelocOffset = Reloc.getOffset();
1732 if (RelocOffset == sect_offset) {
1733 Rel = Reloc.getRawDataRefImpl();
1734 RE = info->O->getRelocation(Rel);
1735 r_type = info->O->getAnyRelocationType(RE);
1736 r_scattered = info->O->isRelocationScattered(RE);
1737 if (r_scattered) {
1738 r_value = info->O->getScatteredRelocationValue(RE);
1739 if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1740 r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
1741 DataRefImpl RelNext = Rel;
1742 info->O->moveRelocationNext(RelNext);
1743 MachO::any_relocation_info RENext;
1744 RENext = info->O->getRelocation(RelNext);
1745 if (info->O->isRelocationScattered(RENext))
1746 pair_r_value = info->O->getScatteredRelocationValue(RENext);
1747 else
1748 return 0;
1749 }
1750 } else {
1751 isExtern = info->O->getPlainRelocationExternal(RE);
1752 if (isExtern) {
1753 symbol_iterator RelocSym = Reloc.getSymbol();
1754 Symbol = *RelocSym;
1755 }
1756 }
1757 reloc_found = true;
1758 break;
1759 }
1760 }
1761 if (reloc_found && isExtern) {
1762 ErrorOr<StringRef> SymName = Symbol.getName();
1763 if (std::error_code EC = SymName.getError())
1764 report_fatal_error(EC.message());
1765 const char *name = SymName->data();
1766 op_info->AddSymbol.Present = 1;
1767 op_info->AddSymbol.Name = name;
1768 // For i386 extern relocation entries the value in the instruction is
1769 // the offset from the symbol, and value is already set in op_info->Value.
1770 return 1;
1771 }
1772 if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1773 r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
1774 const char *add = GuessSymbolName(r_value, info->AddrMap);
1775 const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1776 uint32_t offset = value - (r_value - pair_r_value);
1777 op_info->AddSymbol.Present = 1;
1778 if (add != nullptr)
1779 op_info->AddSymbol.Name = add;
1780 else
1781 op_info->AddSymbol.Value = r_value;
1782 op_info->SubtractSymbol.Present = 1;
1783 if (sub != nullptr)
1784 op_info->SubtractSymbol.Name = sub;
1785 else
1786 op_info->SubtractSymbol.Value = pair_r_value;
1787 op_info->Value = offset;
1788 return 1;
1789 }
1790 return 0;
1791 }
1792 if (Arch == Triple::x86_64) {
1793 if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1794 return 0;
1795 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1796 // TODO:
1797 // Search the external relocation entries of a fully linked image
1798 // (if any) for an entry that matches this segment offset.
1799 // uint64_t seg_offset = (Pc + Offset);
1800 return 0;
1801 }
1802 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1803 // for an entry for this section offset.
1804 uint64_t sect_addr = info->S.getAddress();
1805 uint64_t sect_offset = (Pc + Offset) - sect_addr;
1806 bool reloc_found = false;
1807 DataRefImpl Rel;
1808 MachO::any_relocation_info RE;
1809 bool isExtern = false;
1810 SymbolRef Symbol;
1811 for (const RelocationRef &Reloc : info->S.relocations()) {
1812 uint64_t RelocOffset = Reloc.getOffset();
1813 if (RelocOffset == sect_offset) {
1814 Rel = Reloc.getRawDataRefImpl();
1815 RE = info->O->getRelocation(Rel);
1816 // NOTE: Scattered relocations don't exist on x86_64.
1817 isExtern = info->O->getPlainRelocationExternal(RE);
1818 if (isExtern) {
1819 symbol_iterator RelocSym = Reloc.getSymbol();
1820 Symbol = *RelocSym;
1821 }
1822 reloc_found = true;
1823 break;
1824 }
1825 }
1826 if (reloc_found && isExtern) {
1827 // The Value passed in will be adjusted by the Pc if the instruction
1828 // adds the Pc. But for x86_64 external relocation entries the Value
1829 // is the offset from the external symbol.
1830 if (info->O->getAnyRelocationPCRel(RE))
1831 op_info->Value -= Pc + Offset + Size;
1832 ErrorOr<StringRef> SymName = Symbol.getName();
1833 if (std::error_code EC = SymName.getError())
1834 report_fatal_error(EC.message());
1835 const char *name = SymName->data();
1836 unsigned Type = info->O->getAnyRelocationType(RE);
1837 if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
1838 DataRefImpl RelNext = Rel;
1839 info->O->moveRelocationNext(RelNext);
1840 MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
1841 unsigned TypeNext = info->O->getAnyRelocationType(RENext);
1842 bool isExternNext = info->O->getPlainRelocationExternal(RENext);
1843 unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
1844 if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
1845 op_info->SubtractSymbol.Present = 1;
1846 op_info->SubtractSymbol.Name = name;
1847 symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
1848 Symbol = *RelocSymNext;
1849 ErrorOr<StringRef> SymNameNext = Symbol.getName();
1850 if (std::error_code EC = SymNameNext.getError())
1851 report_fatal_error(EC.message());
1852 name = SymNameNext->data();
1853 }
1854 }
1855 // TODO: add the VariantKinds to op_info->VariantKind for relocation types
1856 // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
1857 op_info->AddSymbol.Present = 1;
1858 op_info->AddSymbol.Name = name;
1859 return 1;
1860 }
1861 return 0;
1862 }
1863 if (Arch == Triple::arm) {
1864 if (Offset != 0 || (Size != 4 && Size != 2))
1865 return 0;
1866 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1867 // TODO:
1868 // Search the external relocation entries of a fully linked image
1869 // (if any) for an entry that matches this segment offset.
1870 // uint32_t seg_offset = (Pc + Offset);
1871 return 0;
1872 }
1873 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1874 // for an entry for this section offset.
1875 uint32_t sect_addr = info->S.getAddress();
1876 uint32_t sect_offset = (Pc + Offset) - sect_addr;
1877 DataRefImpl Rel;
1878 MachO::any_relocation_info RE;
1879 bool isExtern = false;
1880 SymbolRef Symbol;
1881 bool r_scattered = false;
1882 uint32_t r_value, pair_r_value, r_type, r_length, other_half;
1883 auto Reloc =
1884 std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
1885 [&](const RelocationRef &Reloc) {
1886 uint64_t RelocOffset = Reloc.getOffset();
1887 return RelocOffset == sect_offset;
1888 });
1889
1890 if (Reloc == info->S.relocations().end())
1891 return 0;
1892
1893 Rel = Reloc->getRawDataRefImpl();
1894 RE = info->O->getRelocation(Rel);
1895 r_length = info->O->getAnyRelocationLength(RE);
1896 r_scattered = info->O->isRelocationScattered(RE);
1897 if (r_scattered) {
1898 r_value = info->O->getScatteredRelocationValue(RE);
1899 r_type = info->O->getScatteredRelocationType(RE);
1900 } else {
1901 r_type = info->O->getAnyRelocationType(RE);
1902 isExtern = info->O->getPlainRelocationExternal(RE);
1903 if (isExtern) {
1904 symbol_iterator RelocSym = Reloc->getSymbol();
1905 Symbol = *RelocSym;
1906 }
1907 }
1908 if (r_type == MachO::ARM_RELOC_HALF ||
1909 r_type == MachO::ARM_RELOC_SECTDIFF ||
1910 r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
1911 r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1912 DataRefImpl RelNext = Rel;
1913 info->O->moveRelocationNext(RelNext);
1914 MachO::any_relocation_info RENext;
1915 RENext = info->O->getRelocation(RelNext);
1916 other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
1917 if (info->O->isRelocationScattered(RENext))
1918 pair_r_value = info->O->getScatteredRelocationValue(RENext);
1919 }
1920
1921 if (isExtern) {
1922 ErrorOr<StringRef> SymName = Symbol.getName();
1923 if (std::error_code EC = SymName.getError())
1924 report_fatal_error(EC.message());
1925 const char *name = SymName->data();
1926 op_info->AddSymbol.Present = 1;
1927 op_info->AddSymbol.Name = name;
1928 switch (r_type) {
1929 case MachO::ARM_RELOC_HALF:
1930 if ((r_length & 0x1) == 1) {
1931 op_info->Value = value << 16 | other_half;
1932 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
1933 } else {
1934 op_info->Value = other_half << 16 | value;
1935 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
1936 }
1937 break;
1938 default:
1939 break;
1940 }
1941 return 1;
1942 }
1943 // If we have a branch that is not an external relocation entry then
1944 // return 0 so the code in tryAddingSymbolicOperand() can use the
1945 // SymbolLookUp call back with the branch target address to look up the
1946 // symbol and possiblity add an annotation for a symbol stub.
1947 if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
1948 r_type == MachO::ARM_THUMB_RELOC_BR22))
1949 return 0;
1950
1951 uint32_t offset = 0;
1952 if (r_type == MachO::ARM_RELOC_HALF ||
1953 r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1954 if ((r_length & 0x1) == 1)
1955 value = value << 16 | other_half;
1956 else
1957 value = other_half << 16 | value;
1958 }
1959 if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
1960 r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
1961 offset = value - r_value;
1962 value = r_value;
1963 }
1964
1965 if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1966 if ((r_length & 0x1) == 1)
1967 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
1968 else
1969 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
1970 const char *add = GuessSymbolName(r_value, info->AddrMap);
1971 const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1972 int32_t offset = value - (r_value - pair_r_value);
1973 op_info->AddSymbol.Present = 1;
1974 if (add != nullptr)
1975 op_info->AddSymbol.Name = add;
1976 else
1977 op_info->AddSymbol.Value = r_value;
1978 op_info->SubtractSymbol.Present = 1;
1979 if (sub != nullptr)
1980 op_info->SubtractSymbol.Name = sub;
1981 else
1982 op_info->SubtractSymbol.Value = pair_r_value;
1983 op_info->Value = offset;
1984 return 1;
1985 }
1986
1987 op_info->AddSymbol.Present = 1;
1988 op_info->Value = offset;
1989 if (r_type == MachO::ARM_RELOC_HALF) {
1990 if ((r_length & 0x1) == 1)
1991 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
1992 else
1993 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
1994 }
1995 const char *add = GuessSymbolName(value, info->AddrMap);
1996 if (add != nullptr) {
1997 op_info->AddSymbol.Name = add;
1998 return 1;
1999 }
2000 op_info->AddSymbol.Value = value;
2001 return 1;
2002 }
2003 if (Arch == Triple::aarch64) {
2004 if (Offset != 0 || Size != 4)
2005 return 0;
2006 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
2007 // TODO:
2008 // Search the external relocation entries of a fully linked image
2009 // (if any) for an entry that matches this segment offset.
2010 // uint64_t seg_offset = (Pc + Offset);
2011 return 0;
2012 }
2013 // In MH_OBJECT filetypes search the section's relocation entries (if any)
2014 // for an entry for this section offset.
2015 uint64_t sect_addr = info->S.getAddress();
2016 uint64_t sect_offset = (Pc + Offset) - sect_addr;
2017 auto Reloc =
2018 std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
2019 [&](const RelocationRef &Reloc) {
2020 uint64_t RelocOffset = Reloc.getOffset();
2021 return RelocOffset == sect_offset;
2022 });
2023
2024 if (Reloc == info->S.relocations().end())
2025 return 0;
2026
2027 DataRefImpl Rel = Reloc->getRawDataRefImpl();
2028 MachO::any_relocation_info RE = info->O->getRelocation(Rel);
2029 uint32_t r_type = info->O->getAnyRelocationType(RE);
2030 if (r_type == MachO::ARM64_RELOC_ADDEND) {
2031 DataRefImpl RelNext = Rel;
2032 info->O->moveRelocationNext(RelNext);
2033 MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
2034 if (value == 0) {
2035 value = info->O->getPlainRelocationSymbolNum(RENext);
2036 op_info->Value = value;
2037 }
2038 }
2039 // NOTE: Scattered relocations don't exist on arm64.
2040 if (!info->O->getPlainRelocationExternal(RE))
2041 return 0;
2042 ErrorOr<StringRef> SymName = Reloc->getSymbol()->getName();
2043 if (std::error_code EC = SymName.getError())
2044 report_fatal_error(EC.message());
2045 const char *name = SymName->data();
2046 op_info->AddSymbol.Present = 1;
2047 op_info->AddSymbol.Name = name;
2048
2049 switch (r_type) {
2050 case MachO::ARM64_RELOC_PAGE21:
2051 /* @page */
2052 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
2053 break;
2054 case MachO::ARM64_RELOC_PAGEOFF12:
2055 /* @pageoff */
2056 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
2057 break;
2058 case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
2059 /* @gotpage */
2060 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
2061 break;
2062 case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
2063 /* @gotpageoff */
2064 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
2065 break;
2066 case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
2067 /* @tvlppage is not implemented in llvm-mc */
2068 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
2069 break;
2070 case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
2071 /* @tvlppageoff is not implemented in llvm-mc */
2072 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
2073 break;
2074 default:
2075 case MachO::ARM64_RELOC_BRANCH26:
2076 op_info->VariantKind = LLVMDisassembler_VariantKind_None;
2077 break;
2078 }
2079 return 1;
2080 }
2081 return 0;
2082 }
2083
2084 // GuessCstringPointer is passed the address of what might be a pointer to a
2085 // literal string in a cstring section. If that address is in a cstring section
2086 // it returns a pointer to that string. Else it returns nullptr.
GuessCstringPointer(uint64_t ReferenceValue,struct DisassembleInfo * info)2087 static const char *GuessCstringPointer(uint64_t ReferenceValue,
2088 struct DisassembleInfo *info) {
2089 for (const auto &Load : info->O->load_commands()) {
2090 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2091 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2092 for (unsigned J = 0; J < Seg.nsects; ++J) {
2093 MachO::section_64 Sec = info->O->getSection64(Load, J);
2094 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2095 if (section_type == MachO::S_CSTRING_LITERALS &&
2096 ReferenceValue >= Sec.addr &&
2097 ReferenceValue < Sec.addr + Sec.size) {
2098 uint64_t sect_offset = ReferenceValue - Sec.addr;
2099 uint64_t object_offset = Sec.offset + sect_offset;
2100 StringRef MachOContents = info->O->getData();
2101 uint64_t object_size = MachOContents.size();
2102 const char *object_addr = (const char *)MachOContents.data();
2103 if (object_offset < object_size) {
2104 const char *name = object_addr + object_offset;
2105 return name;
2106 } else {
2107 return nullptr;
2108 }
2109 }
2110 }
2111 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2112 MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2113 for (unsigned J = 0; J < Seg.nsects; ++J) {
2114 MachO::section Sec = info->O->getSection(Load, J);
2115 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2116 if (section_type == MachO::S_CSTRING_LITERALS &&
2117 ReferenceValue >= Sec.addr &&
2118 ReferenceValue < Sec.addr + Sec.size) {
2119 uint64_t sect_offset = ReferenceValue - Sec.addr;
2120 uint64_t object_offset = Sec.offset + sect_offset;
2121 StringRef MachOContents = info->O->getData();
2122 uint64_t object_size = MachOContents.size();
2123 const char *object_addr = (const char *)MachOContents.data();
2124 if (object_offset < object_size) {
2125 const char *name = object_addr + object_offset;
2126 return name;
2127 } else {
2128 return nullptr;
2129 }
2130 }
2131 }
2132 }
2133 }
2134 return nullptr;
2135 }
2136
2137 // GuessIndirectSymbol returns the name of the indirect symbol for the
2138 // ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe
2139 // an address of a symbol stub or a lazy or non-lazy pointer to associate the
2140 // symbol name being referenced by the stub or pointer.
GuessIndirectSymbol(uint64_t ReferenceValue,struct DisassembleInfo * info)2141 static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
2142 struct DisassembleInfo *info) {
2143 MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
2144 MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
2145 for (const auto &Load : info->O->load_commands()) {
2146 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2147 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2148 for (unsigned J = 0; J < Seg.nsects; ++J) {
2149 MachO::section_64 Sec = info->O->getSection64(Load, J);
2150 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2151 if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2152 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2153 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2154 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2155 section_type == MachO::S_SYMBOL_STUBS) &&
2156 ReferenceValue >= Sec.addr &&
2157 ReferenceValue < Sec.addr + Sec.size) {
2158 uint32_t stride;
2159 if (section_type == MachO::S_SYMBOL_STUBS)
2160 stride = Sec.reserved2;
2161 else
2162 stride = 8;
2163 if (stride == 0)
2164 return nullptr;
2165 uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2166 if (index < Dysymtab.nindirectsyms) {
2167 uint32_t indirect_symbol =
2168 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2169 if (indirect_symbol < Symtab.nsyms) {
2170 symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2171 SymbolRef Symbol = *Sym;
2172 ErrorOr<StringRef> SymName = Symbol.getName();
2173 if (std::error_code EC = SymName.getError())
2174 report_fatal_error(EC.message());
2175 const char *name = SymName->data();
2176 return name;
2177 }
2178 }
2179 }
2180 }
2181 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2182 MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2183 for (unsigned J = 0; J < Seg.nsects; ++J) {
2184 MachO::section Sec = info->O->getSection(Load, J);
2185 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2186 if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2187 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2188 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2189 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2190 section_type == MachO::S_SYMBOL_STUBS) &&
2191 ReferenceValue >= Sec.addr &&
2192 ReferenceValue < Sec.addr + Sec.size) {
2193 uint32_t stride;
2194 if (section_type == MachO::S_SYMBOL_STUBS)
2195 stride = Sec.reserved2;
2196 else
2197 stride = 4;
2198 if (stride == 0)
2199 return nullptr;
2200 uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2201 if (index < Dysymtab.nindirectsyms) {
2202 uint32_t indirect_symbol =
2203 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2204 if (indirect_symbol < Symtab.nsyms) {
2205 symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2206 SymbolRef Symbol = *Sym;
2207 ErrorOr<StringRef> SymName = Symbol.getName();
2208 if (std::error_code EC = SymName.getError())
2209 report_fatal_error(EC.message());
2210 const char *name = SymName->data();
2211 return name;
2212 }
2213 }
2214 }
2215 }
2216 }
2217 }
2218 return nullptr;
2219 }
2220
2221 // method_reference() is called passing it the ReferenceName that might be
2222 // a reference it to an Objective-C method call. If so then it allocates and
2223 // assembles a method call string with the values last seen and saved in
2224 // the DisassembleInfo's class_name and selector_name fields. This is saved
2225 // into the method field of the info and any previous string is free'ed.
2226 // Then the class_name field in the info is set to nullptr. The method call
2227 // string is set into ReferenceName and ReferenceType is set to
2228 // LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call
2229 // then both ReferenceType and ReferenceName are left unchanged.
method_reference(struct DisassembleInfo * info,uint64_t * ReferenceType,const char ** ReferenceName)2230 static void method_reference(struct DisassembleInfo *info,
2231 uint64_t *ReferenceType,
2232 const char **ReferenceName) {
2233 unsigned int Arch = info->O->getArch();
2234 if (*ReferenceName != nullptr) {
2235 if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
2236 if (info->selector_name != nullptr) {
2237 if (info->method != nullptr)
2238 free(info->method);
2239 if (info->class_name != nullptr) {
2240 info->method = (char *)malloc(5 + strlen(info->class_name) +
2241 strlen(info->selector_name));
2242 if (info->method != nullptr) {
2243 strcpy(info->method, "+[");
2244 strcat(info->method, info->class_name);
2245 strcat(info->method, " ");
2246 strcat(info->method, info->selector_name);
2247 strcat(info->method, "]");
2248 *ReferenceName = info->method;
2249 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2250 }
2251 } else {
2252 info->method = (char *)malloc(9 + strlen(info->selector_name));
2253 if (info->method != nullptr) {
2254 if (Arch == Triple::x86_64)
2255 strcpy(info->method, "-[%rdi ");
2256 else if (Arch == Triple::aarch64)
2257 strcpy(info->method, "-[x0 ");
2258 else
2259 strcpy(info->method, "-[r? ");
2260 strcat(info->method, info->selector_name);
2261 strcat(info->method, "]");
2262 *ReferenceName = info->method;
2263 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2264 }
2265 }
2266 info->class_name = nullptr;
2267 }
2268 } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
2269 if (info->selector_name != nullptr) {
2270 if (info->method != nullptr)
2271 free(info->method);
2272 info->method = (char *)malloc(17 + strlen(info->selector_name));
2273 if (info->method != nullptr) {
2274 if (Arch == Triple::x86_64)
2275 strcpy(info->method, "-[[%rdi super] ");
2276 else if (Arch == Triple::aarch64)
2277 strcpy(info->method, "-[[x0 super] ");
2278 else
2279 strcpy(info->method, "-[[r? super] ");
2280 strcat(info->method, info->selector_name);
2281 strcat(info->method, "]");
2282 *ReferenceName = info->method;
2283 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2284 }
2285 info->class_name = nullptr;
2286 }
2287 }
2288 }
2289 }
2290
2291 // GuessPointerPointer() is passed the address of what might be a pointer to
2292 // a reference to an Objective-C class, selector, message ref or cfstring.
2293 // If so the value of the pointer is returned and one of the booleans are set
2294 // to true. If not zero is returned and all the booleans are set to false.
GuessPointerPointer(uint64_t ReferenceValue,struct DisassembleInfo * info,bool & classref,bool & selref,bool & msgref,bool & cfstring)2295 static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
2296 struct DisassembleInfo *info,
2297 bool &classref, bool &selref, bool &msgref,
2298 bool &cfstring) {
2299 classref = false;
2300 selref = false;
2301 msgref = false;
2302 cfstring = false;
2303 for (const auto &Load : info->O->load_commands()) {
2304 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2305 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2306 for (unsigned J = 0; J < Seg.nsects; ++J) {
2307 MachO::section_64 Sec = info->O->getSection64(Load, J);
2308 if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
2309 strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2310 strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
2311 strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
2312 strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
2313 ReferenceValue >= Sec.addr &&
2314 ReferenceValue < Sec.addr + Sec.size) {
2315 uint64_t sect_offset = ReferenceValue - Sec.addr;
2316 uint64_t object_offset = Sec.offset + sect_offset;
2317 StringRef MachOContents = info->O->getData();
2318 uint64_t object_size = MachOContents.size();
2319 const char *object_addr = (const char *)MachOContents.data();
2320 if (object_offset < object_size) {
2321 uint64_t pointer_value;
2322 memcpy(&pointer_value, object_addr + object_offset,
2323 sizeof(uint64_t));
2324 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2325 sys::swapByteOrder(pointer_value);
2326 if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
2327 selref = true;
2328 else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2329 strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
2330 classref = true;
2331 else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
2332 ReferenceValue + 8 < Sec.addr + Sec.size) {
2333 msgref = true;
2334 memcpy(&pointer_value, object_addr + object_offset + 8,
2335 sizeof(uint64_t));
2336 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2337 sys::swapByteOrder(pointer_value);
2338 } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
2339 cfstring = true;
2340 return pointer_value;
2341 } else {
2342 return 0;
2343 }
2344 }
2345 }
2346 }
2347 // TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
2348 }
2349 return 0;
2350 }
2351
2352 // get_pointer_64 returns a pointer to the bytes in the object file at the
2353 // Address from a section in the Mach-O file. And indirectly returns the
2354 // offset into the section, number of bytes left in the section past the offset
2355 // and which section is was being referenced. If the Address is not in a
2356 // section nullptr is returned.
get_pointer_64(uint64_t Address,uint32_t & offset,uint32_t & left,SectionRef & S,DisassembleInfo * info,bool objc_only=false)2357 static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
2358 uint32_t &left, SectionRef &S,
2359 DisassembleInfo *info,
2360 bool objc_only = false) {
2361 offset = 0;
2362 left = 0;
2363 S = SectionRef();
2364 for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
2365 uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
2366 uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
2367 if (SectSize == 0)
2368 continue;
2369 if (objc_only) {
2370 StringRef SectName;
2371 ((*(info->Sections))[SectIdx]).getName(SectName);
2372 DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
2373 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
2374 if (SegName != "__OBJC" && SectName != "__cstring")
2375 continue;
2376 }
2377 if (Address >= SectAddress && Address < SectAddress + SectSize) {
2378 S = (*(info->Sections))[SectIdx];
2379 offset = Address - SectAddress;
2380 left = SectSize - offset;
2381 StringRef SectContents;
2382 ((*(info->Sections))[SectIdx]).getContents(SectContents);
2383 return SectContents.data() + offset;
2384 }
2385 }
2386 return nullptr;
2387 }
2388
get_pointer_32(uint32_t Address,uint32_t & offset,uint32_t & left,SectionRef & S,DisassembleInfo * info,bool objc_only=false)2389 static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
2390 uint32_t &left, SectionRef &S,
2391 DisassembleInfo *info,
2392 bool objc_only = false) {
2393 return get_pointer_64(Address, offset, left, S, info, objc_only);
2394 }
2395
2396 // get_symbol_64() returns the name of a symbol (or nullptr) and the address of
2397 // the symbol indirectly through n_value. Based on the relocation information
2398 // for the specified section offset in the specified section reference.
2399 // If no relocation information is found and a non-zero ReferenceValue for the
2400 // symbol is passed, look up that address in the info's AddrMap.
get_symbol_64(uint32_t sect_offset,SectionRef S,DisassembleInfo * info,uint64_t & n_value,uint64_t ReferenceValue=0)2401 static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
2402 DisassembleInfo *info, uint64_t &n_value,
2403 uint64_t ReferenceValue = 0) {
2404 n_value = 0;
2405 if (!info->verbose)
2406 return nullptr;
2407
2408 // See if there is an external relocation entry at the sect_offset.
2409 bool reloc_found = false;
2410 DataRefImpl Rel;
2411 MachO::any_relocation_info RE;
2412 bool isExtern = false;
2413 SymbolRef Symbol;
2414 for (const RelocationRef &Reloc : S.relocations()) {
2415 uint64_t RelocOffset = Reloc.getOffset();
2416 if (RelocOffset == sect_offset) {
2417 Rel = Reloc.getRawDataRefImpl();
2418 RE = info->O->getRelocation(Rel);
2419 if (info->O->isRelocationScattered(RE))
2420 continue;
2421 isExtern = info->O->getPlainRelocationExternal(RE);
2422 if (isExtern) {
2423 symbol_iterator RelocSym = Reloc.getSymbol();
2424 Symbol = *RelocSym;
2425 }
2426 reloc_found = true;
2427 break;
2428 }
2429 }
2430 // If there is an external relocation entry for a symbol in this section
2431 // at this section_offset then use that symbol's value for the n_value
2432 // and return its name.
2433 const char *SymbolName = nullptr;
2434 if (reloc_found && isExtern) {
2435 n_value = Symbol.getValue();
2436 ErrorOr<StringRef> NameOrError = Symbol.getName();
2437 if (std::error_code EC = NameOrError.getError())
2438 report_fatal_error(EC.message());
2439 StringRef Name = *NameOrError;
2440 if (!Name.empty()) {
2441 SymbolName = Name.data();
2442 return SymbolName;
2443 }
2444 }
2445
2446 // TODO: For fully linked images, look through the external relocation
2447 // entries off the dynamic symtab command. For these the r_offset is from the
2448 // start of the first writeable segment in the Mach-O file. So the offset
2449 // to this section from that segment is passed to this routine by the caller,
2450 // as the database_offset. Which is the difference of the section's starting
2451 // address and the first writable segment.
2452 //
2453 // NOTE: need add passing the database_offset to this routine.
2454
2455 // We did not find an external relocation entry so look up the ReferenceValue
2456 // as an address of a symbol and if found return that symbol's name.
2457 SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
2458
2459 return SymbolName;
2460 }
2461
get_symbol_32(uint32_t sect_offset,SectionRef S,DisassembleInfo * info,uint32_t ReferenceValue)2462 static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
2463 DisassembleInfo *info,
2464 uint32_t ReferenceValue) {
2465 uint64_t n_value64;
2466 return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
2467 }
2468
2469 // These are structs in the Objective-C meta data and read to produce the
2470 // comments for disassembly. While these are part of the ABI they are no
2471 // public defintions. So the are here not in include/llvm/Support/MachO.h .
2472
2473 // The cfstring object in a 64-bit Mach-O file.
2474 struct cfstring64_t {
2475 uint64_t isa; // class64_t * (64-bit pointer)
2476 uint64_t flags; // flag bits
2477 uint64_t characters; // char * (64-bit pointer)
2478 uint64_t length; // number of non-NULL characters in above
2479 };
2480
2481 // The class object in a 64-bit Mach-O file.
2482 struct class64_t {
2483 uint64_t isa; // class64_t * (64-bit pointer)
2484 uint64_t superclass; // class64_t * (64-bit pointer)
2485 uint64_t cache; // Cache (64-bit pointer)
2486 uint64_t vtable; // IMP * (64-bit pointer)
2487 uint64_t data; // class_ro64_t * (64-bit pointer)
2488 };
2489
2490 struct class32_t {
2491 uint32_t isa; /* class32_t * (32-bit pointer) */
2492 uint32_t superclass; /* class32_t * (32-bit pointer) */
2493 uint32_t cache; /* Cache (32-bit pointer) */
2494 uint32_t vtable; /* IMP * (32-bit pointer) */
2495 uint32_t data; /* class_ro32_t * (32-bit pointer) */
2496 };
2497
2498 struct class_ro64_t {
2499 uint32_t flags;
2500 uint32_t instanceStart;
2501 uint32_t instanceSize;
2502 uint32_t reserved;
2503 uint64_t ivarLayout; // const uint8_t * (64-bit pointer)
2504 uint64_t name; // const char * (64-bit pointer)
2505 uint64_t baseMethods; // const method_list_t * (64-bit pointer)
2506 uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer)
2507 uint64_t ivars; // const ivar_list_t * (64-bit pointer)
2508 uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
2509 uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
2510 };
2511
2512 struct class_ro32_t {
2513 uint32_t flags;
2514 uint32_t instanceStart;
2515 uint32_t instanceSize;
2516 uint32_t ivarLayout; /* const uint8_t * (32-bit pointer) */
2517 uint32_t name; /* const char * (32-bit pointer) */
2518 uint32_t baseMethods; /* const method_list_t * (32-bit pointer) */
2519 uint32_t baseProtocols; /* const protocol_list_t * (32-bit pointer) */
2520 uint32_t ivars; /* const ivar_list_t * (32-bit pointer) */
2521 uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
2522 uint32_t baseProperties; /* const struct objc_property_list *
2523 (32-bit pointer) */
2524 };
2525
2526 /* Values for class_ro{64,32}_t->flags */
2527 #define RO_META (1 << 0)
2528 #define RO_ROOT (1 << 1)
2529 #define RO_HAS_CXX_STRUCTORS (1 << 2)
2530
2531 struct method_list64_t {
2532 uint32_t entsize;
2533 uint32_t count;
2534 /* struct method64_t first; These structures follow inline */
2535 };
2536
2537 struct method_list32_t {
2538 uint32_t entsize;
2539 uint32_t count;
2540 /* struct method32_t first; These structures follow inline */
2541 };
2542
2543 struct method64_t {
2544 uint64_t name; /* SEL (64-bit pointer) */
2545 uint64_t types; /* const char * (64-bit pointer) */
2546 uint64_t imp; /* IMP (64-bit pointer) */
2547 };
2548
2549 struct method32_t {
2550 uint32_t name; /* SEL (32-bit pointer) */
2551 uint32_t types; /* const char * (32-bit pointer) */
2552 uint32_t imp; /* IMP (32-bit pointer) */
2553 };
2554
2555 struct protocol_list64_t {
2556 uint64_t count; /* uintptr_t (a 64-bit value) */
2557 /* struct protocol64_t * list[0]; These pointers follow inline */
2558 };
2559
2560 struct protocol_list32_t {
2561 uint32_t count; /* uintptr_t (a 32-bit value) */
2562 /* struct protocol32_t * list[0]; These pointers follow inline */
2563 };
2564
2565 struct protocol64_t {
2566 uint64_t isa; /* id * (64-bit pointer) */
2567 uint64_t name; /* const char * (64-bit pointer) */
2568 uint64_t protocols; /* struct protocol_list64_t *
2569 (64-bit pointer) */
2570 uint64_t instanceMethods; /* method_list_t * (64-bit pointer) */
2571 uint64_t classMethods; /* method_list_t * (64-bit pointer) */
2572 uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
2573 uint64_t optionalClassMethods; /* method_list_t * (64-bit pointer) */
2574 uint64_t instanceProperties; /* struct objc_property_list *
2575 (64-bit pointer) */
2576 };
2577
2578 struct protocol32_t {
2579 uint32_t isa; /* id * (32-bit pointer) */
2580 uint32_t name; /* const char * (32-bit pointer) */
2581 uint32_t protocols; /* struct protocol_list_t *
2582 (32-bit pointer) */
2583 uint32_t instanceMethods; /* method_list_t * (32-bit pointer) */
2584 uint32_t classMethods; /* method_list_t * (32-bit pointer) */
2585 uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
2586 uint32_t optionalClassMethods; /* method_list_t * (32-bit pointer) */
2587 uint32_t instanceProperties; /* struct objc_property_list *
2588 (32-bit pointer) */
2589 };
2590
2591 struct ivar_list64_t {
2592 uint32_t entsize;
2593 uint32_t count;
2594 /* struct ivar64_t first; These structures follow inline */
2595 };
2596
2597 struct ivar_list32_t {
2598 uint32_t entsize;
2599 uint32_t count;
2600 /* struct ivar32_t first; These structures follow inline */
2601 };
2602
2603 struct ivar64_t {
2604 uint64_t offset; /* uintptr_t * (64-bit pointer) */
2605 uint64_t name; /* const char * (64-bit pointer) */
2606 uint64_t type; /* const char * (64-bit pointer) */
2607 uint32_t alignment;
2608 uint32_t size;
2609 };
2610
2611 struct ivar32_t {
2612 uint32_t offset; /* uintptr_t * (32-bit pointer) */
2613 uint32_t name; /* const char * (32-bit pointer) */
2614 uint32_t type; /* const char * (32-bit pointer) */
2615 uint32_t alignment;
2616 uint32_t size;
2617 };
2618
2619 struct objc_property_list64 {
2620 uint32_t entsize;
2621 uint32_t count;
2622 /* struct objc_property64 first; These structures follow inline */
2623 };
2624
2625 struct objc_property_list32 {
2626 uint32_t entsize;
2627 uint32_t count;
2628 /* struct objc_property32 first; These structures follow inline */
2629 };
2630
2631 struct objc_property64 {
2632 uint64_t name; /* const char * (64-bit pointer) */
2633 uint64_t attributes; /* const char * (64-bit pointer) */
2634 };
2635
2636 struct objc_property32 {
2637 uint32_t name; /* const char * (32-bit pointer) */
2638 uint32_t attributes; /* const char * (32-bit pointer) */
2639 };
2640
2641 struct category64_t {
2642 uint64_t name; /* const char * (64-bit pointer) */
2643 uint64_t cls; /* struct class_t * (64-bit pointer) */
2644 uint64_t instanceMethods; /* struct method_list_t * (64-bit pointer) */
2645 uint64_t classMethods; /* struct method_list_t * (64-bit pointer) */
2646 uint64_t protocols; /* struct protocol_list_t * (64-bit pointer) */
2647 uint64_t instanceProperties; /* struct objc_property_list *
2648 (64-bit pointer) */
2649 };
2650
2651 struct category32_t {
2652 uint32_t name; /* const char * (32-bit pointer) */
2653 uint32_t cls; /* struct class_t * (32-bit pointer) */
2654 uint32_t instanceMethods; /* struct method_list_t * (32-bit pointer) */
2655 uint32_t classMethods; /* struct method_list_t * (32-bit pointer) */
2656 uint32_t protocols; /* struct protocol_list_t * (32-bit pointer) */
2657 uint32_t instanceProperties; /* struct objc_property_list *
2658 (32-bit pointer) */
2659 };
2660
2661 struct objc_image_info64 {
2662 uint32_t version;
2663 uint32_t flags;
2664 };
2665 struct objc_image_info32 {
2666 uint32_t version;
2667 uint32_t flags;
2668 };
2669 struct imageInfo_t {
2670 uint32_t version;
2671 uint32_t flags;
2672 };
2673 /* masks for objc_image_info.flags */
2674 #define OBJC_IMAGE_IS_REPLACEMENT (1 << 0)
2675 #define OBJC_IMAGE_SUPPORTS_GC (1 << 1)
2676
2677 struct message_ref64 {
2678 uint64_t imp; /* IMP (64-bit pointer) */
2679 uint64_t sel; /* SEL (64-bit pointer) */
2680 };
2681
2682 struct message_ref32 {
2683 uint32_t imp; /* IMP (32-bit pointer) */
2684 uint32_t sel; /* SEL (32-bit pointer) */
2685 };
2686
2687 // Objective-C 1 (32-bit only) meta data structs.
