1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines malloc/free checker, which checks for potential memory
11 // leaks, double free, and use-after-free problems.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Basic/SourceManager.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
22 #include "clang/StaticAnalyzer/Core/Checker.h"
23 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include <climits>
34
35 using namespace clang;
36 using namespace ento;
37
38 namespace {
39
40 // Used to check correspondence between allocators and deallocators.
41 enum AllocationFamily {
42 AF_None,
43 AF_Malloc,
44 AF_CXXNew,
45 AF_CXXNewArray,
46 AF_IfNameIndex,
47 AF_Alloca
48 };
49
50 class RefState {
51 enum Kind { // Reference to allocated memory.
52 Allocated,
53 // Reference to zero-allocated memory.
54 AllocatedOfSizeZero,
55 // Reference to released/freed memory.
56 Released,
57 // The responsibility for freeing resources has transferred from
58 // this reference. A relinquished symbol should not be freed.
59 Relinquished,
60 // We are no longer guaranteed to have observed all manipulations
61 // of this pointer/memory. For example, it could have been
62 // passed as a parameter to an opaque function.
63 Escaped
64 };
65
66 const Stmt *S;
67 unsigned K : 3; // Kind enum, but stored as a bitfield.
68 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
69 // family.
70
RefState(Kind k,const Stmt * s,unsigned family)71 RefState(Kind k, const Stmt *s, unsigned family)
72 : S(s), K(k), Family(family) {
73 assert(family != AF_None);
74 }
75 public:
isAllocated() const76 bool isAllocated() const { return K == Allocated; }
isAllocatedOfSizeZero() const77 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
isReleased() const78 bool isReleased() const { return K == Released; }
isRelinquished() const79 bool isRelinquished() const { return K == Relinquished; }
isEscaped() const80 bool isEscaped() const { return K == Escaped; }
getAllocationFamily() const81 AllocationFamily getAllocationFamily() const {
82 return (AllocationFamily)Family;
83 }
getStmt() const84 const Stmt *getStmt() const { return S; }
85
operator ==(const RefState & X) const86 bool operator==(const RefState &X) const {
87 return K == X.K && S == X.S && Family == X.Family;
88 }
89
getAllocated(unsigned family,const Stmt * s)90 static RefState getAllocated(unsigned family, const Stmt *s) {
91 return RefState(Allocated, s, family);
92 }
getAllocatedOfSizeZero(const RefState * RS)93 static RefState getAllocatedOfSizeZero(const RefState *RS) {
94 return RefState(AllocatedOfSizeZero, RS->getStmt(),
95 RS->getAllocationFamily());
96 }
getReleased(unsigned family,const Stmt * s)97 static RefState getReleased(unsigned family, const Stmt *s) {
98 return RefState(Released, s, family);
99 }
getRelinquished(unsigned family,const Stmt * s)100 static RefState getRelinquished(unsigned family, const Stmt *s) {
101 return RefState(Relinquished, s, family);
102 }
getEscaped(const RefState * RS)103 static RefState getEscaped(const RefState *RS) {
104 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
105 }
106
Profile(llvm::FoldingSetNodeID & ID) const107 void Profile(llvm::FoldingSetNodeID &ID) const {
108 ID.AddInteger(K);
109 ID.AddPointer(S);
110 ID.AddInteger(Family);
111 }
112
dump(raw_ostream & OS) const113 void dump(raw_ostream &OS) const {
114 switch (static_cast<Kind>(K)) {
115 #define CASE(ID) case ID: OS << #ID; break;
116 CASE(Allocated)
117 CASE(AllocatedOfSizeZero)
118 CASE(Released)
119 CASE(Relinquished)
120 CASE(Escaped)
121 }
122 }
123
dump() const124 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
125 };
126
127 enum ReallocPairKind {
128 RPToBeFreedAfterFailure,
129 // The symbol has been freed when reallocation failed.
130 RPIsFreeOnFailure,
131 // The symbol does not need to be freed after reallocation fails.
132 RPDoNotTrackAfterFailure
133 };
134
135 /// \class ReallocPair
136 /// \brief Stores information about the symbol being reallocated by a call to
137 /// 'realloc' to allow modeling failed reallocation later in the path.
138 struct ReallocPair {
139 // \brief The symbol which realloc reallocated.
140 SymbolRef ReallocatedSym;
141 ReallocPairKind Kind;
142
ReallocPair__anone8977cbd0111::ReallocPair143 ReallocPair(SymbolRef S, ReallocPairKind K) :
144 ReallocatedSym(S), Kind(K) {}
Profile__anone8977cbd0111::ReallocPair145 void Profile(llvm::FoldingSetNodeID &ID) const {
146 ID.AddInteger(Kind);
147 ID.AddPointer(ReallocatedSym);
148 }
operator ==__anone8977cbd0111::ReallocPair149 bool operator==(const ReallocPair &X) const {
150 return ReallocatedSym == X.ReallocatedSym &&
151 Kind == X.Kind;
152 }
153 };
154
155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
156
157 class MallocChecker : public Checker<check::DeadSymbols,
158 check::PointerEscape,
159 check::ConstPointerEscape,
160 check::PreStmt<ReturnStmt>,
161 check::PreCall,
162 check::PostStmt<CallExpr>,
163 check::PostStmt<CXXNewExpr>,
164 check::PreStmt<CXXDeleteExpr>,
165 check::PostStmt<BlockExpr>,
166 check::PostObjCMessage,
167 check::Location,
168 eval::Assume>
169 {
170 public:
MallocChecker()171 MallocChecker()
172 : II_alloca(nullptr), II_malloc(nullptr), II_free(nullptr),
173 II_realloc(nullptr), II_calloc(nullptr), II_valloc(nullptr),
174 II_reallocf(nullptr), II_strndup(nullptr), II_strdup(nullptr),
175 II_kmalloc(nullptr), II_if_nameindex(nullptr),
176 II_if_freenameindex(nullptr) {}
177
178 /// In pessimistic mode, the checker assumes that it does not know which
179 /// functions might free the memory.
