1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
MachineVerifier__anon289e30a70111::MachineVerifier56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     bool runOnMachineFunction(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     typedef SmallVector<unsigned, 16> RegVector;
74     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75     typedef DenseSet<unsigned> RegSet;
76     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78 
79     const MachineInstr *FirstTerminator;
80     BlockSet FunctionBlocks;
81 
82     BitVector regsReserved;
83     RegSet regsLive;
84     RegVector regsDefined, regsDead, regsKilled;
85     RegMaskVector regMasks;
86     RegSet regsLiveInButUnused;
87 
88     SlotIndex lastIndex;
89 
90     // Add Reg and any sub-registers to RV
addRegWithSubRegs__anon289e30a70111::MachineVerifier91     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92       RV.push_back(Reg);
93       if (TargetRegisterInfo::isPhysicalRegister(Reg))
94         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95           RV.push_back(*SubRegs);
96     }
97 
98     struct BBInfo {
99       // Is this MBB reachable from the MF entry point?
100       bool reachable;
101 
102       // Vregs that must be live in because they are used without being
103       // defined. Map value is the user.
104       RegMap vregsLiveIn;
105 
106       // Regs killed in MBB. They may be defined again, and will then be in both
107       // regsKilled and regsLiveOut.
108       RegSet regsKilled;
109 
110       // Regs defined in MBB and live out. Note that vregs passing through may
111       // be live out without being mentioned here.
112       RegSet regsLiveOut;
113 
114       // Vregs that pass through MBB untouched. This set is disjoint from
115       // regsKilled and regsLiveOut.
116       RegSet vregsPassed;
117 
118       // Vregs that must pass through MBB because they are needed by a successor
119       // block. This set is disjoint from regsLiveOut.
120       RegSet vregsRequired;
121 
122       // Set versions of block's predecessor and successor lists.
123       BlockSet Preds, Succs;
124 
BBInfo__anon289e30a70111::MachineVerifier::BBInfo125       BBInfo() : reachable(false) {}
126 
127       // Add register to vregsPassed if it belongs there. Return true if
128       // anything changed.
addPassed__anon289e30a70111::MachineVerifier::BBInfo129       bool addPassed(unsigned Reg) {
130         if (!TargetRegisterInfo::isVirtualRegister(Reg))
131           return false;
132         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133           return false;
134         return vregsPassed.insert(Reg).second;
135       }
136 
137       // Same for a full set.
addPassed__anon289e30a70111::MachineVerifier::BBInfo138       bool addPassed(const RegSet &RS) {
139         bool changed = false;
140         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141           if (addPassed(*I))
142             changed = true;
143         return changed;
144       }
145 
146       // Add register to vregsRequired if it belongs there. Return true if
147       // anything changed.
addRequired__anon289e30a70111::MachineVerifier::BBInfo148       bool addRequired(unsigned Reg) {
149         if (!TargetRegisterInfo::isVirtualRegister(Reg))
150           return false;
151         if (regsLiveOut.count(Reg))
152           return false;
153         return vregsRequired.insert(Reg).second;
154       }
155 
156       // Same for a full set.
addRequired__anon289e30a70111::MachineVerifier::BBInfo157       bool addRequired(const RegSet &RS) {
158         bool changed = false;
159         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160           if (addRequired(*I))
161             changed = true;
162         return changed;
163       }
164 
165       // Same for a full map.
addRequired__anon289e30a70111::MachineVerifier::BBInfo166       bool addRequired(const RegMap &RM) {
167         bool changed = false;
168         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169           if (addRequired(I->first))
170             changed = true;
171         return changed;
172       }
173 
174       // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anon289e30a70111::MachineVerifier::BBInfo175       bool isLiveOut(unsigned Reg) const {
176         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177       }
178     };
179 
180     // Extra register info per MBB.
181     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182 
isReserved__anon289e30a70111::MachineVerifier183     bool isReserved(unsigned Reg) {
184       return Reg < regsReserved.size() && regsReserved.test(Reg);
185     }
186 
isAllocatable__anon289e30a70111::MachineVerifier187     bool isAllocatable(unsigned Reg) {
188       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189     }
190 
191     // Analysis information if available
192     LiveVariables *LiveVars;
193     LiveIntervals *LiveInts;
194     LiveStacks *LiveStks;
195     SlotIndexes *Indexes;
196 
197     void visitMachineFunctionBefore();
198     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199     void visitMachineBundleBefore(const MachineInstr *MI);
200     void visitMachineInstrBefore(const MachineInstr *MI);
201     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202     void visitMachineInstrAfter(const MachineInstr *MI);
203     void visitMachineBundleAfter(const MachineInstr *MI);
204     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205     void visitMachineFunctionAfter();
206 
report__anon289e30a70111::MachineVerifier207     template <typename T> void report(const char *msg, ilist_iterator<T> I) {
208       report(msg, &*I);
209     }
210     void report(const char *msg, const MachineFunction *MF);
211     void report(const char *msg, const MachineBasicBlock *MBB);
212     void report(const char *msg, const MachineInstr *MI);
213     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
214 
215     void report_context(const LiveInterval &LI) const;
216     void report_context(const LiveRange &LR, unsigned Reg,
217                         LaneBitmask LaneMask) const;
218     void report_context(const LiveRange::Segment &S) const;
219     void report_context(const VNInfo &VNI) const;
220 
221     void verifyInlineAsm(const MachineInstr *MI);
222 
223     void checkLiveness(const MachineOperand *MO, unsigned MONum);
224     void markReachable(const MachineBasicBlock *MBB);
225     void calcRegsPassed();
226     void checkPHIOps(const MachineBasicBlock *MBB);
227 
228     void calcRegsRequired();
229     void verifyLiveVariables();
230     void verifyLiveIntervals();
231     void verifyLiveInterval(const LiveInterval&);
232     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
233                               unsigned);
234     void verifyLiveRangeSegment(const LiveRange&,
235                                 const LiveRange::const_iterator I, unsigned,
236                                 unsigned);
237     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
238 
239     void verifyStackFrame();
240 
241     void verifySlotIndexes() const;
242   };
243 
244   struct MachineVerifierPass : public MachineFunctionPass {
245     static char ID; // Pass ID, replacement for typeid
246     const std::string Banner;
247 
MachineVerifierPass__anon289e30a70111::MachineVerifierPass248     MachineVerifierPass(const std::string &banner = nullptr)
249       : MachineFunctionPass(ID), Banner(banner) {
250         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
251       }
252 
getAnalysisUsage__anon289e30a70111::MachineVerifierPass253     void getAnalysisUsage(AnalysisUsage &AU) const override {
254       AU.setPreservesAll();
255       MachineFunctionPass::getAnalysisUsage(AU);
256     }
257 
runOnMachineFunction__anon289e30a70111::MachineVerifierPass258     bool runOnMachineFunction(MachineFunction &MF) override {
259       MF.verify(this, Banner.c_str());
260       return false;
261     }
262   };
263 
264 }
265 
266 char MachineVerifierPass::ID = 0;
267 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
268                 "Verify generated machine code", false, false)
269 
createMachineVerifierPass(const std::string & Banner)270 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
271   return new MachineVerifierPass(Banner);
272 }
273 
verify(Pass * p,const char * Banner) const274 void MachineFunction::verify(Pass *p, const char *Banner) const {
275   MachineVerifier(p, Banner)
276     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
277 }
278 
verifySlotIndexes() const279 void MachineVerifier::verifySlotIndexes() const {
280   if (Indexes == nullptr)
281     return;
282 
283   // Ensure the IdxMBB list is sorted by slot indexes.