2688
2689 struct objc_module_t {
2690 uint32_t version;
2691 uint32_t size;
2692 uint32_t name; /* char * (32-bit pointer) */
2693 uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
2694 };
2695
2696 struct objc_symtab_t {
2697 uint32_t sel_ref_cnt;
2698 uint32_t refs; /* SEL * (32-bit pointer) */
2699 uint16_t cls_def_cnt;
2700 uint16_t cat_def_cnt;
2701 // uint32_t defs[1]; /* void * (32-bit pointer) variable size */
2702 };
2703
2704 struct objc_class_t {
2705 uint32_t isa; /* struct objc_class * (32-bit pointer) */
2706 uint32_t super_class; /* struct objc_class * (32-bit pointer) */
2707 uint32_t name; /* const char * (32-bit pointer) */
2708 int32_t version;
2709 int32_t info;
2710 int32_t instance_size;
2711 uint32_t ivars; /* struct objc_ivar_list * (32-bit pointer) */
2712 uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
2713 uint32_t cache; /* struct objc_cache * (32-bit pointer) */
2714 uint32_t protocols; /* struct objc_protocol_list * (32-bit pointer) */
2715 };
2716
2717 #define CLS_GETINFO(cls, infomask) ((cls)->info & (infomask))
2718 // class is not a metaclass
2719 #define CLS_CLASS 0x1
2720 // class is a metaclass
2721 #define CLS_META 0x2
2722
2723 struct objc_category_t {
2724 uint32_t category_name; /* char * (32-bit pointer) */
2725 uint32_t class_name; /* char * (32-bit pointer) */
2726 uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
2727 uint32_t class_methods; /* struct objc_method_list * (32-bit pointer) */
2728 uint32_t protocols; /* struct objc_protocol_list * (32-bit ptr) */
2729 };
2730
2731 struct objc_ivar_t {
2732 uint32_t ivar_name; /* char * (32-bit pointer) */
2733 uint32_t ivar_type; /* char * (32-bit pointer) */
2734 int32_t ivar_offset;
2735 };
2736
2737 struct objc_ivar_list_t {
2738 int32_t ivar_count;
2739 // struct objc_ivar_t ivar_list[1]; /* variable length structure */
2740 };
2741
2742 struct objc_method_list_t {
2743 uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
2744 int32_t method_count;
2745 // struct objc_method_t method_list[1]; /* variable length structure */
2746 };
2747
2748 struct objc_method_t {
2749 uint32_t method_name; /* SEL, aka struct objc_selector * (32-bit pointer) */
2750 uint32_t method_types; /* char * (32-bit pointer) */
2751 uint32_t method_imp; /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
2752 (32-bit pointer) */
2753 };
2754
2755 struct objc_protocol_list_t {
2756 uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
2757 int32_t count;
2758 // uint32_t list[1]; /* Protocol *, aka struct objc_protocol_t *
2759 // (32-bit pointer) */
2760 };
2761
2762 struct objc_protocol_t {
2763 uint32_t isa; /* struct objc_class * (32-bit pointer) */
2764 uint32_t protocol_name; /* char * (32-bit pointer) */
2765 uint32_t protocol_list; /* struct objc_protocol_list * (32-bit pointer) */
2766 uint32_t instance_methods; /* struct objc_method_description_list *
2767 (32-bit pointer) */
2768 uint32_t class_methods; /* struct objc_method_description_list *
2769 (32-bit pointer) */
2770 };
2771
2772 struct objc_method_description_list_t {
2773 int32_t count;
2774 // struct objc_method_description_t list[1];
2775 };
2776
2777 struct objc_method_description_t {
2778 uint32_t name; /* SEL, aka struct objc_selector * (32-bit pointer) */
2779 uint32_t types; /* char * (32-bit pointer) */
2780 };
2781
swapStruct(struct cfstring64_t & cfs)2782 inline void swapStruct(struct cfstring64_t &cfs) {
2783 sys::swapByteOrder(cfs.isa);
2784 sys::swapByteOrder(cfs.flags);
2785 sys::swapByteOrder(cfs.characters);
2786 sys::swapByteOrder(cfs.length);
2787 }
2788
swapStruct(struct class64_t & c)2789 inline void swapStruct(struct class64_t &c) {
2790 sys::swapByteOrder(c.isa);
2791 sys::swapByteOrder(c.superclass);
2792 sys::swapByteOrder(c.cache);
2793 sys::swapByteOrder(c.vtable);
2794 sys::swapByteOrder(c.data);
2795 }
2796
swapStruct(struct class32_t & c)2797 inline void swapStruct(struct class32_t &c) {
2798 sys::swapByteOrder(c.isa);
2799 sys::swapByteOrder(c.superclass);
2800 sys::swapByteOrder(c.cache);
2801 sys::swapByteOrder(c.vtable);
2802 sys::swapByteOrder(c.data);
2803 }
2804
swapStruct(struct class_ro64_t & cro)2805 inline void swapStruct(struct class_ro64_t &cro) {
2806 sys::swapByteOrder(cro.flags);
2807 sys::swapByteOrder(cro.instanceStart);
2808 sys::swapByteOrder(cro.instanceSize);
2809 sys::swapByteOrder(cro.reserved);
2810 sys::swapByteOrder(cro.ivarLayout);
2811 sys::swapByteOrder(cro.name);
2812 sys::swapByteOrder(cro.baseMethods);
2813 sys::swapByteOrder(cro.baseProtocols);
2814 sys::swapByteOrder(cro.ivars);
2815 sys::swapByteOrder(cro.weakIvarLayout);
2816 sys::swapByteOrder(cro.baseProperties);
2817 }
2818
swapStruct(struct class_ro32_t & cro)2819 inline void swapStruct(struct class_ro32_t &cro) {
2820 sys::swapByteOrder(cro.flags);
2821 sys::swapByteOrder(cro.instanceStart);
2822 sys::swapByteOrder(cro.instanceSize);
2823 sys::swapByteOrder(cro.ivarLayout);
2824 sys::swapByteOrder(cro.name);
2825 sys::swapByteOrder(cro.baseMethods);
2826 sys::swapByteOrder(cro.baseProtocols);
2827 sys::swapByteOrder(cro.ivars);
2828 sys::swapByteOrder(cro.weakIvarLayout);
2829 sys::swapByteOrder(cro.baseProperties);
2830 }
2831
swapStruct(struct method_list64_t & ml)2832 inline void swapStruct(struct method_list64_t &ml) {
2833 sys::swapByteOrder(ml.entsize);
2834 sys::swapByteOrder(ml.count);
2835 }
2836
swapStruct(struct method_list32_t & ml)2837 inline void swapStruct(struct method_list32_t &ml) {
2838 sys::swapByteOrder(ml.entsize);
2839 sys::swapByteOrder(ml.count);
2840 }
2841
swapStruct(struct method64_t & m)2842 inline void swapStruct(struct method64_t &m) {
2843 sys::swapByteOrder(m.name);
2844 sys::swapByteOrder(m.types);
2845 sys::swapByteOrder(m.imp);
2846 }
2847
swapStruct(struct method32_t & m)2848 inline void swapStruct(struct method32_t &m) {
2849 sys::swapByteOrder(m.name);
2850 sys::swapByteOrder(m.types);
2851 sys::swapByteOrder(m.imp);
2852 }
2853
swapStruct(struct protocol_list64_t & pl)2854 inline void swapStruct(struct protocol_list64_t &pl) {
2855 sys::swapByteOrder(pl.count);
2856 }
2857
swapStruct(struct protocol_list32_t & pl)2858 inline void swapStruct(struct protocol_list32_t &pl) {
2859 sys::swapByteOrder(pl.count);
2860 }
2861
swapStruct(struct protocol64_t & p)2862 inline void swapStruct(struct protocol64_t &p) {
2863 sys::swapByteOrder(p.isa);
2864 sys::swapByteOrder(p.name);
2865 sys::swapByteOrder(p.protocols);
2866 sys::swapByteOrder(p.instanceMethods);
2867 sys::swapByteOrder(p.classMethods);
2868 sys::swapByteOrder(p.optionalInstanceMethods);
2869 sys::swapByteOrder(p.optionalClassMethods);
2870 sys::swapByteOrder(p.instanceProperties);
2871 }
2872
swapStruct(struct protocol32_t & p)2873 inline void swapStruct(struct protocol32_t &p) {
2874 sys::swapByteOrder(p.isa);
2875 sys::swapByteOrder(p.name);
2876 sys::swapByteOrder(p.protocols);
2877 sys::swapByteOrder(p.instanceMethods);
2878 sys::swapByteOrder(p.classMethods);
2879 sys::swapByteOrder(p.optionalInstanceMethods);
2880 sys::swapByteOrder(p.optionalClassMethods);
2881 sys::swapByteOrder(p.instanceProperties);
2882 }
2883
swapStruct(struct ivar_list64_t & il)2884 inline void swapStruct(struct ivar_list64_t &il) {
2885 sys::swapByteOrder(il.entsize);
2886 sys::swapByteOrder(il.count);
2887 }
2888
swapStruct(struct ivar_list32_t & il)2889 inline void swapStruct(struct ivar_list32_t &il) {
2890 sys::swapByteOrder(il.entsize);
2891 sys::swapByteOrder(il.count);
2892 }
2893
swapStruct(struct ivar64_t & i)2894 inline void swapStruct(struct ivar64_t &i) {
2895 sys::swapByteOrder(i.offset);
2896 sys::swapByteOrder(i.name);
2897 sys::swapByteOrder(i.type);
2898 sys::swapByteOrder(i.alignment);
2899 sys::swapByteOrder(i.size);
2900 }
2901
swapStruct(struct ivar32_t & i)2902 inline void swapStruct(struct ivar32_t &i) {
2903 sys::swapByteOrder(i.offset);
2904 sys::swapByteOrder(i.name);
2905 sys::swapByteOrder(i.type);
2906 sys::swapByteOrder(i.alignment);
2907 sys::swapByteOrder(i.size);
2908 }
2909
swapStruct(struct objc_property_list64 & pl)2910 inline void swapStruct(struct objc_property_list64 &pl) {
2911 sys::swapByteOrder(pl.entsize);
2912 sys::swapByteOrder(pl.count);
2913 }
2914
swapStruct(struct objc_property_list32 & pl)2915 inline void swapStruct(struct objc_property_list32 &pl) {
2916 sys::swapByteOrder(pl.entsize);
2917 sys::swapByteOrder(pl.count);
2918 }
2919
swapStruct(struct objc_property64 & op)2920 inline void swapStruct(struct objc_property64 &op) {
2921 sys::swapByteOrder(op.name);
2922 sys::swapByteOrder(op.attributes);
2923 }
2924
swapStruct(struct objc_property32 & op)2925 inline void swapStruct(struct objc_property32 &op) {
2926 sys::swapByteOrder(op.name);
2927 sys::swapByteOrder(op.attributes);
2928 }
2929
swapStruct(struct category64_t & c)2930 inline void swapStruct(struct category64_t &c) {
2931 sys::swapByteOrder(c.name);
2932 sys::swapByteOrder(c.cls);
2933 sys::swapByteOrder(c.instanceMethods);
2934 sys::swapByteOrder(c.classMethods);
2935 sys::swapByteOrder(c.protocols);
2936 sys::swapByteOrder(c.instanceProperties);
2937 }
2938
swapStruct(struct category32_t & c)2939 inline void swapStruct(struct category32_t &c) {
2940 sys::swapByteOrder(c.name);
2941 sys::swapByteOrder(c.cls);
2942 sys::swapByteOrder(c.instanceMethods);
2943 sys::swapByteOrder(c.classMethods);
2944 sys::swapByteOrder(c.protocols);
2945 sys::swapByteOrder(c.instanceProperties);
2946 }
2947
swapStruct(struct objc_image_info64 & o)2948 inline void swapStruct(struct objc_image_info64 &o) {
2949 sys::swapByteOrder(o.version);
2950 sys::swapByteOrder(o.flags);
2951 }
2952
swapStruct(struct objc_image_info32 & o)2953 inline void swapStruct(struct objc_image_info32 &o) {
2954 sys::swapByteOrder(o.version);
2955 sys::swapByteOrder(o.flags);
2956 }
2957
swapStruct(struct imageInfo_t & o)2958 inline void swapStruct(struct imageInfo_t &o) {
2959 sys::swapByteOrder(o.version);
2960 sys::swapByteOrder(o.flags);
2961 }
2962
swapStruct(struct message_ref64 & mr)2963 inline void swapStruct(struct message_ref64 &mr) {
2964 sys::swapByteOrder(mr.imp);
2965 sys::swapByteOrder(mr.sel);
2966 }
2967
swapStruct(struct message_ref32 & mr)2968 inline void swapStruct(struct message_ref32 &mr) {
2969 sys::swapByteOrder(mr.imp);
2970 sys::swapByteOrder(mr.sel);
2971 }
2972
swapStruct(struct objc_module_t & module)2973 inline void swapStruct(struct objc_module_t &module) {
2974 sys::swapByteOrder(module.version);
2975 sys::swapByteOrder(module.size);
2976 sys::swapByteOrder(module.name);
2977 sys::swapByteOrder(module.symtab);
2978 }
2979
swapStruct(struct objc_symtab_t & symtab)2980 inline void swapStruct(struct objc_symtab_t &symtab) {
2981 sys::swapByteOrder(symtab.sel_ref_cnt);
2982 sys::swapByteOrder(symtab.refs);
2983 sys::swapByteOrder(symtab.cls_def_cnt);
2984 sys::swapByteOrder(symtab.cat_def_cnt);
2985 }
2986
swapStruct(struct objc_class_t & objc_class)2987 inline void swapStruct(struct objc_class_t &objc_class) {
2988 sys::swapByteOrder(objc_class.isa);
2989 sys::swapByteOrder(objc_class.super_class);
2990 sys::swapByteOrder(objc_class.name);
2991 sys::swapByteOrder(objc_class.version);
2992 sys::swapByteOrder(objc_class.info);
2993 sys::swapByteOrder(objc_class.instance_size);
2994 sys::swapByteOrder(objc_class.ivars);
2995 sys::swapByteOrder(objc_class.methodLists);
2996 sys::swapByteOrder(objc_class.cache);
2997 sys::swapByteOrder(objc_class.protocols);
2998 }
2999
swapStruct(struct objc_category_t & objc_category)3000 inline void swapStruct(struct objc_category_t &objc_category) {
3001 sys::swapByteOrder(objc_category.category_name);
3002 sys::swapByteOrder(objc_category.class_name);
3003 sys::swapByteOrder(objc_category.instance_methods);
3004 sys::swapByteOrder(objc_category.class_methods);
3005 sys::swapByteOrder(objc_category.protocols);
3006 }
3007
swapStruct(struct objc_ivar_list_t & objc_ivar_list)3008 inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
3009 sys::swapByteOrder(objc_ivar_list.ivar_count);
3010 }
3011
swapStruct(struct objc_ivar_t & objc_ivar)3012 inline void swapStruct(struct objc_ivar_t &objc_ivar) {
3013 sys::swapByteOrder(objc_ivar.ivar_name);
3014 sys::swapByteOrder(objc_ivar.ivar_type);
3015 sys::swapByteOrder(objc_ivar.ivar_offset);
3016 }
3017
swapStruct(struct objc_method_list_t & method_list)3018 inline void swapStruct(struct objc_method_list_t &method_list) {
3019 sys::swapByteOrder(method_list.obsolete);
3020 sys::swapByteOrder(method_list.method_count);
3021 }
3022
swapStruct(struct objc_method_t & method)3023 inline void swapStruct(struct objc_method_t &method) {
3024 sys::swapByteOrder(method.method_name);
3025 sys::swapByteOrder(method.method_types);
3026 sys::swapByteOrder(method.method_imp);
3027 }
3028
swapStruct(struct objc_protocol_list_t & protocol_list)3029 inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
3030 sys::swapByteOrder(protocol_list.next);
3031 sys::swapByteOrder(protocol_list.count);
3032 }
3033
swapStruct(struct objc_protocol_t & protocol)3034 inline void swapStruct(struct objc_protocol_t &protocol) {
3035 sys::swapByteOrder(protocol.isa);
3036 sys::swapByteOrder(protocol.protocol_name);
3037 sys::swapByteOrder(protocol.protocol_list);
3038 sys::swapByteOrder(protocol.instance_methods);
3039 sys::swapByteOrder(protocol.class_methods);
3040 }
3041
swapStruct(struct objc_method_description_list_t & mdl)3042 inline void swapStruct(struct objc_method_description_list_t &mdl) {
3043 sys::swapByteOrder(mdl.count);
3044 }
3045
swapStruct(struct objc_method_description_t & md)3046 inline void swapStruct(struct objc_method_description_t &md) {
3047 sys::swapByteOrder(md.name);
3048 sys::swapByteOrder(md.types);
3049 }
3050
3051 static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
3052 struct DisassembleInfo *info);
3053
3054 // get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
3055 // to an Objective-C class and returns the class name. It is also passed the
3056 // address of the pointer, so when the pointer is zero as it can be in an .o
3057 // file, that is used to look for an external relocation entry with a symbol
3058 // name.
get_objc2_64bit_class_name(uint64_t pointer_value,uint64_t ReferenceValue,struct DisassembleInfo * info)3059 static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
3060 uint64_t ReferenceValue,
3061 struct DisassembleInfo *info) {
3062 const char *r;
3063 uint32_t offset, left;
3064 SectionRef S;
3065
3066 // The pointer_value can be 0 in an object file and have a relocation
3067 // entry for the class symbol at the ReferenceValue (the address of the
3068 // pointer).
3069 if (pointer_value == 0) {
3070 r = get_pointer_64(ReferenceValue, offset, left, S, info);
3071 if (r == nullptr || left < sizeof(uint64_t))
3072 return nullptr;
3073 uint64_t n_value;
3074 const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3075 if (symbol_name == nullptr)
3076 return nullptr;
3077 const char *class_name = strrchr(symbol_name, '$');
3078 if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
3079 return class_name + 2;
3080 else
3081 return nullptr;
3082 }
3083
3084 // The case were the pointer_value is non-zero and points to a class defined
3085 // in this Mach-O file.
3086 r = get_pointer_64(pointer_value, offset, left, S, info);
3087 if (r == nullptr || left < sizeof(struct class64_t))
3088 return nullptr;
3089 struct class64_t c;
3090 memcpy(&c, r, sizeof(struct class64_t));
3091 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3092 swapStruct(c);
3093 if (c.data == 0)
3094 return nullptr;
3095 r = get_pointer_64(c.data, offset, left, S, info);
3096 if (r == nullptr || left < sizeof(struct class_ro64_t))
3097 return nullptr;
3098 struct class_ro64_t cro;
3099 memcpy(&cro, r, sizeof(struct class_ro64_t));
3100 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3101 swapStruct(cro);
3102 if (cro.name == 0)
3103 return nullptr;
3104 const char *name = get_pointer_64(cro.name, offset, left, S, info);
3105 return name;
3106 }
3107
3108 // get_objc2_64bit_cfstring_name is used for disassembly and is passed a
3109 // pointer to a cfstring and returns its name or nullptr.
get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,struct DisassembleInfo * info)3110 static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
3111 struct DisassembleInfo *info) {
3112 const char *r, *name;
3113 uint32_t offset, left;
3114 SectionRef S;
3115 struct cfstring64_t cfs;
3116 uint64_t cfs_characters;
3117
3118 r = get_pointer_64(ReferenceValue, offset, left, S, info);
3119 if (r == nullptr || left < sizeof(struct cfstring64_t))
3120 return nullptr;
3121 memcpy(&cfs, r, sizeof(struct cfstring64_t));
3122 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3123 swapStruct(cfs);
3124 if (cfs.characters == 0) {
3125 uint64_t n_value;
3126 const char *symbol_name = get_symbol_64(
3127 offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
3128 if (symbol_name == nullptr)
3129 return nullptr;
3130 cfs_characters = n_value;
3131 } else
3132 cfs_characters = cfs.characters;
3133 name = get_pointer_64(cfs_characters, offset, left, S, info);
3134
3135 return name;
3136 }
3137
3138 // get_objc2_64bit_selref() is used for disassembly and is passed a the address
3139 // of a pointer to an Objective-C selector reference when the pointer value is
3140 // zero as in a .o file and is likely to have a external relocation entry with
3141 // who's symbol's n_value is the real pointer to the selector name. If that is
3142 // the case the real pointer to the selector name is returned else 0 is
3143 // returned
get_objc2_64bit_selref(uint64_t ReferenceValue,struct DisassembleInfo * info)3144 static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
3145 struct DisassembleInfo *info) {
3146 uint32_t offset, left;
3147 SectionRef S;
3148
3149 const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
3150 if (r == nullptr || left < sizeof(uint64_t))
3151 return 0;
3152 uint64_t n_value;
3153 const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3154 if (symbol_name == nullptr)
3155 return 0;
3156 return n_value;
3157 }
3158
get_section(MachOObjectFile * O,const char * segname,const char * sectname)3159 static const SectionRef get_section(MachOObjectFile *O, const char *segname,
3160 const char *sectname) {
3161 for (const SectionRef &Section : O->sections()) {
3162 StringRef SectName;
3163 Section.getName(SectName);
3164 DataRefImpl Ref = Section.getRawDataRefImpl();
3165 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3166 if (SegName == segname && SectName == sectname)
3167 return Section;
3168 }
3169 return SectionRef();
3170 }
3171
3172 static void
walk_pointer_list_64(const char * listname,const SectionRef S,MachOObjectFile * O,struct DisassembleInfo * info,void (* func)(uint64_t,struct DisassembleInfo * info))3173 walk_pointer_list_64(const char *listname, const SectionRef S,
3174 MachOObjectFile *O, struct DisassembleInfo *info,
3175 void (*func)(uint64_t, struct DisassembleInfo *info)) {
3176 if (S == SectionRef())
3177 return;
3178
3179 StringRef SectName;
3180 S.getName(SectName);
3181 DataRefImpl Ref = S.getRawDataRefImpl();
3182 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3183 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3184
3185 StringRef BytesStr;
3186 S.getContents(BytesStr);
3187 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3188
3189 for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
3190 uint32_t left = S.getSize() - i;
3191 uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
3192 uint64_t p = 0;
3193 memcpy(&p, Contents + i, size);
3194 if (i + sizeof(uint64_t) > S.getSize())
3195 outs() << listname << " list pointer extends past end of (" << SegName
3196 << "," << SectName << ") section\n";
3197 outs() << format("%016" PRIx64, S.getAddress() + i) << " ";
3198
3199 if (O->isLittleEndian() != sys::IsLittleEndianHost)
3200 sys::swapByteOrder(p);
3201
3202 uint64_t n_value = 0;
3203 const char *name = get_symbol_64(i, S, info, n_value, p);
3204 if (name == nullptr)
3205 name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
3206
3207 if (n_value != 0) {
3208 outs() << format("0x%" PRIx64, n_value);
3209 if (p != 0)
3210 outs() << " + " << format("0x%" PRIx64, p);
3211 } else
3212 outs() << format("0x%" PRIx64, p);
3213 if (name != nullptr)
3214 outs() << " " << name;
3215 outs() << "\n";
3216
3217 p += n_value;
3218 if (func)
3219 func(p, info);
3220 }
3221 }
3222
3223 static void
walk_pointer_list_32(const char * listname,const SectionRef S,MachOObjectFile * O,struct DisassembleInfo * info,void (* func)(uint32_t,struct DisassembleInfo * info))3224 walk_pointer_list_32(const char *listname, const SectionRef S,
3225 MachOObjectFile *O, struct DisassembleInfo *info,
3226 void (*func)(uint32_t, struct DisassembleInfo *info)) {
3227 if (S == SectionRef())
3228 return;
3229
3230 StringRef SectName;
3231 S.getName(SectName);
3232 DataRefImpl Ref = S.getRawDataRefImpl();
3233 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3234 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3235
3236 StringRef BytesStr;
3237 S.getContents(BytesStr);
3238 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3239
3240 for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
3241 uint32_t left = S.getSize() - i;
3242 uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
3243 uint32_t p = 0;
3244 memcpy(&p, Contents + i, size);
3245 if (i + sizeof(uint32_t) > S.getSize())
3246 outs() << listname << " list pointer extends past end of (" << SegName
3247 << "," << SectName << ") section\n";
3248 uint32_t Address = S.getAddress() + i;
3249 outs() << format("%08" PRIx32, Address) << " ";
3250
3251 if (O->isLittleEndian() != sys::IsLittleEndianHost)
3252 sys::swapByteOrder(p);
3253 outs() << format("0x%" PRIx32, p);
3254
3255 const char *name = get_symbol_32(i, S, info, p);
3256 if (name != nullptr)
3257 outs() << " " << name;
3258 outs() << "\n";
3259
3260 if (func)
3261 func(p, info);
3262 }
3263 }
3264
print_layout_map(const char * layout_map,uint32_t left)3265 static void print_layout_map(const char *layout_map, uint32_t left) {
3266 if (layout_map == nullptr)
3267 return;
3268 outs() << " layout map: ";
3269 do {
3270 outs() << format("0x%02" PRIx32, (*layout_map) & 0xff) << " ";
3271 left--;
3272 layout_map++;
3273 } while (*layout_map != '\0' && left != 0);
3274 outs() << "\n";
3275 }
3276
print_layout_map64(uint64_t p,struct DisassembleInfo * info)3277 static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
3278 uint32_t offset, left;
3279 SectionRef S;
3280 const char *layout_map;
3281
3282 if (p == 0)
3283 return;
3284 layout_map = get_pointer_64(p, offset, left, S, info);
3285 print_layout_map(layout_map, left);
3286 }
3287
print_layout_map32(uint32_t p,struct DisassembleInfo * info)3288 static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
3289 uint32_t offset, left;
3290 SectionRef S;
3291 const char *layout_map;
3292
3293 if (p == 0)
3294 return;
3295 layout_map = get_pointer_32(p, offset, left, S, info);
3296 print_layout_map(layout_map, left);
3297 }
3298
print_method_list64_t(uint64_t p,struct DisassembleInfo * info,const char * indent)3299 static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
3300 const char *indent) {
3301 struct method_list64_t ml;
3302 struct method64_t m;
3303 const char *r;
3304 uint32_t offset, xoffset, left, i;
3305 SectionRef S, xS;
3306 const char *name, *sym_name;
3307 uint64_t n_value;
3308
3309 r = get_pointer_64(p, offset, left, S, info);
3310 if (r == nullptr)
3311 return;
3312 memset(&ml, '\0', sizeof(struct method_list64_t));
3313 if (left < sizeof(struct method_list64_t)) {
3314 memcpy(&ml, r, left);
3315 outs() << " (method_list_t entends past the end of the section)\n";
3316 } else
3317 memcpy(&ml, r, sizeof(struct method_list64_t));
3318 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3319 swapStruct(ml);
3320 outs() << indent << "\t\t entsize " << ml.entsize << "\n";
3321 outs() << indent << "\t\t count " << ml.count << "\n";
3322
3323 p += sizeof(struct method_list64_t);
3324 offset += sizeof(struct method_list64_t);
3325 for (i = 0; i < ml.count; i++) {
3326 r = get_pointer_64(p, offset, left, S, info);
3327 if (r == nullptr)
3328 return;
3329 memset(&m, '\0', sizeof(struct method64_t));
3330 if (left < sizeof(struct method64_t)) {
3331 memcpy(&m, r, left);
3332 outs() << indent << " (method_t extends past the end of the section)\n";
3333 } else
3334 memcpy(&m, r, sizeof(struct method64_t));
3335 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3336 swapStruct(m);
3337
3338 outs() << indent << "\t\t name ";
3339 sym_name = get_symbol_64(offset + offsetof(struct method64_t, name), S,
3340 info, n_value, m.name);
3341 if (n_value != 0) {
3342 if (info->verbose && sym_name != nullptr)
3343 outs() << sym_name;
3344 else
3345 outs() << format("0x%" PRIx64, n_value);
3346 if (m.name != 0)
3347 outs() << " + " << format("0x%" PRIx64, m.name);
3348 } else
3349 outs() << format("0x%" PRIx64, m.name);
3350 name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
3351 if (name != nullptr)
3352 outs() << format(" %.*s", left, name);
3353 outs() << "\n";
3354
3355 outs() << indent << "\t\t types ";
3356 sym_name = get_symbol_64(offset + offsetof(struct method64_t, types), S,
3357 info, n_value, m.types);
3358 if (n_value != 0) {
3359 if (info->verbose && sym_name != nullptr)
3360 outs() << sym_name;
3361 else
3362 outs() << format("0x%" PRIx64, n_value);
3363 if (m.types != 0)
3364 outs() << " + " << format("0x%" PRIx64, m.types);
3365 } else
3366 outs() << format("0x%" PRIx64, m.types);
3367 name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
3368 if (name != nullptr)
3369 outs() << format(" %.*s", left, name);
3370 outs() << "\n";
3371
3372 outs() << indent << "\t\t imp ";
3373 name = get_symbol_64(offset + offsetof(struct method64_t, imp), S, info,
3374 n_value, m.imp);
3375 if (info->verbose && name == nullptr) {
3376 if (n_value != 0) {
3377 outs() << format("0x%" PRIx64, n_value) << " ";
3378 if (m.imp != 0)
3379 outs() << "+ " << format("0x%" PRIx64, m.imp) << " ";
3380 } else
3381 outs() << format("0x%" PRIx64, m.imp) << " ";
3382 }
3383 if (name != nullptr)
3384 outs() << name;
3385 outs() << "\n";
3386
3387 p += sizeof(struct method64_t);
3388 offset += sizeof(struct method64_t);
3389 }
3390 }
3391
print_method_list32_t(uint64_t p,struct DisassembleInfo * info,const char * indent)3392 static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
3393 const char *indent) {
3394 struct method_list32_t ml;
3395 struct method32_t m;
3396 const char *r, *name;
3397 uint32_t offset, xoffset, left, i;
3398 SectionRef S, xS;
3399
3400 r = get_pointer_32(p, offset, left, S, info);
3401 if (r == nullptr)
3402 return;
3403 memset(&ml, '\0', sizeof(struct method_list32_t));
3404 if (left < sizeof(struct method_list32_t)) {
3405 memcpy(&ml, r, left);
3406 outs() << " (method_list_t entends past the end of the section)\n";
3407 } else
3408 memcpy(&ml, r, sizeof(struct method_list32_t));
3409 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3410 swapStruct(ml);
3411 outs() << indent << "\t\t entsize " << ml.entsize << "\n";
3412 outs() << indent << "\t\t count " << ml.count << "\n";
3413
3414 p += sizeof(struct method_list32_t);
3415 offset += sizeof(struct method_list32_t);
3416 for (i = 0; i < ml.count; i++) {
3417 r = get_pointer_32(p, offset, left, S, info);
3418 if (r == nullptr)
3419 return;
3420 memset(&m, '\0', sizeof(struct method32_t));
3421 if (left < sizeof(struct method32_t)) {
3422 memcpy(&ml, r, left);
3423 outs() << indent << " (method_t entends past the end of the section)\n";
3424 } else
3425 memcpy(&m, r, sizeof(struct method32_t));
3426 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3427 swapStruct(m);
3428
3429 outs() << indent << "\t\t name " << format("0x%" PRIx32, m.name);
3430 name = get_pointer_32(m.name, xoffset, left, xS, info);
3431 if (name != nullptr)
3432 outs() << format(" %.*s", left, name);
3433 outs() << "\n";
3434
3435 outs() << indent << "\t\t types " << format("0x%" PRIx32, m.types);
3436 name = get_pointer_32(m.types, xoffset, left, xS, info);
3437 if (name != nullptr)
3438 outs() << format(" %.*s", left, name);
3439 outs() << "\n";
3440
3441 outs() << indent << "\t\t imp " << format("0x%" PRIx32, m.imp);
3442 name = get_symbol_32(offset + offsetof(struct method32_t, imp), S, info,
3443 m.imp);
3444 if (name != nullptr)
3445 outs() << " " << name;
3446 outs() << "\n";
3447
3448 p += sizeof(struct method32_t);
3449 offset += sizeof(struct method32_t);
3450 }
3451 }
3452
print_method_list(uint32_t p,struct DisassembleInfo * info)3453 static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
3454 uint32_t offset, left, xleft;
3455 SectionRef S;
3456 struct objc_method_list_t method_list;
3457 struct objc_method_t method;
3458 const char *r, *methods, *name, *SymbolName;
3459 int32_t i;
3460
3461 r = get_pointer_32(p, offset, left, S, info, true);
3462 if (r == nullptr)
3463 return true;
3464
3465 outs() << "\n";
3466 if (left > sizeof(struct objc_method_list_t)) {
3467 memcpy(&method_list, r, sizeof(struct objc_method_list_t));
3468 } else {
3469 outs() << "\t\t objc_method_list extends past end of the section\n";
3470 memset(&method_list, '\0', sizeof(struct objc_method_list_t));
3471 memcpy(&method_list, r, left);
3472 }
3473 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3474 swapStruct(method_list);
3475
3476 outs() << "\t\t obsolete "
3477 << format("0x%08" PRIx32, method_list.obsolete) << "\n";
3478 outs() << "\t\t method_count " << method_list.method_count << "\n";
3479
3480 methods = r + sizeof(struct objc_method_list_t);
3481 for (i = 0; i < method_list.method_count; i++) {
3482 if ((i + 1) * sizeof(struct objc_method_t) > left) {
3483 outs() << "\t\t remaining method's extend past the of the section\n";
3484 break;
3485 }
3486 memcpy(&method, methods + i * sizeof(struct objc_method_t),
3487 sizeof(struct objc_method_t));
3488 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3489 swapStruct(method);
3490
3491 outs() << "\t\t method_name "
3492 << format("0x%08" PRIx32, method.method_name);
3493 if (info->verbose) {
3494 name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
3495 if (name != nullptr)
3496 outs() << format(" %.*s", xleft, name);
3497 else
3498 outs() << " (not in an __OBJC section)";
3499 }
3500 outs() << "\n";
3501
3502 outs() << "\t\t method_types "
3503 << format("0x%08" PRIx32, method.method_types);
3504 if (info->verbose) {
3505 name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
3506 if (name != nullptr)
3507 outs() << format(" %.*s", xleft, name);
3508 else
3509 outs() << " (not in an __OBJC section)";
3510 }
3511 outs() << "\n";
3512
3513 outs() << "\t\t method_imp "
3514 << format("0x%08" PRIx32, method.method_imp) << " ";
3515 if (info->verbose) {
3516 SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
3517 if (SymbolName != nullptr)
3518 outs() << SymbolName;
3519 }
3520 outs() << "\n";
3521 }
3522 return false;
3523 }
3524
print_protocol_list64_t(uint64_t p,struct DisassembleInfo * info)3525 static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
3526 struct protocol_list64_t pl;
3527 uint64_t q, n_value;
3528 struct protocol64_t pc;
3529 const char *r;
3530 uint32_t offset, xoffset, left, i;
3531 SectionRef S, xS;
3532 const char *name, *sym_name;
3533
3534 r = get_pointer_64(p, offset, left, S, info);
3535 if (r == nullptr)
3536 return;
3537 memset(&pl, '\0', sizeof(struct protocol_list64_t));
3538 if (left < sizeof(struct protocol_list64_t)) {
3539 memcpy(&pl, r, left);
3540 outs() << " (protocol_list_t entends past the end of the section)\n";
3541 } else
3542 memcpy(&pl, r, sizeof(struct protocol_list64_t));
3543 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3544 swapStruct(pl);
3545 outs() << " count " << pl.count << "\n";
3546
3547 p += sizeof(struct protocol_list64_t);
3548 offset += sizeof(struct protocol_list64_t);
3549 for (i = 0; i < pl.count; i++) {
3550 r = get_pointer_64(p, offset, left, S, info);
3551 if (r == nullptr)
3552 return;
3553 q = 0;
3554 if (left < sizeof(uint64_t)) {
3555 memcpy(&q, r, left);
3556 outs() << " (protocol_t * entends past the end of the section)\n";
3557 } else
3558 memcpy(&q, r, sizeof(uint64_t));
3559 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3560 sys::swapByteOrder(q);
3561
3562 outs() << "\t\t list[" << i << "] ";
3563 sym_name = get_symbol_64(offset, S, info, n_value, q);
3564 if (n_value != 0) {
3565 if (info->verbose && sym_name != nullptr)
3566 outs() << sym_name;
3567 else
3568 outs() << format("0x%" PRIx64, n_value);
3569 if (q != 0)
3570 outs() << " + " << format("0x%" PRIx64, q);
3571 } else
3572 outs() << format("0x%" PRIx64, q);
3573 outs() << " (struct protocol_t *)\n";
3574
3575 r = get_pointer_64(q + n_value, offset, left, S, info);
3576 if (r == nullptr)