180 enum CheckKind {
181 CK_MallocChecker,
182 CK_NewDeleteChecker,
183 CK_NewDeleteLeaksChecker,
184 CK_MismatchedDeallocatorChecker,
185 CK_NumCheckKinds
186 };
187
188 enum class MemoryOperationKind {
189 MOK_Allocate,
190 MOK_Free,
191 MOK_Any
192 };
193
194 DefaultBool IsOptimistic;
195
196 DefaultBool ChecksEnabled[CK_NumCheckKinds];
197 CheckName CheckNames[CK_NumCheckKinds];
198
199 void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
200 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
201 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
202 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
203 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
204 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
205 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
206 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
207 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
208 bool Assumption) const;
209 void checkLocation(SVal l, bool isLoad, const Stmt *S,
210 CheckerContext &C) const;
211
212 ProgramStateRef checkPointerEscape(ProgramStateRef State,
213 const InvalidatedSymbols &Escaped,
214 const CallEvent *Call,
215 PointerEscapeKind Kind) const;
216 ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
217 const InvalidatedSymbols &Escaped,
218 const CallEvent *Call,
219 PointerEscapeKind Kind) const;
220
221 void printState(raw_ostream &Out, ProgramStateRef State,
222 const char *NL, const char *Sep) const override;
223
224 private:
225 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
226 mutable std::unique_ptr<BugType> BT_DoubleDelete;
227 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
228 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
229 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
230 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
231 mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
232 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
233 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
234 mutable IdentifierInfo *II_alloca, *II_malloc, *II_free, *II_realloc,
235 *II_calloc, *II_valloc, *II_reallocf, *II_strndup,
236 *II_strdup, *II_kmalloc, *II_if_nameindex,
237 *II_if_freenameindex;
238 mutable Optional<uint64_t> KernelZeroFlagVal;
239
240 void initIdentifierInfo(ASTContext &C) const;
241
242 /// \brief Determine family of a deallocation expression.
243 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
244
245 /// \brief Print names of allocators and deallocators.
246 ///
247 /// \returns true on success.
248 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
249 const Expr *E) const;
250
251 /// \brief Print expected name of an allocator based on the deallocator's
252 /// family derived from the DeallocExpr.
253 void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
254 const Expr *DeallocExpr) const;
255 /// \brief Print expected name of a deallocator based on the allocator's
256 /// family.
257 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
258
259 ///@{
260 /// Check if this is one of the functions which can allocate/reallocate memory
261 /// pointed to by one of its arguments.
262 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
263 bool isCMemFunction(const FunctionDecl *FD,
264 ASTContext &C,
265 AllocationFamily Family,
266 MemoryOperationKind MemKind) const;
267 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
268 ///@}
269
270 /// \brief Perform a zero-allocation check.
271 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
272 const unsigned AllocationSizeArg,
273 ProgramStateRef State) const;
274
275 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
276 const CallExpr *CE,
277 const OwnershipAttr* Att,
278 ProgramStateRef State) const;
279 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
280 const Expr *SizeEx, SVal Init,
281 ProgramStateRef State,
282 AllocationFamily Family = AF_Malloc);
283 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
284 SVal SizeEx, SVal Init,
285 ProgramStateRef State,
286 AllocationFamily Family = AF_Malloc);
287
288 // Check if this malloc() for special flags. At present that means M_ZERO or
289 // __GFP_ZERO (in which case, treat it like calloc).
290 llvm::Optional<ProgramStateRef>
291 performKernelMalloc(const CallExpr *CE, CheckerContext &C,
292 const ProgramStateRef &State) const;
293
294 /// Update the RefState to reflect the new memory allocation.
295 static ProgramStateRef
296 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
297 AllocationFamily Family = AF_Malloc);
298
299 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
300 const OwnershipAttr* Att,
301 ProgramStateRef State) const;
302 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
303 ProgramStateRef state, unsigned Num,
304 bool Hold,
305 bool &ReleasedAllocated,
306 bool ReturnsNullOnFailure = false) const;
307 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
308 const Expr *ParentExpr,
309 ProgramStateRef State,
310 bool Hold,
311 bool &ReleasedAllocated,
312 bool ReturnsNullOnFailure = false) const;
313
314 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
315 bool FreesMemOnFailure,
316 ProgramStateRef State) const;
317 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
318 ProgramStateRef State);
319
320 ///\brief Check if the memory associated with this symbol was released.
321 bool isReleased(SymbolRef Sym, CheckerContext &C) const;
322
323 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
324
325 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
326 const Stmt *S) const;
327
328 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
329
330 /// Check if the function is known free memory, or if it is
331 /// "interesting" and should be modeled explicitly.
332 ///
333 /// \param [out] EscapingSymbol A function might not free memory in general,
334 /// but could be known to free a particular symbol. In this case, false is
335 /// returned and the single escaping symbol is returned through the out
336 /// parameter.
337 ///
338 /// We assume that pointers do not escape through calls to system functions
339 /// not handled by this checker.
340 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
341 ProgramStateRef State,
342 SymbolRef &EscapingSymbol) const;
343
344 // Implementation of the checkPointerEscape callabcks.
345 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
346 const InvalidatedSymbols &Escaped,
347 const CallEvent *Call,
348 PointerEscapeKind Kind,
349 bool(*CheckRefState)(const RefState*)) const;
350
351 ///@{
352 /// Tells if a given family/call/symbol is tracked by the current checker.
353 /// Sets CheckKind to the kind of the checker responsible for this
354 /// family/call/symbol.
355 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
356 bool IsALeakCheck = false) const;
357 Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
358 const Stmt *AllocDeallocStmt,
359 bool IsALeakCheck = false) const;
360 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
361 bool IsALeakCheck = false) const;
362 ///@}
363 static bool SummarizeValue(raw_ostream &os, SVal V);
364 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
365 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
366 const Expr *DeallocExpr) const;
367 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
368 SourceRange Range) const;
369 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
370 const Expr *DeallocExpr, const RefState *RS,
371 SymbolRef Sym, bool OwnershipTransferred) const;
372 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
373 const Expr *DeallocExpr,
374 const Expr *AllocExpr = nullptr) const;
375 void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
376 SymbolRef Sym) const;
377 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
378 SymbolRef Sym, SymbolRef PrevSym) const;
379
380 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
381
382 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
383 SymbolRef Sym) const;
384
385 /// Find the location of the allocation for Sym on the path leading to the
386 /// exploded node N.