284   SlotIndex Last;
285   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
286        E = Indexes->MBBIndexEnd(); I != E; ++I) {
287     assert(!Last.isValid() || I->first > Last);
288     Last = I->first;
289   }
290 }
291 
runOnMachineFunction(MachineFunction & MF)292 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
293   foundErrors = 0;
294 
295   this->MF = &MF;
296   TM = &MF.getTarget();
297   TII = MF.getSubtarget().getInstrInfo();
298   TRI = MF.getSubtarget().getRegisterInfo();
299   MRI = &MF.getRegInfo();
300 
301   LiveVars = nullptr;
302   LiveInts = nullptr;
303   LiveStks = nullptr;
304   Indexes = nullptr;
305   if (PASS) {
306     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
307     // We don't want to verify LiveVariables if LiveIntervals is available.
308     if (!LiveInts)
309       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
310     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
311     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
312   }
313 
314   verifySlotIndexes();
315 
316   visitMachineFunctionBefore();
317   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
318        MFI!=MFE; ++MFI) {
319     visitMachineBasicBlockBefore(&*MFI);
320     // Keep track of the current bundle header.
321     const MachineInstr *CurBundle = nullptr;
322     // Do we expect the next instruction to be part of the same bundle?
323     bool InBundle = false;
324 
325     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
326            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
327       if (MBBI->getParent() != &*MFI) {
328         report("Bad instruction parent pointer", MFI);
329         errs() << "Instruction: " << *MBBI;
330         continue;
331       }
332 
333       // Check for consistent bundle flags.
334       if (InBundle && !MBBI->isBundledWithPred())
335         report("Missing BundledPred flag, "
336                "BundledSucc was set on predecessor",
337                &*MBBI);
338       if (!InBundle && MBBI->isBundledWithPred())
339         report("BundledPred flag is set, "
340                "but BundledSucc not set on predecessor",
341                &*MBBI);
342 
343       // Is this a bundle header?
344       if (!MBBI->isInsideBundle()) {
345         if (CurBundle)
346           visitMachineBundleAfter(CurBundle);
347         CurBundle = &*MBBI;
348         visitMachineBundleBefore(CurBundle);
349       } else if (!CurBundle)
350         report("No bundle header", MBBI);
351       visitMachineInstrBefore(&*MBBI);
352       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
353         const MachineInstr &MI = *MBBI;
354         const MachineOperand &Op = MI.getOperand(I);
355         if (Op.getParent() != &MI) {
356           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
357           // functions when replacing operands of a MachineInstr.
358           report("Instruction has operand with wrong parent set", &MI);
359         }
360 
361         visitMachineOperand(&Op, I);
362       }
363 
364       visitMachineInstrAfter(&*MBBI);
365 
366       // Was this the last bundled instruction?
367       InBundle = MBBI->isBundledWithSucc();
368     }
369     if (CurBundle)
370       visitMachineBundleAfter(CurBundle);
371     if (InBundle)
372       report("BundledSucc flag set on last instruction in block", &MFI->back());
373     visitMachineBasicBlockAfter(&*MFI);
374   }
375   visitMachineFunctionAfter();
376 
377   if (foundErrors)
378     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
379 
380   // Clean up.
381   regsLive.clear();
382   regsDefined.clear();
383   regsDead.clear();
384   regsKilled.clear();
385   regMasks.clear();
386   regsLiveInButUnused.clear();
387   MBBInfoMap.clear();
388 
389   return false;                 // no changes
390 }
391 
report(const char * msg,const MachineFunction * MF)392 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
393   assert(MF);
394   errs() << '\n';
395   if (!foundErrors++) {
396     if (Banner)
397       errs() << "# " << Banner << '\n';
398     if (LiveInts != nullptr)
399       LiveInts->print(errs());
400     else
401       MF->print(errs(), Indexes);
402   }
403   errs() << "*** Bad machine code: " << msg << " ***\n"
404       << "- function:    " << MF->getName() << "\n";
405 }
406 
report(const char * msg,const MachineBasicBlock * MBB)407 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
408   assert(MBB);
409   report(msg, MBB->getParent());
410   errs() << "- basic block: BB#" << MBB->getNumber()
411       << ' ' << MBB->getName()
412       << " (" << (const void*)MBB << ')';
413   if (Indexes)
414     errs() << " [" << Indexes->getMBBStartIdx(MBB)
415         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
416   errs() << '\n';
417 }
418 
report(const char * msg,const MachineInstr * MI)419 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
420   assert(MI);
421   report(msg, MI->getParent());
422   errs() << "- instruction: ";
423   if (Indexes && Indexes->hasIndex(MI))
424     errs() << Indexes->getInstructionIndex(MI) << '\t';
425   MI->print(errs(), /*SkipOpers=*/true);
426   errs() << '\n';
427 }
428 
report(const char * msg,const MachineOperand * MO,unsigned MONum)429 void MachineVerifier::report(const char *msg,
430                              const MachineOperand *MO, unsigned MONum) {
431   assert(MO);
432   report(msg, MO->getParent());
433   errs() << "- operand " << MONum << ":   ";
434   MO->print(errs(), TRI);
435   errs() << "\n";
436 }
437 
report_context(const LiveInterval & LI) const438 void MachineVerifier::report_context(const LiveInterval &LI) const {
439   errs() << "- interval:    " << LI << '\n';
440 }
441 
report_context(const LiveRange & LR,unsigned Reg,LaneBitmask LaneMask) const442 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg,
443                                      LaneBitmask LaneMask) const {
444   errs() << "- register:    " << PrintReg(Reg, TRI) << '\n';
445   if (LaneMask != 0)
446     errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
447   errs() << "- liverange:   " << LR << '\n';
448 }
449 
report_context(const LiveRange::Segment & S) const450 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
451   errs() << "- segment:     " << S << '\n';
452 }
453 
report_context(const VNInfo & VNI) const454 void MachineVerifier::report_context(const VNInfo &VNI) const {
455   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
456 }
457 
markReachable(const MachineBasicBlock * MBB)458 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
459   BBInfo &MInfo = MBBInfoMap[MBB];
460   if (!MInfo.reachable) {
461     MInfo.reachable = true;
462     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
463            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
464       markReachable(*SuI);
465   }
466 }
467 
visitMachineFunctionBefore()468 void MachineVerifier::visitMachineFunctionBefore() {
469   lastIndex = SlotIndex();
470   regsReserved = MRI->getReservedRegs();
471 
472   // A sub-register of a reserved register is also reserved
473   for (int Reg = regsReserved.find_first(); Reg>=0;
474        Reg = regsReserved.find_next(Reg)) {
475     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
476       // FIXME: This should probably be:
477       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
478       regsReserved.set(*SubRegs);
479     }
480   }
481 
482   markReachable(&MF->front());
483 
484   // Build a set of the basic blocks in the function.
485   FunctionBlocks.clear();
486   for (const auto &MBB : *MF) {
487     FunctionBlocks.insert(&MBB);
488     BBInfo &MInfo = MBBInfoMap[&MBB];
489 
490     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
491     if (MInfo.Preds.size() != MBB.pred_size())
492       report("MBB has duplicate entries in its predecessor list.", &MBB);
493 
494     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
495     if (MInfo.Succs.size() != MBB.succ_size())
496       report("MBB has duplicate entries in its successor list.", &MBB);
497   }
498 
499   // Check that the register use lists are sane.
500   MRI->verifyUseLists();
501 
502   verifyStackFrame();
503 }
504 
505 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)506 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
507                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
508   if (*i == a)
509     return *++i == b;
510   if (*i == b)
511     return *++i == a;
512   return false;
513 }
514 
515 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)516 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
517   FirstTerminator = nullptr;
518 
519   if (MRI->isSSA()) {
520     // If this block has allocatable physical registers live-in, check that
521     // it is an entry block or landing pad.
522     for (const auto &LI : MBB->liveins()) {
523       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
524           MBB != MBB->getParent()->begin()) {
525         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
526       }
527     }
528   }
529 
530   // Count the number of landing pad successors.