3577 return;
3578 memset(&pc, '\0', sizeof(struct protocol64_t));
3579 if (left < sizeof(struct protocol64_t)) {
3580 memcpy(&pc, r, left);
3581 outs() << " (protocol_t entends past the end of the section)\n";
3582 } else
3583 memcpy(&pc, r, sizeof(struct protocol64_t));
3584 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3585 swapStruct(pc);
3586
3587 outs() << "\t\t\t isa " << format("0x%" PRIx64, pc.isa) << "\n";
3588
3589 outs() << "\t\t\t name ";
3590 sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name), S,
3591 info, n_value, pc.name);
3592 if (n_value != 0) {
3593 if (info->verbose && sym_name != nullptr)
3594 outs() << sym_name;
3595 else
3596 outs() << format("0x%" PRIx64, n_value);
3597 if (pc.name != 0)
3598 outs() << " + " << format("0x%" PRIx64, pc.name);
3599 } else
3600 outs() << format("0x%" PRIx64, pc.name);
3601 name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
3602 if (name != nullptr)
3603 outs() << format(" %.*s", left, name);
3604 outs() << "\n";
3605
3606 outs() << "\t\t\tprotocols " << format("0x%" PRIx64, pc.protocols) << "\n";
3607
3608 outs() << "\t\t instanceMethods ";
3609 sym_name =
3610 get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods),
3611 S, info, n_value, pc.instanceMethods);
3612 if (n_value != 0) {
3613 if (info->verbose && sym_name != nullptr)
3614 outs() << sym_name;
3615 else
3616 outs() << format("0x%" PRIx64, n_value);
3617 if (pc.instanceMethods != 0)
3618 outs() << " + " << format("0x%" PRIx64, pc.instanceMethods);
3619 } else
3620 outs() << format("0x%" PRIx64, pc.instanceMethods);
3621 outs() << " (struct method_list_t *)\n";
3622 if (pc.instanceMethods + n_value != 0)
3623 print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
3624
3625 outs() << "\t\t classMethods ";
3626 sym_name =
3627 get_symbol_64(offset + offsetof(struct protocol64_t, classMethods), S,
3628 info, n_value, pc.classMethods);
3629 if (n_value != 0) {
3630 if (info->verbose && sym_name != nullptr)
3631 outs() << sym_name;
3632 else
3633 outs() << format("0x%" PRIx64, n_value);
3634 if (pc.classMethods != 0)
3635 outs() << " + " << format("0x%" PRIx64, pc.classMethods);
3636 } else
3637 outs() << format("0x%" PRIx64, pc.classMethods);
3638 outs() << " (struct method_list_t *)\n";
3639 if (pc.classMethods + n_value != 0)
3640 print_method_list64_t(pc.classMethods + n_value, info, "\t");
3641
3642 outs() << "\t optionalInstanceMethods "
3643 << format("0x%" PRIx64, pc.optionalInstanceMethods) << "\n";
3644 outs() << "\t optionalClassMethods "
3645 << format("0x%" PRIx64, pc.optionalClassMethods) << "\n";
3646 outs() << "\t instanceProperties "
3647 << format("0x%" PRIx64, pc.instanceProperties) << "\n";
3648
3649 p += sizeof(uint64_t);
3650 offset += sizeof(uint64_t);
3651 }
3652 }
3653
print_protocol_list32_t(uint32_t p,struct DisassembleInfo * info)3654 static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
3655 struct protocol_list32_t pl;
3656 uint32_t q;
3657 struct protocol32_t pc;
3658 const char *r;
3659 uint32_t offset, xoffset, left, i;
3660 SectionRef S, xS;
3661 const char *name;
3662
3663 r = get_pointer_32(p, offset, left, S, info);
3664 if (r == nullptr)
3665 return;
3666 memset(&pl, '\0', sizeof(struct protocol_list32_t));
3667 if (left < sizeof(struct protocol_list32_t)) {
3668 memcpy(&pl, r, left);
3669 outs() << " (protocol_list_t entends past the end of the section)\n";
3670 } else
3671 memcpy(&pl, r, sizeof(struct protocol_list32_t));
3672 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3673 swapStruct(pl);
3674 outs() << " count " << pl.count << "\n";
3675
3676 p += sizeof(struct protocol_list32_t);
3677 offset += sizeof(struct protocol_list32_t);
3678 for (i = 0; i < pl.count; i++) {
3679 r = get_pointer_32(p, offset, left, S, info);
3680 if (r == nullptr)
3681 return;
3682 q = 0;
3683 if (left < sizeof(uint32_t)) {
3684 memcpy(&q, r, left);
3685 outs() << " (protocol_t * entends past the end of the section)\n";
3686 } else
3687 memcpy(&q, r, sizeof(uint32_t));
3688 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3689 sys::swapByteOrder(q);
3690 outs() << "\t\t list[" << i << "] " << format("0x%" PRIx32, q)
3691 << " (struct protocol_t *)\n";
3692 r = get_pointer_32(q, offset, left, S, info);
3693 if (r == nullptr)
3694 return;
3695 memset(&pc, '\0', sizeof(struct protocol32_t));
3696 if (left < sizeof(struct protocol32_t)) {
3697 memcpy(&pc, r, left);
3698 outs() << " (protocol_t entends past the end of the section)\n";
3699 } else
3700 memcpy(&pc, r, sizeof(struct protocol32_t));
3701 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3702 swapStruct(pc);
3703 outs() << "\t\t\t isa " << format("0x%" PRIx32, pc.isa) << "\n";
3704 outs() << "\t\t\t name " << format("0x%" PRIx32, pc.name);
3705 name = get_pointer_32(pc.name, xoffset, left, xS, info);
3706 if (name != nullptr)
3707 outs() << format(" %.*s", left, name);
3708 outs() << "\n";
3709 outs() << "\t\t\tprotocols " << format("0x%" PRIx32, pc.protocols) << "\n";
3710 outs() << "\t\t instanceMethods "
3711 << format("0x%" PRIx32, pc.instanceMethods)
3712 << " (struct method_list_t *)\n";
3713 if (pc.instanceMethods != 0)
3714 print_method_list32_t(pc.instanceMethods, info, "\t");
3715 outs() << "\t\t classMethods " << format("0x%" PRIx32, pc.classMethods)
3716 << " (struct method_list_t *)\n";
3717 if (pc.classMethods != 0)
3718 print_method_list32_t(pc.classMethods, info, "\t");
3719 outs() << "\t optionalInstanceMethods "
3720 << format("0x%" PRIx32, pc.optionalInstanceMethods) << "\n";
3721 outs() << "\t optionalClassMethods "
3722 << format("0x%" PRIx32, pc.optionalClassMethods) << "\n";
3723 outs() << "\t instanceProperties "
3724 << format("0x%" PRIx32, pc.instanceProperties) << "\n";
3725 p += sizeof(uint32_t);
3726 offset += sizeof(uint32_t);
3727 }
3728 }
3729
print_indent(uint32_t indent)3730 static void print_indent(uint32_t indent) {
3731 for (uint32_t i = 0; i < indent;) {
3732 if (indent - i >= 8) {
3733 outs() << "\t";
3734 i += 8;
3735 } else {
3736 for (uint32_t j = i; j < indent; j++)
3737 outs() << " ";
3738 return;
3739 }
3740 }
3741 }
3742
print_method_description_list(uint32_t p,uint32_t indent,struct DisassembleInfo * info)3743 static bool print_method_description_list(uint32_t p, uint32_t indent,
3744 struct DisassembleInfo *info) {
3745 uint32_t offset, left, xleft;
3746 SectionRef S;
3747 struct objc_method_description_list_t mdl;
3748 struct objc_method_description_t md;
3749 const char *r, *list, *name;
3750 int32_t i;
3751
3752 r = get_pointer_32(p, offset, left, S, info, true);
3753 if (r == nullptr)
3754 return true;
3755
3756 outs() << "\n";
3757 if (left > sizeof(struct objc_method_description_list_t)) {
3758 memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
3759 } else {
3760 print_indent(indent);
3761 outs() << " objc_method_description_list extends past end of the section\n";
3762 memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
3763 memcpy(&mdl, r, left);
3764 }
3765 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3766 swapStruct(mdl);
3767
3768 print_indent(indent);
3769 outs() << " count " << mdl.count << "\n";
3770
3771 list = r + sizeof(struct objc_method_description_list_t);
3772 for (i = 0; i < mdl.count; i++) {
3773 if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
3774 print_indent(indent);
3775 outs() << " remaining list entries extend past the of the section\n";
3776 break;
3777 }
3778 print_indent(indent);
3779 outs() << " list[" << i << "]\n";
3780 memcpy(&md, list + i * sizeof(struct objc_method_description_t),
3781 sizeof(struct objc_method_description_t));
3782 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3783 swapStruct(md);
3784
3785 print_indent(indent);
3786 outs() << " name " << format("0x%08" PRIx32, md.name);
3787 if (info->verbose) {
3788 name = get_pointer_32(md.name, offset, xleft, S, info, true);
3789 if (name != nullptr)
3790 outs() << format(" %.*s", xleft, name);
3791 else
3792 outs() << " (not in an __OBJC section)";
3793 }
3794 outs() << "\n";
3795
3796 print_indent(indent);
3797 outs() << " types " << format("0x%08" PRIx32, md.types);
3798 if (info->verbose) {
3799 name = get_pointer_32(md.types, offset, xleft, S, info, true);
3800 if (name != nullptr)
3801 outs() << format(" %.*s", xleft, name);
3802 else
3803 outs() << " (not in an __OBJC section)";
3804 }
3805 outs() << "\n";
3806 }
3807 return false;
3808 }
3809
3810 static bool print_protocol_list(uint32_t p, uint32_t indent,
3811 struct DisassembleInfo *info);
3812
print_protocol(uint32_t p,uint32_t indent,struct DisassembleInfo * info)3813 static bool print_protocol(uint32_t p, uint32_t indent,
3814 struct DisassembleInfo *info) {
3815 uint32_t offset, left;
3816 SectionRef S;
3817 struct objc_protocol_t protocol;
3818 const char *r, *name;
3819
3820 r = get_pointer_32(p, offset, left, S, info, true);
3821 if (r == nullptr)
3822 return true;
3823
3824 outs() << "\n";
3825 if (left >= sizeof(struct objc_protocol_t)) {
3826 memcpy(&protocol, r, sizeof(struct objc_protocol_t));
3827 } else {
3828 print_indent(indent);
3829 outs() << " Protocol extends past end of the section\n";
3830 memset(&protocol, '\0', sizeof(struct objc_protocol_t));
3831 memcpy(&protocol, r, left);
3832 }
3833 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3834 swapStruct(protocol);
3835
3836 print_indent(indent);
3837 outs() << " isa " << format("0x%08" PRIx32, protocol.isa)
3838 << "\n";
3839
3840 print_indent(indent);
3841 outs() << " protocol_name "
3842 << format("0x%08" PRIx32, protocol.protocol_name);
3843 if (info->verbose) {
3844 name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
3845 if (name != nullptr)
3846 outs() << format(" %.*s", left, name);
3847 else
3848 outs() << " (not in an __OBJC section)";
3849 }
3850 outs() << "\n";
3851
3852 print_indent(indent);
3853 outs() << " protocol_list "
3854 << format("0x%08" PRIx32, protocol.protocol_list);
3855 if (print_protocol_list(protocol.protocol_list, indent + 4, info))
3856 outs() << " (not in an __OBJC section)\n";
3857
3858 print_indent(indent);
3859 outs() << " instance_methods "
3860 << format("0x%08" PRIx32, protocol.instance_methods);
3861 if (print_method_description_list(protocol.instance_methods, indent, info))
3862 outs() << " (not in an __OBJC section)\n";
3863
3864 print_indent(indent);
3865 outs() << " class_methods "
3866 << format("0x%08" PRIx32, protocol.class_methods);
3867 if (print_method_description_list(protocol.class_methods, indent, info))
3868 outs() << " (not in an __OBJC section)\n";
3869
3870 return false;
3871 }
3872
print_protocol_list(uint32_t p,uint32_t indent,struct DisassembleInfo * info)3873 static bool print_protocol_list(uint32_t p, uint32_t indent,
3874 struct DisassembleInfo *info) {
3875 uint32_t offset, left, l;
3876 SectionRef S;
3877 struct objc_protocol_list_t protocol_list;
3878 const char *r, *list;
3879 int32_t i;
3880
3881 r = get_pointer_32(p, offset, left, S, info, true);
3882 if (r == nullptr)
3883 return true;
3884
3885 outs() << "\n";
3886 if (left > sizeof(struct objc_protocol_list_t)) {
3887 memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
3888 } else {
3889 outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
3890 memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
3891 memcpy(&protocol_list, r, left);
3892 }
3893 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3894 swapStruct(protocol_list);
3895
3896 print_indent(indent);
3897 outs() << " next " << format("0x%08" PRIx32, protocol_list.next)
3898 << "\n";
3899 print_indent(indent);
3900 outs() << " count " << protocol_list.count << "\n";
3901
3902 list = r + sizeof(struct objc_protocol_list_t);
3903 for (i = 0; i < protocol_list.count; i++) {
3904 if ((i + 1) * sizeof(uint32_t) > left) {
3905 outs() << "\t\t remaining list entries extend past the of the section\n";
3906 break;
3907 }
3908 memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
3909 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3910 sys::swapByteOrder(l);
3911
3912 print_indent(indent);
3913 outs() << " list[" << i << "] " << format("0x%08" PRIx32, l);
3914 if (print_protocol(l, indent, info))
3915 outs() << "(not in an __OBJC section)\n";
3916 }
3917 return false;
3918 }
3919
print_ivar_list64_t(uint64_t p,struct DisassembleInfo * info)3920 static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
3921 struct ivar_list64_t il;
3922 struct ivar64_t i;
3923 const char *r;
3924 uint32_t offset, xoffset, left, j;
3925 SectionRef S, xS;
3926 const char *name, *sym_name, *ivar_offset_p;
3927 uint64_t ivar_offset, n_value;
3928
3929 r = get_pointer_64(p, offset, left, S, info);
3930 if (r == nullptr)
3931 return;
3932 memset(&il, '\0', sizeof(struct ivar_list64_t));
3933 if (left < sizeof(struct ivar_list64_t)) {
3934 memcpy(&il, r, left);
3935 outs() << " (ivar_list_t entends past the end of the section)\n";
3936 } else
3937 memcpy(&il, r, sizeof(struct ivar_list64_t));
3938 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3939 swapStruct(il);
3940 outs() << " entsize " << il.entsize << "\n";
3941 outs() << " count " << il.count << "\n";
3942
3943 p += sizeof(struct ivar_list64_t);
3944 offset += sizeof(struct ivar_list64_t);
3945 for (j = 0; j < il.count; j++) {
3946 r = get_pointer_64(p, offset, left, S, info);
3947 if (r == nullptr)
3948 return;
3949 memset(&i, '\0', sizeof(struct ivar64_t));
3950 if (left < sizeof(struct ivar64_t)) {
3951 memcpy(&i, r, left);
3952 outs() << " (ivar_t entends past the end of the section)\n";
3953 } else
3954 memcpy(&i, r, sizeof(struct ivar64_t));
3955 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3956 swapStruct(i);
3957
3958 outs() << "\t\t\t offset ";
3959 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset), S,
3960 info, n_value, i.offset);
3961 if (n_value != 0) {
3962 if (info->verbose && sym_name != nullptr)
3963 outs() << sym_name;
3964 else
3965 outs() << format("0x%" PRIx64, n_value);
3966 if (i.offset != 0)
3967 outs() << " + " << format("0x%" PRIx64, i.offset);
3968 } else
3969 outs() << format("0x%" PRIx64, i.offset);
3970 ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
3971 if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
3972 memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
3973 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3974 sys::swapByteOrder(ivar_offset);
3975 outs() << " " << ivar_offset << "\n";
3976 } else
3977 outs() << "\n";
3978
3979 outs() << "\t\t\t name ";
3980 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name), S, info,
3981 n_value, i.name);
3982 if (n_value != 0) {
3983 if (info->verbose && sym_name != nullptr)
3984 outs() << sym_name;
3985 else
3986 outs() << format("0x%" PRIx64, n_value);
3987 if (i.name != 0)
3988 outs() << " + " << format("0x%" PRIx64, i.name);
3989 } else
3990 outs() << format("0x%" PRIx64, i.name);
3991 name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
3992 if (name != nullptr)
3993 outs() << format(" %.*s", left, name);
3994 outs() << "\n";
3995
3996 outs() << "\t\t\t type ";
3997 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type), S, info,
3998 n_value, i.name);
3999 name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
4000 if (n_value != 0) {
4001 if (info->verbose && sym_name != nullptr)
4002 outs() << sym_name;
4003 else
4004 outs() << format("0x%" PRIx64, n_value);
4005 if (i.type != 0)
4006 outs() << " + " << format("0x%" PRIx64, i.type);
4007 } else
4008 outs() << format("0x%" PRIx64, i.type);
4009 if (name != nullptr)
4010 outs() << format(" %.*s", left, name);
4011 outs() << "\n";
4012
4013 outs() << "\t\t\talignment " << i.alignment << "\n";
4014 outs() << "\t\t\t size " << i.size << "\n";
4015
4016 p += sizeof(struct ivar64_t);
4017 offset += sizeof(struct ivar64_t);
4018 }
4019 }
4020
print_ivar_list32_t(uint32_t p,struct DisassembleInfo * info)4021 static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
4022 struct ivar_list32_t il;
4023 struct ivar32_t i;
4024 const char *r;
4025 uint32_t offset, xoffset, left, j;
4026 SectionRef S, xS;
4027 const char *name, *ivar_offset_p;
4028 uint32_t ivar_offset;
4029
4030 r = get_pointer_32(p, offset, left, S, info);
4031 if (r == nullptr)
4032 return;
4033 memset(&il, '\0', sizeof(struct ivar_list32_t));
4034 if (left < sizeof(struct ivar_list32_t)) {
4035 memcpy(&il, r, left);
4036 outs() << " (ivar_list_t entends past the end of the section)\n";
4037 } else
4038 memcpy(&il, r, sizeof(struct ivar_list32_t));
4039 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4040 swapStruct(il);
4041 outs() << " entsize " << il.entsize << "\n";
4042 outs() << " count " << il.count << "\n";
4043
4044 p += sizeof(struct ivar_list32_t);
4045 offset += sizeof(struct ivar_list32_t);
4046 for (j = 0; j < il.count; j++) {
4047 r = get_pointer_32(p, offset, left, S, info);
4048 if (r == nullptr)
4049 return;
4050 memset(&i, '\0', sizeof(struct ivar32_t));
4051 if (left < sizeof(struct ivar32_t)) {
4052 memcpy(&i, r, left);
4053 outs() << " (ivar_t entends past the end of the section)\n";
4054 } else
4055 memcpy(&i, r, sizeof(struct ivar32_t));
4056 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4057 swapStruct(i);
4058
4059 outs() << "\t\t\t offset " << format("0x%" PRIx32, i.offset);
4060 ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
4061 if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4062 memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4063 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4064 sys::swapByteOrder(ivar_offset);
4065 outs() << " " << ivar_offset << "\n";
4066 } else
4067 outs() << "\n";
4068
4069 outs() << "\t\t\t name " << format("0x%" PRIx32, i.name);
4070 name = get_pointer_32(i.name, xoffset, left, xS, info);
4071 if (name != nullptr)
4072 outs() << format(" %.*s", left, name);
4073 outs() << "\n";
4074
4075 outs() << "\t\t\t type " << format("0x%" PRIx32, i.type);
4076 name = get_pointer_32(i.type, xoffset, left, xS, info);
4077 if (name != nullptr)
4078 outs() << format(" %.*s", left, name);
4079 outs() << "\n";
4080
4081 outs() << "\t\t\talignment " << i.alignment << "\n";
4082 outs() << "\t\t\t size " << i.size << "\n";
4083
4084 p += sizeof(struct ivar32_t);
4085 offset += sizeof(struct ivar32_t);
4086 }
4087 }
4088
print_objc_property_list64(uint64_t p,struct DisassembleInfo * info)4089 static void print_objc_property_list64(uint64_t p,
4090 struct DisassembleInfo *info) {
4091 struct objc_property_list64 opl;
4092 struct objc_property64 op;
4093 const char *r;
4094 uint32_t offset, xoffset, left, j;
4095 SectionRef S, xS;
4096 const char *name, *sym_name;
4097 uint64_t n_value;
4098
4099 r = get_pointer_64(p, offset, left, S, info);
4100 if (r == nullptr)
4101 return;
4102 memset(&opl, '\0', sizeof(struct objc_property_list64));
4103 if (left < sizeof(struct objc_property_list64)) {
4104 memcpy(&opl, r, left);
4105 outs() << " (objc_property_list entends past the end of the section)\n";
4106 } else
4107 memcpy(&opl, r, sizeof(struct objc_property_list64));
4108 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4109 swapStruct(opl);
4110 outs() << " entsize " << opl.entsize << "\n";
4111 outs() << " count " << opl.count << "\n";
4112
4113 p += sizeof(struct objc_property_list64);
4114 offset += sizeof(struct objc_property_list64);
4115 for (j = 0; j < opl.count; j++) {
4116 r = get_pointer_64(p, offset, left, S, info);
4117 if (r == nullptr)
4118 return;
4119 memset(&op, '\0', sizeof(struct objc_property64));
4120 if (left < sizeof(struct objc_property64)) {
4121 memcpy(&op, r, left);
4122 outs() << " (objc_property entends past the end of the section)\n";
4123 } else
4124 memcpy(&op, r, sizeof(struct objc_property64));
4125 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4126 swapStruct(op);
4127
4128 outs() << "\t\t\t name ";
4129 sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name), S,
4130 info, n_value, op.name);
4131 if (n_value != 0) {
4132 if (info->verbose && sym_name != nullptr)
4133 outs() << sym_name;
4134 else
4135 outs() << format("0x%" PRIx64, n_value);
4136 if (op.name != 0)
4137 outs() << " + " << format("0x%" PRIx64, op.name);
4138 } else
4139 outs() << format("0x%" PRIx64, op.name);
4140 name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
4141 if (name != nullptr)
4142 outs() << format(" %.*s", left, name);
4143 outs() << "\n";
4144
4145 outs() << "\t\t\tattributes ";
4146 sym_name =
4147 get_symbol_64(offset + offsetof(struct objc_property64, attributes), S,
4148 info, n_value, op.attributes);
4149 if (n_value != 0) {
4150 if (info->verbose && sym_name != nullptr)
4151 outs() << sym_name;
4152 else
4153 outs() << format("0x%" PRIx64, n_value);
4154 if (op.attributes != 0)
4155 outs() << " + " << format("0x%" PRIx64, op.attributes);
4156 } else
4157 outs() << format("0x%" PRIx64, op.attributes);
4158 name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
4159 if (name != nullptr)
4160 outs() << format(" %.*s", left, name);
4161 outs() << "\n";
4162
4163 p += sizeof(struct objc_property64);
4164 offset += sizeof(struct objc_property64);
4165 }
4166 }
4167
print_objc_property_list32(uint32_t p,struct DisassembleInfo * info)4168 static void print_objc_property_list32(uint32_t p,
4169 struct DisassembleInfo *info) {
4170 struct objc_property_list32 opl;
4171 struct objc_property32 op;
4172 const char *r;
4173 uint32_t offset, xoffset, left, j;
4174 SectionRef S, xS;
4175 const char *name;
4176
4177 r = get_pointer_32(p, offset, left, S, info);
4178 if (r == nullptr)
4179 return;
4180 memset(&opl, '\0', sizeof(struct objc_property_list32));
4181 if (left < sizeof(struct objc_property_list32)) {
4182 memcpy(&opl, r, left);
4183 outs() << " (objc_property_list entends past the end of the section)\n";
4184 } else
4185 memcpy(&opl, r, sizeof(struct objc_property_list32));
4186 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4187 swapStruct(opl);
4188 outs() << " entsize " << opl.entsize << "\n";
4189 outs() << " count " << opl.count << "\n";
4190
4191 p += sizeof(struct objc_property_list32);
4192 offset += sizeof(struct objc_property_list32);
4193 for (j = 0; j < opl.count; j++) {
4194 r = get_pointer_32(p, offset, left, S, info);
4195 if (r == nullptr)
4196 return;
4197 memset(&op, '\0', sizeof(struct objc_property32));
4198 if (left < sizeof(struct objc_property32)) {
4199 memcpy(&op, r, left);
4200 outs() << " (objc_property entends past the end of the section)\n";
4201 } else
4202 memcpy(&op, r, sizeof(struct objc_property32));
4203 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4204 swapStruct(op);
4205
4206 outs() << "\t\t\t name " << format("0x%" PRIx32, op.name);
4207 name = get_pointer_32(op.name, xoffset, left, xS, info);
4208 if (name != nullptr)
4209 outs() << format(" %.*s", left, name);
4210 outs() << "\n";
4211
4212 outs() << "\t\t\tattributes " << format("0x%" PRIx32, op.attributes);
4213 name = get_pointer_32(op.attributes, xoffset, left, xS, info);
4214 if (name != nullptr)
4215 outs() << format(" %.*s", left, name);
4216 outs() << "\n";
4217
4218 p += sizeof(struct objc_property32);
4219 offset += sizeof(struct objc_property32);
4220 }
4221 }
4222
print_class_ro64_t(uint64_t p,struct DisassembleInfo * info,bool & is_meta_class)4223 static bool print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
4224 bool &is_meta_class) {
4225 struct class_ro64_t cro;
4226 const char *r;
4227 uint32_t offset, xoffset, left;
4228 SectionRef S, xS;
4229 const char *name, *sym_name;
4230 uint64_t n_value;
4231
4232 r = get_pointer_64(p, offset, left, S, info);
4233 if (r == nullptr || left < sizeof(struct class_ro64_t))
4234 return false;
4235 memset(&cro, '\0', sizeof(struct class_ro64_t));
4236 if (left < sizeof(struct class_ro64_t)) {
4237 memcpy(&cro, r, left);
4238 outs() << " (class_ro_t entends past the end of the section)\n";
4239 } else
4240 memcpy(&cro, r, sizeof(struct class_ro64_t));
4241 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4242 swapStruct(cro);
4243 outs() << " flags " << format("0x%" PRIx32, cro.flags);
4244 if (cro.flags & RO_META)
4245 outs() << " RO_META";
4246 if (cro.flags & RO_ROOT)
4247 outs() << " RO_ROOT";
4248 if (cro.flags & RO_HAS_CXX_STRUCTORS)
4249 outs() << " RO_HAS_CXX_STRUCTORS";
4250 outs() << "\n";
4251 outs() << " instanceStart " << cro.instanceStart << "\n";
4252 outs() << " instanceSize " << cro.instanceSize << "\n";
4253 outs() << " reserved " << format("0x%" PRIx32, cro.reserved)
4254 << "\n";
4255 outs() << " ivarLayout " << format("0x%" PRIx64, cro.ivarLayout)
4256 << "\n";
4257 print_layout_map64(cro.ivarLayout, info);
4258
4259 outs() << " name ";
4260 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name), S,
4261 info, n_value, cro.name);
4262 if (n_value != 0) {
4263 if (info->verbose && sym_name != nullptr)
4264 outs() << sym_name;
4265 else
4266 outs() << format("0x%" PRIx64, n_value);
4267 if (cro.name != 0)
4268 outs() << " + " << format("0x%" PRIx64, cro.name);
4269 } else
4270 outs() << format("0x%" PRIx64, cro.name);
4271 name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
4272 if (name != nullptr)
4273 outs() << format(" %.*s", left, name);
4274 outs() << "\n";
4275
4276 outs() << " baseMethods ";
4277 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods),
4278 S, info, n_value, cro.baseMethods);
4279 if (n_value != 0) {
4280 if (info->verbose && sym_name != nullptr)
4281 outs() << sym_name;
4282 else
4283 outs() << format("0x%" PRIx64, n_value);
4284 if (cro.baseMethods != 0)
4285 outs() << " + " << format("0x%" PRIx64, cro.baseMethods);
4286 } else
4287 outs() << format("0x%" PRIx64, cro.baseMethods);
4288 outs() << " (struct method_list_t *)\n";
4289 if (cro.baseMethods + n_value != 0)
4290 print_method_list64_t(cro.baseMethods + n_value, info, "");
4291
4292 outs() << " baseProtocols ";
4293 sym_name =
4294 get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols), S,
4295 info, n_value, cro.baseProtocols);
4296 if (n_value != 0) {
4297 if (info->verbose && sym_name != nullptr)
4298 outs() << sym_name;
4299 else
4300 outs() << format("0x%" PRIx64, n_value);
4301 if (cro.baseProtocols != 0)
4302 outs() << " + " << format("0x%" PRIx64, cro.baseProtocols);
4303 } else
4304 outs() << format("0x%" PRIx64, cro.baseProtocols);
4305 outs() << "\n";
4306 if (cro.baseProtocols + n_value != 0)
4307 print_protocol_list64_t(cro.baseProtocols + n_value, info);
4308
4309 outs() << " ivars ";
4310 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars), S,
4311 info, n_value, cro.ivars);
4312 if (n_value != 0) {
4313 if (info->verbose && sym_name != nullptr)
4314 outs() << sym_name;
4315 else
4316 outs() << format("0x%" PRIx64, n_value);
4317 if (cro.ivars != 0)
4318 outs() << " + " << format("0x%" PRIx64, cro.ivars);
4319 } else
4320 outs() << format("0x%" PRIx64, cro.ivars);
4321 outs() << "\n";
4322 if (cro.ivars + n_value != 0)
4323 print_ivar_list64_t(cro.ivars + n_value, info);
4324
4325 outs() << " weakIvarLayout ";
4326 sym_name =
4327 get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout), S,
4328 info, n_value, cro.weakIvarLayout);
4329 if (n_value != 0) {
4330 if (info->verbose && sym_name != nullptr)
4331 outs() << sym_name;
4332 else
4333 outs() << format("0x%" PRIx64, n_value);
4334 if (cro.weakIvarLayout != 0)
4335 outs() << " + " << format("0x%" PRIx64, cro.weakIvarLayout);
4336 } else
4337 outs() << format("0x%" PRIx64, cro.weakIvarLayout);
4338 outs() << "\n";
4339 print_layout_map64(cro.weakIvarLayout + n_value, info);
4340
4341 outs() << " baseProperties ";
4342 sym_name =
4343 get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties), S,
4344 info, n_value, cro.baseProperties);
4345 if (n_value != 0) {
4346 if (info->verbose && sym_name != nullptr)
4347 outs() << sym_name;
4348 else
4349 outs() << format("0x%" PRIx64, n_value);
4350 if (cro.baseProperties != 0)
4351 outs() << " + " << format("0x%" PRIx64, cro.baseProperties);
4352 } else
4353 outs() << format("0x%" PRIx64, cro.baseProperties);
4354 outs() << "\n";
4355 if (cro.baseProperties + n_value != 0)
4356 print_objc_property_list64(cro.baseProperties + n_value, info);
4357
4358 is_meta_class = (cro.flags & RO_META) != 0;
4359 return true;
4360 }
4361
print_class_ro32_t(uint32_t p,struct DisassembleInfo * info,bool & is_meta_class)4362 static bool print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
4363 bool &is_meta_class) {
4364 struct class_ro32_t cro;
4365 const char *r;
4366 uint32_t offset, xoffset, left;
4367 SectionRef S, xS;
4368 const char *name;
4369
4370 r = get_pointer_32(p, offset, left, S, info);
4371 if (r == nullptr)
4372 return false;
4373 memset(&cro, '\0', sizeof(struct class_ro32_t));
4374 if (left < sizeof(struct class_ro32_t)) {
4375 memcpy(&cro, r, left);
4376 outs() << " (class_ro_t entends past the end of the section)\n";
4377 } else
4378 memcpy(&cro, r, sizeof(struct class_ro32_t));
4379 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4380 swapStruct(cro);
4381 outs() << " flags " << format("0x%" PRIx32, cro.flags);
4382 if (cro.flags & RO_META)
4383 outs() << " RO_META";
4384 if (cro.flags & RO_ROOT)
4385 outs() << " RO_ROOT";
4386 if (cro.flags & RO_HAS_CXX_STRUCTORS)
4387 outs() << " RO_HAS_CXX_STRUCTORS";
4388 outs() << "\n";
4389 outs() << " instanceStart " << cro.instanceStart << "\n";
4390 outs() << " instanceSize " << cro.instanceSize << "\n";
4391 outs() << " ivarLayout " << format("0x%" PRIx32, cro.ivarLayout)
4392 << "\n";
4393 print_layout_map32(cro.ivarLayout, info);
4394
4395 outs() << " name " << format("0x%" PRIx32, cro.name);
4396 name = get_pointer_32(cro.name, xoffset, left, xS, info);
4397 if (name != nullptr)
4398 outs() << format(" %.*s", left, name);
4399 outs() << "\n";
4400
4401 outs() << " baseMethods "
4402 << format("0x%" PRIx32, cro.baseMethods)
4403 << " (struct method_list_t *)\n";
4404 if (cro.baseMethods != 0)
4405 print_method_list32_t(cro.baseMethods, info, "");
4406
4407 outs() << " baseProtocols "
4408 << format("0x%" PRIx32, cro.baseProtocols) << "\n";
4409 if (cro.baseProtocols != 0)
4410 print_protocol_list32_t(cro.baseProtocols, info);
4411 outs() << " ivars " << format("0x%" PRIx32, cro.ivars)
4412 << "\n";
4413 if (cro.ivars != 0)
4414 print_ivar_list32_t(cro.ivars, info);
4415 outs() << " weakIvarLayout "
4416 << format("0x%" PRIx32, cro.weakIvarLayout) << "\n";
4417 print_layout_map32(cro.weakIvarLayout, info);
4418 outs() << " baseProperties "
4419 << format("0x%" PRIx32, cro.baseProperties) << "\n";
4420 if (cro.baseProperties != 0)
4421 print_objc_property_list32(cro.baseProperties, info);
4422 is_meta_class = (cro.flags & RO_META) != 0;
4423 return true;
4424 }
4425
print_class64_t(uint64_t p,struct DisassembleInfo * info)4426 static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
4427 struct class64_t c;
4428 const char *r;
4429 uint32_t offset, left;
4430 SectionRef S;
4431 const char *name;
4432 uint64_t isa_n_value, n_value;
4433
4434 r = get_pointer_64(p, offset, left, S, info);
4435 if (r == nullptr || left < sizeof(struct class64_t))
4436 return;
4437 memset(&c, '\0', sizeof(struct class64_t));
4438 if (left < sizeof(struct class64_t)) {
4439 memcpy(&c, r, left);
4440 outs() << " (class_t entends past the end of the section)\n";
4441 } else
4442 memcpy(&c, r, sizeof(struct class64_t));
4443 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4444 swapStruct(c);
4445
4446 outs() << " isa " << format("0x%" PRIx64, c.isa);
4447 name = get_symbol_64(offset + offsetof(struct class64_t, isa), S, info,
4448 isa_n_value, c.isa);
4449 if (name != nullptr)
4450 outs() << " " << name;
4451 outs() << "\n";
4452
4453 outs() << " superclass " << format("0x%" PRIx64, c.superclass);
4454 name = get_symbol_64(offset + offsetof(struct class64_t, superclass), S, info,
4455 n_value, c.superclass);
4456 if (name != nullptr)
4457 outs() << " " << name;
4458 outs() << "\n";
4459
4460 outs() << " cache " << format("0x%" PRIx64, c.cache);
4461 name = get_symbol_64(offset + offsetof(struct class64_t, cache), S, info,
4462 n_value, c.cache);
4463 if (name != nullptr)
4464 outs() << " " << name;
4465 outs() << "\n";
4466
4467 outs() << " vtable " << format("0x%" PRIx64, c.vtable);
4468 name = get_symbol_64(offset + offsetof(struct class64_t, vtable), S, info,
4469 n_value, c.vtable);
4470 if (name != nullptr)
4471 outs() << " " << name;
4472 outs() << "\n";
4473
4474 name = get_symbol_64(offset + offsetof(struct class64_t, data), S, info,
4475 n_value, c.data);
4476 outs() << " data ";
4477 if (n_value != 0) {
4478 if (info->verbose && name != nullptr)
4479 outs() << name;
4480 else
4481 outs() << format("0x%" PRIx64, n_value);
4482 if (c.data != 0)
4483 outs() << " + " << format("0x%" PRIx64, c.data);
4484 } else
4485 outs() << format("0x%" PRIx64, c.data);
4486 outs() << " (struct class_ro_t *)";
4487
4488 // This is a Swift class if some of the low bits of the pointer are set.