387 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
388 CheckerContext &C) const;
389
390 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
391
392 /// The bug visitor which allows us to print extra diagnostics along the
393 /// BugReport path. For example, showing the allocation site of the leaked
394 /// region.
395 class MallocBugVisitor final
396 : public BugReporterVisitorImpl<MallocBugVisitor> {
397 protected:
398 enum NotificationMode {
399 Normal,
400 ReallocationFailed
401 };
402
403 // The allocated region symbol tracked by the main analysis.
404 SymbolRef Sym;
405
406 // The mode we are in, i.e. what kind of diagnostics will be emitted.
407 NotificationMode Mode;
408
409 // A symbol from when the primary region should have been reallocated.
410 SymbolRef FailedReallocSymbol;
411
412 bool IsLeak;
413
414 public:
MallocBugVisitor(SymbolRef S,bool isLeak=false)415 MallocBugVisitor(SymbolRef S, bool isLeak = false)
416 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {}
417
Profile(llvm::FoldingSetNodeID & ID) const418 void Profile(llvm::FoldingSetNodeID &ID) const override {
419 static int X = 0;
420 ID.AddPointer(&X);
421 ID.AddPointer(Sym);
422 }
423
isAllocated(const RefState * S,const RefState * SPrev,const Stmt * Stmt)424 inline bool isAllocated(const RefState *S, const RefState *SPrev,
425 const Stmt *Stmt) {
426 // Did not track -> allocated. Other state (released) -> allocated.
427 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
428 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
429 (!SPrev || !(SPrev->isAllocated() ||
430 SPrev->isAllocatedOfSizeZero())));
431 }
432
isReleased(const RefState * S,const RefState * SPrev,const Stmt * Stmt)433 inline bool isReleased(const RefState *S, const RefState *SPrev,
434 const Stmt *Stmt) {
435 // Did not track -> released. Other state (allocated) -> released.
436 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) &&
437 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
438 }
439
isRelinquished(const RefState * S,const RefState * SPrev,const Stmt * Stmt)440 inline bool isRelinquished(const RefState *S, const RefState *SPrev,
441 const Stmt *Stmt) {
442 // Did not track -> relinquished. Other state (allocated) -> relinquished.
443 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
444 isa<ObjCPropertyRefExpr>(Stmt)) &&
445 (S && S->isRelinquished()) &&
446 (!SPrev || !SPrev->isRelinquished()));
447 }
448
isReallocFailedCheck(const RefState * S,const RefState * SPrev,const Stmt * Stmt)449 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
450 const Stmt *Stmt) {
451 // If the expression is not a call, and the state change is
452 // released -> allocated, it must be the realloc return value
453 // check. If we have to handle more cases here, it might be cleaner just
454 // to track this extra bit in the state itself.
455 return ((!Stmt || !isa<CallExpr>(Stmt)) &&
456 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
457 (SPrev && !(SPrev->isAllocated() ||
458 SPrev->isAllocatedOfSizeZero())));
459 }
460
461 PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
462 const ExplodedNode *PrevN,
463 BugReporterContext &BRC,
464 BugReport &BR) override;
465
466 std::unique_ptr<PathDiagnosticPiece>
getEndPath(BugReporterContext & BRC,const ExplodedNode * EndPathNode,BugReport & BR)467 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
468 BugReport &BR) override {
469 if (!IsLeak)
470 return nullptr;
471
472 PathDiagnosticLocation L =
473 PathDiagnosticLocation::createEndOfPath(EndPathNode,
474 BRC.getSourceManager());
475 // Do not add the statement itself as a range in case of leak.
476 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(),
477 false);
478 }
479
480 private:
481 class StackHintGeneratorForReallocationFailed
482 : public StackHintGeneratorForSymbol {
483 public:
StackHintGeneratorForReallocationFailed(SymbolRef S,StringRef M)484 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
485 : StackHintGeneratorForSymbol(S, M) {}
486
getMessageForArg(const Expr * ArgE,unsigned ArgIndex)487 std::string getMessageForArg(const Expr *ArgE,
488 unsigned ArgIndex) override {
489 // Printed parameters start at 1, not 0.
490 ++ArgIndex;
491
492 SmallString<200> buf;
493 llvm::raw_svector_ostream os(buf);
494
495 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
496 << " parameter failed";
497
498 return os.str();
499 }
500
getMessageForReturn(const CallExpr * CallExpr)501 std::string getMessageForReturn(const CallExpr *CallExpr) override {
502 return "Reallocation of returned value failed";
503 }
504 };
505 };
506 };
507 } // end anonymous namespace
508
509 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
510 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
511 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
512
513 // A map from the freed symbol to the symbol representing the return value of
514 // the free function.