531   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
532   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
533        E = MBB->succ_end(); I != E; ++I) {
534     if ((*I)->isEHPad())
535       LandingPadSuccs.insert(*I);
536     if (!FunctionBlocks.count(*I))
537       report("MBB has successor that isn't part of the function.", MBB);
538     if (!MBBInfoMap[*I].Preds.count(MBB)) {
539       report("Inconsistent CFG", MBB);
540       errs() << "MBB is not in the predecessor list of the successor BB#"
541           << (*I)->getNumber() << ".\n";
542     }
543   }
544 
545   // Check the predecessor list.
546   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
547        E = MBB->pred_end(); I != E; ++I) {
548     if (!FunctionBlocks.count(*I))
549       report("MBB has predecessor that isn't part of the function.", MBB);
550     if (!MBBInfoMap[*I].Succs.count(MBB)) {
551       report("Inconsistent CFG", MBB);
552       errs() << "MBB is not in the successor list of the predecessor BB#"
553           << (*I)->getNumber() << ".\n";
554     }
555   }
556 
557   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
558   const BasicBlock *BB = MBB->getBasicBlock();
559   const Function *Fn = MF->getFunction();
560   if (LandingPadSuccs.size() > 1 &&
561       !(AsmInfo &&
562         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
563         BB && isa<SwitchInst>(BB->getTerminator())) &&
564       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
565     report("MBB has more than one landing pad successor", MBB);
566 
567   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
568   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
569   SmallVector<MachineOperand, 4> Cond;
570   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
571                           TBB, FBB, Cond)) {
572     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
573     // check whether its answers match up with reality.
574     if (!TBB && !FBB) {
575       // Block falls through to its successor.
576       MachineFunction::const_iterator MBBI = MBB->getIterator();
577       ++MBBI;
578       if (MBBI == MF->end()) {
579         // It's possible that the block legitimately ends with a noreturn
580         // call or an unreachable, in which case it won't actually fall
581         // out the bottom of the function.
582       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
583         // It's possible that the block legitimately ends with a noreturn
584         // call or an unreachable, in which case it won't actuall fall
585         // out of the block.
586       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
587         report("MBB exits via unconditional fall-through but doesn't have "
588                "exactly one CFG successor!", MBB);
589       } else if (!MBB->isSuccessor(&*MBBI)) {
590         report("MBB exits via unconditional fall-through but its successor "
591                "differs from its CFG successor!", MBB);
592       }
593       if (!MBB->empty() && MBB->back().isBarrier() &&
594           !TII->isPredicated(&MBB->back())) {
595         report("MBB exits via unconditional fall-through but ends with a "
596                "barrier instruction!", MBB);
597       }
598       if (!Cond.empty()) {
599         report("MBB exits via unconditional fall-through but has a condition!",
600                MBB);
601       }
602     } else if (TBB && !FBB && Cond.empty()) {
603       // Block unconditionally branches somewhere.
604       // If the block has exactly one successor, that happens to be a
605       // landingpad, accept it as valid control flow.
606       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
607           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
608            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
609         report("MBB exits via unconditional branch but doesn't have "
610                "exactly one CFG successor!", MBB);
611       } else if (!MBB->isSuccessor(TBB)) {
612         report("MBB exits via unconditional branch but the CFG "
613                "successor doesn't match the actual successor!", MBB);
614       }
615       if (MBB->empty()) {
616         report("MBB exits via unconditional branch but doesn't contain "
617                "any instructions!", MBB);
618       } else if (!MBB->back().isBarrier()) {
619         report("MBB exits via unconditional branch but doesn't end with a "
620                "barrier instruction!", MBB);
621       } else if (!MBB->back().isTerminator()) {
622         report("MBB exits via unconditional branch but the branch isn't a "
623                "terminator instruction!", MBB);
624       }
625     } else if (TBB && !FBB && !Cond.empty()) {
626       // Block conditionally branches somewhere, otherwise falls through.
627       MachineFunction::const_iterator MBBI = MBB->getIterator();
628       ++MBBI;
629       if (MBBI == MF->end()) {
630         report("MBB conditionally falls through out of function!", MBB);
631       } else if (MBB->succ_size() == 1) {
632         // A conditional branch with only one successor is weird, but allowed.
633         if (&*MBBI != TBB)
634           report("MBB exits via conditional branch/fall-through but only has "
635                  "one CFG successor!", MBB);
636         else if (TBB != *MBB->succ_begin())
637           report("MBB exits via conditional branch/fall-through but the CFG "
638                  "successor don't match the actual successor!", MBB);
639       } else if (MBB->succ_size() != 2) {
640         report("MBB exits via conditional branch/fall-through but doesn't have "
641                "exactly two CFG successors!", MBB);
642       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
643         report("MBB exits via conditional branch/fall-through but the CFG "
644                "successors don't match the actual successors!", MBB);
645       }
646       if (MBB->empty()) {
647         report("MBB exits via conditional branch/fall-through but doesn't "
648                "contain any instructions!", MBB);
649       } else if (MBB->back().isBarrier()) {
650         report("MBB exits via conditional branch/fall-through but ends with a "
651                "barrier instruction!", MBB);
652       } else if (!MBB->back().isTerminator()) {
653         report("MBB exits via conditional branch/fall-through but the branch "
654                "isn't a terminator instruction!", MBB);
655       }
656     } else if (TBB && FBB) {
657       // Block conditionally branches somewhere, otherwise branches
658       // somewhere else.
659       if (MBB->succ_size() == 1) {
660         // A conditional branch with only one successor is weird, but allowed.
661         if (FBB != TBB)
662           report("MBB exits via conditional branch/branch through but only has "
663                  "one CFG successor!", MBB);
664         else if (TBB != *MBB->succ_begin())
665           report("MBB exits via conditional branch/branch through but the CFG "
666                  "successor don't match the actual successor!", MBB);
667       } else if (MBB->succ_size() != 2) {
668         report("MBB exits via conditional branch/branch but doesn't have "
669                "exactly two CFG successors!", MBB);
670       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
671         report("MBB exits via conditional branch/branch but the CFG "
672                "successors don't match the actual successors!", MBB);
673       }
674       if (MBB->empty()) {
675         report("MBB exits via conditional branch/branch but doesn't "
676                "contain any instructions!", MBB);
677       } else if (!MBB->back().isBarrier()) {
678         report("MBB exits via conditional branch/branch but doesn't end with a "
679                "barrier instruction!", MBB);
680       } else if (!MBB->back().isTerminator()) {
681         report("MBB exits via conditional branch/branch but the branch "
682                "isn't a terminator instruction!", MBB);
683       }
684       if (Cond.empty()) {
685         report("MBB exits via conditinal branch/branch but there's no "
686                "condition!", MBB);
687       }
688     } else {
689       report("AnalyzeBranch returned invalid data!", MBB);
690     }
691   }
692 
693   regsLive.clear();
694   for (const auto &LI : MBB->liveins()) {
695     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
696       report("MBB live-in list contains non-physical register", MBB);
697       continue;
698     }
699     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
700          SubRegs.isValid(); ++SubRegs)
701       regsLive.insert(*SubRegs);
702   }
703   regsLiveInButUnused = regsLive;
704 
705   const MachineFrameInfo *MFI = MF->getFrameInfo();
706   assert(MFI && "Function has no frame info");
707   BitVector PR = MFI->getPristineRegs(*MF);
708   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
709     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
710          SubRegs.isValid(); ++SubRegs)
711       regsLive.insert(*SubRegs);
712   }
713 
714   regsKilled.clear();
715   regsDefined.clear();
716 
717   if (Indexes)
718     lastIndex = Indexes->getMBBStartIdx(MBB);
719 }
720 
721 // This function gets called for all bundle headers, including normal
722 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)723 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
724   if (Indexes && Indexes->hasIndex(MI)) {
725     SlotIndex idx = Indexes->getInstructionIndex(MI);
726     if (!(idx > lastIndex)) {
727       report("Instruction index out of order", MI);
728       errs() << "Last instruction was at " << lastIndex << '\n';
729     }
730     lastIndex = idx;
731   }
732 
733   // Ensure non-terminators don't follow terminators.