4489 if ((c.data + n_value) & 0x7)
4490 outs() << " Swift class";
4491 outs() << "\n";
4492 bool is_meta_class;
4493 if (!print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class))
4494 return;
4495
4496 if (!is_meta_class &&
4497 c.isa + isa_n_value != p &&
4498 c.isa + isa_n_value != 0 &&
4499 info->depth < 100) {
4500 info->depth++;
4501 outs() << "Meta Class\n";
4502 print_class64_t(c.isa + isa_n_value, info);
4503 }
4504 }
4505
print_class32_t(uint32_t p,struct DisassembleInfo * info)4506 static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
4507 struct class32_t c;
4508 const char *r;
4509 uint32_t offset, left;
4510 SectionRef S;
4511 const char *name;
4512
4513 r = get_pointer_32(p, offset, left, S, info);
4514 if (r == nullptr)
4515 return;
4516 memset(&c, '\0', sizeof(struct class32_t));
4517 if (left < sizeof(struct class32_t)) {
4518 memcpy(&c, r, left);
4519 outs() << " (class_t entends past the end of the section)\n";
4520 } else
4521 memcpy(&c, r, sizeof(struct class32_t));
4522 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4523 swapStruct(c);
4524
4525 outs() << " isa " << format("0x%" PRIx32, c.isa);
4526 name =
4527 get_symbol_32(offset + offsetof(struct class32_t, isa), S, info, c.isa);
4528 if (name != nullptr)
4529 outs() << " " << name;
4530 outs() << "\n";
4531
4532 outs() << " superclass " << format("0x%" PRIx32, c.superclass);
4533 name = get_symbol_32(offset + offsetof(struct class32_t, superclass), S, info,
4534 c.superclass);
4535 if (name != nullptr)
4536 outs() << " " << name;
4537 outs() << "\n";
4538
4539 outs() << " cache " << format("0x%" PRIx32, c.cache);
4540 name = get_symbol_32(offset + offsetof(struct class32_t, cache), S, info,
4541 c.cache);
4542 if (name != nullptr)
4543 outs() << " " << name;
4544 outs() << "\n";
4545
4546 outs() << " vtable " << format("0x%" PRIx32, c.vtable);
4547 name = get_symbol_32(offset + offsetof(struct class32_t, vtable), S, info,
4548 c.vtable);
4549 if (name != nullptr)
4550 outs() << " " << name;
4551 outs() << "\n";
4552
4553 name =
4554 get_symbol_32(offset + offsetof(struct class32_t, data), S, info, c.data);
4555 outs() << " data " << format("0x%" PRIx32, c.data)
4556 << " (struct class_ro_t *)";
4557
4558 // This is a Swift class if some of the low bits of the pointer are set.
4559 if (c.data & 0x3)
4560 outs() << " Swift class";
4561 outs() << "\n";
4562 bool is_meta_class;
4563 if (!print_class_ro32_t(c.data & ~0x3, info, is_meta_class))
4564 return;
4565
4566 if (!is_meta_class) {
4567 outs() << "Meta Class\n";
4568 print_class32_t(c.isa, info);
4569 }
4570 }
4571
print_objc_class_t(struct objc_class_t * objc_class,struct DisassembleInfo * info)4572 static void print_objc_class_t(struct objc_class_t *objc_class,
4573 struct DisassembleInfo *info) {
4574 uint32_t offset, left, xleft;
4575 const char *name, *p, *ivar_list;
4576 SectionRef S;
4577 int32_t i;
4578 struct objc_ivar_list_t objc_ivar_list;
4579 struct objc_ivar_t ivar;
4580
4581 outs() << "\t\t isa " << format("0x%08" PRIx32, objc_class->isa);
4582 if (info->verbose && CLS_GETINFO(objc_class, CLS_META)) {
4583 name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
4584 if (name != nullptr)
4585 outs() << format(" %.*s", left, name);
4586 else
4587 outs() << " (not in an __OBJC section)";
4588 }
4589 outs() << "\n";
4590
4591 outs() << "\t super_class "
4592 << format("0x%08" PRIx32, objc_class->super_class);
4593 if (info->verbose) {
4594 name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
4595 if (name != nullptr)
4596 outs() << format(" %.*s", left, name);
4597 else
4598 outs() << " (not in an __OBJC section)";
4599 }
4600 outs() << "\n";
4601
4602 outs() << "\t\t name " << format("0x%08" PRIx32, objc_class->name);
4603 if (info->verbose) {
4604 name = get_pointer_32(objc_class->name, offset, left, S, info, true);
4605 if (name != nullptr)
4606 outs() << format(" %.*s", left, name);
4607 else
4608 outs() << " (not in an __OBJC section)";
4609 }
4610 outs() << "\n";
4611
4612 outs() << "\t\t version " << format("0x%08" PRIx32, objc_class->version)
4613 << "\n";
4614
4615 outs() << "\t\t info " << format("0x%08" PRIx32, objc_class->info);
4616 if (info->verbose) {
4617 if (CLS_GETINFO(objc_class, CLS_CLASS))
4618 outs() << " CLS_CLASS";
4619 else if (CLS_GETINFO(objc_class, CLS_META))
4620 outs() << " CLS_META";
4621 }
4622 outs() << "\n";
4623
4624 outs() << "\t instance_size "
4625 << format("0x%08" PRIx32, objc_class->instance_size) << "\n";
4626
4627 p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
4628 outs() << "\t\t ivars " << format("0x%08" PRIx32, objc_class->ivars);
4629 if (p != nullptr) {
4630 if (left > sizeof(struct objc_ivar_list_t)) {
4631 outs() << "\n";
4632 memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
4633 } else {
4634 outs() << " (entends past the end of the section)\n";
4635 memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
4636 memcpy(&objc_ivar_list, p, left);
4637 }
4638 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4639 swapStruct(objc_ivar_list);
4640 outs() << "\t\t ivar_count " << objc_ivar_list.ivar_count << "\n";
4641 ivar_list = p + sizeof(struct objc_ivar_list_t);
4642 for (i = 0; i < objc_ivar_list.ivar_count; i++) {
4643 if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
4644 outs() << "\t\t remaining ivar's extend past the of the section\n";
4645 break;
4646 }
4647 memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
4648 sizeof(struct objc_ivar_t));
4649 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4650 swapStruct(ivar);
4651
4652 outs() << "\t\t\tivar_name " << format("0x%08" PRIx32, ivar.ivar_name);
4653 if (info->verbose) {
4654 name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
4655 if (name != nullptr)
4656 outs() << format(" %.*s", xleft, name);
4657 else
4658 outs() << " (not in an __OBJC section)";
4659 }
4660 outs() << "\n";
4661
4662 outs() << "\t\t\tivar_type " << format("0x%08" PRIx32, ivar.ivar_type);
4663 if (info->verbose) {
4664 name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
4665 if (name != nullptr)
4666 outs() << format(" %.*s", xleft, name);
4667 else
4668 outs() << " (not in an __OBJC section)";
4669 }
4670 outs() << "\n";
4671
4672 outs() << "\t\t ivar_offset "
4673 << format("0x%08" PRIx32, ivar.ivar_offset) << "\n";
4674 }
4675 } else {
4676 outs() << " (not in an __OBJC section)\n";
4677 }
4678
4679 outs() << "\t\t methods " << format("0x%08" PRIx32, objc_class->methodLists);
4680 if (print_method_list(objc_class->methodLists, info))
4681 outs() << " (not in an __OBJC section)\n";
4682
4683 outs() << "\t\t cache " << format("0x%08" PRIx32, objc_class->cache)
4684 << "\n";
4685
4686 outs() << "\t\tprotocols " << format("0x%08" PRIx32, objc_class->protocols);
4687 if (print_protocol_list(objc_class->protocols, 16, info))
4688 outs() << " (not in an __OBJC section)\n";
4689 }
4690
print_objc_objc_category_t(struct objc_category_t * objc_category,struct DisassembleInfo * info)4691 static void print_objc_objc_category_t(struct objc_category_t *objc_category,
4692 struct DisassembleInfo *info) {
4693 uint32_t offset, left;
4694 const char *name;
4695 SectionRef S;
4696
4697 outs() << "\t category name "
4698 << format("0x%08" PRIx32, objc_category->category_name);
4699 if (info->verbose) {
4700 name = get_pointer_32(objc_category->category_name, offset, left, S, info,
4701 true);
4702 if (name != nullptr)
4703 outs() << format(" %.*s", left, name);
4704 else
4705 outs() << " (not in an __OBJC section)";
4706 }
4707 outs() << "\n";
4708
4709 outs() << "\t\t class name "
4710 << format("0x%08" PRIx32, objc_category->class_name);
4711 if (info->verbose) {
4712 name =
4713 get_pointer_32(objc_category->class_name, offset, left, S, info, true);
4714 if (name != nullptr)
4715 outs() << format(" %.*s", left, name);
4716 else
4717 outs() << " (not in an __OBJC section)";
4718 }
4719 outs() << "\n";
4720
4721 outs() << "\t instance methods "
4722 << format("0x%08" PRIx32, objc_category->instance_methods);
4723 if (print_method_list(objc_category->instance_methods, info))
4724 outs() << " (not in an __OBJC section)\n";
4725
4726 outs() << "\t class methods "
4727 << format("0x%08" PRIx32, objc_category->class_methods);
4728 if (print_method_list(objc_category->class_methods, info))
4729 outs() << " (not in an __OBJC section)\n";
4730 }
4731
print_category64_t(uint64_t p,struct DisassembleInfo * info)4732 static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
4733 struct category64_t c;
4734 const char *r;
4735 uint32_t offset, xoffset, left;
4736 SectionRef S, xS;
4737 const char *name, *sym_name;
4738 uint64_t n_value;
4739
4740 r = get_pointer_64(p, offset, left, S, info);
4741 if (r == nullptr)
4742 return;
4743 memset(&c, '\0', sizeof(struct category64_t));
4744 if (left < sizeof(struct category64_t)) {
4745 memcpy(&c, r, left);
4746 outs() << " (category_t entends past the end of the section)\n";
4747 } else
4748 memcpy(&c, r, sizeof(struct category64_t));
4749 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4750 swapStruct(c);
4751
4752 outs() << " name ";
4753 sym_name = get_symbol_64(offset + offsetof(struct category64_t, name), S,
4754 info, n_value, c.name);
4755 if (n_value != 0) {
4756 if (info->verbose && sym_name != nullptr)
4757 outs() << sym_name;
4758 else
4759 outs() << format("0x%" PRIx64, n_value);
4760 if (c.name != 0)
4761 outs() << " + " << format("0x%" PRIx64, c.name);
4762 } else
4763 outs() << format("0x%" PRIx64, c.name);
4764 name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
4765 if (name != nullptr)
4766 outs() << format(" %.*s", left, name);
4767 outs() << "\n";
4768
4769 outs() << " cls ";
4770 sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls), S, info,
4771 n_value, c.cls);
4772 if (n_value != 0) {
4773 if (info->verbose && sym_name != nullptr)
4774 outs() << sym_name;
4775 else
4776 outs() << format("0x%" PRIx64, n_value);
4777 if (c.cls != 0)
4778 outs() << " + " << format("0x%" PRIx64, c.cls);
4779 } else
4780 outs() << format("0x%" PRIx64, c.cls);
4781 outs() << "\n";
4782 if (c.cls + n_value != 0)
4783 print_class64_t(c.cls + n_value, info);
4784
4785 outs() << " instanceMethods ";
4786 sym_name =
4787 get_symbol_64(offset + offsetof(struct category64_t, instanceMethods), S,
4788 info, n_value, c.instanceMethods);
4789 if (n_value != 0) {
4790 if (info->verbose && sym_name != nullptr)
4791 outs() << sym_name;
4792 else
4793 outs() << format("0x%" PRIx64, n_value);
4794 if (c.instanceMethods != 0)
4795 outs() << " + " << format("0x%" PRIx64, c.instanceMethods);
4796 } else
4797 outs() << format("0x%" PRIx64, c.instanceMethods);
4798 outs() << "\n";
4799 if (c.instanceMethods + n_value != 0)
4800 print_method_list64_t(c.instanceMethods + n_value, info, "");
4801
4802 outs() << " classMethods ";
4803 sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods),
4804 S, info, n_value, c.classMethods);
4805 if (n_value != 0) {
4806 if (info->verbose && sym_name != nullptr)
4807 outs() << sym_name;
4808 else
4809 outs() << format("0x%" PRIx64, n_value);
4810 if (c.classMethods != 0)
4811 outs() << " + " << format("0x%" PRIx64, c.classMethods);
4812 } else
4813 outs() << format("0x%" PRIx64, c.classMethods);
4814 outs() << "\n";
4815 if (c.classMethods + n_value != 0)
4816 print_method_list64_t(c.classMethods + n_value, info, "");
4817
4818 outs() << " protocols ";
4819 sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols), S,
4820 info, n_value, c.protocols);
4821 if (n_value != 0) {
4822 if (info->verbose && sym_name != nullptr)
4823 outs() << sym_name;
4824 else
4825 outs() << format("0x%" PRIx64, n_value);
4826 if (c.protocols != 0)
4827 outs() << " + " << format("0x%" PRIx64, c.protocols);
4828 } else
4829 outs() << format("0x%" PRIx64, c.protocols);
4830 outs() << "\n";
4831 if (c.protocols + n_value != 0)
4832 print_protocol_list64_t(c.protocols + n_value, info);
4833
4834 outs() << "instanceProperties ";
4835 sym_name =
4836 get_symbol_64(offset + offsetof(struct category64_t, instanceProperties),
4837 S, info, n_value, c.instanceProperties);
4838 if (n_value != 0) {
4839 if (info->verbose && sym_name != nullptr)
4840 outs() << sym_name;
4841 else
4842 outs() << format("0x%" PRIx64, n_value);
4843 if (c.instanceProperties != 0)
4844 outs() << " + " << format("0x%" PRIx64, c.instanceProperties);
4845 } else
4846 outs() << format("0x%" PRIx64, c.instanceProperties);
4847 outs() << "\n";
4848 if (c.instanceProperties + n_value != 0)
4849 print_objc_property_list64(c.instanceProperties + n_value, info);
4850 }
4851
print_category32_t(uint32_t p,struct DisassembleInfo * info)4852 static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
4853 struct category32_t c;
4854 const char *r;
4855 uint32_t offset, left;
4856 SectionRef S, xS;
4857 const char *name;
4858
4859 r = get_pointer_32(p, offset, left, S, info);
4860 if (r == nullptr)
4861 return;
4862 memset(&c, '\0', sizeof(struct category32_t));
4863 if (left < sizeof(struct category32_t)) {
4864 memcpy(&c, r, left);
4865 outs() << " (category_t entends past the end of the section)\n";
4866 } else
4867 memcpy(&c, r, sizeof(struct category32_t));
4868 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4869 swapStruct(c);
4870
4871 outs() << " name " << format("0x%" PRIx32, c.name);
4872 name = get_symbol_32(offset + offsetof(struct category32_t, name), S, info,
4873 c.name);
4874 if (name)
4875 outs() << " " << name;
4876 outs() << "\n";
4877
4878 outs() << " cls " << format("0x%" PRIx32, c.cls) << "\n";
4879 if (c.cls != 0)
4880 print_class32_t(c.cls, info);
4881 outs() << " instanceMethods " << format("0x%" PRIx32, c.instanceMethods)
4882 << "\n";
4883 if (c.instanceMethods != 0)
4884 print_method_list32_t(c.instanceMethods, info, "");
4885 outs() << " classMethods " << format("0x%" PRIx32, c.classMethods)
4886 << "\n";
4887 if (c.classMethods != 0)
4888 print_method_list32_t(c.classMethods, info, "");
4889 outs() << " protocols " << format("0x%" PRIx32, c.protocols) << "\n";
4890 if (c.protocols != 0)
4891 print_protocol_list32_t(c.protocols, info);
4892 outs() << "instanceProperties " << format("0x%" PRIx32, c.instanceProperties)
4893 << "\n";
4894 if (c.instanceProperties != 0)
4895 print_objc_property_list32(c.instanceProperties, info);
4896 }
4897
print_message_refs64(SectionRef S,struct DisassembleInfo * info)4898 static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
4899 uint32_t i, left, offset, xoffset;
4900 uint64_t p, n_value;
4901 struct message_ref64 mr;
4902 const char *name, *sym_name;
4903 const char *r;
4904 SectionRef xS;
4905
4906 if (S == SectionRef())
4907 return;
4908
4909 StringRef SectName;
4910 S.getName(SectName);
4911 DataRefImpl Ref = S.getRawDataRefImpl();
4912 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
4913 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
4914 offset = 0;
4915 for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
4916 p = S.getAddress() + i;
4917 r = get_pointer_64(p, offset, left, S, info);
4918 if (r == nullptr)
4919 return;
4920 memset(&mr, '\0', sizeof(struct message_ref64));
4921 if (left < sizeof(struct message_ref64)) {
4922 memcpy(&mr, r, left);
4923 outs() << " (message_ref entends past the end of the section)\n";
4924 } else
4925 memcpy(&mr, r, sizeof(struct message_ref64));
4926 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4927 swapStruct(mr);
4928
4929 outs() << " imp ";
4930 name = get_symbol_64(offset + offsetof(struct message_ref64, imp), S, info,
4931 n_value, mr.imp);
4932 if (n_value != 0) {
4933 outs() << format("0x%" PRIx64, n_value) << " ";
4934 if (mr.imp != 0)
4935 outs() << "+ " << format("0x%" PRIx64, mr.imp) << " ";
4936 } else
4937 outs() << format("0x%" PRIx64, mr.imp) << " ";
4938 if (name != nullptr)
4939 outs() << " " << name;
4940 outs() << "\n";
4941
4942 outs() << " sel ";
4943 sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel), S,
4944 info, n_value, mr.sel);
4945 if (n_value != 0) {
4946 if (info->verbose && sym_name != nullptr)
4947 outs() << sym_name;
4948 else
4949 outs() << format("0x%" PRIx64, n_value);
4950 if (mr.sel != 0)
4951 outs() << " + " << format("0x%" PRIx64, mr.sel);
4952 } else
4953 outs() << format("0x%" PRIx64, mr.sel);
4954 name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
4955 if (name != nullptr)
4956 outs() << format(" %.*s", left, name);
4957 outs() << "\n";
4958
4959 offset += sizeof(struct message_ref64);
4960 }
4961 }
4962
print_message_refs32(SectionRef S,struct DisassembleInfo * info)4963 static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
4964 uint32_t i, left, offset, xoffset, p;
4965 struct message_ref32 mr;
4966 const char *name, *r;
4967 SectionRef xS;
4968
4969 if (S == SectionRef())
4970 return;
4971
4972 StringRef SectName;
4973 S.getName(SectName);
4974 DataRefImpl Ref = S.getRawDataRefImpl();
4975 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
4976 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
4977 offset = 0;
4978 for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
4979 p = S.getAddress() + i;
4980 r = get_pointer_32(p, offset, left, S, info);
4981 if (r == nullptr)
4982 return;
4983 memset(&mr, '\0', sizeof(struct message_ref32));
4984 if (left < sizeof(struct message_ref32)) {
4985 memcpy(&mr, r, left);
4986 outs() << " (message_ref entends past the end of the section)\n";
4987 } else
4988 memcpy(&mr, r, sizeof(struct message_ref32));
4989 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4990 swapStruct(mr);
4991
4992 outs() << " imp " << format("0x%" PRIx32, mr.imp);
4993 name = get_symbol_32(offset + offsetof(struct message_ref32, imp), S, info,
4994 mr.imp);
4995 if (name != nullptr)
4996 outs() << " " << name;
4997 outs() << "\n";
4998
4999 outs() << " sel " << format("0x%" PRIx32, mr.sel);
5000 name = get_pointer_32(mr.sel, xoffset, left, xS, info);
5001 if (name != nullptr)
5002 outs() << " " << name;
5003 outs() << "\n";
5004
5005 offset += sizeof(struct message_ref32);
5006 }
5007 }
5008
print_image_info64(SectionRef S,struct DisassembleInfo * info)5009 static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
5010 uint32_t left, offset, swift_version;
5011 uint64_t p;
5012 struct objc_image_info64 o;
5013 const char *r;
5014
5015 if (S == SectionRef())
5016 return;
5017
5018 StringRef SectName;
5019 S.getName(SectName);
5020 DataRefImpl Ref = S.getRawDataRefImpl();
5021 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5022 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5023 p = S.getAddress();
5024 r = get_pointer_64(p, offset, left, S, info);
5025 if (r == nullptr)
5026 return;
5027 memset(&o, '\0', sizeof(struct objc_image_info64));
5028 if (left < sizeof(struct objc_image_info64)) {
5029 memcpy(&o, r, left);
5030 outs() << " (objc_image_info entends past the end of the section)\n";
5031 } else
5032 memcpy(&o, r, sizeof(struct objc_image_info64));
5033 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5034 swapStruct(o);
5035 outs() << " version " << o.version << "\n";
5036 outs() << " flags " << format("0x%" PRIx32, o.flags);
5037 if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
5038 outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5039 if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
5040 outs() << " OBJC_IMAGE_SUPPORTS_GC";
5041 swift_version = (o.flags >> 8) & 0xff;
5042 if (swift_version != 0) {
5043 if (swift_version == 1)
5044 outs() << " Swift 1.0";
5045 else if (swift_version == 2)
5046 outs() << " Swift 1.1";
5047 else
5048 outs() << " unknown future Swift version (" << swift_version << ")";
5049 }
5050 outs() << "\n";
5051 }
5052
print_image_info32(SectionRef S,struct DisassembleInfo * info)5053 static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
5054 uint32_t left, offset, swift_version, p;
5055 struct objc_image_info32 o;
5056 const char *r;
5057
5058 StringRef SectName;
5059 S.getName(SectName);
5060 DataRefImpl Ref = S.getRawDataRefImpl();
5061 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5062 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5063 p = S.getAddress();
5064 r = get_pointer_32(p, offset, left, S, info);
5065 if (r == nullptr)
5066 return;
5067 memset(&o, '\0', sizeof(struct objc_image_info32));
5068 if (left < sizeof(struct objc_image_info32)) {
5069 memcpy(&o, r, left);
5070 outs() << " (objc_image_info entends past the end of the section)\n";
5071 } else
5072 memcpy(&o, r, sizeof(struct objc_image_info32));
5073 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5074 swapStruct(o);
5075 outs() << " version " << o.version << "\n";
5076 outs() << " flags " << format("0x%" PRIx32, o.flags);
5077 if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
5078 outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5079 if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
5080 outs() << " OBJC_IMAGE_SUPPORTS_GC";
5081 swift_version = (o.flags >> 8) & 0xff;
5082 if (swift_version != 0) {
5083 if (swift_version == 1)
5084 outs() << " Swift 1.0";
5085 else if (swift_version == 2)
5086 outs() << " Swift 1.1";
5087 else
5088 outs() << " unknown future Swift version (" << swift_version << ")";
5089 }
5090 outs() << "\n";
5091 }
5092
print_image_info(SectionRef S,struct DisassembleInfo * info)5093 static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
5094 uint32_t left, offset, p;
5095 struct imageInfo_t o;
5096 const char *r;
5097
5098 StringRef SectName;
5099 S.getName(SectName);
5100 DataRefImpl Ref = S.getRawDataRefImpl();
5101 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5102 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5103 p = S.getAddress();
5104 r = get_pointer_32(p, offset, left, S, info);
5105 if (r == nullptr)
5106 return;
5107 memset(&o, '\0', sizeof(struct imageInfo_t));
5108 if (left < sizeof(struct imageInfo_t)) {
5109 memcpy(&o, r, left);
5110 outs() << " (imageInfo entends past the end of the section)\n";
5111 } else
5112 memcpy(&o, r, sizeof(struct imageInfo_t));
5113 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5114 swapStruct(o);
5115 outs() << " version " << o.version << "\n";
5116 outs() << " flags " << format("0x%" PRIx32, o.flags);
5117 if (o.flags & 0x1)
5118 outs() << " F&C";
5119 if (o.flags & 0x2)
5120 outs() << " GC";
5121 if (o.flags & 0x4)
5122 outs() << " GC-only";
5123 else
5124 outs() << " RR";
5125 outs() << "\n";
5126 }
5127
printObjc2_64bit_MetaData(MachOObjectFile * O,bool verbose)5128 static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
5129 SymbolAddressMap AddrMap;
5130 if (verbose)
5131 CreateSymbolAddressMap(O, &AddrMap);
5132
5133 std::vector<SectionRef> Sections;
5134 for (const SectionRef &Section : O->sections()) {
5135 StringRef SectName;
5136 Section.getName(SectName);
5137 Sections.push_back(Section);
5138 }
5139
5140 struct DisassembleInfo info;
5141 // Set up the block of info used by the Symbolizer call backs.
5142 info.verbose = verbose;
5143 info.O = O;
5144 info.AddrMap = &AddrMap;
5145 info.Sections = &Sections;
5146 info.class_name = nullptr;
5147 info.selector_name = nullptr;
5148 info.method = nullptr;
5149 info.demangled_name = nullptr;
5150 info.bindtable = nullptr;
5151 info.adrp_addr = 0;
5152 info.adrp_inst = 0;
5153
5154 info.depth = 0;
5155 SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5156 if (CL == SectionRef())
5157 CL = get_section(O, "__DATA", "__objc_classlist");
5158 info.S = CL;
5159 walk_pointer_list_64("class", CL, O, &info, print_class64_t);
5160
5161 SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5162 if (CR == SectionRef())
5163 CR = get_section(O, "__DATA", "__objc_classrefs");
5164 info.S = CR;
5165 walk_pointer_list_64("class refs", CR, O, &info, nullptr);
5166
5167 SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5168 if (SR == SectionRef())
5169 SR = get_section(O, "__DATA", "__objc_superrefs");
5170 info.S = SR;
5171 walk_pointer_list_64("super refs", SR, O, &info, nullptr);
5172
5173 SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5174 if (CA == SectionRef())
5175 CA = get_section(O, "__DATA", "__objc_catlist");
5176 info.S = CA;
5177 walk_pointer_list_64("category", CA, O, &info, print_category64_t);
5178
5179 SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5180 if (PL == SectionRef())
5181 PL = get_section(O, "__DATA", "__objc_protolist");
5182 info.S = PL;
5183 walk_pointer_list_64("protocol", PL, O, &info, nullptr);
5184
5185 SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5186 if (MR == SectionRef())
5187 MR = get_section(O, "__DATA", "__objc_msgrefs");
5188 info.S = MR;
5189 print_message_refs64(MR, &info);
5190
5191 SectionRef II = get_section(O, "__OBJC2", "__image_info");
5192 if (II == SectionRef())
5193 II = get_section(O, "__DATA", "__objc_imageinfo");
5194 info.S = II;
5195 print_image_info64(II, &info);
5196
5197 if (info.bindtable != nullptr)
5198 delete info.bindtable;
5199 }
5200
printObjc2_32bit_MetaData(MachOObjectFile * O,bool verbose)5201 static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5202 SymbolAddressMap AddrMap;
5203 if (verbose)
5204 CreateSymbolAddressMap(O, &AddrMap);
5205
5206 std::vector<SectionRef> Sections;
5207 for (const SectionRef &Section : O->sections()) {
5208 StringRef SectName;
5209 Section.getName(SectName);
5210 Sections.push_back(Section);
5211 }
5212
5213 struct DisassembleInfo info;
5214 // Set up the block of info used by the Symbolizer call backs.
5215 info.verbose = verbose;
5216 info.O = O;
5217 info.AddrMap = &AddrMap;
5218 info.Sections = &Sections;
5219 info.class_name = nullptr;
5220 info.selector_name = nullptr;
5221 info.method = nullptr;
5222 info.demangled_name = nullptr;
5223 info.bindtable = nullptr;
5224 info.adrp_addr = 0;
5225 info.adrp_inst = 0;
5226
5227 const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5228 if (CL != SectionRef()) {
5229 info.S = CL;
5230 walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5231 } else {
5232 const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
5233 info.S = CL;
5234 walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5235 }
5236
5237 const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5238 if (CR != SectionRef()) {
5239 info.S = CR;
5240 walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5241 } else {
5242 const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
5243 info.S = CR;
5244 walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5245 }
5246
5247 const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5248 if (SR != SectionRef()) {
5249 info.S = SR;
5250 walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5251 } else {
5252 const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
5253 info.S = SR;
5254 walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5255 }
5256
5257 const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5258 if (CA != SectionRef()) {
5259 info.S = CA;
5260 walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5261 } else {
5262 const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
5263 info.S = CA;
5264 walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5265 }
5266
5267 const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5268 if (PL != SectionRef()) {
5269 info.S = PL;
5270 walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5271 } else {
5272 const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
5273 info.S = PL;
5274 walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5275 }
5276
5277 const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5278 if (MR != SectionRef()) {
5279 info.S = MR;
5280 print_message_refs32(MR, &info);
5281 } else {
5282 const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
5283 info.S = MR;
5284 print_message_refs32(MR, &info);
5285 }
5286
5287 const SectionRef II = get_section(O, "__OBJC2", "__image_info");
5288 if (II != SectionRef()) {
5289 info.S = II;
5290 print_image_info32(II, &info);
5291 } else {
5292 const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
5293 info.S = II;
5294 print_image_info32(II, &info);
5295 }
5296 }
5297
printObjc1_32bit_MetaData(MachOObjectFile * O,bool verbose)5298 static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5299 uint32_t i, j, p, offset, xoffset, left, defs_left, def;
5300 const char *r, *name, *defs;
5301 struct objc_module_t module;
5302 SectionRef S, xS;
5303 struct objc_symtab_t symtab;
5304 struct objc_class_t objc_class;
5305 struct objc_category_t objc_category;
5306
5307 outs() << "Objective-C segment\n";
5308 S = get_section(O, "__OBJC", "__module_info");
5309 if (S == SectionRef())
5310 return false;
5311
5312 SymbolAddressMap AddrMap;
5313 if (verbose)
5314 CreateSymbolAddressMap(O, &AddrMap);
5315
5316 std::vector<SectionRef> Sections;
5317 for (const SectionRef &Section : O->sections()) {
5318 StringRef SectName;
5319 Section.getName(SectName);
5320 Sections.push_back(Section);
5321 }
5322
5323 struct DisassembleInfo info;
5324 // Set up the block of info used by the Symbolizer call backs.