515 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
516
517 namespace {
518 class StopTrackingCallback final : public SymbolVisitor {
519 ProgramStateRef state;
520 public:
StopTrackingCallback(ProgramStateRef st)521 StopTrackingCallback(ProgramStateRef st) : state(st) {}
getState() const522 ProgramStateRef getState() const { return state; }
523
VisitSymbol(SymbolRef sym)524 bool VisitSymbol(SymbolRef sym) override {
525 state = state->remove<RegionState>(sym);
526 return true;
527 }
528 };
529 } // end anonymous namespace
530
initIdentifierInfo(ASTContext & Ctx) const531 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
532 if (II_malloc)
533 return;
534 II_alloca = &Ctx.Idents.get("alloca");
535 II_malloc = &Ctx.Idents.get("malloc");
536 II_free = &Ctx.Idents.get("free");
537 II_realloc = &Ctx.Idents.get("realloc");
538 II_reallocf = &Ctx.Idents.get("reallocf");
539 II_calloc = &Ctx.Idents.get("calloc");
540 II_valloc = &Ctx.Idents.get("valloc");
541 II_strdup = &Ctx.Idents.get("strdup");
542 II_strndup = &Ctx.Idents.get("strndup");
543 II_kmalloc = &Ctx.Idents.get("kmalloc");
544 II_if_nameindex = &Ctx.Idents.get("if_nameindex");
545 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
546 }
547
isMemFunction(const FunctionDecl * FD,ASTContext & C) const548 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
549 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
550 return true;
551
552 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
553 return true;
554
555 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
556 return true;
557
558 if (isStandardNewDelete(FD, C))
559 return true;
560
561 return false;
562 }
563
isCMemFunction(const FunctionDecl * FD,ASTContext & C,AllocationFamily Family,MemoryOperationKind MemKind) const564 bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
565 ASTContext &C,
566 AllocationFamily Family,
567 MemoryOperationKind MemKind) const {
568 if (!FD)
569 return false;
570
571 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
572 MemKind == MemoryOperationKind::MOK_Free);
573 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
574 MemKind == MemoryOperationKind::MOK_Allocate);
575
576 if (FD->getKind() == Decl::Function) {
577 const IdentifierInfo *FunI = FD->getIdentifier();
578 initIdentifierInfo(C);
579
580 if (Family == AF_Malloc && CheckFree) {
581 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf)
582 return true;
583 }
584
585 if (Family == AF_Malloc && CheckAlloc) {
586 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
587 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
588 FunI == II_strndup || FunI == II_kmalloc)
589 return true;
590 }
591
592 if (Family == AF_IfNameIndex && CheckFree) {
593 if (FunI == II_if_freenameindex)
594 return true;
595 }
596
597 if (Family == AF_IfNameIndex && CheckAlloc) {
598 if (FunI == II_if_nameindex)
599 return true;
600 }
601
602 if (Family == AF_Alloca && CheckAlloc) {
603 if (FunI == II_alloca)
604 return true;
605 }
606 }
607
608 if (Family != AF_Malloc)
609 return false;
610
611 if (IsOptimistic && FD->hasAttrs()) {
612 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
613 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
614 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
615 if (CheckFree)
616 return true;
617 } else if (OwnKind == OwnershipAttr::Returns) {
618 if (CheckAlloc)
619 return true;
620 }
621 }
622 }
623
624 return false;
625 }
626
627 // Tells if the callee is one of the following:
628 // 1) A global non-placement new/delete operator function.
629 // 2) A global placement operator function with the single placement argument
630 // of type std::nothrow_t.
isStandardNewDelete(const FunctionDecl * FD,ASTContext & C) const631 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
632 ASTContext &C) const {
633 if (!FD)
634 return false;
635
636 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
637 if (Kind != OO_New && Kind != OO_Array_New &&
638 Kind != OO_Delete && Kind != OO_Array_Delete)
639 return false;
640
641 // Skip all operator new/delete methods.
642 if (isa<CXXMethodDecl>(FD))
643 return false;
644
645 // Return true if tested operator is a standard placement nothrow operator.
646 if (FD->getNumParams() == 2) {
647 QualType T = FD->getParamDecl(1)->getType();
648 if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
649 return II->getName().equals("nothrow_t");
650 }
651
652 // Skip placement operators.
653 if (FD->getNumParams() != 1 || FD->isVariadic())
654 return false;
655
656 // One of the standard new/new[]/delete/delete[] non-placement operators.
657 return true;
658 }
659
performKernelMalloc(const CallExpr * CE,CheckerContext & C,const ProgramStateRef & State) const660 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
661 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
662 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
663 //
664 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
665 //
666 // One of the possible flags is M_ZERO, which means 'give me back an
667 // allocation which is already zeroed', like calloc.
668
669 // 2-argument kmalloc(), as used in the Linux kernel:
670 //
671 // void *kmalloc(size_t size, gfp_t flags);
672 //
673 // Has the similar flag value __GFP_ZERO.
674
675 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
676 // code could be shared.
677
678 ASTContext &Ctx = C.getASTContext();
679 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
680
681 if (!KernelZeroFlagVal.hasValue()) {
682 if (OS == llvm::Triple::FreeBSD)
683 KernelZeroFlagVal = 0x0100;
684 else if (OS == llvm::Triple::NetBSD)
685 KernelZeroFlagVal = 0x0002;
686 else if (OS == llvm::Triple::OpenBSD)
687 KernelZeroFlagVal = 0x0008;
688 else if (OS == llvm::Triple::Linux)
689 // __GFP_ZERO
690 KernelZeroFlagVal = 0x8000;
691 else
692 // FIXME: We need a more general way of getting the M_ZERO value.
693 // See also: O_CREAT in UnixAPIChecker.cpp.
694
695 // Fall back to normal malloc behavior on platforms where we don't
696 // know M_ZERO.
697 return None;
698 }
699
700 // We treat the last argument as the flags argument, and callers fall-back to
701 // normal malloc on a None return. This works for the FreeBSD kernel malloc
702 // as well as Linux kmalloc.
703 if (CE->getNumArgs() < 2)
704 return None;
705
706 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
707 const SVal V = State->getSVal(FlagsEx, C.getLocationContext());
708 if (!V.getAs<NonLoc>()) {
709 // The case where 'V' can be a location can only be due to a bad header,
710 // so in this case bail out.
711 return None;
712 }
713
714 NonLoc Flags = V.castAs<NonLoc>();
715 NonLoc ZeroFlag = C.getSValBuilder()
716 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
717 .castAs<NonLoc>();
718 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
719 Flags, ZeroFlag,
720 FlagsEx->getType());
721 if (MaskedFlagsUC.isUnknownOrUndef())
722 return None;
723 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
724
725 // Check if maskedFlags is non-zero.
726 ProgramStateRef TrueState, FalseState;
727 std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
728
729 // If M_ZERO is set, treat this like calloc (initialized).