734   // Ignore predicated terminators formed by if conversion.
735   // FIXME: If conversion shouldn't need to violate this rule.
736   if (MI->isTerminator() && !TII->isPredicated(MI)) {
737     if (!FirstTerminator)
738       FirstTerminator = MI;
739   } else if (FirstTerminator) {
740     report("Non-terminator instruction after the first terminator", MI);
741     errs() << "First terminator was:\t" << *FirstTerminator;
742   }
743 }
744 
745 // The operands on an INLINEASM instruction must follow a template.
746 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)747 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
748   // The first two operands on INLINEASM are the asm string and global flags.
749   if (MI->getNumOperands() < 2) {
750     report("Too few operands on inline asm", MI);
751     return;
752   }
753   if (!MI->getOperand(0).isSymbol())
754     report("Asm string must be an external symbol", MI);
755   if (!MI->getOperand(1).isImm())
756     report("Asm flags must be an immediate", MI);
757   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
758   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
759   if (!isUInt<5>(MI->getOperand(1).getImm()))
760     report("Unknown asm flags", &MI->getOperand(1), 1);
761 
762   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
763 
764   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
765   unsigned NumOps;
766   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
767     const MachineOperand &MO = MI->getOperand(OpNo);
768     // There may be implicit ops after the fixed operands.
769     if (!MO.isImm())
770       break;
771     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
772   }
773 
774   if (OpNo > MI->getNumOperands())
775     report("Missing operands in last group", MI);
776 
777   // An optional MDNode follows the groups.
778   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
779     ++OpNo;
780 
781   // All trailing operands must be implicit registers.
782   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
783     const MachineOperand &MO = MI->getOperand(OpNo);
784     if (!MO.isReg() || !MO.isImplicit())
785       report("Expected implicit register after groups", &MO, OpNo);
786   }
787 }
788 
visitMachineInstrBefore(const MachineInstr * MI)789 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
790   const MCInstrDesc &MCID = MI->getDesc();
791   if (MI->getNumOperands() < MCID.getNumOperands()) {
792     report("Too few operands", MI);
793     errs() << MCID.getNumOperands() << " operands expected, but "
794         << MI->getNumOperands() << " given.\n";
795   }
796 
797   // Check the tied operands.
798   if (MI->isInlineAsm())
799     verifyInlineAsm(MI);
800 
801   // Check the MachineMemOperands for basic consistency.
802   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
803        E = MI->memoperands_end(); I != E; ++I) {
804     if ((*I)->isLoad() && !MI->mayLoad())
805       report("Missing mayLoad flag", MI);
806     if ((*I)->isStore() && !MI->mayStore())
807       report("Missing mayStore flag", MI);
808   }
809 
810   // Debug values must not have a slot index.
811   // Other instructions must have one, unless they are inside a bundle.
812   if (LiveInts) {
813     bool mapped = !LiveInts->isNotInMIMap(MI);
814     if (MI->isDebugValue()) {
815       if (mapped)
816         report("Debug instruction has a slot index", MI);
817     } else if (MI->isInsideBundle()) {
818       if (mapped)
819         report("Instruction inside bundle has a slot index", MI);
820     } else {
821       if (!mapped)
822         report("Missing slot index", MI);
823     }
824   }
825 
826   StringRef ErrorInfo;
827   if (!TII->verifyInstruction(MI, ErrorInfo))
828     report(ErrorInfo.data(), MI);
829 }
830 
831 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)832 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
833   const MachineInstr *MI = MO->getParent();
834   const MCInstrDesc &MCID = MI->getDesc();
835   unsigned NumDefs = MCID.getNumDefs();
836   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
837     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
838 
839   // The first MCID.NumDefs operands must be explicit register defines
840   if (MONum < NumDefs) {
841     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
842     if (!MO->isReg())
843       report("Explicit definition must be a register", MO, MONum);
844     else if (!MO->isDef() && !MCOI.isOptionalDef())
845       report("Explicit definition marked as use", MO, MONum);
846     else if (MO->isImplicit())
847       report("Explicit definition marked as implicit", MO, MONum);
848   } else if (MONum < MCID.getNumOperands()) {
849     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
850     // Don't check if it's the last operand in a variadic instruction. See,
851     // e.g., LDM_RET in the arm back end.
852     if (MO->isReg() &&
853         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
854       if (MO->isDef() && !MCOI.isOptionalDef())
855         report("Explicit operand marked as def", MO, MONum);
856       if (MO->isImplicit())
857         report("Explicit operand marked as implicit", MO, MONum);
858     }
859 
860     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
861     if (TiedTo != -1) {
862       if (!MO->isReg())
863         report("Tied use must be a register", MO, MONum);
864       else if (!MO->isTied())
865         report("Operand should be tied", MO, MONum);
866       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
867         report("Tied def doesn't match MCInstrDesc", MO, MONum);
868     } else if (MO->isReg() && MO->isTied())
869       report("Explicit operand should not be tied", MO, MONum);
870   } else {
871     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
872     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
873       report("Extra explicit operand on non-variadic instruction", MO, MONum);
874   }
875 
876   switch (MO->getType()) {
877   case MachineOperand::MO_Register: {
878     const unsigned Reg = MO->getReg();
879     if (!Reg)
880       return;
881     if (MRI->tracksLiveness() && !MI->isDebugValue())
882       checkLiveness(MO, MONum);
883 
884     // Verify the consistency of tied operands.
885     if (MO->isTied()) {
886       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
887       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
888       if (!OtherMO.isReg())
889         report("Must be tied to a register", MO, MONum);
890       if (!OtherMO.isTied())
891         report("Missing tie flags on tied operand", MO, MONum);
892       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
893         report("Inconsistent tie links", MO, MONum);
894       if (MONum < MCID.getNumDefs()) {
895         if (OtherIdx < MCID.getNumOperands()) {
896           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
897             report("Explicit def tied to explicit use without tie constraint",
898                    MO, MONum);
899         } else {
900           if (!OtherMO.isImplicit())
901             report("Explicit def should be tied to implicit use", MO, MONum);
902         }
903       }
904     }
905 
906     // Verify two-address constraints after leaving SSA form.
907     unsigned DefIdx;
908     if (!MRI->isSSA() && MO->isUse() &&
909         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
910         Reg != MI->getOperand(DefIdx).getReg())
911       report("Two-address instruction operands must be identical", MO, MONum);
912 
913     // Check register classes.
914     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
915       unsigned SubIdx = MO->getSubReg();
916 
917       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
918         if (SubIdx) {
919           report("Illegal subregister index for physical register", MO, MONum);
920           return;
921         }
922         if (const TargetRegisterClass *DRC =
923               TII->getRegClass(MCID, MONum, TRI, *MF)) {
924           if (!DRC->contains(Reg)) {
925             report("Illegal physical register for instruction", MO, MONum);
926             errs() << TRI->getName(Reg) << " is not a "
927                 << TRI->getRegClassName(DRC) << " register.\n";
928           }
929         }
930       } else {
931         // Virtual register.