5325 info.verbose = verbose;
5326 info.O = O;
5327 info.AddrMap = &AddrMap;
5328 info.Sections = &Sections;
5329 info.class_name = nullptr;
5330 info.selector_name = nullptr;
5331 info.method = nullptr;
5332 info.demangled_name = nullptr;
5333 info.bindtable = nullptr;
5334 info.adrp_addr = 0;
5335 info.adrp_inst = 0;
5336
5337 for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
5338 p = S.getAddress() + i;
5339 r = get_pointer_32(p, offset, left, S, &info, true);
5340 if (r == nullptr)
5341 return true;
5342 memset(&module, '\0', sizeof(struct objc_module_t));
5343 if (left < sizeof(struct objc_module_t)) {
5344 memcpy(&module, r, left);
5345 outs() << " (module extends past end of __module_info section)\n";
5346 } else
5347 memcpy(&module, r, sizeof(struct objc_module_t));
5348 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5349 swapStruct(module);
5350
5351 outs() << "Module " << format("0x%" PRIx32, p) << "\n";
5352 outs() << " version " << module.version << "\n";
5353 outs() << " size " << module.size << "\n";
5354 outs() << " name ";
5355 name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
5356 if (name != nullptr)
5357 outs() << format("%.*s", left, name);
5358 else
5359 outs() << format("0x%08" PRIx32, module.name)
5360 << "(not in an __OBJC section)";
5361 outs() << "\n";
5362
5363 r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
5364 if (module.symtab == 0 || r == nullptr) {
5365 outs() << " symtab " << format("0x%08" PRIx32, module.symtab)
5366 << " (not in an __OBJC section)\n";
5367 continue;
5368 }
5369 outs() << " symtab " << format("0x%08" PRIx32, module.symtab) << "\n";
5370 memset(&symtab, '\0', sizeof(struct objc_symtab_t));
5371 defs_left = 0;
5372 defs = nullptr;
5373 if (left < sizeof(struct objc_symtab_t)) {
5374 memcpy(&symtab, r, left);
5375 outs() << "\tsymtab extends past end of an __OBJC section)\n";
5376 } else {
5377 memcpy(&symtab, r, sizeof(struct objc_symtab_t));
5378 if (left > sizeof(struct objc_symtab_t)) {
5379 defs_left = left - sizeof(struct objc_symtab_t);
5380 defs = r + sizeof(struct objc_symtab_t);
5381 }
5382 }
5383 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5384 swapStruct(symtab);
5385
5386 outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
5387 r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
5388 outs() << "\trefs " << format("0x%08" PRIx32, symtab.refs);
5389 if (r == nullptr)
5390 outs() << " (not in an __OBJC section)";
5391 outs() << "\n";
5392 outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
5393 outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
5394 if (symtab.cls_def_cnt > 0)
5395 outs() << "\tClass Definitions\n";
5396 for (j = 0; j < symtab.cls_def_cnt; j++) {
5397 if ((j + 1) * sizeof(uint32_t) > defs_left) {
5398 outs() << "\t(remaining class defs entries entends past the end of the "
5399 << "section)\n";
5400 break;
5401 }
5402 memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
5403 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5404 sys::swapByteOrder(def);
5405
5406 r = get_pointer_32(def, xoffset, left, xS, &info, true);
5407 outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32, def);
5408 if (r != nullptr) {
5409 if (left > sizeof(struct objc_class_t)) {
5410 outs() << "\n";
5411 memcpy(&objc_class, r, sizeof(struct objc_class_t));
5412 } else {
5413 outs() << " (entends past the end of the section)\n";
5414 memset(&objc_class, '\0', sizeof(struct objc_class_t));
5415 memcpy(&objc_class, r, left);
5416 }
5417 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5418 swapStruct(objc_class);
5419 print_objc_class_t(&objc_class, &info);
5420 } else {
5421 outs() << "(not in an __OBJC section)\n";
5422 }
5423
5424 if (CLS_GETINFO(&objc_class, CLS_CLASS)) {
5425 outs() << "\tMeta Class";
5426 r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
5427 if (r != nullptr) {
5428 if (left > sizeof(struct objc_class_t)) {
5429 outs() << "\n";
5430 memcpy(&objc_class, r, sizeof(struct objc_class_t));
5431 } else {
5432 outs() << " (entends past the end of the section)\n";
5433 memset(&objc_class, '\0', sizeof(struct objc_class_t));
5434 memcpy(&objc_class, r, left);
5435 }
5436 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5437 swapStruct(objc_class);
5438 print_objc_class_t(&objc_class, &info);
5439 } else {
5440 outs() << "(not in an __OBJC section)\n";
5441 }
5442 }
5443 }
5444 if (symtab.cat_def_cnt > 0)
5445 outs() << "\tCategory Definitions\n";
5446 for (j = 0; j < symtab.cat_def_cnt; j++) {
5447 if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
5448 outs() << "\t(remaining category defs entries entends past the end of "
5449 << "the section)\n";
5450 break;
5451 }
5452 memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
5453 sizeof(uint32_t));
5454 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5455 sys::swapByteOrder(def);
5456
5457 r = get_pointer_32(def, xoffset, left, xS, &info, true);
5458 outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
5459 << format("0x%08" PRIx32, def);
5460 if (r != nullptr) {
5461 if (left > sizeof(struct objc_category_t)) {
5462 outs() << "\n";
5463 memcpy(&objc_category, r, sizeof(struct objc_category_t));
5464 } else {
5465 outs() << " (entends past the end of the section)\n";
5466 memset(&objc_category, '\0', sizeof(struct objc_category_t));
5467 memcpy(&objc_category, r, left);
5468 }
5469 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5470 swapStruct(objc_category);
5471 print_objc_objc_category_t(&objc_category, &info);
5472 } else {
5473 outs() << "(not in an __OBJC section)\n";
5474 }
5475 }
5476 }
5477 const SectionRef II = get_section(O, "__OBJC", "__image_info");
5478 if (II != SectionRef())
5479 print_image_info(II, &info);
5480
5481 return true;
5482 }
5483
DumpProtocolSection(MachOObjectFile * O,const char * sect,uint32_t size,uint32_t addr)5484 static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
5485 uint32_t size, uint32_t addr) {
5486 SymbolAddressMap AddrMap;
5487 CreateSymbolAddressMap(O, &AddrMap);
5488
5489 std::vector<SectionRef> Sections;
5490 for (const SectionRef &Section : O->sections()) {
5491 StringRef SectName;
5492 Section.getName(SectName);
5493 Sections.push_back(Section);
5494 }
5495
5496 struct DisassembleInfo info;
5497 // Set up the block of info used by the Symbolizer call backs.
5498 info.verbose = true;
5499 info.O = O;
5500 info.AddrMap = &AddrMap;
5501 info.Sections = &Sections;
5502 info.class_name = nullptr;
5503 info.selector_name = nullptr;
5504 info.method = nullptr;
5505 info.demangled_name = nullptr;
5506 info.bindtable = nullptr;
5507 info.adrp_addr = 0;
5508 info.adrp_inst = 0;
5509
5510 const char *p;
5511 struct objc_protocol_t protocol;
5512 uint32_t left, paddr;
5513 for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
5514 memset(&protocol, '\0', sizeof(struct objc_protocol_t));
5515 left = size - (p - sect);
5516 if (left < sizeof(struct objc_protocol_t)) {
5517 outs() << "Protocol extends past end of __protocol section\n";
5518 memcpy(&protocol, p, left);
5519 } else
5520 memcpy(&protocol, p, sizeof(struct objc_protocol_t));
5521 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5522 swapStruct(protocol);
5523 paddr = addr + (p - sect);
5524 outs() << "Protocol " << format("0x%" PRIx32, paddr);
5525 if (print_protocol(paddr, 0, &info))
5526 outs() << "(not in an __OBJC section)\n";
5527 }
5528 }
5529
printObjcMetaData(MachOObjectFile * O,bool verbose)5530 static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
5531 if (O->is64Bit())
5532 printObjc2_64bit_MetaData(O, verbose);
5533 else {
5534 MachO::mach_header H;
5535 H = O->getHeader();
5536 if (H.cputype == MachO::CPU_TYPE_ARM)
5537 printObjc2_32bit_MetaData(O, verbose);
5538 else {
5539 // This is the 32-bit non-arm cputype case. Which is normally
5540 // the first Objective-C ABI. But it may be the case of a
5541 // binary for the iOS simulator which is the second Objective-C
5542 // ABI. In that case printObjc1_32bit_MetaData() will determine that
5543 // and return false.
5544 if (!printObjc1_32bit_MetaData(O, verbose))
5545 printObjc2_32bit_MetaData(O, verbose);
5546 }
5547 }
5548 }
5549
5550 // GuessLiteralPointer returns a string which for the item in the Mach-O file
5551 // for the address passed in as ReferenceValue for printing as a comment with
5552 // the instruction and also returns the corresponding type of that item
5553 // indirectly through ReferenceType.
5554 //
5555 // If ReferenceValue is an address of literal cstring then a pointer to the
5556 // cstring is returned and ReferenceType is set to
5557 // LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
5558 //
5559 // If ReferenceValue is an address of an Objective-C CFString, Selector ref or
5560 // Class ref that name is returned and the ReferenceType is set accordingly.
5561 //
5562 // Lastly, literals which are Symbol address in a literal pool are looked for
5563 // and if found the symbol name is returned and ReferenceType is set to
5564 // LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
5565 //
5566 // If there is no item in the Mach-O file for the address passed in as
5567 // ReferenceValue nullptr is returned and ReferenceType is unchanged.
GuessLiteralPointer(uint64_t ReferenceValue,uint64_t ReferencePC,uint64_t * ReferenceType,struct DisassembleInfo * info)5568 static const char *GuessLiteralPointer(uint64_t ReferenceValue,
5569 uint64_t ReferencePC,
5570 uint64_t *ReferenceType,
5571 struct DisassembleInfo *info) {
5572 // First see if there is an external relocation entry at the ReferencePC.
5573 if (info->O->getHeader().filetype == MachO::MH_OBJECT) {
5574 uint64_t sect_addr = info->S.getAddress();
5575 uint64_t sect_offset = ReferencePC - sect_addr;
5576 bool reloc_found = false;
5577 DataRefImpl Rel;
5578 MachO::any_relocation_info RE;
5579 bool isExtern = false;
5580 SymbolRef Symbol;
5581 for (const RelocationRef &Reloc : info->S.relocations()) {
5582 uint64_t RelocOffset = Reloc.getOffset();
5583 if (RelocOffset == sect_offset) {
5584 Rel = Reloc.getRawDataRefImpl();
5585 RE = info->O->getRelocation(Rel);
5586 if (info->O->isRelocationScattered(RE))
5587 continue;
5588 isExtern = info->O->getPlainRelocationExternal(RE);
5589 if (isExtern) {
5590 symbol_iterator RelocSym = Reloc.getSymbol();
5591 Symbol = *RelocSym;
5592 }
5593 reloc_found = true;
5594 break;
5595 }
5596 }
5597 // If there is an external relocation entry for a symbol in a section
5598 // then used that symbol's value for the value of the reference.
5599 if (reloc_found && isExtern) {
5600 if (info->O->getAnyRelocationPCRel(RE)) {
5601 unsigned Type = info->O->getAnyRelocationType(RE);
5602 if (Type == MachO::X86_64_RELOC_SIGNED) {
5603 ReferenceValue = Symbol.getValue();
5604 }
5605 }
5606 }
5607 }
5608
5609 // Look for literals such as Objective-C CFStrings refs, Selector refs,
5610 // Message refs and Class refs.
5611 bool classref, selref, msgref, cfstring;
5612 uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
5613 selref, msgref, cfstring);
5614 if (classref && pointer_value == 0) {
5615 // Note the ReferenceValue is a pointer into the __objc_classrefs section.
5616 // And the pointer_value in that section is typically zero as it will be
5617 // set by dyld as part of the "bind information".
5618 const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
5619 if (name != nullptr) {
5620 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
5621 const char *class_name = strrchr(name, '$');
5622 if (class_name != nullptr && class_name[1] == '_' &&
5623 class_name[2] != '\0') {
5624 info->class_name = class_name + 2;
5625 return name;
5626 }
5627 }
5628 }
5629
5630 if (classref) {
5631 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
5632 const char *name =
5633 get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
5634 if (name != nullptr)
5635 info->class_name = name;
5636 else
5637 name = "bad class ref";
5638 return name;
5639 }
5640
5641 if (cfstring) {
5642 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
5643 const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
5644 return name;
5645 }
5646
5647 if (selref && pointer_value == 0)
5648 pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
5649
5650 if (pointer_value != 0)
5651 ReferenceValue = pointer_value;
5652
5653 const char *name = GuessCstringPointer(ReferenceValue, info);
5654 if (name) {
5655 if (pointer_value != 0 && selref) {
5656 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
5657 info->selector_name = name;
5658 } else if (pointer_value != 0 && msgref) {
5659 info->class_name = nullptr;
5660 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
5661 info->selector_name = name;
5662 } else
5663 *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
5664 return name;
5665 }
5666
5667 // Lastly look for an indirect symbol with this ReferenceValue which is in
5668 // a literal pool. If found return that symbol name.
5669 name = GuessIndirectSymbol(ReferenceValue, info);
5670 if (name) {
5671 *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
5672 return name;
5673 }
5674
5675 return nullptr;
5676 }
5677
5678 // SymbolizerSymbolLookUp is the symbol lookup function passed when creating
5679 // the Symbolizer. It looks up the ReferenceValue using the info passed via the
5680 // pointer to the struct DisassembleInfo that was passed when MCSymbolizer
5681 // is created and returns the symbol name that matches the ReferenceValue or
5682 // nullptr if none. The ReferenceType is passed in for the IN type of
5683 // reference the instruction is making from the values in defined in the header
5684 // "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
5685 // Out type and the ReferenceName will also be set which is added as a comment
5686 // to the disassembled instruction.
5687 //
5688 #if HAVE_CXXABI_H
5689 // If the symbol name is a C++ mangled name then the demangled name is
5690 // returned through ReferenceName and ReferenceType is set to
5691 // LLVMDisassembler_ReferenceType_DeMangled_Name .
5692 #endif
5693 //
5694 // When this is called to get a symbol name for a branch target then the
5695 // ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
5696 // SymbolValue will be looked for in the indirect symbol table to determine if
5697 // it is an address for a symbol stub. If so then the symbol name for that
5698 // stub is returned indirectly through ReferenceName and then ReferenceType is
5699 // set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
5700 //
5701 // When this is called with an value loaded via a PC relative load then
5702 // ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
5703 // SymbolValue is checked to be an address of literal pointer, symbol pointer,
5704 // or an Objective-C meta data reference. If so the output ReferenceType is
5705 // set to correspond to that as well as setting the ReferenceName.
SymbolizerSymbolLookUp(void * DisInfo,uint64_t ReferenceValue,uint64_t * ReferenceType,uint64_t ReferencePC,const char ** ReferenceName)5706 static const char *SymbolizerSymbolLookUp(void *DisInfo,
5707 uint64_t ReferenceValue,
5708 uint64_t *ReferenceType,
5709 uint64_t ReferencePC,
5710 const char **ReferenceName) {
5711 struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
5712 // If no verbose symbolic information is wanted then just return nullptr.
5713 if (!info->verbose) {
5714 *ReferenceName = nullptr;
5715 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5716 return nullptr;
5717 }
5718
5719 const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
5720
5721 if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
5722 *ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
5723 if (*ReferenceName != nullptr) {
5724 method_reference(info, ReferenceType, ReferenceName);
5725 if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
5726 *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
5727 } else
5728 #if HAVE_CXXABI_H
5729 if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
5730 if (info->demangled_name != nullptr)
5731 free(info->demangled_name);
5732 int status;
5733 info->demangled_name =
5734 abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
5735 if (info->demangled_name != nullptr) {
5736 *ReferenceName = info->demangled_name;
5737 *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
5738 } else
5739 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5740 } else
5741 #endif
5742 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5743 } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
5744 *ReferenceName =
5745 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5746 if (*ReferenceName)
5747 method_reference(info, ReferenceType, ReferenceName);
5748 else
5749 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5750 // If this is arm64 and the reference is an adrp instruction save the
5751 // instruction, passed in ReferenceValue and the address of the instruction
5752 // for use later if we see and add immediate instruction.
5753 } else if (info->O->getArch() == Triple::aarch64 &&
5754 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
5755 info->adrp_inst = ReferenceValue;
5756 info->adrp_addr = ReferencePC;
5757 SymbolName = nullptr;
5758 *ReferenceName = nullptr;
5759 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5760 // If this is arm64 and reference is an add immediate instruction and we
5761 // have
5762 // seen an adrp instruction just before it and the adrp's Xd register
5763 // matches
5764 // this add's Xn register reconstruct the value being referenced and look to
5765 // see if it is a literal pointer. Note the add immediate instruction is
5766 // passed in ReferenceValue.
5767 } else if (info->O->getArch() == Triple::aarch64 &&
5768 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
5769 ReferencePC - 4 == info->adrp_addr &&
5770 (info->adrp_inst & 0x9f000000) == 0x90000000 &&
5771 (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
5772 uint32_t addxri_inst;
5773 uint64_t adrp_imm, addxri_imm;
5774
5775 adrp_imm =
5776 ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
5777 if (info->adrp_inst & 0x0200000)
5778 adrp_imm |= 0xfffffffffc000000LL;
5779
5780 addxri_inst = ReferenceValue;
5781 addxri_imm = (addxri_inst >> 10) & 0xfff;
5782 if (((addxri_inst >> 22) & 0x3) == 1)
5783 addxri_imm <<= 12;
5784
5785 ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
5786 (adrp_imm << 12) + addxri_imm;
5787
5788 *ReferenceName =
5789 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5790 if (*ReferenceName == nullptr)
5791 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5792 // If this is arm64 and the reference is a load register instruction and we
5793 // have seen an adrp instruction just before it and the adrp's Xd register
5794 // matches this add's Xn register reconstruct the value being referenced and
5795 // look to see if it is a literal pointer. Note the load register
5796 // instruction is passed in ReferenceValue.
5797 } else if (info->O->getArch() == Triple::aarch64 &&
5798 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
5799 ReferencePC - 4 == info->adrp_addr &&
5800 (info->adrp_inst & 0x9f000000) == 0x90000000 &&
5801 (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
5802 uint32_t ldrxui_inst;
5803 uint64_t adrp_imm, ldrxui_imm;
5804
5805 adrp_imm =
5806 ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
5807 if (info->adrp_inst & 0x0200000)
5808 adrp_imm |= 0xfffffffffc000000LL;
5809
5810 ldrxui_inst = ReferenceValue;
5811 ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
5812
5813 ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
5814 (adrp_imm << 12) + (ldrxui_imm << 3);
5815
5816 *ReferenceName =
5817 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5818 if (*ReferenceName == nullptr)
5819 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5820 }
5821 // If this arm64 and is an load register (PC-relative) instruction the
5822 // ReferenceValue is the PC plus the immediate value.
5823 else if (info->O->getArch() == Triple::aarch64 &&
5824 (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
5825 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
5826 *ReferenceName =
5827 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
5828 if (*ReferenceName == nullptr)
5829 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5830 }
5831 #if HAVE_CXXABI_H
5832 else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
5833 if (info->demangled_name != nullptr)
5834 free(info->demangled_name);
5835 int status;
5836 info->demangled_name =
5837 abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
5838 if (info->demangled_name != nullptr) {
5839 *ReferenceName = info->demangled_name;
5840 *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
5841 }
5842 }
5843 #endif
5844 else {
5845 *ReferenceName = nullptr;
5846 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
5847 }
5848
5849 return SymbolName;
5850 }
5851
5852 /// \brief Emits the comments that are stored in the CommentStream.
5853 /// Each comment in the CommentStream must end with a newline.
emitComments(raw_svector_ostream & CommentStream,SmallString<128> & CommentsToEmit,formatted_raw_ostream & FormattedOS,const MCAsmInfo & MAI)5854 static void emitComments(raw_svector_ostream &CommentStream,
5855 SmallString<128> &CommentsToEmit,
5856 formatted_raw_ostream &FormattedOS,
5857 const MCAsmInfo &MAI) {
5858 // Flush the stream before taking its content.
5859 StringRef Comments = CommentsToEmit.str();
5860 // Get the default information for printing a comment.
5861 const char *CommentBegin = MAI.getCommentString();
5862 unsigned CommentColumn = MAI.getCommentColumn();
5863 bool IsFirst = true;
5864 while (!Comments.empty()) {
5865 if (!IsFirst)
5866 FormattedOS << '\n';
5867 // Emit a line of comments.
5868 FormattedOS.PadToColumn(CommentColumn);
5869 size_t Position = Comments.find('\n');
5870 FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
5871 // Move after the newline character.
5872 Comments = Comments.substr(Position + 1);
5873 IsFirst = false;
5874 }
5875 FormattedOS.flush();
5876
5877 // Tell the comment stream that the vector changed underneath it.
5878 CommentsToEmit.clear();
5879 }
5880
DisassembleMachO(StringRef Filename,MachOObjectFile * MachOOF,StringRef DisSegName,StringRef DisSectName)5881 static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
5882 StringRef DisSegName, StringRef DisSectName) {
5883 const char *McpuDefault = nullptr;
5884 const Target *ThumbTarget = nullptr;
5885 const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
5886 if (!TheTarget) {
5887 // GetTarget prints out stuff.
5888 return;
5889 }
5890 if (MCPU.empty() && McpuDefault)
5891 MCPU = McpuDefault;
5892
5893 std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
5894 std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
5895 if (ThumbTarget)
5896 ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
5897
5898 // Package up features to be passed to target/subtarget
5899 std::string FeaturesStr;
5900 if (MAttrs.size()) {
5901 SubtargetFeatures Features;
5902 for (unsigned i = 0; i != MAttrs.size(); ++i)
5903 Features.AddFeature(MAttrs[i]);
5904 FeaturesStr = Features.getString();
5905 }
5906
5907 // Set up disassembler.
5908 std::unique_ptr<const MCRegisterInfo> MRI(
5909 TheTarget->createMCRegInfo(TripleName));
5910 std::unique_ptr<const MCAsmInfo> AsmInfo(
5911 TheTarget->createMCAsmInfo(*MRI, TripleName));
5912 std::unique_ptr<const MCSubtargetInfo> STI(
5913 TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
5914 MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
5915 std::unique_ptr<MCDisassembler> DisAsm(
5916 TheTarget->createMCDisassembler(*STI, Ctx));
5917 std::unique_ptr<MCSymbolizer> Symbolizer;
5918 struct DisassembleInfo SymbolizerInfo;
5919 std::unique_ptr<MCRelocationInfo> RelInfo(
5920 TheTarget->createMCRelocationInfo(TripleName, Ctx));
5921 if (RelInfo) {
5922 Symbolizer.reset(TheTarget->createMCSymbolizer(
5923 TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
5924 &SymbolizerInfo, &Ctx, std::move(RelInfo)));
5925 DisAsm->setSymbolizer(std::move(Symbolizer));
5926 }
5927 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
5928 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
5929 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
5930 // Set the display preference for hex vs. decimal immediates.
5931 IP->setPrintImmHex(PrintImmHex);
5932 // Comment stream and backing vector.
5933 SmallString<128> CommentsToEmit;
5934 raw_svector_ostream CommentStream(CommentsToEmit);
5935 // FIXME: Setting the CommentStream in the InstPrinter is problematic in that
5936 // if it is done then arm64 comments for string literals don't get printed
5937 // and some constant get printed instead and not setting it causes intel
5938 // (32-bit and 64-bit) comments printed with different spacing before the
5939 // comment causing different diffs with the 'C' disassembler library API.
5940 // IP->setCommentStream(CommentStream);
5941
5942 if (!AsmInfo || !STI || !DisAsm || !IP) {
5943 errs() << "error: couldn't initialize disassembler for target "
5944 << TripleName << '\n';
5945 return;
5946 }
5947
5948 // Set up thumb disassembler.
5949 std::unique_ptr<const MCRegisterInfo> ThumbMRI;
5950 std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
5951 std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
5952 std::unique_ptr<MCDisassembler> ThumbDisAsm;
5953 std::unique_ptr<MCInstPrinter> ThumbIP;
5954 std::unique_ptr<MCContext> ThumbCtx;
5955 std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
5956 struct DisassembleInfo ThumbSymbolizerInfo;
5957 std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
5958 if (ThumbTarget) {
5959 ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
5960 ThumbAsmInfo.reset(
5961 ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
5962 ThumbSTI.reset(
5963 ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
5964 ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
5965 ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
5966 MCContext *PtrThumbCtx = ThumbCtx.get();
5967 ThumbRelInfo.reset(
5968 ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
5969 if (ThumbRelInfo) {
5970 ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
5971 ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
5972 &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
5973 ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
5974 }
5975 int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
5976 ThumbIP.reset(ThumbTarget->createMCInstPrinter(
5977 Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
5978 *ThumbInstrInfo, *ThumbMRI));
5979 // Set the display preference for hex vs. decimal immediates.
5980 ThumbIP->setPrintImmHex(PrintImmHex);
5981 }
5982
5983 if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
5984 errs() << "error: couldn't initialize disassembler for target "
5985 << ThumbTripleName << '\n';
5986 return;
5987 }
5988
5989 MachO::mach_header Header = MachOOF->getHeader();
5990
5991 // FIXME: Using the -cfg command line option, this code used to be able to
5992 // annotate relocations with the referenced symbol's name, and if this was
5993 // inside a __[cf]string section, the data it points to. This is now replaced
5994 // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
5995 std::vector<SectionRef> Sections;
5996 std::vector<SymbolRef> Symbols;
5997 SmallVector<uint64_t, 8> FoundFns;
5998 uint64_t BaseSegmentAddress;
5999
6000 getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
6001 BaseSegmentAddress);
6002
6003 // Sort the symbols by address, just in case they didn't come in that way.
6004 std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
6005
6006 // Build a data in code table that is sorted on by the address of each entry.
6007 uint64_t BaseAddress = 0;
6008 if (Header.filetype == MachO::MH_OBJECT)
6009 BaseAddress = Sections[0].getAddress();
6010 else
6011 BaseAddress = BaseSegmentAddress;
6012 DiceTable Dices;
6013 for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
6014 DI != DE; ++DI) {
6015 uint32_t Offset;
6016 DI->getOffset(Offset);
6017 Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
6018 }
6019 array_pod_sort(Dices.begin(), Dices.end());
6020
6021 #ifndef NDEBUG
6022 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
6023 #else
6024 raw_ostream &DebugOut = nulls();
6025 #endif
6026
6027 std::unique_ptr<DIContext> diContext;
6028 ObjectFile *DbgObj = MachOOF;
6029 // Try to find debug info and set up the DIContext for it.
6030 if (UseDbg) {
6031 // A separate DSym file path was specified, parse it as a macho file,
6032 // get the sections and supply it to the section name parsing machinery.
6033 if (!DSYMFile.empty()) {
6034 ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
6035 MemoryBuffer::getFileOrSTDIN(DSYMFile);
6036 if (std::error_code EC = BufOrErr.getError()) {
6037 errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
6038 return;
6039 }
6040 DbgObj =
6041 ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
6042 .get()
6043 .release();
6044 }
6045
6046 // Setup the DIContext
6047 diContext.reset(new DWARFContextInMemory(*DbgObj));
6048 }
6049
6050 if (FilterSections.size() == 0)
6051 outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
6052
6053 for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
6054 StringRef SectName;
6055 if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
6056 continue;
6057
6058 DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
6059
6060 StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
6061 if (SegmentName != DisSegName)
6062 continue;
6063
6064 StringRef BytesStr;
6065 Sections[SectIdx].getContents(BytesStr);
6066 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
6067 BytesStr.size());
6068 uint64_t SectAddress = Sections[SectIdx].getAddress();
6069
6070 bool symbolTableWorked = false;
6071
6072 // Create a map of symbol addresses to symbol names for use by
6073 // the SymbolizerSymbolLookUp() routine.
6074 SymbolAddressMap AddrMap;
6075 bool DisSymNameFound = false;
6076 for (const SymbolRef &Symbol : MachOOF->symbols()) {
6077 SymbolRef::Type ST = Symbol.getType();
6078 if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
6079 ST == SymbolRef::ST_Other) {
6080 uint64_t Address = Symbol.getValue();
6081 ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
6082 if (std::error_code EC = SymNameOrErr.getError())
6083 report_fatal_error(EC.message());
6084 StringRef SymName = *SymNameOrErr;
6085 AddrMap[Address] = SymName;
6086 if (!DisSymName.empty() && DisSymName == SymName)
6087 DisSymNameFound = true;
6088 }
6089 }
6090 if (!DisSymName.empty() && !DisSymNameFound) {
6091 outs() << "Can't find -dis-symname: " << DisSymName << "\n";
6092 return;
6093 }
6094 // Set up the block of info used by the Symbolizer call backs.
6095 SymbolizerInfo.verbose = !NoSymbolicOperands;
6096 SymbolizerInfo.O = MachOOF;
6097 SymbolizerInfo.S = Sections[SectIdx];
6098 SymbolizerInfo.AddrMap = &AddrMap;
6099 SymbolizerInfo.Sections = &Sections;
6100 SymbolizerInfo.class_name = nullptr;
6101 SymbolizerInfo.selector_name = nullptr;
6102 SymbolizerInfo.method = nullptr;
6103 SymbolizerInfo.demangled_name = nullptr;
6104 SymbolizerInfo.bindtable = nullptr;
6105 SymbolizerInfo.adrp_addr = 0;
6106 SymbolizerInfo.adrp_inst = 0;
6107 // Same for the ThumbSymbolizer
6108 ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
6109 ThumbSymbolizerInfo.O = MachOOF;
6110 ThumbSymbolizerInfo.S = Sections[SectIdx];
6111 ThumbSymbolizerInfo.AddrMap = &AddrMap;
6112 ThumbSymbolizerInfo.Sections = &Sections;
6113 ThumbSymbolizerInfo.class_name = nullptr;
6114 ThumbSymbolizerInfo.selector_name = nullptr;
6115 ThumbSymbolizerInfo.method = nullptr;
6116 ThumbSymbolizerInfo.demangled_name = nullptr;
6117 ThumbSymbolizerInfo.bindtable = nullptr;
6118 ThumbSymbolizerInfo.adrp_addr = 0;
6119 ThumbSymbolizerInfo.adrp_inst = 0;
6120
6121 // Disassemble symbol by symbol.
6122 for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
6123 ErrorOr<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
6124 if (std::error_code EC = SymNameOrErr.getError())
6125 report_fatal_error(EC.message());
6126 StringRef SymName = *SymNameOrErr;
6127
6128 SymbolRef::Type ST = Symbols[SymIdx].getType();
6129 if (ST != SymbolRef::ST_Function && ST != SymbolRef::ST_Data)
6130 continue;
6131
6132 // Make sure the symbol is defined in this section.
6133 bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
6134 if (!containsSym)
6135 continue;
6136
6137 // If we are only disassembling one symbol see if this is that symbol.
6138 if (!DisSymName.empty() && DisSymName != SymName)
6139 continue;
6140
6141 // Start at the address of the symbol relative to the section's address.
6142 uint64_t Start = Symbols[SymIdx].getValue();
6143 uint64_t SectionAddress = Sections[SectIdx].getAddress();
6144 Start -= SectionAddress;
6145
6146 // Stop disassembling either at the beginning of the next symbol or at
6147 // the end of the section.
6148 bool containsNextSym = false;
6149 uint64_t NextSym = 0;
6150 uint64_t NextSymIdx = SymIdx + 1;
6151 while (Symbols.size() > NextSymIdx) {
6152 SymbolRef::Type NextSymType = Symbols[NextSymIdx].getType();
6153 if (NextSymType == SymbolRef::ST_Function) {
6154 containsNextSym =
6155 Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
6156 NextSym = Symbols[NextSymIdx].getValue();
6157 NextSym -= SectionAddress;
6158 break;
6159 }
6160 ++NextSymIdx;
6161 }
6162
6163 uint64_t SectSize = Sections[SectIdx].getSize();
6164 uint64_t End = containsNextSym ? NextSym : SectSize;
6165 uint64_t Size;
6166
6167 symbolTableWorked = true;
6168
6169 DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
6170 bool isThumb =
6171 (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;
6172
6173 outs() << SymName << ":\n";
6174 DILineInfo lastLine;
6175 for (uint64_t Index = Start; Index < End; Index += Size) {
6176 MCInst Inst;
6177
6178 uint64_t PC = SectAddress + Index;
6179 if (!NoLeadingAddr) {
6180 if (FullLeadingAddr) {
6181 if (MachOOF->is64Bit())
6182 outs() << format("%016" PRIx64, PC);
6183 else
6184 outs() << format("%08" PRIx64, PC);
6185 } else {
6186 outs() << format("%8" PRIx64 ":", PC);
6187 }
6188 }
6189 if (!NoShowRawInsn)
6190 outs() << "\t";
6191
6192 // Check the data in code table here to see if this is data not an
6193 // instruction to be disassembled.
6194 DiceTable Dice;
6195 Dice.push_back(std::make_pair(PC, DiceRef()));
6196 dice_table_iterator DTI =
6197 std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
6198 compareDiceTableEntries);
6199 if (DTI != Dices.end()) {
6200 uint16_t Length;
6201 DTI->second.getLength(Length);
6202 uint16_t Kind;
6203 DTI->second.getKind(Kind);
6204 Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
6205 if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
6206 (PC == (DTI->first + Length - 1)) && (Length & 1))
6207 Size++;
6208 continue;
6209 }
6210
6211 SmallVector<char, 64> AnnotationsBytes;
6212 raw_svector_ostream Annotations(AnnotationsBytes);
6213
6214 bool gotInst;
6215 if (isThumb)
6216 gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
6217 PC, DebugOut, Annotations);
6218 else
6219 gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
6220 DebugOut, Annotations);
6221 if (gotInst) {
6222 if (!NoShowRawInsn) {
6223 dumpBytes(makeArrayRef(Bytes.data() + Index, Size), outs());
6224 }
6225 formatted_raw_ostream FormattedOS(outs());
6226 StringRef AnnotationsStr = Annotations.str();
6227 if (isThumb)
6228 ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
6229 else
6230 IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
6231 emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
6232
6233 // Print debug info.
6234 if (diContext) {
6235 DILineInfo dli = diContext->getLineInfoForAddress(PC);
6236 // Print valid line info if it changed.
6237 if (dli != lastLine && dli.Line != 0)
6238 outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
6239 << dli.Column;
6240 lastLine = dli;
6241 }
6242 outs() << "\n";
6243 } else {
6244 unsigned int Arch = MachOOF->getArch();
6245 if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6246 outs() << format("\t.byte 0x%02x #bad opcode\n",
6247 *(Bytes.data() + Index) & 0xff);
6248 Size = 1; // skip exactly one illegible byte and move on.
6249 } else if (Arch == Triple::aarch64) {
6250 uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6251 (*(Bytes.data() + Index + 1) & 0xff) << 8 |
6252 (*(Bytes.data() + Index + 2) & 0xff) << 16 |
6253 (*(Bytes.data() + Index + 3) & 0xff) << 24;
6254 outs() << format("\t.long\t0x%08x\n", opcode);
6255 Size = 4;
6256 } else {
6257 errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6258 if (Size == 0)
6259 Size = 1; // skip illegible bytes
6260 }
6261 }
6262 }
6263 }
6264 if (!symbolTableWorked) {
6265 // Reading the symbol table didn't work, disassemble the whole section.
6266 uint64_t SectAddress = Sections[SectIdx].getAddress();
6267 uint64_t SectSize = Sections[SectIdx].getSize();
6268 uint64_t InstSize;
6269 for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
6270 MCInst Inst;
6271
6272 uint64_t PC = SectAddress + Index;
6273 if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
6274 DebugOut, nulls())) {
6275 if (!NoLeadingAddr) {
6276 if (FullLeadingAddr) {
6277 if (MachOOF->is64Bit())
6278 outs() << format("%016" PRIx64, PC);
6279 else
6280 outs() << format("%08" PRIx64, PC);
6281 } else {
6282 outs() << format("%8" PRIx64 ":", PC);
6283 }
6284 }
6285 if (!NoShowRawInsn) {
6286 outs() << "\t";
6287 dumpBytes(makeArrayRef(Bytes.data() + Index, InstSize), outs());
6288 }
6289 IP->printInst(&Inst, outs(), "", *STI);
6290 outs() << "\n";
6291 } else {
6292 unsigned int Arch = MachOOF->getArch();
6293 if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6294 outs() << format("\t.byte 0x%02x #bad opcode\n",
6295 *(Bytes.data() + Index) & 0xff);
6296 InstSize = 1; // skip exactly one illegible byte and move on.
6297 } else {
6298 errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6299 if (InstSize == 0)
6300 InstSize = 1; // skip illegible bytes
6301 }
6302 }
6303 }
6304 }
6305 // The TripleName's need to be reset if we are called again for a different
6306 // archtecture.
6307 TripleName = "";
6308 ThumbTripleName = "";
6309
6310 if (SymbolizerInfo.method != nullptr)
6311 free(SymbolizerInfo.method);
6312 if (SymbolizerInfo.demangled_name != nullptr)
6313 free(SymbolizerInfo.demangled_name);
6314 if (SymbolizerInfo.bindtable != nullptr)
6315 delete SymbolizerInfo.bindtable;
6316 if (ThumbSymbolizerInfo.method != nullptr)
6317 free(ThumbSymbolizerInfo.method);
6318 if (ThumbSymbolizerInfo.demangled_name != nullptr)
6319 free(ThumbSymbolizerInfo.demangled_name);
6320 if (ThumbSymbolizerInfo.bindtable != nullptr)
6321 delete ThumbSymbolizerInfo.bindtable;
6322 }
6323 }
6324
6325 //===----------------------------------------------------------------------===//
6326 // __compact_unwind section dumping
6327 //===----------------------------------------------------------------------===//
6328
6329 namespace {
6330
readNext(const char * & Buf)6331 template <typename T> static uint64_t readNext(const char *&Buf) {
6332 using llvm::support::little;
6333 using llvm::support::unaligned;
6334
6335 uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
6336 Buf += sizeof(T);
6337 return Val;
6338 }
6339
6340 struct CompactUnwindEntry {
6341 uint32_t OffsetInSection;
6342
6343 uint64_t FunctionAddr;
6344 uint32_t Length;
6345 uint32_t CompactEncoding;
6346 uint64_t PersonalityAddr;
6347 uint64_t LSDAAddr;
6348
6349 RelocationRef FunctionReloc;
6350 RelocationRef PersonalityReloc;
6351 RelocationRef LSDAReloc;
6352
CompactUnwindEntry__anon514500d20511::CompactUnwindEntry6353 CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
6354 : OffsetInSection(Offset) {
6355 if (Is64)
6356 read<uint64_t>(Contents.data() + Offset);
6357 else
6358 read<uint32_t>(Contents.data() + Offset);
6359 }
6360
6361 private:
read__anon514500d20511::CompactUnwindEntry6362 template <typename UIntPtr> void read(const char *Buf) {
6363 FunctionAddr = readNext<UIntPtr>(Buf);
6364 Length = readNext<uint32_t>(Buf);
6365 CompactEncoding = readNext<uint32_t>(Buf);
6366 PersonalityAddr = readNext<UIntPtr>(Buf);
6367 LSDAAddr = readNext<UIntPtr>(Buf);
6368 }
6369 };
6370 }
6371
6372 /// Given a relocation from __compact_unwind, consisting of the RelocationRef
6373 /// and data being relocated, determine the best base Name and Addend to use for
6374 /// display purposes.