730 if (TrueState && !FalseState) {
731 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
732 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
733 }
734
735 return None;
736 }
737
checkPostStmt(const CallExpr * CE,CheckerContext & C) const738 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
739 if (C.wasInlined)
740 return;
741
742 const FunctionDecl *FD = C.getCalleeDecl(CE);
743 if (!FD)
744 return;
745
746 ProgramStateRef State = C.getState();
747 bool ReleasedAllocatedMemory = false;
748
749 if (FD->getKind() == Decl::Function) {
750 initIdentifierInfo(C.getASTContext());
751 IdentifierInfo *FunI = FD->getIdentifier();
752
753 if (FunI == II_malloc) {
754 if (CE->getNumArgs() < 1)
755 return;
756 if (CE->getNumArgs() < 3) {
757 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
758 if (CE->getNumArgs() == 1)
759 State = ProcessZeroAllocation(C, CE, 0, State);
760 } else if (CE->getNumArgs() == 3) {
761 llvm::Optional<ProgramStateRef> MaybeState =
762 performKernelMalloc(CE, C, State);
763 if (MaybeState.hasValue())
764 State = MaybeState.getValue();
765 else
766 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
767 }
768 } else if (FunI == II_kmalloc) {
769 llvm::Optional<ProgramStateRef> MaybeState =
770 performKernelMalloc(CE, C, State);
771 if (MaybeState.hasValue())
772 State = MaybeState.getValue();
773 else
774 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
775 } else if (FunI == II_valloc) {
776 if (CE->getNumArgs() < 1)
777 return;
778 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
779 State = ProcessZeroAllocation(C, CE, 0, State);
780 } else if (FunI == II_realloc) {
781 State = ReallocMem(C, CE, false, State);
782 State = ProcessZeroAllocation(C, CE, 1, State);
783 } else if (FunI == II_reallocf) {
784 State = ReallocMem(C, CE, true, State);
785 State = ProcessZeroAllocation(C, CE, 1, State);
786 } else if (FunI == II_calloc) {
787 State = CallocMem(C, CE, State);
788 State = ProcessZeroAllocation(C, CE, 0, State);
789 State = ProcessZeroAllocation(C, CE, 1, State);
790 } else if (FunI == II_free) {
791 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
792 } else if (FunI == II_strdup) {
793 State = MallocUpdateRefState(C, CE, State);
794 } else if (FunI == II_strndup) {
795 State = MallocUpdateRefState(C, CE, State);
796 } else if (FunI == II_alloca) {
797 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
798 AF_Alloca);
799 State = ProcessZeroAllocation(C, CE, 0, State);
800 } else if (isStandardNewDelete(FD, C.getASTContext())) {
801 // Process direct calls to operator new/new[]/delete/delete[] functions
802 // as distinct from new/new[]/delete/delete[] expressions that are
803 // processed by the checkPostStmt callbacks for CXXNewExpr and
804 // CXXDeleteExpr.
805 OverloadedOperatorKind K = FD->getOverloadedOperator();
806 if (K == OO_New) {
807 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
808 AF_CXXNew);
809 State = ProcessZeroAllocation(C, CE, 0, State);
810 }
811 else if (K == OO_Array_New) {
812 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
813 AF_CXXNewArray);
814 State = ProcessZeroAllocation(C, CE, 0, State);
815 }
816 else if (K == OO_Delete || K == OO_Array_Delete)
817 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
818 else
819 llvm_unreachable("not a new/delete operator");
820 } else if (FunI == II_if_nameindex) {
821 // Should we model this differently? We can allocate a fixed number of
822 // elements with zeros in the last one.
823 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
824 AF_IfNameIndex);
825 } else if (FunI == II_if_freenameindex) {
826 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
827 }
828 }
829
830 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
831 // Check all the attributes, if there are any.
832 // There can be multiple of these attributes.
833 if (FD->hasAttrs())
834 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
835 switch (I->getOwnKind()) {
836 case OwnershipAttr::Returns:
837 State = MallocMemReturnsAttr(C, CE, I, State);
838 break;
839 case OwnershipAttr::Takes:
840 case OwnershipAttr::Holds:
841 State = FreeMemAttr(C, CE, I, State);
842 break;
843 }
844 }
845 }
846 C.addTransition(State);
847 }
848
849 // Performs a 0-sized allocations check.
ProcessZeroAllocation(CheckerContext & C,const Expr * E,const unsigned AllocationSizeArg,ProgramStateRef State) const850 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C,
851 const Expr *E,
852 const unsigned AllocationSizeArg,
853 ProgramStateRef State) const {
854 if (!State)
855 return nullptr;
856
857 const Expr *Arg = nullptr;
858
859 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
860 Arg = CE->getArg(AllocationSizeArg);
861 }
862 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
863 if (NE->isArray())
864 Arg = NE->getArraySize();
865 else
866 return State;
867 }
868 else
869 llvm_unreachable("not a CallExpr or CXXNewExpr");
870
871 assert(Arg);
872
873 Optional<DefinedSVal> DefArgVal =
874 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>();
875
876 if (!DefArgVal)
877 return State;
878
879 // Check if the allocation size is 0.
880 ProgramStateRef TrueState, FalseState;
881 SValBuilder &SvalBuilder = C.getSValBuilder();
882 DefinedSVal Zero =
883 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
884
885 std::tie(TrueState, FalseState) =
886 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
887
888 if (TrueState && !FalseState) {
889 SVal retVal = State->getSVal(E, C.getLocationContext());
890 SymbolRef Sym = retVal.getAsLocSymbol();
891 if (!Sym)
892 return State;
893
894 const RefState *RS = State->get<RegionState>(Sym);
895 if (RS) {
896 if (RS->isAllocated())
897 return TrueState->set<RegionState>(Sym,
898 RefState::getAllocatedOfSizeZero(RS));
899 else
900 return State;
901 } else {
902 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
903 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
904 // tracked. Add zero-reallocated Sym to the state to catch references
905 // to zero-allocated memory.