932         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
933         if (SubIdx) {
934           const TargetRegisterClass *SRC =
935             TRI->getSubClassWithSubReg(RC, SubIdx);
936           if (!SRC) {
937             report("Invalid subregister index for virtual register", MO, MONum);
938             errs() << "Register class " << TRI->getRegClassName(RC)
939                 << " does not support subreg index " << SubIdx << "\n";
940             return;
941           }
942           if (RC != SRC) {
943             report("Invalid register class for subregister index", MO, MONum);
944             errs() << "Register class " << TRI->getRegClassName(RC)
945                 << " does not fully support subreg index " << SubIdx << "\n";
946             return;
947           }
948         }
949         if (const TargetRegisterClass *DRC =
950               TII->getRegClass(MCID, MONum, TRI, *MF)) {
951           if (SubIdx) {
952             const TargetRegisterClass *SuperRC =
953                 TRI->getLargestLegalSuperClass(RC, *MF);
954             if (!SuperRC) {
955               report("No largest legal super class exists.", MO, MONum);
956               return;
957             }
958             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
959             if (!DRC) {
960               report("No matching super-reg register class.", MO, MONum);
961               return;
962             }
963           }
964           if (!RC->hasSuperClassEq(DRC)) {
965             report("Illegal virtual register for instruction", MO, MONum);
966             errs() << "Expected a " << TRI->getRegClassName(DRC)
967                 << " register, but got a " << TRI->getRegClassName(RC)
968                 << " register\n";
969           }
970         }
971       }
972     }
973     break;
974   }
975 
976   case MachineOperand::MO_RegisterMask:
977     regMasks.push_back(MO->getRegMask());
978     break;
979 
980   case MachineOperand::MO_MachineBasicBlock:
981     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
982       report("PHI operand is not in the CFG", MO, MONum);
983     break;
984 
985   case MachineOperand::MO_FrameIndex:
986     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
987         LiveInts && !LiveInts->isNotInMIMap(MI)) {
988       int FI = MO->getIndex();
989       LiveInterval &LI = LiveStks->getInterval(FI);
990       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
991 
992       bool stores = MI->mayStore();
993       bool loads = MI->mayLoad();
994       // For a memory-to-memory move, we need to check if the frame
995       // index is used for storing or loading, by inspecting the
996       // memory operands.
997       if (stores && loads) {
998         for (auto *MMO : MI->memoperands()) {
999           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1000           if (PSV == nullptr) continue;
1001           const FixedStackPseudoSourceValue *Value =
1002             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1003           if (Value == nullptr) continue;
1004           if (Value->getFrameIndex() != FI) continue;
1005 
1006           if (MMO->isStore())
1007             loads = false;
1008           else
1009             stores = false;
1010           break;
1011         }
1012         if (loads == stores)
1013           report("Missing fixed stack memoperand.", MI);
1014       }
1015       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1016         report("Instruction loads from dead spill slot", MO, MONum);
1017         errs() << "Live stack: " << LI << '\n';
1018       }
1019       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1020         report("Instruction stores to dead spill slot", MO, MONum);
1021         errs() << "Live stack: " << LI << '\n';
1022       }
1023     }
1024     break;
1025 
1026   default:
1027     break;
1028   }
1029 }
1030 
checkLiveness(const MachineOperand * MO,unsigned MONum)1031 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1032   const MachineInstr *MI = MO->getParent();
1033   const unsigned Reg = MO->getReg();
1034 
1035   // Both use and def operands can read a register.
1036   if (MO->readsReg()) {
1037     regsLiveInButUnused.erase(Reg);
1038 
1039     if (MO->isKill())
1040       addRegWithSubRegs(regsKilled, Reg);
1041 
1042     // Check that LiveVars knows this kill.
1043     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1044         MO->isKill()) {
1045       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1046       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1047         report("Kill missing from LiveVariables", MO, MONum);
1048     }
1049 
1050     // Check LiveInts liveness and kill.
1051     if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1052       SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1053       // Check the cached regunit intervals.
1054       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1055         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1056           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1057             LiveQueryResult LRQ = LR->Query(UseIdx);
1058             if (!LRQ.valueIn()) {
1059               report("No live segment at use", MO, MONum);
1060               errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1061                   << ' ' << *LR << '\n';
1062             }
1063             if (MO->isKill() && !LRQ.isKill()) {
1064               report("Live range continues after kill flag", MO, MONum);
1065               errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1066             }
1067           }
1068         }
1069       }
1070 
1071       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1072         if (LiveInts->hasInterval(Reg)) {
1073           // This is a virtual register interval.
1074           const LiveInterval &LI = LiveInts->getInterval(Reg);
1075           LiveQueryResult LRQ = LI.Query(UseIdx);
1076           if (!LRQ.valueIn()) {
1077             report("No live segment at use", MO, MONum);
1078             errs() << UseIdx << " is not live in " << LI << '\n';
1079           }
1080           // Check for extra kill flags.
1081           // Note that we allow missing kill flags for now.
1082           if (MO->isKill() && !LRQ.isKill()) {
1083             report("Live range continues after kill flag", MO, MONum);
1084             errs() << "Live range: " << LI << '\n';
1085           }
1086         } else {
1087           report("Virtual register has no live interval", MO, MONum);
1088         }
1089       }
1090     }
1091 
1092     // Use of a dead register.
1093     if (!regsLive.count(Reg)) {
1094       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1095         // Reserved registers may be used even when 'dead'.
1096         bool Bad = !isReserved(Reg);
1097         // We are fine if just any subregister has a defined value.
1098         if (Bad) {
1099           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1100                ++SubRegs) {
1101             if (regsLive.count(*SubRegs)) {
1102               Bad = false;
1103               break;
1104             }
1105           }
1106         }
1107         // If there is an additional implicit-use of a super register we stop
1108         // here. By definition we are fine if the super register is not
1109         // (completely) dead, if the complete super register is dead we will
1110         // get a report for its operand.
1111         if (Bad) {
1112           for (const MachineOperand &MOP : MI->uses()) {
1113             if (!MOP.isReg())
1114               continue;
1115             if (!MOP.isImplicit())
1116               continue;
1117             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1118                  ++SubRegs) {
1119               if (*SubRegs == Reg) {
1120                 Bad = false;
1121                 break;
1122               }
1123             }
1124           }
1125         }
1126         if (Bad)
1127           report("Using an undefined physical register", MO, MONum);
1128       } else if (MRI->def_empty(Reg)) {
1129         report("Reading virtual register without a def", MO, MONum);
1130       } else {
1131         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1132         // We don't know which virtual registers are live in, so only complain
1133         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1134         // must be live in. PHI instructions are handled separately.
1135         if (MInfo.regsKilled.count(Reg))
1136           report("Using a killed virtual register", MO, MONum);
1137         else if (!MI->isPHI())
1138           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1139       }
1140     }
1141   }
1142 
1143   if (MO->isDef()) {
1144     // Register defined.
1145     // TODO: verify that earlyclobber ops are not used.
1146     if (MO->isDead())
1147       addRegWithSubRegs(regsDead, Reg);
1148     else
1149       addRegWithSubRegs(regsDefined, Reg);
1150 
1151     // Verify SSA form.
1152     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1153         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1154       report("Multiple virtual register defs in SSA form", MO, MONum);
1155 
1156     // Check LiveInts for a live segment, but only for virtual registers.
1157     if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1158         !LiveInts->isNotInMIMap(MI)) {
1159       SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1160       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1161       if (LiveInts->hasInterval(Reg)) {
1162         const LiveInterval &LI = LiveInts->getInterval(Reg);
1163         if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1164           assert(VNI && "NULL valno is not allowed");
1165           if (VNI->def != DefIdx) {
1166             report("Inconsistent valno->def", MO, MONum);
1167             errs() << "Valno " << VNI->id << " is not defined at "
1168               << DefIdx << " in " << LI << '\n';
1169           }
1170         } else {
1171           report("No live segment at def", MO, MONum);
1172           errs() << DefIdx << " is not live in " << LI << '\n';
1173         }
1174         // Check that, if the dead def flag is present, LiveInts agree.