6375 ///
6376 /// 1. An Extern relocation will directly reference a symbol (and the data is
6377 /// then already an addend), so use that.
6378 /// 2. Otherwise the data is an offset in the object file's layout; try to find
6379 // a symbol before it in the same section, and use the offset from there.
6380 /// 3. Finally, if all that fails, fall back to an offset from the start of the
6381 /// referenced section.
findUnwindRelocNameAddend(const MachOObjectFile * Obj,std::map<uint64_t,SymbolRef> & Symbols,const RelocationRef & Reloc,uint64_t Addr,StringRef & Name,uint64_t & Addend)6382 static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
6383 std::map<uint64_t, SymbolRef> &Symbols,
6384 const RelocationRef &Reloc, uint64_t Addr,
6385 StringRef &Name, uint64_t &Addend) {
6386 if (Reloc.getSymbol() != Obj->symbol_end()) {
6387 ErrorOr<StringRef> NameOrErr = Reloc.getSymbol()->getName();
6388 if (std::error_code EC = NameOrErr.getError())
6389 report_fatal_error(EC.message());
6390 Name = *NameOrErr;
6391 Addend = Addr;
6392 return;
6393 }
6394
6395 auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
6396 SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
6397
6398 uint64_t SectionAddr = RelocSection.getAddress();
6399
6400 auto Sym = Symbols.upper_bound(Addr);
6401 if (Sym == Symbols.begin()) {
6402 // The first symbol in the object is after this reference, the best we can
6403 // do is section-relative notation.
6404 RelocSection.getName(Name);
6405 Addend = Addr - SectionAddr;
6406 return;
6407 }
6408
6409 // Go back one so that SymbolAddress <= Addr.
6410 --Sym;
6411
6412 section_iterator SymSection = *Sym->second.getSection();
6413 if (RelocSection == *SymSection) {
6414 // There's a valid symbol in the same section before this reference.
6415 ErrorOr<StringRef> NameOrErr = Sym->second.getName();
6416 if (std::error_code EC = NameOrErr.getError())
6417 report_fatal_error(EC.message());
6418 Name = *NameOrErr;
6419 Addend = Addr - Sym->first;
6420 return;
6421 }
6422
6423 // There is a symbol before this reference, but it's in a different
6424 // section. Probably not helpful to mention it, so use the section name.
6425 RelocSection.getName(Name);
6426 Addend = Addr - SectionAddr;
6427 }
6428
printUnwindRelocDest(const MachOObjectFile * Obj,std::map<uint64_t,SymbolRef> & Symbols,const RelocationRef & Reloc,uint64_t Addr)6429 static void printUnwindRelocDest(const MachOObjectFile *Obj,
6430 std::map<uint64_t, SymbolRef> &Symbols,
6431 const RelocationRef &Reloc, uint64_t Addr) {
6432 StringRef Name;
6433 uint64_t Addend;
6434
6435 if (!Reloc.getObject())
6436 return;
6437
6438 findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
6439
6440 outs() << Name;
6441 if (Addend)
6442 outs() << " + " << format("0x%" PRIx64, Addend);
6443 }
6444
6445 static void
printMachOCompactUnwindSection(const MachOObjectFile * Obj,std::map<uint64_t,SymbolRef> & Symbols,const SectionRef & CompactUnwind)6446 printMachOCompactUnwindSection(const MachOObjectFile *Obj,
6447 std::map<uint64_t, SymbolRef> &Symbols,
6448 const SectionRef &CompactUnwind) {
6449
6450 assert(Obj->isLittleEndian() &&
6451 "There should not be a big-endian .o with __compact_unwind");
6452
6453 bool Is64 = Obj->is64Bit();
6454 uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
6455 uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
6456
6457 StringRef Contents;
6458 CompactUnwind.getContents(Contents);
6459
6460 SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
6461
6462 // First populate the initial raw offsets, encodings and so on from the entry.
6463 for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
6464 CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
6465 CompactUnwinds.push_back(Entry);
6466 }
6467
6468 // Next we need to look at the relocations to find out what objects are
6469 // actually being referred to.
6470 for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
6471 uint64_t RelocAddress = Reloc.getOffset();
6472
6473 uint32_t EntryIdx = RelocAddress / EntrySize;
6474 uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
6475 CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
6476
6477 if (OffsetInEntry == 0)
6478 Entry.FunctionReloc = Reloc;
6479 else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
6480 Entry.PersonalityReloc = Reloc;
6481 else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
6482 Entry.LSDAReloc = Reloc;
6483 else
6484 llvm_unreachable("Unexpected relocation in __compact_unwind section");
6485 }
6486
6487 // Finally, we're ready to print the data we've gathered.
6488 outs() << "Contents of __compact_unwind section:\n";
6489 for (auto &Entry : CompactUnwinds) {
6490 outs() << " Entry at offset "
6491 << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
6492
6493 // 1. Start of the region this entry applies to.
6494 outs() << " start: " << format("0x%" PRIx64,
6495 Entry.FunctionAddr) << ' ';
6496 printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
6497 outs() << '\n';
6498
6499 // 2. Length of the region this entry applies to.
6500 outs() << " length: " << format("0x%" PRIx32, Entry.Length)
6501 << '\n';
6502 // 3. The 32-bit compact encoding.
6503 outs() << " compact encoding: "
6504 << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
6505
6506 // 4. The personality function, if present.
6507 if (Entry.PersonalityReloc.getObject()) {
6508 outs() << " personality function: "
6509 << format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
6510 printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
6511 Entry.PersonalityAddr);
6512 outs() << '\n';
6513 }
6514
6515 // 5. This entry's language-specific data area.
6516 if (Entry.LSDAReloc.getObject()) {
6517 outs() << " LSDA: " << format("0x%" PRIx64,
6518 Entry.LSDAAddr) << ' ';
6519 printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
6520 outs() << '\n';
6521 }
6522 }
6523 }
6524
6525 //===----------------------------------------------------------------------===//
6526 // __unwind_info section dumping
6527 //===----------------------------------------------------------------------===//
6528
printRegularSecondLevelUnwindPage(const char * PageStart)6529 static void printRegularSecondLevelUnwindPage(const char *PageStart) {
6530 const char *Pos = PageStart;
6531 uint32_t Kind = readNext<uint32_t>(Pos);
6532 (void)Kind;
6533 assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
6534
6535 uint16_t EntriesStart = readNext<uint16_t>(Pos);
6536 uint16_t NumEntries = readNext<uint16_t>(Pos);
6537
6538 Pos = PageStart + EntriesStart;
6539 for (unsigned i = 0; i < NumEntries; ++i) {
6540 uint32_t FunctionOffset = readNext<uint32_t>(Pos);
6541 uint32_t Encoding = readNext<uint32_t>(Pos);
6542
6543 outs() << " [" << i << "]: "
6544 << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
6545 << ", "
6546 << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
6547 }
6548 }
6549
printCompressedSecondLevelUnwindPage(const char * PageStart,uint32_t FunctionBase,const SmallVectorImpl<uint32_t> & CommonEncodings)6550 static void printCompressedSecondLevelUnwindPage(
6551 const char *PageStart, uint32_t FunctionBase,
6552 const SmallVectorImpl<uint32_t> &CommonEncodings) {
6553 const char *Pos = PageStart;
6554 uint32_t Kind = readNext<uint32_t>(Pos);
6555 (void)Kind;
6556 assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
6557
6558 uint16_t EntriesStart = readNext<uint16_t>(Pos);
6559 uint16_t NumEntries = readNext<uint16_t>(Pos);
6560
6561 uint16_t EncodingsStart = readNext<uint16_t>(Pos);
6562 readNext<uint16_t>(Pos);
6563 const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
6564 PageStart + EncodingsStart);
6565
6566 Pos = PageStart + EntriesStart;
6567 for (unsigned i = 0; i < NumEntries; ++i) {
6568 uint32_t Entry = readNext<uint32_t>(Pos);
6569 uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
6570 uint32_t EncodingIdx = Entry >> 24;
6571
6572 uint32_t Encoding;
6573 if (EncodingIdx < CommonEncodings.size())
6574 Encoding = CommonEncodings[EncodingIdx];
6575 else
6576 Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
6577
6578 outs() << " [" << i << "]: "
6579 << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
6580 << ", "
6581 << "encoding[" << EncodingIdx
6582 << "]=" << format("0x%08" PRIx32, Encoding) << '\n';
6583 }
6584 }
6585
printMachOUnwindInfoSection(const MachOObjectFile * Obj,std::map<uint64_t,SymbolRef> & Symbols,const SectionRef & UnwindInfo)6586 static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
6587 std::map<uint64_t, SymbolRef> &Symbols,
6588 const SectionRef &UnwindInfo) {
6589
6590 assert(Obj->isLittleEndian() &&
6591 "There should not be a big-endian .o with __unwind_info");
6592
6593 outs() << "Contents of __unwind_info section:\n";
6594
6595 StringRef Contents;
6596 UnwindInfo.getContents(Contents);
6597 const char *Pos = Contents.data();
6598
6599 //===----------------------------------
6600 // Section header
6601 //===----------------------------------
6602
6603 uint32_t Version = readNext<uint32_t>(Pos);
6604 outs() << " Version: "
6605 << format("0x%" PRIx32, Version) << '\n';
6606 assert(Version == 1 && "only understand version 1");
6607
6608 uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
6609 outs() << " Common encodings array section offset: "
6610 << format("0x%" PRIx32, CommonEncodingsStart) << '\n';
6611 uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
6612 outs() << " Number of common encodings in array: "
6613 << format("0x%" PRIx32, NumCommonEncodings) << '\n';
6614
6615 uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
6616 outs() << " Personality function array section offset: "
6617 << format("0x%" PRIx32, PersonalitiesStart) << '\n';
6618 uint32_t NumPersonalities = readNext<uint32_t>(Pos);
6619 outs() << " Number of personality functions in array: "
6620 << format("0x%" PRIx32, NumPersonalities) << '\n';
6621
6622 uint32_t IndicesStart = readNext<uint32_t>(Pos);
6623 outs() << " Index array section offset: "
6624 << format("0x%" PRIx32, IndicesStart) << '\n';
6625 uint32_t NumIndices = readNext<uint32_t>(Pos);
6626 outs() << " Number of indices in array: "
6627 << format("0x%" PRIx32, NumIndices) << '\n';
6628
6629 //===----------------------------------
6630 // A shared list of common encodings
6631 //===----------------------------------
6632
6633 // These occupy indices in the range [0, N] whenever an encoding is referenced
6634 // from a compressed 2nd level index table. In practice the linker only
6635 // creates ~128 of these, so that indices are available to embed encodings in
6636 // the 2nd level index.
6637
6638 SmallVector<uint32_t, 64> CommonEncodings;
6639 outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
6640 Pos = Contents.data() + CommonEncodingsStart;
6641 for (unsigned i = 0; i < NumCommonEncodings; ++i) {
6642 uint32_t Encoding = readNext<uint32_t>(Pos);
6643 CommonEncodings.push_back(Encoding);
6644
6645 outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
6646 << '\n';
6647 }
6648
6649 //===----------------------------------
6650 // Personality functions used in this executable
6651 //===----------------------------------
6652
6653 // There should be only a handful of these (one per source language,
6654 // roughly). Particularly since they only get 2 bits in the compact encoding.
6655
6656 outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
6657 Pos = Contents.data() + PersonalitiesStart;
6658 for (unsigned i = 0; i < NumPersonalities; ++i) {
6659 uint32_t PersonalityFn = readNext<uint32_t>(Pos);
6660 outs() << " personality[" << i + 1
6661 << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
6662 }
6663
6664 //===----------------------------------
6665 // The level 1 index entries
6666 //===----------------------------------
6667
6668 // These specify an approximate place to start searching for the more detailed
6669 // information, sorted by PC.
6670
6671 struct IndexEntry {
6672 uint32_t FunctionOffset;
6673 uint32_t SecondLevelPageStart;
6674 uint32_t LSDAStart;
6675 };
6676
6677 SmallVector<IndexEntry, 4> IndexEntries;
6678
6679 outs() << " Top level indices: (count = " << NumIndices << ")\n";
6680 Pos = Contents.data() + IndicesStart;
6681 for (unsigned i = 0; i < NumIndices; ++i) {
6682 IndexEntry Entry;
6683
6684 Entry.FunctionOffset = readNext<uint32_t>(Pos);
6685 Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
6686 Entry.LSDAStart = readNext<uint32_t>(Pos);
6687 IndexEntries.push_back(Entry);
6688
6689 outs() << " [" << i << "]: "
6690 << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
6691 << ", "
6692 << "2nd level page offset="
6693 << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
6694 << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
6695 }
6696
6697 //===----------------------------------
6698 // Next come the LSDA tables
6699 //===----------------------------------
6700
6701 // The LSDA layout is rather implicit: it's a contiguous array of entries from
6702 // the first top-level index's LSDAOffset to the last (sentinel).
6703
6704 outs() << " LSDA descriptors:\n";
6705 Pos = Contents.data() + IndexEntries[0].LSDAStart;
6706 int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
6707 (2 * sizeof(uint32_t));
6708 for (int i = 0; i < NumLSDAs; ++i) {
6709 uint32_t FunctionOffset = readNext<uint32_t>(Pos);
6710 uint32_t LSDAOffset = readNext<uint32_t>(Pos);
6711 outs() << " [" << i << "]: "
6712 << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
6713 << ", "
6714 << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
6715 }
6716
6717 //===----------------------------------
6718 // Finally, the 2nd level indices
6719 //===----------------------------------
6720
6721 // Generally these are 4K in size, and have 2 possible forms:
6722 // + Regular stores up to 511 entries with disparate encodings
6723 // + Compressed stores up to 1021 entries if few enough compact encoding
6724 // values are used.
6725 outs() << " Second level indices:\n";
6726 for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
6727 // The final sentinel top-level index has no associated 2nd level page
6728 if (IndexEntries[i].SecondLevelPageStart == 0)
6729 break;
6730
6731 outs() << " Second level index[" << i << "]: "
6732 << "offset in section="
6733 << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
6734 << ", "
6735 << "base function offset="
6736 << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
6737
6738 Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
6739 uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
6740 if (Kind == 2)
6741 printRegularSecondLevelUnwindPage(Pos);
6742 else if (Kind == 3)
6743 printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
6744 CommonEncodings);
6745 else
6746 llvm_unreachable("Do not know how to print this kind of 2nd level page");
6747 }
6748 }
6749
getSizeForEncoding(bool is64Bit,unsigned symbolEncoding)6750 static unsigned getSizeForEncoding(bool is64Bit,
6751 unsigned symbolEncoding) {
6752 unsigned format = symbolEncoding & 0x0f;
6753 switch (format) {
6754 default: llvm_unreachable("Unknown Encoding");
6755 case dwarf::DW_EH_PE_absptr:
6756 case dwarf::DW_EH_PE_signed:
6757 return is64Bit ? 8 : 4;
6758 case dwarf::DW_EH_PE_udata2:
6759 case dwarf::DW_EH_PE_sdata2:
6760 return 2;
6761 case dwarf::DW_EH_PE_udata4:
6762 case dwarf::DW_EH_PE_sdata4:
6763 return 4;
6764 case dwarf::DW_EH_PE_udata8:
6765 case dwarf::DW_EH_PE_sdata8:
6766 return 8;
6767 }
6768 }
6769
readPointer(const char * & Pos,bool is64Bit,unsigned Encoding)6770 static uint64_t readPointer(const char *&Pos, bool is64Bit, unsigned Encoding) {
6771 switch (getSizeForEncoding(is64Bit, Encoding)) {
6772 case 2:
6773 return readNext<uint16_t>(Pos);
6774 break;
6775 case 4:
6776 return readNext<uint32_t>(Pos);
6777 break;
6778 case 8:
6779 return readNext<uint64_t>(Pos);
6780 break;
6781 default:
6782 llvm_unreachable("Illegal data size");
6783 }
6784 }
6785
printMachOEHFrameSection(const MachOObjectFile * Obj,std::map<uint64_t,SymbolRef> & Symbols,const SectionRef & EHFrame)6786 static void printMachOEHFrameSection(const MachOObjectFile *Obj,
6787 std::map<uint64_t, SymbolRef> &Symbols,
6788 const SectionRef &EHFrame) {
6789 if (!Obj->isLittleEndian()) {
6790 outs() << "warning: cannot handle big endian __eh_frame section\n";
6791 return;
6792 }
6793
6794 bool is64Bit = Obj->is64Bit();
6795
6796 outs() << "Contents of __eh_frame section:\n";
6797
6798 StringRef Contents;
6799 EHFrame.getContents(Contents);
6800
6801 /// A few fields of the CIE are used when decoding the FDE's. This struct
6802 /// will cache those fields we need so that we don't have to decode it
6803 /// repeatedly for each FDE that references it.
6804 struct DecodedCIE {
6805 Optional<uint32_t> FDEPointerEncoding;
6806 Optional<uint32_t> LSDAPointerEncoding;
6807 bool hasAugmentationLength;
6808 };
6809
6810 // Map from the start offset of the CIE to the cached data for that CIE.
6811 DenseMap<uint64_t, DecodedCIE> CachedCIEs;
6812
6813 for (const char *Pos = Contents.data(), *End = Contents.end(); Pos != End; ) {
6814
6815 const char *EntryStartPos = Pos;
6816
6817 uint64_t Length = readNext<uint32_t>(Pos);
6818 if (Length == 0xffffffff)
6819 Length = readNext<uint64_t>(Pos);
6820
6821 // Save the Pos so that we can check the length we encoded against what we
6822 // end up decoding.
6823 const char *PosAfterLength = Pos;
6824 const char *EntryEndPos = PosAfterLength + Length;
6825
6826 assert(EntryEndPos <= End &&
6827 "__eh_frame entry length exceeds section size");
6828
6829 uint32_t ID = readNext<uint32_t>(Pos);
6830 if (ID == 0) {
6831 // This is a CIE.
6832
6833 uint32_t Version = readNext<uint8_t>(Pos);
6834
6835 // Parse a null terminated augmentation string
6836 SmallString<8> AugmentationString;
6837 for (uint8_t Char = readNext<uint8_t>(Pos); Char;
6838 Char = readNext<uint8_t>(Pos))
6839 AugmentationString.push_back(Char);
6840
6841 // Optionally parse the EH data if the augmentation string says it's there.
6842 Optional<uint64_t> EHData;
6843 if (StringRef(AugmentationString).count("eh"))
6844 EHData = is64Bit ? readNext<uint64_t>(Pos) : readNext<uint32_t>(Pos);
6845
6846 unsigned ULEBByteCount;
6847 uint64_t CodeAlignmentFactor = decodeULEB128((const uint8_t *)Pos,
6848 &ULEBByteCount);
6849 Pos += ULEBByteCount;
6850
6851 int64_t DataAlignmentFactor = decodeSLEB128((const uint8_t *)Pos,
6852 &ULEBByteCount);
6853 Pos += ULEBByteCount;
6854
6855 uint32_t ReturnAddressRegister = readNext<uint8_t>(Pos);
6856
6857 Optional<uint64_t> AugmentationLength;
6858 Optional<uint32_t> LSDAPointerEncoding;
6859 Optional<uint32_t> PersonalityEncoding;
6860 Optional<uint64_t> Personality;
6861 Optional<uint32_t> FDEPointerEncoding;
6862 if (!AugmentationString.empty() && AugmentationString.front() == 'z') {
6863 AugmentationLength = decodeULEB128((const uint8_t *)Pos,
6864 &ULEBByteCount);
6865 Pos += ULEBByteCount;
6866
6867 // Walk the augmentation string to get all the augmentation data.
6868 for (unsigned i = 1, e = AugmentationString.size(); i != e; ++i) {
6869 char Char = AugmentationString[i];
6870 switch (Char) {
6871 case 'e':
6872 assert((i + 1) != e && AugmentationString[i + 1] == 'h' &&
6873 "Expected 'eh' in augmentation string");
6874 break;
6875 case 'L':
6876 assert(!LSDAPointerEncoding && "Duplicate LSDA encoding");
6877 LSDAPointerEncoding = readNext<uint8_t>(Pos);
6878 break;
6879 case 'P': {
6880 assert(!Personality && "Duplicate personality");
6881 PersonalityEncoding = readNext<uint8_t>(Pos);
6882 Personality = readPointer(Pos, is64Bit, *PersonalityEncoding);
6883 break;
6884 }
6885 case 'R':
6886 assert(!FDEPointerEncoding && "Duplicate FDE encoding");
6887 FDEPointerEncoding = readNext<uint8_t>(Pos);
6888 break;
6889 case 'z':
6890 llvm_unreachable("'z' must be first in the augmentation string");
6891 }
6892 }
6893 }
6894
6895 outs() << "CIE:\n";
6896 outs() << " Length: " << Length << "\n";
6897 outs() << " CIE ID: " << ID << "\n";
6898 outs() << " Version: " << Version << "\n";
6899 outs() << " Augmentation String: " << AugmentationString << "\n";
6900 if (EHData)
6901 outs() << " EHData: " << *EHData << "\n";
6902 outs() << " Code Alignment Factor: " << CodeAlignmentFactor << "\n";
6903 outs() << " Data Alignment Factor: " << DataAlignmentFactor << "\n";
6904 outs() << " Return Address Register: " << ReturnAddressRegister << "\n";
6905 if (AugmentationLength) {
6906 outs() << " Augmentation Data Length: " << *AugmentationLength << "\n";
6907 if (LSDAPointerEncoding) {
6908 outs() << " FDE LSDA Pointer Encoding: "
6909 << *LSDAPointerEncoding << "\n";
6910 }
6911 if (Personality) {
6912 outs() << " Personality Encoding: " << *PersonalityEncoding << "\n";
6913 outs() << " Personality: " << *Personality << "\n";
6914 }
6915 if (FDEPointerEncoding) {
6916 outs() << " FDE Address Pointer Encoding: "
6917 << *FDEPointerEncoding << "\n";
6918 }
6919 }
6920 // FIXME: Handle instructions.
6921 // For now just emit some bytes
6922 outs() << " Instructions:\n ";
6923 dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
6924 outs());
6925 outs() << "\n";
6926 Pos = EntryEndPos;
6927
6928 // Cache this entry.
6929 uint64_t Offset = EntryStartPos - Contents.data();
6930 CachedCIEs[Offset] = { FDEPointerEncoding, LSDAPointerEncoding,
6931 AugmentationLength.hasValue() };
6932 continue;
6933 }
6934
6935 // This is an FDE.
6936 // The CIE pointer for an FDE is the same location as the ID which we
6937 // already read.
6938 uint32_t CIEPointer = ID;
6939
6940 const char *CIEStart = PosAfterLength - CIEPointer;
6941 assert(CIEStart >= Contents.data() &&
6942 "FDE points to CIE before the __eh_frame start");
6943
6944 uint64_t CIEOffset = CIEStart - Contents.data();
6945 auto CIEIt = CachedCIEs.find(CIEOffset);
6946 if (CIEIt == CachedCIEs.end())
6947 llvm_unreachable("Couldn't find CIE at offset in to __eh_frame section");
6948
6949 const DecodedCIE &CIE = CIEIt->getSecond();
6950 assert(CIE.FDEPointerEncoding &&
6951 "FDE references CIE which did not set pointer encoding");
6952
6953 uint64_t PCPointerSize = getSizeForEncoding(is64Bit,
6954 *CIE.FDEPointerEncoding);
6955
6956 uint64_t PCBegin = readPointer(Pos, is64Bit, *CIE.FDEPointerEncoding);
6957 uint64_t PCRange = readPointer(Pos, is64Bit, *CIE.FDEPointerEncoding);
6958
6959 Optional<uint64_t> AugmentationLength;
6960 uint32_t LSDAPointerSize;
6961 Optional<uint64_t> LSDAPointer;
6962 if (CIE.hasAugmentationLength) {
6963 unsigned ULEBByteCount;
6964 AugmentationLength = decodeULEB128((const uint8_t *)Pos,
6965 &ULEBByteCount);
6966 Pos += ULEBByteCount;
6967
6968 // Decode the LSDA if the CIE augmentation string said we should.
6969 if (CIE.LSDAPointerEncoding) {
6970 LSDAPointerSize = getSizeForEncoding(is64Bit, *CIE.LSDAPointerEncoding);
6971 LSDAPointer = readPointer(Pos, is64Bit, *CIE.LSDAPointerEncoding);
6972 }
6973 }
6974
6975 outs() << "FDE:\n";
6976 outs() << " Length: " << Length << "\n";
6977 outs() << " CIE Offset: " << CIEOffset << "\n";
6978
6979 if (PCPointerSize == 8) {
6980 outs() << format(" PC Begin: %016" PRIx64, PCBegin) << "\n";
6981 outs() << format(" PC Range: %016" PRIx64, PCRange) << "\n";
6982 } else {
6983 outs() << format(" PC Begin: %08" PRIx64, PCBegin) << "\n";
6984 outs() << format(" PC Range: %08" PRIx64, PCRange) << "\n";
6985 }
6986 if (AugmentationLength) {
6987 outs() << " Augmentation Data Length: " << *AugmentationLength << "\n";
6988 if (LSDAPointer) {
6989 if (LSDAPointerSize == 8)
6990 outs() << format(" LSDA Pointer: %016\n" PRIx64, *LSDAPointer);
6991 else
6992 outs() << format(" LSDA Pointer: %08\n" PRIx64, *LSDAPointer);
6993 }
6994 }
6995
6996 // FIXME: Handle instructions.
6997 // For now just emit some bytes
6998 outs() << " Instructions:\n ";
6999 dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
7000 outs());
7001 outs() << "\n";
7002 Pos = EntryEndPos;
7003 }
7004 }
7005
printMachOUnwindInfo(const MachOObjectFile * Obj)7006 void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
7007 std::map<uint64_t, SymbolRef> Symbols;
7008 for (const SymbolRef &SymRef : Obj->symbols()) {
7009 // Discard any undefined or absolute symbols. They're not going to take part
7010 // in the convenience lookup for unwind info and just take up resources.