906 return TrueState->add<ReallocSizeZeroSymbols>(Sym);
907 }
908 }
909
910 // Assume the value is non-zero going forward.
911 assert(FalseState);
912 return FalseState;
913 }
914
getDeepPointeeType(QualType T)915 static QualType getDeepPointeeType(QualType T) {
916 QualType Result = T, PointeeType = T->getPointeeType();
917 while (!PointeeType.isNull()) {
918 Result = PointeeType;
919 PointeeType = PointeeType->getPointeeType();
920 }
921 return Result;
922 }
923
treatUnusedNewEscaped(const CXXNewExpr * NE)924 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
925
926 const CXXConstructExpr *ConstructE = NE->getConstructExpr();
927 if (!ConstructE)
928 return false;
929
930 if (!NE->getAllocatedType()->getAsCXXRecordDecl())
931 return false;
932
933 const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
934
935 // Iterate over the constructor parameters.
936 for (const auto *CtorParam : CtorD->params()) {
937
938 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
939 if (CtorParamPointeeT.isNull())
940 continue;
941
942 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
943
944 if (CtorParamPointeeT->getAsCXXRecordDecl())
945 return true;
946 }
947
948 return false;
949 }
950
checkPostStmt(const CXXNewExpr * NE,CheckerContext & C) const951 void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
952 CheckerContext &C) const {
953
954 if (NE->getNumPlacementArgs())
955 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(),
956 E = NE->placement_arg_end(); I != E; ++I)
957 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol())
958 checkUseAfterFree(Sym, C, *I);
959
960 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
961 return;
962
963 ParentMap &PM = C.getLocationContext()->getParentMap();
964 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
965 return;
966
967 ProgramStateRef State = C.getState();
968 // The return value from operator new is bound to a specified initialization
969 // value (if any) and we don't want to loose this value. So we call
970 // MallocUpdateRefState() instead of MallocMemAux() which breakes the
971 // existing binding.
972 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
973 : AF_CXXNew);
974 State = ProcessZeroAllocation(C, NE, 0, State);
975 C.addTransition(State);
976 }
977
checkPreStmt(const CXXDeleteExpr * DE,CheckerContext & C) const978 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
979 CheckerContext &C) const {
980
981 if (!ChecksEnabled[CK_NewDeleteChecker])
982 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
983 checkUseAfterFree(Sym, C, DE->getArgument());
984
985 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
986 return;
987
988 ProgramStateRef State = C.getState();
989 bool ReleasedAllocated;
990 State = FreeMemAux(C, DE->getArgument(), DE, State,
991 /*Hold*/false, ReleasedAllocated);
992
993 C.addTransition(State);
994 }
995
isKnownDeallocObjCMethodName(const ObjCMethodCall & Call)996 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
997 // If the first selector piece is one of the names below, assume that the
998 // object takes ownership of the memory, promising to eventually deallocate it
999 // with free().
1000 // Ex: [NSData dataWithBytesNoCopy:bytes length:10];
1001 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
1002 StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
1003 if (FirstSlot == "dataWithBytesNoCopy" ||
1004 FirstSlot == "initWithBytesNoCopy" ||
1005 FirstSlot == "initWithCharactersNoCopy")
1006 return true;
1007
1008 return false;
1009 }
1010
getFreeWhenDoneArg(const ObjCMethodCall & Call)1011 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1012 Selector S = Call.getSelector();
1013
1014 // FIXME: We should not rely on fully-constrained symbols being folded.
1015 for (unsigned i = 1; i < S.getNumArgs(); ++i)
1016 if (S.getNameForSlot(i).equals("freeWhenDone"))
1017 return !Call.getArgSVal(i).isZeroConstant();
1018
1019 return None;
1020 }
1021
checkPostObjCMessage(const ObjCMethodCall & Call,CheckerContext & C) const1022 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1023 CheckerContext &C) const {
1024 if (C.wasInlined)
1025 return;
1026
1027 if (!isKnownDeallocObjCMethodName(Call))
1028 return;
1029
1030 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1031 if (!*FreeWhenDone)
1032 return;
1033
1034 bool ReleasedAllocatedMemory;
1035 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
1036 Call.getOriginExpr(), C.getState(),
1037 /*Hold=*/true, ReleasedAllocatedMemory,
1038 /*RetNullOnFailure=*/true);
1039
1040 C.addTransition(State);
1041 }
1042
1043 ProgramStateRef
MallocMemReturnsAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1044 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
1045 const OwnershipAttr *Att,
1046 ProgramStateRef State) const {
1047 if (!State)
1048 return nullptr;
1049
1050 if (Att->getModule() != II_malloc)
1051 return nullptr;
1052
1053 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
1054 if (I != E) {
1055 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State);
1056 }
1057 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
1058 }
1059
MallocMemAux(CheckerContext & C,const CallExpr * CE,const Expr * SizeEx,SVal Init,ProgramStateRef State,AllocationFamily Family)1060 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1061 const CallExpr *CE,
1062 const Expr *SizeEx, SVal Init,
1063 ProgramStateRef State,
1064 AllocationFamily Family) {
1065 if (!State)
1066 return nullptr;
1067
1068 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()),
1069 Init, State, Family);
1070 }
1071
MallocMemAux(CheckerContext & C,const CallExpr * CE,SVal Size,SVal Init,ProgramStateRef State,AllocationFamily Family)1072 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1073 const CallExpr *CE,
1074 SVal Size, SVal Init,
1075 ProgramStateRef State,
1076 AllocationFamily Family) {
1077 if (!State)
1078 return nullptr;
1079
1080 // We expect the malloc functions to return a pointer.
1081 if (!Loc::isLocType(CE->getType()))
1082 return nullptr;
1083
1084 // Bind the return value to the symbolic value from the heap region.
1085 // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1086 // side effects other than what we model here.
1087 unsigned Count = C.blockCount();
1088 SValBuilder &svalBuilder = C.getSValBuilder();
1089 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1090 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1091 .castAs<DefinedSVal>();
1092 State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1093
1094 // Fill the region with the initialization value.