1175         if (MO->isDead()) {
1176           LiveQueryResult LRQ = LI.Query(DefIdx);
1177           if (!LRQ.isDeadDef()) {
1178             report("Live range continues after dead def flag", MO, MONum);
1179             errs() << "Live range: " << LI << '\n';
1180           }
1181         }
1182       } else {
1183         report("Virtual register has no Live interval", MO, MONum);
1184       }
1185     }
1186   }
1187 }
1188 
visitMachineInstrAfter(const MachineInstr * MI)1189 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1190 }
1191 
1192 // This function gets called after visiting all instructions in a bundle. The
1193 // argument points to the bundle header.
1194 // Normal stand-alone instructions are also considered 'bundles', and this
1195 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1196 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1197   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1198   set_union(MInfo.regsKilled, regsKilled);
1199   set_subtract(regsLive, regsKilled); regsKilled.clear();
1200   // Kill any masked registers.
1201   while (!regMasks.empty()) {
1202     const uint32_t *Mask = regMasks.pop_back_val();
1203     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1204       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1205           MachineOperand::clobbersPhysReg(Mask, *I))
1206         regsDead.push_back(*I);
1207   }
1208   set_subtract(regsLive, regsDead);   regsDead.clear();
1209   set_union(regsLive, regsDefined);   regsDefined.clear();
1210 }
1211 
1212 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1213 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1214   MBBInfoMap[MBB].regsLiveOut = regsLive;
1215   regsLive.clear();
1216 
1217   if (Indexes) {
1218     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1219     if (!(stop > lastIndex)) {
1220       report("Block ends before last instruction index", MBB);
1221       errs() << "Block ends at " << stop
1222           << " last instruction was at " << lastIndex << '\n';
1223     }
1224     lastIndex = stop;
1225   }
1226 }
1227 
1228 // Calculate the largest possible vregsPassed sets. These are the registers that
1229 // can pass through an MBB live, but may not be live every time. It is assumed
1230 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1231 void MachineVerifier::calcRegsPassed() {
1232   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1233   // have any vregsPassed.
1234   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1235   for (const auto &MBB : *MF) {
1236     BBInfo &MInfo = MBBInfoMap[&MBB];
1237     if (!MInfo.reachable)
1238       continue;
1239     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1240            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1241       BBInfo &SInfo = MBBInfoMap[*SuI];
1242       if (SInfo.addPassed(MInfo.regsLiveOut))
1243         todo.insert(*SuI);
1244     }
1245   }
1246 
1247   // Iteratively push vregsPassed to successors. This will converge to the same
1248   // final state regardless of DenseSet iteration order.
1249   while (!todo.empty()) {
1250     const MachineBasicBlock *MBB = *todo.begin();
1251     todo.erase(MBB);
1252     BBInfo &MInfo = MBBInfoMap[MBB];
1253     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1254            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1255       if (*SuI == MBB)
1256         continue;
1257       BBInfo &SInfo = MBBInfoMap[*SuI];
1258       if (SInfo.addPassed(MInfo.vregsPassed))
1259         todo.insert(*SuI);
1260     }
1261   }
1262 }
1263 
1264 // Calculate the set of virtual registers that must be passed through each basic
1265 // block in order to satisfy the requirements of successor blocks. This is very
1266 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1267 void MachineVerifier::calcRegsRequired() {
1268   // First push live-in regs to predecessors' vregsRequired.
1269   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1270   for (const auto &MBB : *MF) {
1271     BBInfo &MInfo = MBBInfoMap[&MBB];
1272     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1273            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1274       BBInfo &PInfo = MBBInfoMap[*PrI];
1275       if (PInfo.addRequired(MInfo.vregsLiveIn))
1276         todo.insert(*PrI);
1277     }
1278   }
1279 
1280   // Iteratively push vregsRequired to predecessors. This will converge to the
1281   // same final state regardless of DenseSet iteration order.
1282   while (!todo.empty()) {
1283     const MachineBasicBlock *MBB = *todo.begin();
1284     todo.erase(MBB);
1285     BBInfo &MInfo = MBBInfoMap[MBB];
1286     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1287            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1288       if (*PrI == MBB)
1289         continue;
1290       BBInfo &SInfo = MBBInfoMap[*PrI];
1291       if (SInfo.addRequired(MInfo.vregsRequired))
1292         todo.insert(*PrI);
1293     }
1294   }
1295 }
1296 
1297 // Check PHI instructions at the beginning of MBB. It is assumed that
1298 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock * MBB)1299 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1300   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1301   for (const auto &BBI : *MBB) {
1302     if (!BBI.isPHI())
1303       break;
1304     seen.clear();
1305 
1306     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1307       unsigned Reg = BBI.getOperand(i).getReg();
1308       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1309       if (!Pre->isSuccessor(MBB))
1310         continue;
1311       seen.insert(Pre);
1312       BBInfo &PrInfo = MBBInfoMap[Pre];
1313       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1314         report("PHI operand is not live-out from predecessor",
1315                &BBI.getOperand(i), i);
1316     }
1317 
1318     // Did we see all predecessors?
1319     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1320            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1321       if (!seen.count(*PrI)) {
1322         report("Missing PHI operand", &BBI);
1323         errs() << "BB#" << (*PrI)->getNumber()
1324             << " is a predecessor according to the CFG.\n";
1325       }
1326     }
1327   }
1328 }
1329 
visitMachineFunctionAfter()1330 void MachineVerifier::visitMachineFunctionAfter() {
1331   calcRegsPassed();
1332 
1333   for (const auto &MBB : *MF) {
1334     BBInfo &MInfo = MBBInfoMap[&MBB];
1335 
1336     // Skip unreachable MBBs.
1337     if (!MInfo.reachable)
1338       continue;
1339 
1340     checkPHIOps(&MBB);
1341   }
1342 
1343   // Now check liveness info if available
1344   calcRegsRequired();
1345 
1346   // Check for killed virtual registers that should be live out.
1347   for (const auto &MBB : *MF) {
1348     BBInfo &MInfo = MBBInfoMap[&MBB];
1349     for (RegSet::iterator
1350          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1351          ++I)
1352       if (MInfo.regsKilled.count(*I)) {
1353         report("Virtual register killed in block, but needed live out.", &MBB);
1354         errs() << "Virtual register " << PrintReg(*I)
1355             << " is used after the block.\n";
1356       }
1357   }
1358 
1359   if (!MF->empty()) {
1360     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1361     for (RegSet::iterator
1362          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1363          ++I)
1364       report("Virtual register def doesn't dominate all uses.",
1365              MRI->getVRegDef(*I));
1366   }
1367 
1368   if (LiveVars)
1369     verifyLiveVariables();
1370   if (LiveInts)
1371     verifyLiveIntervals();
1372 }
1373 
verifyLiveVariables()1374 void MachineVerifier::verifyLiveVariables() {
1375   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1376   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1377     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1378     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1379     for (const auto &MBB : *MF) {
1380       BBInfo &MInfo = MBBInfoMap[&MBB];
1381 
1382       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1383       if (MInfo.vregsRequired.count(Reg)) {
1384         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1385           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1386           errs() << "Virtual register " << PrintReg(Reg)
1387               << " must be live through the block.\n";
1388         }
1389       } else {
1390         if (VI.AliveBlocks.test(MBB.getNumber())) {
1391           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1392           errs() << "Virtual register " << PrintReg(Reg)
1393               << " is not needed live through the block.\n";
1394         }
1395       }
1396     }
1397   }
1398 }
1399 
verifyLiveIntervals()1400 void MachineVerifier::verifyLiveIntervals() {
1401   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1402   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1403     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1404 
1405     // Spilling and splitting may leave unused registers around. Skip them.