7011 section_iterator Section = *SymRef.getSection();
7012 if (Section == Obj->section_end())
7013 continue;
7014
7015 uint64_t Addr = SymRef.getValue();
7016 Symbols.insert(std::make_pair(Addr, SymRef));
7017 }
7018
7019 for (const SectionRef &Section : Obj->sections()) {
7020 StringRef SectName;
7021 Section.getName(SectName);
7022 if (SectName == "__compact_unwind")
7023 printMachOCompactUnwindSection(Obj, Symbols, Section);
7024 else if (SectName == "__unwind_info")
7025 printMachOUnwindInfoSection(Obj, Symbols, Section);
7026 else if (SectName == "__eh_frame")
7027 printMachOEHFrameSection(Obj, Symbols, Section);
7028 }
7029 }
7030
PrintMachHeader(uint32_t magic,uint32_t cputype,uint32_t cpusubtype,uint32_t filetype,uint32_t ncmds,uint32_t sizeofcmds,uint32_t flags,bool verbose)7031 static void PrintMachHeader(uint32_t magic, uint32_t cputype,
7032 uint32_t cpusubtype, uint32_t filetype,
7033 uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
7034 bool verbose) {
7035 outs() << "Mach header\n";
7036 outs() << " magic cputype cpusubtype caps filetype ncmds "
7037 "sizeofcmds flags\n";
7038 if (verbose) {
7039 if (magic == MachO::MH_MAGIC)
7040 outs() << " MH_MAGIC";
7041 else if (magic == MachO::MH_MAGIC_64)
7042 outs() << "MH_MAGIC_64";
7043 else
7044 outs() << format(" 0x%08" PRIx32, magic);
7045 switch (cputype) {
7046 case MachO::CPU_TYPE_I386:
7047 outs() << " I386";
7048 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7049 case MachO::CPU_SUBTYPE_I386_ALL:
7050 outs() << " ALL";
7051 break;
7052 default:
7053 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7054 break;
7055 }
7056 break;
7057 case MachO::CPU_TYPE_X86_64:
7058 outs() << " X86_64";
7059 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7060 case MachO::CPU_SUBTYPE_X86_64_ALL:
7061 outs() << " ALL";
7062 break;
7063 case MachO::CPU_SUBTYPE_X86_64_H:
7064 outs() << " Haswell";
7065 break;
7066 default:
7067 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7068 break;
7069 }
7070 break;
7071 case MachO::CPU_TYPE_ARM:
7072 outs() << " ARM";
7073 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7074 case MachO::CPU_SUBTYPE_ARM_ALL:
7075 outs() << " ALL";
7076 break;
7077 case MachO::CPU_SUBTYPE_ARM_V4T:
7078 outs() << " V4T";
7079 break;
7080 case MachO::CPU_SUBTYPE_ARM_V5TEJ:
7081 outs() << " V5TEJ";
7082 break;
7083 case MachO::CPU_SUBTYPE_ARM_XSCALE:
7084 outs() << " XSCALE";
7085 break;
7086 case MachO::CPU_SUBTYPE_ARM_V6:
7087 outs() << " V6";
7088 break;
7089 case MachO::CPU_SUBTYPE_ARM_V6M:
7090 outs() << " V6M";
7091 break;
7092 case MachO::CPU_SUBTYPE_ARM_V7:
7093 outs() << " V7";
7094 break;
7095 case MachO::CPU_SUBTYPE_ARM_V7EM:
7096 outs() << " V7EM";
7097 break;
7098 case MachO::CPU_SUBTYPE_ARM_V7K:
7099 outs() << " V7K";
7100 break;
7101 case MachO::CPU_SUBTYPE_ARM_V7M:
7102 outs() << " V7M";
7103 break;
7104 case MachO::CPU_SUBTYPE_ARM_V7S:
7105 outs() << " V7S";
7106 break;
7107 default:
7108 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7109 break;
7110 }
7111 break;
7112 case MachO::CPU_TYPE_ARM64:
7113 outs() << " ARM64";
7114 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7115 case MachO::CPU_SUBTYPE_ARM64_ALL:
7116 outs() << " ALL";
7117 break;
7118 default:
7119 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7120 break;
7121 }
7122 break;
7123 case MachO::CPU_TYPE_POWERPC:
7124 outs() << " PPC";
7125 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7126 case MachO::CPU_SUBTYPE_POWERPC_ALL:
7127 outs() << " ALL";
7128 break;
7129 default:
7130 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7131 break;
7132 }
7133 break;
7134 case MachO::CPU_TYPE_POWERPC64:
7135 outs() << " PPC64";
7136 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7137 case MachO::CPU_SUBTYPE_POWERPC_ALL:
7138 outs() << " ALL";
7139 break;
7140 default:
7141 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7142 break;
7143 }
7144 break;
7145 }
7146 if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
7147 outs() << " LIB64";
7148 } else {
7149 outs() << format(" 0x%02" PRIx32,
7150 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7151 }
7152 switch (filetype) {
7153 case MachO::MH_OBJECT:
7154 outs() << " OBJECT";
7155 break;
7156 case MachO::MH_EXECUTE:
7157 outs() << " EXECUTE";
7158 break;
7159 case MachO::MH_FVMLIB:
7160 outs() << " FVMLIB";
7161 break;
7162 case MachO::MH_CORE:
7163 outs() << " CORE";
7164 break;
7165 case MachO::MH_PRELOAD:
7166 outs() << " PRELOAD";
7167 break;
7168 case MachO::MH_DYLIB:
7169 outs() << " DYLIB";
7170 break;
7171 case MachO::MH_DYLIB_STUB:
7172 outs() << " DYLIB_STUB";
7173 break;
7174 case MachO::MH_DYLINKER:
7175 outs() << " DYLINKER";
7176 break;
7177 case MachO::MH_BUNDLE:
7178 outs() << " BUNDLE";
7179 break;
7180 case MachO::MH_DSYM:
7181 outs() << " DSYM";
7182 break;
7183 case MachO::MH_KEXT_BUNDLE:
7184 outs() << " KEXTBUNDLE";
7185 break;
7186 default:
7187 outs() << format(" %10u", filetype);
7188 break;
7189 }
7190 outs() << format(" %5u", ncmds);
7191 outs() << format(" %10u", sizeofcmds);
7192 uint32_t f = flags;
7193 if (f & MachO::MH_NOUNDEFS) {
7194 outs() << " NOUNDEFS";
7195 f &= ~MachO::MH_NOUNDEFS;
7196 }
7197 if (f & MachO::MH_INCRLINK) {
7198 outs() << " INCRLINK";
7199 f &= ~MachO::MH_INCRLINK;
7200 }
7201 if (f & MachO::MH_DYLDLINK) {
7202 outs() << " DYLDLINK";
7203 f &= ~MachO::MH_DYLDLINK;
7204 }
7205 if (f & MachO::MH_BINDATLOAD) {
7206 outs() << " BINDATLOAD";
7207 f &= ~MachO::MH_BINDATLOAD;
7208 }
7209 if (f & MachO::MH_PREBOUND) {
7210 outs() << " PREBOUND";
7211 f &= ~MachO::MH_PREBOUND;
7212 }
7213 if (f & MachO::MH_SPLIT_SEGS) {
7214 outs() << " SPLIT_SEGS";
7215 f &= ~MachO::MH_SPLIT_SEGS;
7216 }
7217 if (f & MachO::MH_LAZY_INIT) {
7218 outs() << " LAZY_INIT";
7219 f &= ~MachO::MH_LAZY_INIT;
7220 }
7221 if (f & MachO::MH_TWOLEVEL) {
7222 outs() << " TWOLEVEL";
7223 f &= ~MachO::MH_TWOLEVEL;
7224 }
7225 if (f & MachO::MH_FORCE_FLAT) {
7226 outs() << " FORCE_FLAT";
7227 f &= ~MachO::MH_FORCE_FLAT;
7228 }
7229 if (f & MachO::MH_NOMULTIDEFS) {
7230 outs() << " NOMULTIDEFS";
7231 f &= ~MachO::MH_NOMULTIDEFS;
7232 }
7233 if (f & MachO::MH_NOFIXPREBINDING) {
7234 outs() << " NOFIXPREBINDING";
7235 f &= ~MachO::MH_NOFIXPREBINDING;
7236 }
7237 if (f & MachO::MH_PREBINDABLE) {
7238 outs() << " PREBINDABLE";
7239 f &= ~MachO::MH_PREBINDABLE;
7240 }
7241 if (f & MachO::MH_ALLMODSBOUND) {
7242 outs() << " ALLMODSBOUND";
7243 f &= ~MachO::MH_ALLMODSBOUND;
7244 }
7245 if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
7246 outs() << " SUBSECTIONS_VIA_SYMBOLS";
7247 f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
7248 }
7249 if (f & MachO::MH_CANONICAL) {
7250 outs() << " CANONICAL";
7251 f &= ~MachO::MH_CANONICAL;
7252 }
7253 if (f & MachO::MH_WEAK_DEFINES) {
7254 outs() << " WEAK_DEFINES";
7255 f &= ~MachO::MH_WEAK_DEFINES;
7256 }
7257 if (f & MachO::MH_BINDS_TO_WEAK) {
7258 outs() << " BINDS_TO_WEAK";
7259 f &= ~MachO::MH_BINDS_TO_WEAK;
7260 }
7261 if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
7262 outs() << " ALLOW_STACK_EXECUTION";
7263 f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
7264 }
7265 if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
7266 outs() << " DEAD_STRIPPABLE_DYLIB";
7267 f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
7268 }
7269 if (f & MachO::MH_PIE) {
7270 outs() << " PIE";
7271 f &= ~MachO::MH_PIE;
7272 }
7273 if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
7274 outs() << " NO_REEXPORTED_DYLIBS";
7275 f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
7276 }
7277 if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
7278 outs() << " MH_HAS_TLV_DESCRIPTORS";
7279 f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
7280 }
7281 if (f & MachO::MH_NO_HEAP_EXECUTION) {
7282 outs() << " MH_NO_HEAP_EXECUTION";
7283 f &= ~MachO::MH_NO_HEAP_EXECUTION;
7284 }
7285 if (f & MachO::MH_APP_EXTENSION_SAFE) {
7286 outs() << " APP_EXTENSION_SAFE";
7287 f &= ~MachO::MH_APP_EXTENSION_SAFE;
7288 }
7289 if (f != 0 || flags == 0)
7290 outs() << format(" 0x%08" PRIx32, f);
7291 } else {
7292 outs() << format(" 0x%08" PRIx32, magic);
7293 outs() << format(" %7d", cputype);
7294 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7295 outs() << format(" 0x%02" PRIx32,
7296 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7297 outs() << format(" %10u", filetype);
7298 outs() << format(" %5u", ncmds);
7299 outs() << format(" %10u", sizeofcmds);
7300 outs() << format(" 0x%08" PRIx32, flags);
7301 }
7302 outs() << "\n";
7303 }
7304
PrintSegmentCommand(uint32_t cmd,uint32_t cmdsize,StringRef SegName,uint64_t vmaddr,uint64_t vmsize,uint64_t fileoff,uint64_t filesize,uint32_t maxprot,uint32_t initprot,uint32_t nsects,uint32_t flags,uint32_t object_size,bool verbose)7305 static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
7306 StringRef SegName, uint64_t vmaddr,
7307 uint64_t vmsize, uint64_t fileoff,
7308 uint64_t filesize, uint32_t maxprot,
7309 uint32_t initprot, uint32_t nsects,
7310 uint32_t flags, uint32_t object_size,
7311 bool verbose) {
7312 uint64_t expected_cmdsize;
7313 if (cmd == MachO::LC_SEGMENT) {
7314 outs() << " cmd LC_SEGMENT\n";
7315 expected_cmdsize = nsects;
7316 expected_cmdsize *= sizeof(struct MachO::section);
7317 expected_cmdsize += sizeof(struct MachO::segment_command);
7318 } else {
7319 outs() << " cmd LC_SEGMENT_64\n";
7320 expected_cmdsize = nsects;
7321 expected_cmdsize *= sizeof(struct MachO::section_64);
7322 expected_cmdsize += sizeof(struct MachO::segment_command_64);
7323 }
7324 outs() << " cmdsize " << cmdsize;
7325 if (cmdsize != expected_cmdsize)
7326 outs() << " Inconsistent size\n";
7327 else
7328 outs() << "\n";
7329 outs() << " segname " << SegName << "\n";
7330 if (cmd == MachO::LC_SEGMENT_64) {
7331 outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
7332 outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
7333 } else {
7334 outs() << " vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
7335 outs() << " vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
7336 }
7337 outs() << " fileoff " << fileoff;
7338 if (fileoff > object_size)
7339 outs() << " (past end of file)\n";
7340 else
7341 outs() << "\n";
7342 outs() << " filesize " << filesize;
7343 if (fileoff + filesize > object_size)
7344 outs() << " (past end of file)\n";
7345 else
7346 outs() << "\n";
7347 if (verbose) {
7348 if ((maxprot &
7349 ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7350 MachO::VM_PROT_EXECUTE)) != 0)
7351 outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
7352 else {
7353 outs() << " maxprot ";
7354 outs() << ((maxprot & MachO::VM_PROT_READ) ? "r" : "-");
7355 outs() << ((maxprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7356 outs() << ((maxprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7357 }
7358 if ((initprot &
7359 ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7360 MachO::VM_PROT_EXECUTE)) != 0)
7361 outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
7362 else {
7363 outs() << " initprot ";
7364 outs() << ((initprot & MachO::VM_PROT_READ) ? "r" : "-");
7365 outs() << ((initprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7366 outs() << ((initprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7367 }
7368 } else {
7369 outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
7370 outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
7371 }
7372 outs() << " nsects " << nsects << "\n";
7373 if (verbose) {
7374 outs() << " flags";
7375 if (flags == 0)
7376 outs() << " (none)\n";
7377 else {
7378 if (flags & MachO::SG_HIGHVM) {
7379 outs() << " HIGHVM";
7380 flags &= ~MachO::SG_HIGHVM;
7381 }
7382 if (flags & MachO::SG_FVMLIB) {
7383 outs() << " FVMLIB";
7384 flags &= ~MachO::SG_FVMLIB;
7385 }
7386 if (flags & MachO::SG_NORELOC) {
7387 outs() << " NORELOC";
7388 flags &= ~MachO::SG_NORELOC;
7389 }
7390 if (flags & MachO::SG_PROTECTED_VERSION_1) {
7391 outs() << " PROTECTED_VERSION_1";
7392 flags &= ~MachO::SG_PROTECTED_VERSION_1;
7393 }
7394 if (flags)
7395 outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
7396 else
7397 outs() << "\n";
7398 }
7399 } else {
7400 outs() << " flags " << format("0x%" PRIx32, flags) << "\n";
7401 }
7402 }
7403
PrintSection(const char * sectname,const char * segname,uint64_t addr,uint64_t size,uint32_t offset,uint32_t align,uint32_t reloff,uint32_t nreloc,uint32_t flags,uint32_t reserved1,uint32_t reserved2,uint32_t cmd,const char * sg_segname,uint32_t filetype,uint32_t object_size,bool verbose)7404 static void PrintSection(const char *sectname, const char *segname,
7405 uint64_t addr, uint64_t size, uint32_t offset,
7406 uint32_t align, uint32_t reloff, uint32_t nreloc,
7407 uint32_t flags, uint32_t reserved1, uint32_t reserved2,
7408 uint32_t cmd, const char *sg_segname,
7409 uint32_t filetype, uint32_t object_size,
7410 bool verbose) {
7411 outs() << "Section\n";
7412 outs() << " sectname " << format("%.16s\n", sectname);
7413 outs() << " segname " << format("%.16s", segname);
7414 if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
7415 outs() << " (does not match segment)\n";
7416 else
7417 outs() << "\n";
7418 if (cmd == MachO::LC_SEGMENT_64) {
7419 outs() << " addr " << format("0x%016" PRIx64, addr) << "\n";
7420 outs() << " size " << format("0x%016" PRIx64, size);
7421 } else {
7422 outs() << " addr " << format("0x%08" PRIx64, addr) << "\n";
7423 outs() << " size " << format("0x%08" PRIx64, size);
7424 }
7425 if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
7426 outs() << " (past end of file)\n";
7427 else
7428 outs() << "\n";
7429 outs() << " offset " << offset;
7430 if (offset > object_size)
7431 outs() << " (past end of file)\n";
7432 else
7433 outs() << "\n";
7434 uint32_t align_shifted = 1 << align;
7435 outs() << " align 2^" << align << " (" << align_shifted << ")\n";
7436 outs() << " reloff " << reloff;
7437 if (reloff > object_size)
7438 outs() << " (past end of file)\n";
7439 else
7440 outs() << "\n";
7441 outs() << " nreloc " << nreloc;
7442 if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
7443 outs() << " (past end of file)\n";
7444 else
7445 outs() << "\n";
7446 uint32_t section_type = flags & MachO::SECTION_TYPE;
7447 if (verbose) {
7448 outs() << " type";
7449 if (section_type == MachO::S_REGULAR)
7450 outs() << " S_REGULAR\n";
7451 else if (section_type == MachO::S_ZEROFILL)
7452 outs() << " S_ZEROFILL\n";
7453 else if (section_type == MachO::S_CSTRING_LITERALS)
7454 outs() << " S_CSTRING_LITERALS\n";
7455 else if (section_type == MachO::S_4BYTE_LITERALS)
7456 outs() << " S_4BYTE_LITERALS\n";
7457 else if (section_type == MachO::S_8BYTE_LITERALS)
7458 outs() << " S_8BYTE_LITERALS\n";
7459 else if (section_type == MachO::S_16BYTE_LITERALS)
7460 outs() << " S_16BYTE_LITERALS\n";
7461 else if (section_type == MachO::S_LITERAL_POINTERS)
7462 outs() << " S_LITERAL_POINTERS\n";
7463 else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
7464 outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
7465 else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
7466 outs() << " S_LAZY_SYMBOL_POINTERS\n";
7467 else if (section_type == MachO::S_SYMBOL_STUBS)
7468 outs() << " S_SYMBOL_STUBS\n";
7469 else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
7470 outs() << " S_MOD_INIT_FUNC_POINTERS\n";
7471 else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
7472 outs() << " S_MOD_TERM_FUNC_POINTERS\n";
7473 else if (section_type == MachO::S_COALESCED)
7474 outs() << " S_COALESCED\n";
7475 else if (section_type == MachO::S_INTERPOSING)
7476 outs() << " S_INTERPOSING\n";
7477 else if (section_type == MachO::S_DTRACE_DOF)
7478 outs() << " S_DTRACE_DOF\n";
7479 else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
7480 outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
7481 else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
7482 outs() << " S_THREAD_LOCAL_REGULAR\n";
7483 else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
7484 outs() << " S_THREAD_LOCAL_ZEROFILL\n";
7485 else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
7486 outs() << " S_THREAD_LOCAL_VARIABLES\n";
7487 else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
7488 outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
7489 else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
7490 outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
7491 else
7492 outs() << format("0x%08" PRIx32, section_type) << "\n";
7493 outs() << "attributes";
7494 uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
7495 if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
7496 outs() << " PURE_INSTRUCTIONS";
7497 if (section_attributes & MachO::S_ATTR_NO_TOC)
7498 outs() << " NO_TOC";
7499 if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
7500 outs() << " STRIP_STATIC_SYMS";
7501 if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
7502 outs() << " NO_DEAD_STRIP";
7503 if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
7504 outs() << " LIVE_SUPPORT";
7505 if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
7506 outs() << " SELF_MODIFYING_CODE";
7507 if (section_attributes & MachO::S_ATTR_DEBUG)
7508 outs() << " DEBUG";
7509 if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
7510 outs() << " SOME_INSTRUCTIONS";
7511 if (section_attributes & MachO::S_ATTR_EXT_RELOC)
7512 outs() << " EXT_RELOC";
7513 if (section_attributes & MachO::S_ATTR_LOC_RELOC)
7514 outs() << " LOC_RELOC";
7515 if (section_attributes == 0)
7516 outs() << " (none)";
7517 outs() << "\n";
7518 } else
7519 outs() << " flags " << format("0x%08" PRIx32, flags) << "\n";
7520 outs() << " reserved1 " << reserved1;
7521 if (section_type == MachO::S_SYMBOL_STUBS ||
7522 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
7523 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
7524 section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
7525 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
7526 outs() << " (index into indirect symbol table)\n";
7527 else
7528 outs() << "\n";
7529 outs() << " reserved2 " << reserved2;
7530 if (section_type == MachO::S_SYMBOL_STUBS)
7531 outs() << " (size of stubs)\n";
7532 else
7533 outs() << "\n";
7534 }
7535
PrintSymtabLoadCommand(MachO::symtab_command st,bool Is64Bit,uint32_t object_size)7536 static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
7537 uint32_t object_size) {
7538 outs() << " cmd LC_SYMTAB\n";
7539 outs() << " cmdsize " << st.cmdsize;
7540 if (st.cmdsize != sizeof(struct MachO::symtab_command))
7541 outs() << " Incorrect size\n";
7542 else
7543 outs() << "\n";
7544 outs() << " symoff " << st.symoff;
7545 if (st.symoff > object_size)
7546 outs() << " (past end of file)\n";
7547 else
7548 outs() << "\n";
7549 outs() << " nsyms " << st.nsyms;
7550 uint64_t big_size;
7551 if (Is64Bit) {
7552 big_size = st.nsyms;
7553 big_size *= sizeof(struct MachO::nlist_64);
7554 big_size += st.symoff;
7555 if (big_size > object_size)
7556 outs() << " (past end of file)\n";
7557 else
7558 outs() << "\n";
7559 } else {
7560 big_size = st.nsyms;
7561 big_size *= sizeof(struct MachO::nlist);
7562 big_size += st.symoff;
7563 if (big_size > object_size)
7564 outs() << " (past end of file)\n";
7565 else
7566 outs() << "\n";
7567 }
7568 outs() << " stroff " << st.stroff;
7569 if (st.stroff > object_size)
7570 outs() << " (past end of file)\n";
7571 else
7572 outs() << "\n";
7573 outs() << " strsize " << st.strsize;
7574 big_size = st.stroff;
7575 big_size += st.strsize;
7576 if (big_size > object_size)
7577 outs() << " (past end of file)\n";
7578 else
7579 outs() << "\n";
7580 }
7581
PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,uint32_t nsyms,uint32_t object_size,bool Is64Bit)7582 static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
7583 uint32_t nsyms, uint32_t object_size,
7584 bool Is64Bit) {
7585 outs() << " cmd LC_DYSYMTAB\n";
7586 outs() << " cmdsize " << dyst.cmdsize;
7587 if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
7588 outs() << " Incorrect size\n";
7589 else
7590 outs() << "\n";
7591 outs() << " ilocalsym " << dyst.ilocalsym;
7592 if (dyst.ilocalsym > nsyms)
7593 outs() << " (greater than the number of symbols)\n";
7594 else
7595 outs() << "\n";
7596 outs() << " nlocalsym " << dyst.nlocalsym;
7597 uint64_t big_size;
7598 big_size = dyst.ilocalsym;
7599 big_size += dyst.nlocalsym;
7600 if (big_size > nsyms)
7601 outs() << " (past the end of the symbol table)\n";
7602 else
7603 outs() << "\n";
7604 outs() << " iextdefsym " << dyst.iextdefsym;
7605 if (dyst.iextdefsym > nsyms)
7606 outs() << " (greater than the number of symbols)\n";
7607 else
7608 outs() << "\n";
7609 outs() << " nextdefsym " << dyst.nextdefsym;
7610 big_size = dyst.iextdefsym;
7611 big_size += dyst.nextdefsym;
7612 if (big_size > nsyms)
7613 outs() << " (past the end of the symbol table)\n";
7614 else
7615 outs() << "\n";
7616 outs() << " iundefsym " << dyst.iundefsym;
7617 if (dyst.iundefsym > nsyms)
7618 outs() << " (greater than the number of symbols)\n";
7619 else
7620 outs() << "\n";
7621 outs() << " nundefsym " << dyst.nundefsym;
7622 big_size = dyst.iundefsym;
7623 big_size += dyst.nundefsym;
7624 if (big_size > nsyms)
7625 outs() << " (past the end of the symbol table)\n";
7626 else
7627 outs() << "\n";
7628 outs() << " tocoff " << dyst.tocoff;
7629 if (dyst.tocoff > object_size)
7630 outs() << " (past end of file)\n";
7631 else
7632 outs() << "\n";
7633 outs() << " ntoc " << dyst.ntoc;
7634 big_size = dyst.ntoc;
7635 big_size *= sizeof(struct MachO::dylib_table_of_contents);
7636 big_size += dyst.tocoff;
7637 if (big_size > object_size)
7638 outs() << " (past end of file)\n";
7639 else
7640 outs() << "\n";
7641 outs() << " modtaboff " << dyst.modtaboff;
7642 if (dyst.modtaboff > object_size)
7643 outs() << " (past end of file)\n";
7644 else
7645 outs() << "\n";
7646 outs() << " nmodtab " << dyst.nmodtab;
7647 uint64_t modtabend;
7648 if (Is64Bit) {
7649 modtabend = dyst.nmodtab;
7650 modtabend *= sizeof(struct MachO::dylib_module_64);
7651 modtabend += dyst.modtaboff;
7652 } else {
7653 modtabend = dyst.nmodtab;
7654 modtabend *= sizeof(struct MachO::dylib_module);
7655 modtabend += dyst.modtaboff;
7656 }
7657 if (modtabend > object_size)
7658 outs() << " (past end of file)\n";
7659 else
7660 outs() << "\n";
7661 outs() << " extrefsymoff " << dyst.extrefsymoff;
7662 if (dyst.extrefsymoff > object_size)
7663 outs() << " (past end of file)\n";
7664 else
7665 outs() << "\n";
7666 outs() << " nextrefsyms " << dyst.nextrefsyms;
7667 big_size = dyst.nextrefsyms;
7668 big_size *= sizeof(struct MachO::dylib_reference);
7669 big_size += dyst.extrefsymoff;
7670 if (big_size > object_size)
7671 outs() << " (past end of file)\n";
7672 else
7673 outs() << "\n";
7674 outs() << " indirectsymoff " << dyst.indirectsymoff;
7675 if (dyst.indirectsymoff > object_size)
7676 outs() << " (past end of file)\n";
7677 else
7678 outs() << "\n";
7679 outs() << " nindirectsyms " << dyst.nindirectsyms;
7680 big_size = dyst.nindirectsyms;
7681 big_size *= sizeof(uint32_t);
7682 big_size += dyst.indirectsymoff;
7683 if (big_size > object_size)
7684 outs() << " (past end of file)\n";
7685 else
7686 outs() << "\n";
7687 outs() << " extreloff " << dyst.extreloff;
7688 if (dyst.extreloff > object_size)
7689 outs() << " (past end of file)\n";
7690 else
7691 outs() << "\n";
7692 outs() << " nextrel " << dyst.nextrel;
7693 big_size = dyst.nextrel;
7694 big_size *= sizeof(struct MachO::relocation_info);
7695 big_size += dyst.extreloff;
7696 if (big_size > object_size)
7697 outs() << " (past end of file)\n";
7698 else
7699 outs() << "\n";
7700 outs() << " locreloff " << dyst.locreloff;
7701 if (dyst.locreloff > object_size)
7702 outs() << " (past end of file)\n";
7703 else
7704 outs() << "\n";
7705 outs() << " nlocrel " << dyst.nlocrel;
7706 big_size = dyst.nlocrel;
7707 big_size *= sizeof(struct MachO::relocation_info);
7708 big_size += dyst.locreloff;
7709 if (big_size > object_size)
7710 outs() << " (past end of file)\n";
7711 else
7712 outs() << "\n";
7713 }
7714
PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,uint32_t object_size)7715 static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
7716 uint32_t object_size) {
7717 if (dc.cmd == MachO::LC_DYLD_INFO)
7718 outs() << " cmd LC_DYLD_INFO\n";
7719 else
7720 outs() << " cmd LC_DYLD_INFO_ONLY\n";
7721 outs() << " cmdsize " << dc.cmdsize;
7722 if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
7723 outs() << " Incorrect size\n";
7724 else
7725 outs() << "\n";
7726 outs() << " rebase_off " << dc.rebase_off;
7727 if (dc.rebase_off > object_size)
7728 outs() << " (past end of file)\n";
7729 else
7730 outs() << "\n";
7731 outs() << " rebase_size " << dc.rebase_size;
7732 uint64_t big_size;
7733 big_size = dc.rebase_off;
7734 big_size += dc.rebase_size;
7735 if (big_size > object_size)
7736 outs() << " (past end of file)\n";
7737 else
7738 outs() << "\n";
7739 outs() << " bind_off " << dc.bind_off;
7740 if (dc.bind_off > object_size)
7741 outs() << " (past end of file)\n";
7742 else
7743 outs() << "\n";
7744 outs() << " bind_size " << dc.bind_size;
7745 big_size = dc.bind_off;
7746 big_size += dc.bind_size;
7747 if (big_size > object_size)
7748 outs() << " (past end of file)\n";
7749 else
7750 outs() << "\n";
7751 outs() << " weak_bind_off " << dc.weak_bind_off;
7752 if (dc.weak_bind_off > object_size)
7753 outs() << " (past end of file)\n";
7754 else
7755 outs() << "\n";
7756 outs() << " weak_bind_size " << dc.weak_bind_size;
7757 big_size = dc.weak_bind_off;
7758 big_size += dc.weak_bind_size;
7759 if (big_size > object_size)
7760 outs() << " (past end of file)\n";
7761 else
7762 outs() << "\n";
7763 outs() << " lazy_bind_off " << dc.lazy_bind_off;
7764 if (dc.lazy_bind_off > object_size)
7765 outs() << " (past end of file)\n";
7766 else
7767 outs() << "\n";
7768 outs() << " lazy_bind_size " << dc.lazy_bind_size;
7769 big_size = dc.lazy_bind_off;
7770 big_size += dc.lazy_bind_size;
7771 if (big_size > object_size)
7772 outs() << " (past end of file)\n";
7773 else
7774 outs() << "\n";
7775 outs() << " export_off " << dc.export_off;
7776 if (dc.export_off > object_size)
7777 outs() << " (past end of file)\n";
7778 else
7779 outs() << "\n";
7780 outs() << " export_size " << dc.export_size;
7781 big_size = dc.export_off;
7782 big_size += dc.export_size;
7783 if (big_size > object_size)
7784 outs() << " (past end of file)\n";
7785 else
7786 outs() << "\n";
7787 }
7788
PrintDyldLoadCommand(MachO::dylinker_command dyld,const char * Ptr)7789 static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
7790 const char *Ptr) {
7791 if (dyld.cmd == MachO::LC_ID_DYLINKER)
7792 outs() << " cmd LC_ID_DYLINKER\n";
7793 else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
7794 outs() << " cmd LC_LOAD_DYLINKER\n";
7795 else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
7796 outs() << " cmd LC_DYLD_ENVIRONMENT\n";
7797 else
7798 outs() << " cmd ?(" << dyld.cmd << ")\n";
7799 outs() << " cmdsize " << dyld.cmdsize;
7800 if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
7801 outs() << " Incorrect size\n";
7802 else
7803 outs() << "\n";
7804 if (dyld.name >= dyld.cmdsize)
7805 outs() << " name ?(bad offset " << dyld.name << ")\n";
7806 else {
7807 const char *P = (const char *)(Ptr) + dyld.name;
7808 outs() << " name " << P << " (offset " << dyld.name << ")\n";
7809 }
7810 }
7811
PrintUuidLoadCommand(MachO::uuid_command uuid)7812 static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
7813 outs() << " cmd LC_UUID\n";
7814 outs() << " cmdsize " << uuid.cmdsize;
7815 if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
7816 outs() << " Incorrect size\n";
7817 else
7818 outs() << "\n";
7819 outs() << " uuid ";
7820 for (int i = 0; i < 16; ++i) {
7821 outs() << format("%02" PRIX32, uuid.uuid[i]);
7822 if (i == 3 || i == 5 || i == 7 || i == 9)
7823 outs() << "-";
7824 }
7825 outs() << "\n";
7826 }
7827
PrintRpathLoadCommand(MachO::rpath_command rpath,const char * Ptr)7828 static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
7829 outs() << " cmd LC_RPATH\n";
7830 outs() << " cmdsize " << rpath.cmdsize;
7831 if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
7832 outs() << " Incorrect size\n";
7833 else
7834 outs() << "\n";
7835 if (rpath.path >= rpath.cmdsize)
7836 outs() << " path ?(bad offset " << rpath.path << ")\n";
7837 else {
7838 const char *P = (const char *)(Ptr) + rpath.path;
7839 outs() << " path " << P << " (offset " << rpath.path << ")\n";
7840 }
7841 }
7842
PrintVersionMinLoadCommand(MachO::version_min_command vd)7843 static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
7844 StringRef LoadCmdName;
7845 switch (vd.cmd) {
7846 case MachO::LC_VERSION_MIN_MACOSX:
7847 LoadCmdName = "LC_VERSION_MIN_MACOSX";
7848 break;
7849 case MachO::LC_VERSION_MIN_IPHONEOS:
7850 LoadCmdName = "LC_VERSION_MIN_IPHONEOS";
7851 break;
7852 case MachO::LC_VERSION_MIN_TVOS:
7853 LoadCmdName = "LC_VERSION_MIN_TVOS";
7854 break;
7855 case MachO::LC_VERSION_MIN_WATCHOS:
7856 LoadCmdName = "LC_VERSION_MIN_WATCHOS";
7857 break;
7858 default:
7859 llvm_unreachable("Unknown version min load command");
7860 }
7861
7862 outs() << " cmd " << LoadCmdName << '\n';
7863 outs() << " cmdsize " << vd.cmdsize;
7864 if (vd.cmdsize != sizeof(struct MachO::version_min_command))
7865 outs() << " Incorrect size\n";
7866 else
7867 outs() << "\n";
7868 outs() << " version "
7869 << MachOObjectFile::getVersionMinMajor(vd, false) << "."
7870 << MachOObjectFile::getVersionMinMinor(vd, false);
7871 uint32_t Update = MachOObjectFile::getVersionMinUpdate(vd, false);
7872 if (Update != 0)
7873 outs() << "." << Update;
7874 outs() << "\n";
7875 if (vd.sdk == 0)
7876 outs() << " sdk n/a";
7877 else {
7878 outs() << " sdk "
7879 << MachOObjectFile::getVersionMinMajor(vd, true) << "."