1095 State = State->bindDefault(RetVal, Init);
1096
1097 // Set the region's extent equal to the Size parameter.
1098 const SymbolicRegion *R =
1099 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
1100 if (!R)
1101 return nullptr;
1102 if (Optional<DefinedOrUnknownSVal> DefinedSize =
1103 Size.getAs<DefinedOrUnknownSVal>()) {
1104 SValBuilder &svalBuilder = C.getSValBuilder();
1105 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
1106 DefinedOrUnknownSVal extentMatchesSize =
1107 svalBuilder.evalEQ(State, Extent, *DefinedSize);
1108
1109 State = State->assume(extentMatchesSize, true);
1110 assert(State);
1111 }
1112
1113 return MallocUpdateRefState(C, CE, State, Family);
1114 }
1115
MallocUpdateRefState(CheckerContext & C,const Expr * E,ProgramStateRef State,AllocationFamily Family)1116 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
1117 const Expr *E,
1118 ProgramStateRef State,
1119 AllocationFamily Family) {
1120 if (!State)
1121 return nullptr;
1122
1123 // Get the return value.
1124 SVal retVal = State->getSVal(E, C.getLocationContext());
1125
1126 // We expect the malloc functions to return a pointer.
1127 if (!retVal.getAs<Loc>())
1128 return nullptr;
1129
1130 SymbolRef Sym = retVal.getAsLocSymbol();
1131 assert(Sym);
1132
1133 // Set the symbol's state to Allocated.
1134 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1135 }
1136
FreeMemAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1137 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1138 const CallExpr *CE,
1139 const OwnershipAttr *Att,
1140 ProgramStateRef State) const {
1141 if (!State)
1142 return nullptr;
1143
1144 if (Att->getModule() != II_malloc)
1145 return nullptr;
1146
1147 bool ReleasedAllocated = false;
1148
1149 for (const auto &Arg : Att->args()) {
1150 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg,
1151 Att->getOwnKind() == OwnershipAttr::Holds,
1152 ReleasedAllocated);
1153 if (StateI)
1154 State = StateI;
1155 }
1156 return State;
1157 }
1158
FreeMemAux(CheckerContext & C,const CallExpr * CE,ProgramStateRef State,unsigned Num,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1159 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1160 const CallExpr *CE,
1161 ProgramStateRef State,
1162 unsigned Num,
1163 bool Hold,
1164 bool &ReleasedAllocated,
1165 bool ReturnsNullOnFailure) const {
1166 if (!State)
1167 return nullptr;
1168
1169 if (CE->getNumArgs() < (Num + 1))
1170 return nullptr;
1171
1172 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
1173 ReleasedAllocated, ReturnsNullOnFailure);
1174 }
1175
1176 /// Checks if the previous call to free on the given symbol failed - if free
1177 /// failed, returns true. Also, returns the corresponding return value symbol.
didPreviousFreeFail(ProgramStateRef State,SymbolRef Sym,SymbolRef & RetStatusSymbol)1178 static bool didPreviousFreeFail(ProgramStateRef State,
1179 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1180 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1181 if (Ret) {
1182 assert(*Ret && "We should not store the null return symbol");
1183 ConstraintManager &CMgr = State->getConstraintManager();
1184 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1185 RetStatusSymbol = *Ret;
1186 return FreeFailed.isConstrainedTrue();
1187 }
1188 return false;
1189 }
1190
getAllocationFamily(CheckerContext & C,const Stmt * S) const1191 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
1192 const Stmt *S) const {
1193 if (!S)
1194 return AF_None;
1195
1196 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
1197 const FunctionDecl *FD = C.getCalleeDecl(CE);
1198
1199 if (!FD)
1200 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1201
1202 ASTContext &Ctx = C.getASTContext();
1203
1204 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
1205 return AF_Malloc;
1206
1207 if (isStandardNewDelete(FD, Ctx)) {
1208 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1209 if (Kind == OO_New || Kind == OO_Delete)
1210 return AF_CXXNew;
1211 else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
1212 return AF_CXXNewArray;
1213 }
1214
1215 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
1216 return AF_IfNameIndex;
1217
1218 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
1219 return AF_Alloca;
1220
1221 return AF_None;
1222 }
1223
1224 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
1225 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
1226
1227 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
1228 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
1229
1230 if (isa<ObjCMessageExpr>(S))
1231 return AF_Malloc;
1232
1233 return AF_None;
1234 }
1235
printAllocDeallocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1236 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
1237 const Expr *E) const {
1238 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1239 // FIXME: This doesn't handle indirect calls.
1240 const FunctionDecl *FD = CE->getDirectCallee();
1241 if (!FD)
1242 return false;
1243
1244 os << *FD;
1245 if (!FD->isOverloadedOperator())
1246 os << "()";
1247 return true;
1248 }
1249
1250 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1251 if (Msg->isInstanceMessage())
1252 os << "-";
1253 else
1254 os << "+";
1255 Msg->getSelector().print(os);
1256 return true;
1257 }
1258
1259 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1260 os << "'"
1261 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1262 << "'";
1263 return true;
1264 }
1265
1266 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1267 os << "'"
1268 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1269 << "'";
1270 return true;
1271 }
1272
1273 return false;
1274 }
1275
printExpectedAllocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1276 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
1277 const Expr *E) const {
1278 AllocationFamily Family = getAllocationFamily(C, E);
1279
1280 switch(Family) {
1281 case AF_Malloc: os << "malloc()"; return;
1282 case AF_CXXNew: os << "'new'"; return;
1283 case AF_CXXNewArray: os << "'new[]'"; return;
1284 case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1285 case AF_Alloca:
1286 case AF_None: llvm_unreachable("not a deallocation expression");
1287 }
1288 }
1289
printExpectedDeallocName(raw_ostream & os,AllocationFamily Family) const1290 void MallocChecker::printExpectedDeallocName(raw_ostream &os,
1291 AllocationFamily Family) const {
1292 switch(Family) {
1293 case AF_Malloc: os << "free()"; return;
1294 case AF_CXXNew: os << "'delete'"; return;
1295 case AF_CXXNewArray: os << "'delete[]'"; return;
1296 case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1297 case AF_Alloca:
1298 case AF_None: llvm_unreachable("suspicious argument");
1299 }
1300 }
1301
FreeMemAux(CheckerContext & C,const Expr * ArgExpr,const Expr * ParentExpr,ProgramStateRef State,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1302 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1303 const Expr *ArgExpr,
1304 const Expr *ParentExpr,
1305 ProgramStateRef State,
1306 bool Hold,
1307 bool &ReleasedAllocated,
1308 bool ReturnsNullOnFailure) const {
1309
1310 if (!State)
1311 return nullptr;
1312
1313 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext());
1314 if (!ArgVal.getAs<DefinedOrUnknownSVal>())
1315 return nullptr;
1316 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1317
1318 // Check for null dereferences.