1406     if (MRI->reg_nodbg_empty(Reg))
1407       continue;
1408 
1409     if (!LiveInts->hasInterval(Reg)) {
1410       report("Missing live interval for virtual register", MF);
1411       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1412       continue;
1413     }
1414 
1415     const LiveInterval &LI = LiveInts->getInterval(Reg);
1416     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1417     verifyLiveInterval(LI);
1418   }
1419 
1420   // Verify all the cached regunit intervals.
1421   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1422     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1423       verifyLiveRange(*LR, i);
1424 }
1425 
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,unsigned Reg,LaneBitmask LaneMask)1426 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1427                                            const VNInfo *VNI, unsigned Reg,
1428                                            LaneBitmask LaneMask) {
1429   if (VNI->isUnused())
1430     return;
1431 
1432   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1433 
1434   if (!DefVNI) {
1435     report("Value not live at VNInfo def and not marked unused", MF);
1436     report_context(LR, Reg, LaneMask);
1437     report_context(*VNI);
1438     return;
1439   }
1440 
1441   if (DefVNI != VNI) {
1442     report("Live segment at def has different VNInfo", MF);
1443     report_context(LR, Reg, LaneMask);
1444     report_context(*VNI);
1445     return;
1446   }
1447 
1448   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1449   if (!MBB) {
1450     report("Invalid VNInfo definition index", MF);
1451     report_context(LR, Reg, LaneMask);
1452     report_context(*VNI);
1453     return;
1454   }
1455 
1456   if (VNI->isPHIDef()) {
1457     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1458       report("PHIDef VNInfo is not defined at MBB start", MBB);
1459       report_context(LR, Reg, LaneMask);
1460       report_context(*VNI);
1461     }
1462     return;
1463   }
1464 
1465   // Non-PHI def.
1466   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1467   if (!MI) {
1468     report("No instruction at VNInfo def index", MBB);
1469     report_context(LR, Reg, LaneMask);
1470     report_context(*VNI);
1471     return;
1472   }
1473 
1474   if (Reg != 0) {
1475     bool hasDef = false;
1476     bool isEarlyClobber = false;
1477     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1478       if (!MOI->isReg() || !MOI->isDef())
1479         continue;
1480       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1481         if (MOI->getReg() != Reg)
1482           continue;
1483       } else {
1484         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1485             !TRI->hasRegUnit(MOI->getReg(), Reg))
1486           continue;
1487       }
1488       if (LaneMask != 0 &&
1489           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1490         continue;
1491       hasDef = true;
1492       if (MOI->isEarlyClobber())
1493         isEarlyClobber = true;
1494     }
1495 
1496     if (!hasDef) {
1497       report("Defining instruction does not modify register", MI);
1498       report_context(LR, Reg, LaneMask);
1499       report_context(*VNI);
1500     }
1501 
1502     // Early clobber defs begin at USE slots, but other defs must begin at
1503     // DEF slots.
1504     if (isEarlyClobber) {
1505       if (!VNI->def.isEarlyClobber()) {
1506         report("Early clobber def must be at an early-clobber slot", MBB);
1507         report_context(LR, Reg, LaneMask);
1508         report_context(*VNI);
1509       }
1510     } else if (!VNI->def.isRegister()) {
1511       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1512       report_context(LR, Reg, LaneMask);
1513       report_context(*VNI);
1514     }
1515   }
1516 }
1517 
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,unsigned Reg,LaneBitmask LaneMask)1518 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1519                                              const LiveRange::const_iterator I,
1520                                              unsigned Reg, LaneBitmask LaneMask)
1521 {
1522   const LiveRange::Segment &S = *I;
1523   const VNInfo *VNI = S.valno;
1524   assert(VNI && "Live segment has no valno");
1525 
1526   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1527     report("Foreign valno in live segment", MF);
1528     report_context(LR, Reg, LaneMask);
1529     report_context(S);
1530     report_context(*VNI);
1531   }
1532 
1533   if (VNI->isUnused()) {
1534     report("Live segment valno is marked unused", MF);
1535     report_context(LR, Reg, LaneMask);
1536     report_context(S);
1537   }
1538 
1539   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1540   if (!MBB) {
1541     report("Bad start of live segment, no basic block", MF);
1542     report_context(LR, Reg, LaneMask);
1543     report_context(S);
1544     return;
1545   }
1546   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1547   if (S.start != MBBStartIdx && S.start != VNI->def) {
1548     report("Live segment must begin at MBB entry or valno def", MBB);
1549     report_context(LR, Reg, LaneMask);
1550     report_context(S);
1551   }
1552 
1553   const MachineBasicBlock *EndMBB =
1554     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1555   if (!EndMBB) {
1556     report("Bad end of live segment, no basic block", MF);
1557     report_context(LR, Reg, LaneMask);
1558     report_context(S);
1559     return;
1560   }
1561 
1562   // No more checks for live-out segments.
1563   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1564     return;
1565 
1566   // RegUnit intervals are allowed dead phis.
1567   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1568       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1569     return;
1570 
1571   // The live segment is ending inside EndMBB
1572   const MachineInstr *MI =
1573     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1574   if (!MI) {
1575     report("Live segment doesn't end at a valid instruction", EndMBB);
1576     report_context(LR, Reg, LaneMask);
1577     report_context(S);
1578     return;
1579   }
1580 
1581   // The block slot must refer to a basic block boundary.
1582   if (S.end.isBlock()) {
1583     report("Live segment ends at B slot of an instruction", EndMBB);
1584     report_context(LR, Reg, LaneMask);
1585     report_context(S);
1586   }
1587 
1588   if (S.end.isDead()) {
1589     // Segment ends on the dead slot.
1590     // That means there must be a dead def.
1591     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1592       report("Live segment ending at dead slot spans instructions", EndMBB);
1593       report_context(LR, Reg, LaneMask);
1594       report_context(S);
1595     }
1596   }
1597 
1598   // A live segment can only end at an early-clobber slot if it is being
1599   // redefined by an early-clobber def.
1600   if (S.end.isEarlyClobber()) {
1601     if (I+1 == LR.end() || (I+1)->start != S.end) {
1602       report("Live segment ending at early clobber slot must be "
1603              "redefined by an EC def in the same instruction", EndMBB);
1604       report_context(LR, Reg, LaneMask);
1605       report_context(S);
1606     }
1607   }
1608 
1609   // The following checks only apply to virtual registers. Physreg liveness
1610   // is too weird to check.
1611   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1612     // A live segment can end with either a redefinition, a kill flag on a
1613     // use, or a dead flag on a def.
1614     bool hasRead = false;
1615     bool hasSubRegDef = false;
1616     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1617       if (!MOI->isReg() || MOI->getReg() != Reg)
1618         continue;
1619       if (LaneMask != 0 &&
1620           (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1621         continue;
1622       if (MOI->isDef() && MOI->getSubReg() != 0)
1623         hasSubRegDef = true;
1624       if (MOI->readsReg())
1625         hasRead = true;
1626     }
1627     if (!S.end.isDead()) {
1628       if (!hasRead) {
1629         // When tracking subregister liveness, the main range must start new
1630         // values on partial register writes, even if there is no read.
1631         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1632             !hasSubRegDef) {
1633           report("Instruction ending live segment doesn't read the register",
1634                  MI);
1635           report_context(LR, Reg, LaneMask);
1636           report_context(S);
1637         }
1638       }
1639     }
1640   }
1641 
1642   // Now check all the basic blocks in this live segment.
1643   MachineFunction::const_iterator MFI = MBB->getIterator();
1644   // Is this live segment the beginning of a non-PHIDef VN?
1645   if (S.start == VNI->def && !VNI->isPHIDef()) {
1646     // Not live-in to any blocks.
1647     if (MBB == EndMBB)
1648       return;
1649     // Skip this block.