7880 << MachOObjectFile::getVersionMinMinor(vd, true);
7881 }
7882 Update = MachOObjectFile::getVersionMinUpdate(vd, true);
7883 if (Update != 0)
7884 outs() << "." << Update;
7885 outs() << "\n";
7886 }
7887
PrintSourceVersionCommand(MachO::source_version_command sd)7888 static void PrintSourceVersionCommand(MachO::source_version_command sd) {
7889 outs() << " cmd LC_SOURCE_VERSION\n";
7890 outs() << " cmdsize " << sd.cmdsize;
7891 if (sd.cmdsize != sizeof(struct MachO::source_version_command))
7892 outs() << " Incorrect size\n";
7893 else
7894 outs() << "\n";
7895 uint64_t a = (sd.version >> 40) & 0xffffff;
7896 uint64_t b = (sd.version >> 30) & 0x3ff;
7897 uint64_t c = (sd.version >> 20) & 0x3ff;
7898 uint64_t d = (sd.version >> 10) & 0x3ff;
7899 uint64_t e = sd.version & 0x3ff;
7900 outs() << " version " << a << "." << b;
7901 if (e != 0)
7902 outs() << "." << c << "." << d << "." << e;
7903 else if (d != 0)
7904 outs() << "." << c << "." << d;
7905 else if (c != 0)
7906 outs() << "." << c;
7907 outs() << "\n";
7908 }
7909
PrintEntryPointCommand(MachO::entry_point_command ep)7910 static void PrintEntryPointCommand(MachO::entry_point_command ep) {
7911 outs() << " cmd LC_MAIN\n";
7912 outs() << " cmdsize " << ep.cmdsize;
7913 if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
7914 outs() << " Incorrect size\n";
7915 else
7916 outs() << "\n";
7917 outs() << " entryoff " << ep.entryoff << "\n";
7918 outs() << " stacksize " << ep.stacksize << "\n";
7919 }
7920
PrintEncryptionInfoCommand(MachO::encryption_info_command ec,uint32_t object_size)7921 static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
7922 uint32_t object_size) {
7923 outs() << " cmd LC_ENCRYPTION_INFO\n";
7924 outs() << " cmdsize " << ec.cmdsize;
7925 if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
7926 outs() << " Incorrect size\n";
7927 else
7928 outs() << "\n";
7929 outs() << " cryptoff " << ec.cryptoff;
7930 if (ec.cryptoff > object_size)
7931 outs() << " (past end of file)\n";
7932 else
7933 outs() << "\n";
7934 outs() << " cryptsize " << ec.cryptsize;
7935 if (ec.cryptsize > object_size)
7936 outs() << " (past end of file)\n";
7937 else
7938 outs() << "\n";
7939 outs() << " cryptid " << ec.cryptid << "\n";
7940 }
7941
PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,uint32_t object_size)7942 static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
7943 uint32_t object_size) {
7944 outs() << " cmd LC_ENCRYPTION_INFO_64\n";
7945 outs() << " cmdsize " << ec.cmdsize;
7946 if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
7947 outs() << " Incorrect size\n";
7948 else
7949 outs() << "\n";
7950 outs() << " cryptoff " << ec.cryptoff;
7951 if (ec.cryptoff > object_size)
7952 outs() << " (past end of file)\n";
7953 else
7954 outs() << "\n";
7955 outs() << " cryptsize " << ec.cryptsize;
7956 if (ec.cryptsize > object_size)
7957 outs() << " (past end of file)\n";
7958 else
7959 outs() << "\n";
7960 outs() << " cryptid " << ec.cryptid << "\n";
7961 outs() << " pad " << ec.pad << "\n";
7962 }
7963
PrintLinkerOptionCommand(MachO::linker_option_command lo,const char * Ptr)7964 static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
7965 const char *Ptr) {
7966 outs() << " cmd LC_LINKER_OPTION\n";
7967 outs() << " cmdsize " << lo.cmdsize;
7968 if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
7969 outs() << " Incorrect size\n";
7970 else
7971 outs() << "\n";
7972 outs() << " count " << lo.count << "\n";
7973 const char *string = Ptr + sizeof(struct MachO::linker_option_command);
7974 uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
7975 uint32_t i = 0;
7976 while (left > 0) {
7977 while (*string == '\0' && left > 0) {
7978 string++;
7979 left--;
7980 }
7981 if (left > 0) {
7982 i++;
7983 outs() << " string #" << i << " " << format("%.*s\n", left, string);
7984 uint32_t NullPos = StringRef(string, left).find('\0');
7985 uint32_t len = std::min(NullPos, left) + 1;
7986 string += len;
7987 left -= len;
7988 }
7989 }
7990 if (lo.count != i)
7991 outs() << " count " << lo.count << " does not match number of strings "
7992 << i << "\n";
7993 }
7994
PrintSubFrameworkCommand(MachO::sub_framework_command sub,const char * Ptr)7995 static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
7996 const char *Ptr) {
7997 outs() << " cmd LC_SUB_FRAMEWORK\n";
7998 outs() << " cmdsize " << sub.cmdsize;
7999 if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
8000 outs() << " Incorrect size\n";
8001 else
8002 outs() << "\n";
8003 if (sub.umbrella < sub.cmdsize) {
8004 const char *P = Ptr + sub.umbrella;
8005 outs() << " umbrella " << P << " (offset " << sub.umbrella << ")\n";
8006 } else {
8007 outs() << " umbrella ?(bad offset " << sub.umbrella << ")\n";
8008 }
8009 }
8010
PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,const char * Ptr)8011 static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
8012 const char *Ptr) {
8013 outs() << " cmd LC_SUB_UMBRELLA\n";
8014 outs() << " cmdsize " << sub.cmdsize;
8015 if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
8016 outs() << " Incorrect size\n";
8017 else
8018 outs() << "\n";
8019 if (sub.sub_umbrella < sub.cmdsize) {
8020 const char *P = Ptr + sub.sub_umbrella;
8021 outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
8022 } else {
8023 outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
8024 }
8025 }
8026
PrintSubLibraryCommand(MachO::sub_library_command sub,const char * Ptr)8027 static void PrintSubLibraryCommand(MachO::sub_library_command sub,
8028 const char *Ptr) {
8029 outs() << " cmd LC_SUB_LIBRARY\n";
8030 outs() << " cmdsize " << sub.cmdsize;
8031 if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
8032 outs() << " Incorrect size\n";
8033 else
8034 outs() << "\n";
8035 if (sub.sub_library < sub.cmdsize) {
8036 const char *P = Ptr + sub.sub_library;
8037 outs() << " sub_library " << P << " (offset " << sub.sub_library << ")\n";
8038 } else {
8039 outs() << " sub_library ?(bad offset " << sub.sub_library << ")\n";
8040 }
8041 }
8042
PrintSubClientCommand(MachO::sub_client_command sub,const char * Ptr)8043 static void PrintSubClientCommand(MachO::sub_client_command sub,
8044 const char *Ptr) {
8045 outs() << " cmd LC_SUB_CLIENT\n";
8046 outs() << " cmdsize " << sub.cmdsize;
8047 if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
8048 outs() << " Incorrect size\n";
8049 else
8050 outs() << "\n";
8051 if (sub.client < sub.cmdsize) {
8052 const char *P = Ptr + sub.client;
8053 outs() << " client " << P << " (offset " << sub.client << ")\n";
8054 } else {
8055 outs() << " client ?(bad offset " << sub.client << ")\n";
8056 }
8057 }
8058
PrintRoutinesCommand(MachO::routines_command r)8059 static void PrintRoutinesCommand(MachO::routines_command r) {
8060 outs() << " cmd LC_ROUTINES\n";
8061 outs() << " cmdsize " << r.cmdsize;
8062 if (r.cmdsize != sizeof(struct MachO::routines_command))
8063 outs() << " Incorrect size\n";
8064 else
8065 outs() << "\n";
8066 outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
8067 outs() << " init_module " << r.init_module << "\n";
8068 outs() << " reserved1 " << r.reserved1 << "\n";
8069 outs() << " reserved2 " << r.reserved2 << "\n";
8070 outs() << " reserved3 " << r.reserved3 << "\n";
8071 outs() << " reserved4 " << r.reserved4 << "\n";
8072 outs() << " reserved5 " << r.reserved5 << "\n";
8073 outs() << " reserved6 " << r.reserved6 << "\n";
8074 }
8075
PrintRoutinesCommand64(MachO::routines_command_64 r)8076 static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
8077 outs() << " cmd LC_ROUTINES_64\n";
8078 outs() << " cmdsize " << r.cmdsize;
8079 if (r.cmdsize != sizeof(struct MachO::routines_command_64))
8080 outs() << " Incorrect size\n";
8081 else
8082 outs() << "\n";
8083 outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
8084 outs() << " init_module " << r.init_module << "\n";
8085 outs() << " reserved1 " << r.reserved1 << "\n";
8086 outs() << " reserved2 " << r.reserved2 << "\n";
8087 outs() << " reserved3 " << r.reserved3 << "\n";
8088 outs() << " reserved4 " << r.reserved4 << "\n";
8089 outs() << " reserved5 " << r.reserved5 << "\n";
8090 outs() << " reserved6 " << r.reserved6 << "\n";
8091 }
8092
Print_x86_thread_state64_t(MachO::x86_thread_state64_t & cpu64)8093 static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
8094 outs() << " rax " << format("0x%016" PRIx64, cpu64.rax);
8095 outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
8096 outs() << " rcx " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
8097 outs() << " rdx " << format("0x%016" PRIx64, cpu64.rdx);
8098 outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
8099 outs() << " rsi " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
8100 outs() << " rbp " << format("0x%016" PRIx64, cpu64.rbp);
8101 outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
8102 outs() << " r8 " << format("0x%016" PRIx64, cpu64.r8) << "\n";
8103 outs() << " r9 " << format("0x%016" PRIx64, cpu64.r9);
8104 outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
8105 outs() << " r11 " << format("0x%016" PRIx64, cpu64.r11) << "\n";
8106 outs() << " r12 " << format("0x%016" PRIx64, cpu64.r12);
8107 outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
8108 outs() << " r14 " << format("0x%016" PRIx64, cpu64.r14) << "\n";
8109 outs() << " r15 " << format("0x%016" PRIx64, cpu64.r15);
8110 outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
8111 outs() << "rflags " << format("0x%016" PRIx64, cpu64.rflags);
8112 outs() << " cs " << format("0x%016" PRIx64, cpu64.cs);
8113 outs() << " fs " << format("0x%016" PRIx64, cpu64.fs) << "\n";
8114 outs() << " gs " << format("0x%016" PRIx64, cpu64.gs) << "\n";
8115 }
8116
Print_mmst_reg(MachO::mmst_reg_t & r)8117 static void Print_mmst_reg(MachO::mmst_reg_t &r) {
8118 uint32_t f;
8119 outs() << "\t mmst_reg ";
8120 for (f = 0; f < 10; f++)
8121 outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
8122 outs() << "\n";
8123 outs() << "\t mmst_rsrv ";
8124 for (f = 0; f < 6; f++)
8125 outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
8126 outs() << "\n";
8127 }
8128
Print_xmm_reg(MachO::xmm_reg_t & r)8129 static void Print_xmm_reg(MachO::xmm_reg_t &r) {
8130 uint32_t f;
8131 outs() << "\t xmm_reg ";
8132 for (f = 0; f < 16; f++)
8133 outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
8134 outs() << "\n";
8135 }
8136
Print_x86_float_state_t(MachO::x86_float_state64_t & fpu)8137 static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
8138 outs() << "\t fpu_reserved[0] " << fpu.fpu_reserved[0];
8139 outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
8140 outs() << "\t control: invalid " << fpu.fpu_fcw.invalid;
8141 outs() << " denorm " << fpu.fpu_fcw.denorm;
8142 outs() << " zdiv " << fpu.fpu_fcw.zdiv;
8143 outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
8144 outs() << " undfl " << fpu.fpu_fcw.undfl;
8145 outs() << " precis " << fpu.fpu_fcw.precis << "\n";
8146 outs() << "\t\t pc ";
8147 if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
8148 outs() << "FP_PREC_24B ";
8149 else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
8150 outs() << "FP_PREC_53B ";
8151 else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
8152 outs() << "FP_PREC_64B ";
8153 else
8154 outs() << fpu.fpu_fcw.pc << " ";
8155 outs() << "rc ";
8156 if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
8157 outs() << "FP_RND_NEAR ";
8158 else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
8159 outs() << "FP_RND_DOWN ";
8160 else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
8161 outs() << "FP_RND_UP ";
8162 else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
8163 outs() << "FP_CHOP ";
8164 outs() << "\n";
8165 outs() << "\t status: invalid " << fpu.fpu_fsw.invalid;
8166 outs() << " denorm " << fpu.fpu_fsw.denorm;
8167 outs() << " zdiv " << fpu.fpu_fsw.zdiv;
8168 outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
8169 outs() << " undfl " << fpu.fpu_fsw.undfl;
8170 outs() << " precis " << fpu.fpu_fsw.precis;
8171 outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
8172 outs() << "\t errsumm " << fpu.fpu_fsw.errsumm;
8173 outs() << " c0 " << fpu.fpu_fsw.c0;
8174 outs() << " c1 " << fpu.fpu_fsw.c1;
8175 outs() << " c2 " << fpu.fpu_fsw.c2;
8176 outs() << " tos " << fpu.fpu_fsw.tos;
8177 outs() << " c3 " << fpu.fpu_fsw.c3;
8178 outs() << " busy " << fpu.fpu_fsw.busy << "\n";
8179 outs() << "\t fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
8180 outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
8181 outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
8182 outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
8183 outs() << "\t fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
8184 outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
8185 outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
8186 outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
8187 outs() << "\t fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
8188 outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
8189 outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
8190 outs() << "\n";
8191 outs() << "\t fpu_stmm0:\n";
8192 Print_mmst_reg(fpu.fpu_stmm0);
8193 outs() << "\t fpu_stmm1:\n";
8194 Print_mmst_reg(fpu.fpu_stmm1);
8195 outs() << "\t fpu_stmm2:\n";
8196 Print_mmst_reg(fpu.fpu_stmm2);
8197 outs() << "\t fpu_stmm3:\n";
8198 Print_mmst_reg(fpu.fpu_stmm3);
8199 outs() << "\t fpu_stmm4:\n";
8200 Print_mmst_reg(fpu.fpu_stmm4);
8201 outs() << "\t fpu_stmm5:\n";
8202 Print_mmst_reg(fpu.fpu_stmm5);
8203 outs() << "\t fpu_stmm6:\n";
8204 Print_mmst_reg(fpu.fpu_stmm6);
8205 outs() << "\t fpu_stmm7:\n";
8206 Print_mmst_reg(fpu.fpu_stmm7);
8207 outs() << "\t fpu_xmm0:\n";
8208 Print_xmm_reg(fpu.fpu_xmm0);
8209 outs() << "\t fpu_xmm1:\n";
8210 Print_xmm_reg(fpu.fpu_xmm1);
8211 outs() << "\t fpu_xmm2:\n";
8212 Print_xmm_reg(fpu.fpu_xmm2);
8213 outs() << "\t fpu_xmm3:\n";
8214 Print_xmm_reg(fpu.fpu_xmm3);
8215 outs() << "\t fpu_xmm4:\n";
8216 Print_xmm_reg(fpu.fpu_xmm4);
8217 outs() << "\t fpu_xmm5:\n";
8218 Print_xmm_reg(fpu.fpu_xmm5);
8219 outs() << "\t fpu_xmm6:\n";
8220 Print_xmm_reg(fpu.fpu_xmm6);
8221 outs() << "\t fpu_xmm7:\n";
8222 Print_xmm_reg(fpu.fpu_xmm7);
8223 outs() << "\t fpu_xmm8:\n";
8224 Print_xmm_reg(fpu.fpu_xmm8);
8225 outs() << "\t fpu_xmm9:\n";
8226 Print_xmm_reg(fpu.fpu_xmm9);
8227 outs() << "\t fpu_xmm10:\n";
8228 Print_xmm_reg(fpu.fpu_xmm10);
8229 outs() << "\t fpu_xmm11:\n";
8230 Print_xmm_reg(fpu.fpu_xmm11);
8231 outs() << "\t fpu_xmm12:\n";
8232 Print_xmm_reg(fpu.fpu_xmm12);
8233 outs() << "\t fpu_xmm13:\n";
8234 Print_xmm_reg(fpu.fpu_xmm13);
8235 outs() << "\t fpu_xmm14:\n";
8236 Print_xmm_reg(fpu.fpu_xmm14);
8237 outs() << "\t fpu_xmm15:\n";
8238 Print_xmm_reg(fpu.fpu_xmm15);
8239 outs() << "\t fpu_rsrv4:\n";
8240 for (uint32_t f = 0; f < 6; f++) {
8241 outs() << "\t ";
8242 for (uint32_t g = 0; g < 16; g++)
8243 outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
8244 outs() << "\n";
8245 }
8246 outs() << "\t fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
8247 outs() << "\n";
8248 }
8249
Print_x86_exception_state_t(MachO::x86_exception_state64_t & exc64)8250 static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
8251 outs() << "\t trapno " << format("0x%08" PRIx32, exc64.trapno);
8252 outs() << " err " << format("0x%08" PRIx32, exc64.err);
8253 outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
8254 }
8255
PrintThreadCommand(MachO::thread_command t,const char * Ptr,bool isLittleEndian,uint32_t cputype)8256 static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
8257 bool isLittleEndian, uint32_t cputype) {
8258 if (t.cmd == MachO::LC_THREAD)
8259 outs() << " cmd LC_THREAD\n";
8260 else if (t.cmd == MachO::LC_UNIXTHREAD)
8261 outs() << " cmd LC_UNIXTHREAD\n";
8262 else
8263 outs() << " cmd " << t.cmd << " (unknown)\n";
8264 outs() << " cmdsize " << t.cmdsize;
8265 if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
8266 outs() << " Incorrect size\n";
8267 else
8268 outs() << "\n";
8269
8270 const char *begin = Ptr + sizeof(struct MachO::thread_command);
8271 const char *end = Ptr + t.cmdsize;
8272 uint32_t flavor, count, left;
8273 if (cputype == MachO::CPU_TYPE_X86_64) {
8274 while (begin < end) {
8275 if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8276 memcpy((char *)&flavor, begin, sizeof(uint32_t));
8277 begin += sizeof(uint32_t);
8278 } else {
8279 flavor = 0;
8280 begin = end;
8281 }
8282 if (isLittleEndian != sys::IsLittleEndianHost)
8283 sys::swapByteOrder(flavor);
8284 if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8285 memcpy((char *)&count, begin, sizeof(uint32_t));
8286 begin += sizeof(uint32_t);
8287 } else {
8288 count = 0;
8289 begin = end;
8290 }
8291 if (isLittleEndian != sys::IsLittleEndianHost)
8292 sys::swapByteOrder(count);
8293 if (flavor == MachO::x86_THREAD_STATE64) {
8294 outs() << " flavor x86_THREAD_STATE64\n";
8295 if (count == MachO::x86_THREAD_STATE64_COUNT)
8296 outs() << " count x86_THREAD_STATE64_COUNT\n";
8297 else
8298 outs() << " count " << count
8299 << " (not x86_THREAD_STATE64_COUNT)\n";
8300 MachO::x86_thread_state64_t cpu64;
8301 left = end - begin;
8302 if (left >= sizeof(MachO::x86_thread_state64_t)) {
8303 memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
8304 begin += sizeof(MachO::x86_thread_state64_t);
8305 } else {
8306 memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
8307 memcpy(&cpu64, begin, left);
8308 begin += left;
8309 }
8310 if (isLittleEndian != sys::IsLittleEndianHost)
8311 swapStruct(cpu64);
8312 Print_x86_thread_state64_t(cpu64);
8313 } else if (flavor == MachO::x86_THREAD_STATE) {
8314 outs() << " flavor x86_THREAD_STATE\n";
8315 if (count == MachO::x86_THREAD_STATE_COUNT)
8316 outs() << " count x86_THREAD_STATE_COUNT\n";
8317 else
8318 outs() << " count " << count
8319 << " (not x86_THREAD_STATE_COUNT)\n";
8320 struct MachO::x86_thread_state_t ts;
8321 left = end - begin;
8322 if (left >= sizeof(MachO::x86_thread_state_t)) {
8323 memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
8324 begin += sizeof(MachO::x86_thread_state_t);
8325 } else {
8326 memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
8327 memcpy(&ts, begin, left);
8328 begin += left;
8329 }
8330 if (isLittleEndian != sys::IsLittleEndianHost)
8331 swapStruct(ts);
8332 if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
8333 outs() << "\t tsh.flavor x86_THREAD_STATE64 ";
8334 if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
8335 outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
8336 else
8337 outs() << "tsh.count " << ts.tsh.count
8338 << " (not x86_THREAD_STATE64_COUNT\n";
8339 Print_x86_thread_state64_t(ts.uts.ts64);
8340 } else {
8341 outs() << "\t tsh.flavor " << ts.tsh.flavor << " tsh.count "
8342 << ts.tsh.count << "\n";
8343 }
8344 } else if (flavor == MachO::x86_FLOAT_STATE) {
8345 outs() << " flavor x86_FLOAT_STATE\n";
8346 if (count == MachO::x86_FLOAT_STATE_COUNT)
8347 outs() << " count x86_FLOAT_STATE_COUNT\n";
8348 else
8349 outs() << " count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
8350 struct MachO::x86_float_state_t fs;
8351 left = end - begin;
8352 if (left >= sizeof(MachO::x86_float_state_t)) {
8353 memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
8354 begin += sizeof(MachO::x86_float_state_t);
8355 } else {
8356 memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
8357 memcpy(&fs, begin, left);
8358 begin += left;
8359 }
8360 if (isLittleEndian != sys::IsLittleEndianHost)
8361 swapStruct(fs);
8362 if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
8363 outs() << "\t fsh.flavor x86_FLOAT_STATE64 ";
8364 if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
8365 outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
8366 else
8367 outs() << "fsh.count " << fs.fsh.count
8368 << " (not x86_FLOAT_STATE64_COUNT\n";
8369 Print_x86_float_state_t(fs.ufs.fs64);
8370 } else {
8371 outs() << "\t fsh.flavor " << fs.fsh.flavor << " fsh.count "
8372 << fs.fsh.count << "\n";
8373 }
8374 } else if (flavor == MachO::x86_EXCEPTION_STATE) {
8375 outs() << " flavor x86_EXCEPTION_STATE\n";
8376 if (count == MachO::x86_EXCEPTION_STATE_COUNT)
8377 outs() << " count x86_EXCEPTION_STATE_COUNT\n";
8378 else
8379 outs() << " count " << count
8380 << " (not x86_EXCEPTION_STATE_COUNT)\n";
8381 struct MachO::x86_exception_state_t es;
8382 left = end - begin;
8383 if (left >= sizeof(MachO::x86_exception_state_t)) {
8384 memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
8385 begin += sizeof(MachO::x86_exception_state_t);
8386 } else {
8387 memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
8388 memcpy(&es, begin, left);
8389 begin += left;
8390 }
8391 if (isLittleEndian != sys::IsLittleEndianHost)
8392 swapStruct(es);
8393 if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
8394 outs() << "\t esh.flavor x86_EXCEPTION_STATE64\n";
8395 if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
8396 outs() << "\t esh.count x86_EXCEPTION_STATE64_COUNT\n";
8397 else
8398 outs() << "\t esh.count " << es.esh.count
8399 << " (not x86_EXCEPTION_STATE64_COUNT\n";
8400 Print_x86_exception_state_t(es.ues.es64);
8401 } else {
8402 outs() << "\t esh.flavor " << es.esh.flavor << " esh.count "
8403 << es.esh.count << "\n";
8404 }
8405 } else {
8406 outs() << " flavor " << flavor << " (unknown)\n";
8407 outs() << " count " << count << "\n";
8408 outs() << " state (unknown)\n";
8409 begin += count * sizeof(uint32_t);
8410 }
8411 }
8412 } else {
8413 while (begin < end) {
8414 if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8415 memcpy((char *)&flavor, begin, sizeof(uint32_t));
8416 begin += sizeof(uint32_t);
8417 } else {
8418 flavor = 0;
8419 begin = end;
8420 }
8421 if (isLittleEndian != sys::IsLittleEndianHost)
8422 sys::swapByteOrder(flavor);
8423 if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8424 memcpy((char *)&count, begin, sizeof(uint32_t));
8425 begin += sizeof(uint32_t);
8426 } else {
8427 count = 0;
8428 begin = end;
8429 }
8430 if (isLittleEndian != sys::IsLittleEndianHost)
8431 sys::swapByteOrder(count);
8432 outs() << " flavor " << flavor << "\n";
8433 outs() << " count " << count << "\n";
8434 outs() << " state (Unknown cputype/cpusubtype)\n";
8435 begin += count * sizeof(uint32_t);
8436 }
8437 }
8438 }
8439
PrintDylibCommand(MachO::dylib_command dl,const char * Ptr)8440 static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
8441 if (dl.cmd == MachO::LC_ID_DYLIB)
8442 outs() << " cmd LC_ID_DYLIB\n";
8443 else if (dl.cmd == MachO::LC_LOAD_DYLIB)
8444 outs() << " cmd LC_LOAD_DYLIB\n";
8445 else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
8446 outs() << " cmd LC_LOAD_WEAK_DYLIB\n";
8447 else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
8448 outs() << " cmd LC_REEXPORT_DYLIB\n";
8449 else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
8450 outs() << " cmd LC_LAZY_LOAD_DYLIB\n";
8451 else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
8452 outs() << " cmd LC_LOAD_UPWARD_DYLIB\n";
8453 else
8454 outs() << " cmd " << dl.cmd << " (unknown)\n";
8455 outs() << " cmdsize " << dl.cmdsize;
8456 if (dl.cmdsize < sizeof(struct MachO::dylib_command))
8457 outs() << " Incorrect size\n";
8458 else
8459 outs() << "\n";
8460 if (dl.dylib.name < dl.cmdsize) {
8461 const char *P = (const char *)(Ptr) + dl.dylib.name;
8462 outs() << " name " << P << " (offset " << dl.dylib.name << ")\n";
8463 } else {
8464 outs() << " name ?(bad offset " << dl.dylib.name << ")\n";
8465 }
8466 outs() << " time stamp " << dl.dylib.timestamp << " ";
8467 time_t t = dl.dylib.timestamp;
8468 outs() << ctime(&t);
8469 outs() << " current version ";
8470 if (dl.dylib.current_version == 0xffffffff)
8471 outs() << "n/a\n";
8472 else
8473 outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
8474 << ((dl.dylib.current_version >> 8) & 0xff) << "."
8475 << (dl.dylib.current_version & 0xff) << "\n";
8476 outs() << "compatibility version ";
8477 if (dl.dylib.compatibility_version == 0xffffffff)
8478 outs() << "n/a\n";
8479 else
8480 outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
8481 << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
8482 << (dl.dylib.compatibility_version & 0xff) << "\n";
8483 }
8484
PrintLinkEditDataCommand(MachO::linkedit_data_command ld,uint32_t object_size)8485 static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
8486 uint32_t object_size) {
8487 if (ld.cmd == MachO::LC_CODE_SIGNATURE)
8488 outs() << " cmd LC_FUNCTION_STARTS\n";
8489 else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
8490 outs() << " cmd LC_SEGMENT_SPLIT_INFO\n";
8491 else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
8492 outs() << " cmd LC_FUNCTION_STARTS\n";
8493 else if (ld.cmd == MachO::LC_DATA_IN_CODE)
8494 outs() << " cmd LC_DATA_IN_CODE\n";
8495 else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
8496 outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n";
8497 else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
8498 outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n";
8499 else
8500 outs() << " cmd " << ld.cmd << " (?)\n";
8501 outs() << " cmdsize " << ld.cmdsize;
8502 if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
8503 outs() << " Incorrect size\n";
8504 else
8505 outs() << "\n";
8506 outs() << " dataoff " << ld.dataoff;
8507 if (ld.dataoff > object_size)
8508 outs() << " (past end of file)\n";
8509 else
8510 outs() << "\n";
8511 outs() << " datasize " << ld.datasize;
8512 uint64_t big_size = ld.dataoff;
8513 big_size += ld.datasize;
8514 if (big_size > object_size)
8515 outs() << " (past end of file)\n";
8516 else
8517 outs() << "\n";
8518 }
8519
PrintLoadCommands(const MachOObjectFile * Obj,uint32_t filetype,uint32_t cputype,bool verbose)8520 static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t filetype,
8521 uint32_t cputype, bool verbose) {
8522 StringRef Buf = Obj->getData();
8523 unsigned Index = 0;
8524 for (const auto &Command : Obj->load_commands()) {
8525 outs() << "Load command " << Index++ << "\n";
8526 if (Command.C.cmd == MachO::LC_SEGMENT) {
8527 MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
8528 const char *sg_segname = SLC.segname;
8529 PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
8530 SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
8531 SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
8532 verbose);
8533 for (unsigned j = 0; j < SLC.nsects; j++) {
8534 MachO::section S = Obj->getSection(Command, j);
8535 PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
8536 S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
8537 SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
8538 }
8539 } else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
8540 MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
8541 const char *sg_segname = SLC_64.segname;
8542 PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
8543 SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
8544 SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
8545 SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
8546 for (unsigned j = 0; j < SLC_64.nsects; j++) {
8547 MachO::section_64 S_64 = Obj->getSection64(Command, j);
8548 PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
8549 S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
8550 S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
8551 sg_segname, filetype, Buf.size(), verbose);
8552 }
8553 } else if (Command.C.cmd == MachO::LC_SYMTAB) {
8554 MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
8555 PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
8556 } else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
8557 MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
8558 MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
8559 PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
8560 Obj->is64Bit());
8561 } else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
8562 Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
8563 MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
8564 PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
8565 } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
8566 Command.C.cmd == MachO::LC_ID_DYLINKER ||
8567 Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
8568 MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
8569 PrintDyldLoadCommand(Dyld, Command.Ptr);
8570 } else if (Command.C.cmd == MachO::LC_UUID) {
8571 MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
8572 PrintUuidLoadCommand(Uuid);
8573 } else if (Command.C.cmd == MachO::LC_RPATH) {
8574 MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
8575 PrintRpathLoadCommand(Rpath, Command.Ptr);
8576 } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
8577 Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS ||
8578 Command.C.cmd == MachO::LC_VERSION_MIN_TVOS ||
8579 Command.C.cmd == MachO::LC_VERSION_MIN_WATCHOS) {
8580 MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
8581 PrintVersionMinLoadCommand(Vd);
8582 } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
8583 MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
8584 PrintSourceVersionCommand(Sd);
8585 } else if (Command.C.cmd == MachO::LC_MAIN) {
8586 MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
8587 PrintEntryPointCommand(Ep);
8588 } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
8589 MachO::encryption_info_command Ei =
8590 Obj->getEncryptionInfoCommand(Command);
8591 PrintEncryptionInfoCommand(Ei, Buf.size());
8592 } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
8593 MachO::encryption_info_command_64 Ei =
8594 Obj->getEncryptionInfoCommand64(Command);
8595 PrintEncryptionInfoCommand64(Ei, Buf.size());
8596 } else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
8597 MachO::linker_option_command Lo =
8598 Obj->getLinkerOptionLoadCommand(Command);
8599 PrintLinkerOptionCommand(Lo, Command.Ptr);
8600 } else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
8601 MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
8602 PrintSubFrameworkCommand(Sf, Command.Ptr);
8603 } else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
8604 MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
8605 PrintSubUmbrellaCommand(Sf, Command.Ptr);
8606 } else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
8607 MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
8608 PrintSubLibraryCommand(Sl, Command.Ptr);
8609 } else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
8610 MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
8611 PrintSubClientCommand(Sc, Command.Ptr);
8612 } else if (Command.C.cmd == MachO::LC_ROUTINES) {
8613 MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
8614 PrintRoutinesCommand(Rc);
8615 } else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
8616 MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
8617 PrintRoutinesCommand64(Rc);
8618 } else if (Command.C.cmd == MachO::LC_THREAD ||
8619 Command.C.cmd == MachO::LC_UNIXTHREAD) {
8620 MachO::thread_command Tc = Obj->getThreadCommand(Command);
8621 PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
8622 } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
8623 Command.C.cmd == MachO::LC_ID_DYLIB ||
8624 Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
8625 Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
8626 Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
8627 Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
8628 MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
8629 PrintDylibCommand(Dl, Command.Ptr);
8630 } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
8631 Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
8632 Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
8633 Command.C.cmd == MachO::LC_DATA_IN_CODE ||
8634 Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
8635 Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
8636 MachO::linkedit_data_command Ld =
8637 Obj->getLinkeditDataLoadCommand(Command);
8638 PrintLinkEditDataCommand(Ld, Buf.size());
8639 } else {
8640 outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
8641 << ")\n";
8642 outs() << " cmdsize " << Command.C.cmdsize << "\n";
8643 // TODO: get and print the raw bytes of the load command.
8644 }
8645 // TODO: print all the other kinds of load commands.
8646 }
8647 }
8648
getAndPrintMachHeader(const MachOObjectFile * Obj,uint32_t & filetype,uint32_t & cputype,bool verbose)8649 static void getAndPrintMachHeader(const MachOObjectFile *Obj,
8650 uint32_t &filetype, uint32_t &cputype,
8651 bool verbose) {
8652 if (Obj->is64Bit()) {
8653 MachO::mach_header_64 H_64;
8654 H_64 = Obj->getHeader64();
8655 PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
8656 H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
8657 filetype = H_64.filetype;
8658 cputype = H_64.cputype;
8659 } else {
8660 MachO::mach_header H;
8661 H = Obj->getHeader();
8662 PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
8663 H.sizeofcmds, H.flags, verbose);
8664 filetype = H.filetype;
8665 cputype = H.cputype;
8666 }
8667 }
8668
printMachOFileHeader(const object::ObjectFile * Obj)8669 void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
8670 const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
8671 uint32_t filetype = 0;
8672 uint32_t cputype = 0;
8673 getAndPrintMachHeader(file, filetype, cputype, !NonVerbose);
8674 PrintLoadCommands(file, filetype, cputype, !NonVerbose);
8675 }
8676
8677 //===----------------------------------------------------------------------===//
8678 // export trie dumping
8679 //===----------------------------------------------------------------------===//
8680
printMachOExportsTrie(const object::MachOObjectFile * Obj)8681 void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
8682 for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
8683 uint64_t Flags = Entry.flags();
8684 bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
8685 bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
8686 bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
8687 MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
8688 bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
8689 MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
8690 bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
8691 if (ReExport)
8692 outs() << "[re-export] ";
8693 else
8694 outs() << format("0x%08llX ",
8695 Entry.address()); // FIXME:add in base address
8696 outs() << Entry.name();
8697 if (WeakDef || ThreadLocal || Resolver || Abs) {
8698 bool NeedsComma = false;
8699 outs() << " [";
8700 if (WeakDef) {
8701 outs() << "weak_def";
8702 NeedsComma = true;
8703 }
8704 if (ThreadLocal) {
8705 if (NeedsComma)
8706 outs() << ", ";
8707 outs() << "per-thread";
8708 NeedsComma = true;
8709 }
8710 if (Abs) {
8711 if (NeedsComma)
8712 outs() << ", ";
8713 outs() << "absolute";
8714 NeedsComma = true;
8715 }
8716 if (Resolver) {
8717 if (NeedsComma)
8718 outs() << ", ";
8719 outs() << format("resolver=0x%08llX", Entry.other());
8720 NeedsComma = true;
8721 }
8722 outs() << "]";
8723 }
8724 if (ReExport) {
8725 StringRef DylibName = "unknown";
8726 int Ordinal = Entry.other() - 1;
8727 Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
8728 if (Entry.otherName().empty())
8729 outs() << " (from " << DylibName << ")";
8730 else
8731 outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
8732 }
8733 outs() << "\n";
8734 }
8735 }
8736
8737 //===----------------------------------------------------------------------===//
8738 // rebase table dumping
8739 //===----------------------------------------------------------------------===//
8740
8741 namespace {
8742 class SegInfo {
8743 public:
8744 SegInfo(const object::MachOObjectFile *Obj);
8745
8746 StringRef segmentName(uint32_t SegIndex);
8747 StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
8748 uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
8749 bool isValidSegIndexAndOffset(uint32_t SegIndex, uint64_t SegOffset);
8750
8751 private:
8752 struct SectionInfo {
8753 uint64_t Address;
8754 uint64_t Size;
8755 StringRef SectionName;
8756 StringRef SegmentName;
8757 uint64_t OffsetInSegment;
8758 uint64_t SegmentStartAddress;
8759 uint32_t SegmentIndex;
8760 };
8761 const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
8762 SmallVector<SectionInfo, 32> Sections;
8763 };
8764 }
8765
SegInfo(const object::MachOObjectFile * Obj)8766 SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
8767 // Build table of sections so segIndex/offset pairs can be translated.
8768 uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
8769 StringRef CurSegName;
8770 uint64_t CurSegAddress;
8771 for (const SectionRef &Section : Obj->sections()) {
8772 SectionInfo Info;
8773 error(Section.getName(Info.SectionName));
8774 Info.Address = Section.getAddress();
8775 Info.Size = Section.getSize();
8776 Info.SegmentName =
8777 Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
8778 if (!Info.SegmentName.equals(CurSegName)) {
8779 ++CurSegIndex;
8780 CurSegName = Info.SegmentName;
8781 CurSegAddress = Info.Address;
8782 }
8783 Info.SegmentIndex = CurSegIndex - 1;
8784 Info.OffsetInSegment = Info.Address - CurSegAddress;
8785 Info.SegmentStartAddress = CurSegAddress;
8786 Sections.push_back(Info);
8787 }
8788 }
8789
segmentName(uint32_t SegIndex)8790 StringRef SegInfo::segmentName(uint32_t SegIndex) {
8791 for (const SectionInfo &SI : Sections) {
8792 if (SI.SegmentIndex == SegIndex)
8793 return SI.SegmentName;
8794 }
8795 llvm_unreachable("invalid segIndex");
8796 }
8797
isValidSegIndexAndOffset(uint32_t SegIndex,uint64_t OffsetInSeg)8798 bool SegInfo::isValidSegIndexAndOffset(uint32_t SegIndex,
8799 uint64_t OffsetInSeg) {
8800 for (const SectionInfo &SI : Sections) {
8801 if (SI.SegmentIndex != SegIndex)
8802 continue;
8803 if (SI.OffsetInSegment > OffsetInSeg)
8804 continue;
8805 if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
8806 continue;
8807 return true;
8808 }
8809 return false;
8810 }
8811
findSection(uint32_t SegIndex,uint64_t OffsetInSeg)8812 const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
8813 uint64_t OffsetInSeg) {
8814 for (const SectionInfo &SI : Sections) {
8815 if (SI.SegmentIndex != SegIndex)
8816 continue;
8817 if (SI.OffsetInSegment > OffsetInSeg)
8818 continue;
8819 if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
8820 continue;
8821 return SI;
8822 }
8823 llvm_unreachable("segIndex and offset not in any section");
8824 }
8825
sectionName(uint32_t SegIndex,uint64_t OffsetInSeg)8826 StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
8827 return findSection(SegIndex, OffsetInSeg).SectionName;
8828 }
8829
address(uint32_t SegIndex,uint64_t OffsetInSeg)8830 uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
8831 const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
8832 return SI.SegmentStartAddress + OffsetInSeg;
8833 }
8834
printMachORebaseTable(const object::MachOObjectFile * Obj)8835 void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
8836 // Build table of sections so names can used in final output.
8837 SegInfo sectionTable(Obj);
8838
8839 outs() << "segment section address type\n";
8840 for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
8841 uint32_t SegIndex = Entry.segmentIndex();
8842 uint64_t OffsetInSeg = Entry.segmentOffset();
8843 StringRef SegmentName = sectionTable.segmentName(SegIndex);
8844 StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8845 uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8846
8847 // Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer
8848 outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n",
8849 SegmentName.str().c_str(), SectionName.str().c_str(),
8850 Address, Entry.typeName().str().c_str());
8851 }
8852 }
8853
ordinalName(const object::MachOObjectFile * Obj,int Ordinal)8854 static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
8855 StringRef DylibName;
8856 switch (Ordinal) {
8857 case MachO::BIND_SPECIAL_DYLIB_SELF:
8858 return "this-image";
8859 case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
8860 return "main-executable";
8861 case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
8862 return "flat-namespace";
8863 default:
8864 if (Ordinal > 0) {
8865 std::error_code EC =
8866 Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
8867 if (EC)
8868 return "<<bad library ordinal>>";
8869 return DylibName;
8870 }
8871 }
8872 return "<<unknown special ordinal>>";
8873 }
8874
8875 //===----------------------------------------------------------------------===//
8876 // bind table dumping
8877 //===----------------------------------------------------------------------===//
8878
printMachOBindTable(const object::MachOObjectFile * Obj)8879 void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
8880 // Build table of sections so names can used in final output.
8881 SegInfo sectionTable(Obj);
8882
8883 outs() << "segment section address type "
8884 "addend dylib symbol\n";
8885 for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
8886 uint32_t SegIndex = Entry.segmentIndex();
8887 uint64_t OffsetInSeg = Entry.segmentOffset();
8888 StringRef SegmentName = sectionTable.segmentName(SegIndex);
8889 StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8890 uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8891
8892 // Table lines look like:
8893 // __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard
8894 StringRef Attr;
8895 if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
8896 Attr = " (weak_import)";
8897 outs() << left_justify(SegmentName, 8) << " "
8898 << left_justify(SectionName, 18) << " "
8899 << format_hex(Address, 10, true) << " "
8900 << left_justify(Entry.typeName(), 8) << " "
8901 << format_decimal(Entry.addend(), 8) << " "
8902 << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
8903 << Entry.symbolName() << Attr << "\n";
8904 }
8905 }
8906
8907 //===----------------------------------------------------------------------===//
8908 // lazy bind table dumping
8909 //===----------------------------------------------------------------------===//
8910
printMachOLazyBindTable(const object::MachOObjectFile * Obj)8911 void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
8912 // Build table of sections so names can used in final output.
8913 SegInfo sectionTable(Obj);
8914
8915 outs() << "segment section address "
8916 "dylib symbol\n";
8917 for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
8918 uint32_t SegIndex = Entry.segmentIndex();
8919 uint64_t OffsetInSeg = Entry.segmentOffset();
8920 StringRef SegmentName = sectionTable.segmentName(SegIndex);
8921 StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8922 uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8923
8924 // Table lines look like:
8925 // __DATA __got 0x00012010 libSystem ___stack_chk_guard
8926 outs() << left_justify(SegmentName, 8) << " "
8927 << left_justify(SectionName, 18) << " "
8928 << format_hex(Address, 10, true) << " "
8929 << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
8930 << Entry.symbolName() << "\n";
8931 }
8932 }
8933
8934 //===----------------------------------------------------------------------===//
8935 // weak bind table dumping
8936 //===----------------------------------------------------------------------===//
8937
printMachOWeakBindTable(const object::MachOObjectFile * Obj)8938 void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
8939 // Build table of sections so names can used in final output.
8940 SegInfo sectionTable(Obj);
8941
8942 outs() << "segment section address "
8943 "type addend symbol\n";
8944 for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
8945 // Strong symbols don't have a location to update.
8946 if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
8947 outs() << " strong "
8948 << Entry.symbolName() << "\n";
8949 continue;
8950 }
8951 uint32_t SegIndex = Entry.segmentIndex();
8952 uint64_t OffsetInSeg = Entry.segmentOffset();
8953 StringRef SegmentName = sectionTable.segmentName(SegIndex);
8954 StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
8955 uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8956
8957 // Table lines look like:
8958 // __DATA __data 0x00001000 pointer 0 _foo
8959 outs() << left_justify(SegmentName, 8) << " "
8960 << left_justify(SectionName, 18) << " "
8961 << format_hex(Address, 10, true) << " "
8962 << left_justify(Entry.typeName(), 8) << " "
8963 << format_decimal(Entry.addend(), 8) << " " << Entry.symbolName()
8964 << "\n";
8965 }
8966 }
8967
8968 // get_dyld_bind_info_symbolname() is used for disassembly and passed an
8969 // address, ReferenceValue, in the Mach-O file and looks in the dyld bind
8970 // information for that address. If the address is found its binding symbol
8971 // name is returned. If not nullptr is returned.
get_dyld_bind_info_symbolname(uint64_t ReferenceValue,struct DisassembleInfo * info)8972 static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
8973 struct DisassembleInfo *info) {
8974 if (info->bindtable == nullptr) {
8975 info->bindtable = new (BindTable);
8976 SegInfo sectionTable(info->O);
8977 for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
8978 uint32_t SegIndex = Entry.segmentIndex();
8979 uint64_t OffsetInSeg = Entry.segmentOffset();
8980 if (!sectionTable.isValidSegIndexAndOffset(SegIndex, OffsetInSeg))
8981 continue;
8982 uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
8983 const char *SymbolName = nullptr;
8984 StringRef name = Entry.symbolName();
8985 if (!name.empty())
8986 SymbolName = name.data();
8987 info->bindtable->push_back(std::make_pair(Address, SymbolName));
8988 }
8989 }
8990 for (bind_table_iterator BI = info->bindtable->begin(),
8991 BE = info->bindtable->end();
8992 BI != BE; ++BI) {
8993 uint64_t Address = BI->first;
8994 if (ReferenceValue == Address) {
8995 const char *SymbolName = BI->second;
8996 return SymbolName;
8997 }
8998 }
8999 return nullptr;
9000 }
9001