1650     ++MFI;
1651   }
1652   for (;;) {
1653     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1654     // We don't know how to track physregs into a landing pad.
1655     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1656         MFI->isEHPad()) {
1657       if (&*MFI == EndMBB)
1658         break;
1659       ++MFI;
1660       continue;
1661     }
1662 
1663     // Is VNI a PHI-def in the current block?
1664     bool IsPHI = VNI->isPHIDef() &&
1665       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1666 
1667     // Check that VNI is live-out of all predecessors.
1668     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1669          PE = MFI->pred_end(); PI != PE; ++PI) {
1670       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1671       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1672 
1673       // All predecessors must have a live-out value.
1674       if (!PVNI) {
1675         report("Register not marked live out of predecessor", *PI);
1676         report_context(LR, Reg, LaneMask);
1677         report_context(*VNI);
1678         errs() << " live into BB#" << MFI->getNumber()
1679                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1680                << PEnd << '\n';
1681         continue;
1682       }
1683 
1684       // Only PHI-defs can take different predecessor values.
1685       if (!IsPHI && PVNI != VNI) {
1686         report("Different value live out of predecessor", *PI);
1687         report_context(LR, Reg, LaneMask);
1688         errs() << "Valno #" << PVNI->id << " live out of BB#"
1689                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1690                << " live into BB#" << MFI->getNumber() << '@'
1691                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1692       }
1693     }
1694     if (&*MFI == EndMBB)
1695       break;
1696     ++MFI;
1697   }
1698 }
1699 
verifyLiveRange(const LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)1700 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1701                                       LaneBitmask LaneMask) {
1702   for (const VNInfo *VNI : LR.valnos)
1703     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1704 
1705   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1706     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1707 }
1708 
verifyLiveInterval(const LiveInterval & LI)1709 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1710   unsigned Reg = LI.reg;
1711   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1712   verifyLiveRange(LI, Reg);
1713 
1714   LaneBitmask Mask = 0;
1715   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1716   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1717     if ((Mask & SR.LaneMask) != 0) {
1718       report("Lane masks of sub ranges overlap in live interval", MF);
1719       report_context(LI);
1720     }
1721     if ((SR.LaneMask & ~MaxMask) != 0) {
1722       report("Subrange lanemask is invalid", MF);
1723       report_context(LI);
1724     }
1725     if (SR.empty()) {
1726       report("Subrange must not be empty", MF);
1727       report_context(SR, LI.reg, SR.LaneMask);
1728     }
1729     Mask |= SR.LaneMask;
1730     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1731     if (!LI.covers(SR)) {
1732       report("A Subrange is not covered by the main range", MF);
1733       report_context(LI);
1734     }
1735   }
1736 
1737   // Check the LI only has one connected component.
1738   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1739   unsigned NumComp = ConEQ.Classify(&LI);
1740   if (NumComp > 1) {
1741     report("Multiple connected components in live interval", MF);
1742     report_context(LI);
1743     for (unsigned comp = 0; comp != NumComp; ++comp) {
1744       errs() << comp << ": valnos";
1745       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1746            E = LI.vni_end(); I!=E; ++I)
1747         if (comp == ConEQ.getEqClass(*I))
1748           errs() << ' ' << (*I)->id;
1749       errs() << '\n';
1750     }
1751   }
1752 }
1753 
1754 namespace {
1755   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1756   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1757   // value is zero.
1758   // We use a bool plus an integer to capture the stack state.
1759   struct StackStateOfBB {
StackStateOfBB__anon289e30a70211::StackStateOfBB1760     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1761       ExitIsSetup(false) { }
StackStateOfBB__anon289e30a70211::StackStateOfBB1762     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1763       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1764       ExitIsSetup(ExitSetup) { }
1765     // Can be negative, which means we are setting up a frame.
1766     int EntryValue;
1767     int ExitValue;
1768     bool EntryIsSetup;
1769     bool ExitIsSetup;
1770   };
1771 }
1772 
1773 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1774 /// by a FrameDestroy <n>, stack adjustments are identical on all
1775 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()1776 void MachineVerifier::verifyStackFrame() {
1777   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1778   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1779 
1780   SmallVector<StackStateOfBB, 8> SPState;
1781   SPState.resize(MF->getNumBlockIDs());
1782   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1783 
1784   // Visit the MBBs in DFS order.
1785   for (df_ext_iterator<const MachineFunction*,
1786                        SmallPtrSet<const MachineBasicBlock*, 8> >
1787        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1788        DFI != DFE; ++DFI) {
1789     const MachineBasicBlock *MBB = *DFI;
1790 
1791     StackStateOfBB BBState;
1792     // Check the exit state of the DFS stack predecessor.
1793     if (DFI.getPathLength() >= 2) {
1794       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1795       assert(Reachable.count(StackPred) &&
1796              "DFS stack predecessor is already visited.\n");
1797       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1798       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1799       BBState.ExitValue = BBState.EntryValue;
1800       BBState.ExitIsSetup = BBState.EntryIsSetup;
1801     }
1802 
1803     // Update stack state by checking contents of MBB.
1804     for (const auto &I : *MBB) {
1805       if (I.getOpcode() == FrameSetupOpcode) {
1806         // The first operand of a FrameOpcode should be i32.
1807         int Size = I.getOperand(0).getImm();
1808         assert(Size >= 0 &&
1809           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1810 
1811         if (BBState.ExitIsSetup)
1812           report("FrameSetup is after another FrameSetup", &I);
1813         BBState.ExitValue -= Size;
1814         BBState.ExitIsSetup = true;
1815       }
1816 
1817       if (I.getOpcode() == FrameDestroyOpcode) {
1818         // The first operand of a FrameOpcode should be i32.
1819         int Size = I.getOperand(0).getImm();
1820         assert(Size >= 0 &&
1821           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1822 
1823         if (!BBState.ExitIsSetup)
1824           report("FrameDestroy is not after a FrameSetup", &I);
1825         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1826                                                BBState.ExitValue;
1827         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1828           report("FrameDestroy <n> is after FrameSetup <m>", &I);
1829           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
1830               << AbsSPAdj << ">.\n";
1831         }
1832         BBState.ExitValue += Size;
1833         BBState.ExitIsSetup = false;
1834       }
1835     }
1836     SPState[MBB->getNumber()] = BBState;
1837 
1838     // Make sure the exit state of any predecessor is consistent with the entry
1839     // state.
1840     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1841          E = MBB->pred_end(); I != E; ++I) {
1842       if (Reachable.count(*I) &&
1843           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1844            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1845         report("The exit stack state of a predecessor is inconsistent.", MBB);
1846         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1847             << SPState[(*I)->getNumber()].ExitValue << ", "
1848             << SPState[(*I)->getNumber()].ExitIsSetup
1849             << "), while BB#" << MBB->getNumber() << " has entry state ("
1850             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1851       }
1852     }
1853 
1854     // Make sure the entry state of any successor is consistent with the exit
1855     // state.
1856     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1857          E = MBB->succ_end(); I != E; ++I) {
1858       if (Reachable.count(*I) &&
1859           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1860            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1861         report("The entry stack state of a successor is inconsistent.", MBB);
1862         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1863             << SPState[(*I)->getNumber()].EntryValue << ", "
1864             << SPState[(*I)->getNumber()].EntryIsSetup
1865             << "), while BB#" << MBB->getNumber() << " has exit state ("
1866             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1867       }
1868     }
1869 
1870     // Make sure a basic block with return ends with zero stack adjustment.
1871     if (!MBB->empty() && MBB->back().isReturn()) {
1872       if (BBState.ExitIsSetup)
1873         report("A return block ends with a FrameSetup.", MBB);
1874       if (BBState.ExitValue)
1875         report("A return block ends with a nonzero stack adjustment.", MBB);
1876     }
1877   }
1878 }
1879