1319 if (!location.getAs<Loc>())
1320 return nullptr;
1321
1322 // The explicit NULL case, no operation is performed.
1323 ProgramStateRef notNullState, nullState;
1324 std::tie(notNullState, nullState) = State->assume(location);
1325 if (nullState && !notNullState)
1326 return nullptr;
1327
1328 // Unknown values could easily be okay
1329 // Undefined values are handled elsewhere
1330 if (ArgVal.isUnknownOrUndef())
1331 return nullptr;
1332
1333 const MemRegion *R = ArgVal.getAsRegion();
1334
1335 // Nonlocs can't be freed, of course.
1336 // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1337 if (!R) {
1338 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1339 return nullptr;
1340 }
1341
1342 R = R->StripCasts();
1343
1344 // Blocks might show up as heap data, but should not be free()d
1345 if (isa<BlockDataRegion>(R)) {
1346 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1347 return nullptr;
1348 }
1349
1350 const MemSpaceRegion *MS = R->getMemorySpace();
1351
1352 // Parameters, locals, statics, globals, and memory returned by
1353 // __builtin_alloca() shouldn't be freed.
1354 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
1355 // FIXME: at the time this code was written, malloc() regions were
1356 // represented by conjured symbols, which are all in UnknownSpaceRegion.
1357 // This means that there isn't actually anything from HeapSpaceRegion
1358 // that should be freed, even though we allow it here.
1359 // Of course, free() can work on memory allocated outside the current
1360 // function, so UnknownSpaceRegion is always a possibility.
1361 // False negatives are better than false positives.
1362
1363 if (isa<AllocaRegion>(R))
1364 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1365 else
1366 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1367
1368 return nullptr;
1369 }
1370
1371 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1372 // Various cases could lead to non-symbol values here.
1373 // For now, ignore them.
1374 if (!SrBase)
1375 return nullptr;
1376
1377 SymbolRef SymBase = SrBase->getSymbol();
1378 const RefState *RsBase = State->get<RegionState>(SymBase);
1379 SymbolRef PreviousRetStatusSymbol = nullptr;
1380
1381 if (RsBase) {
1382
1383 // Memory returned by alloca() shouldn't be freed.
1384 if (RsBase->getAllocationFamily() == AF_Alloca) {
1385 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1386 return nullptr;
1387 }
1388
1389 // Check for double free first.
1390 if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1391 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1392 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
1393 SymBase, PreviousRetStatusSymbol);
1394 return nullptr;
1395
1396 // If the pointer is allocated or escaped, but we are now trying to free it,
1397 // check that the call to free is proper.
1398 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
1399 RsBase->isEscaped()) {
1400
1401 // Check if an expected deallocation function matches the real one.
1402 bool DeallocMatchesAlloc =
1403 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
1404 if (!DeallocMatchesAlloc) {
1405 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
1406 ParentExpr, RsBase, SymBase, Hold);
1407 return nullptr;
1408 }
1409
1410 // Check if the memory location being freed is the actual location
1411 // allocated, or an offset.
1412 RegionOffset Offset = R->getAsOffset();
1413 if (Offset.isValid() &&
1414 !Offset.hasSymbolicOffset() &&
1415 Offset.getOffset() != 0) {
1416 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
1417 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1418 AllocExpr);
1419 return nullptr;
1420 }
1421 }
1422 }
1423
1424 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
1425 RsBase->isAllocatedOfSizeZero());
1426
1427 // Clean out the info on previous call to free return info.
1428 State = State->remove<FreeReturnValue>(SymBase);
1429
1430 // Keep track of the return value. If it is NULL, we will know that free
1431 // failed.
1432 if (ReturnsNullOnFailure) {
1433 SVal RetVal = C.getSVal(ParentExpr);
1434 SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
1435 if (RetStatusSymbol) {
1436 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
1437 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
1438 }
1439 }
1440
1441 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
1442 : getAllocationFamily(C, ParentExpr);
1443 // Normal free.
1444 if (Hold)
1445 return State->set<RegionState>(SymBase,
1446 RefState::getRelinquished(Family,
1447 ParentExpr));
1448
1449 return State->set<RegionState>(SymBase,
1450 RefState::getReleased(Family, ParentExpr));
1451 }
1452
1453 Optional<MallocChecker::CheckKind>
getCheckIfTracked(AllocationFamily Family,bool IsALeakCheck) const1454 MallocChecker::getCheckIfTracked(AllocationFamily Family,
1455 bool IsALeakCheck) const {
1456 switch (Family) {
1457 case AF_Malloc:
1458 case AF_Alloca:
1459 case AF_IfNameIndex: {
1460 if (ChecksEnabled[CK_MallocChecker])
1461 return CK_MallocChecker;
1462
1463 return Optional<MallocChecker::CheckKind>();
1464 }
1465 case AF_CXXNew:
1466 case AF_CXXNewArray: {
1467 if (IsALeakCheck) {
1468 if (ChecksEnabled[CK_NewDeleteLeaksChecker])
1469 return CK_NewDeleteLeaksChecker;
1470 }
1471 else {
1472 if (ChecksEnabled[CK_NewDeleteChecker])
1473 return CK_NewDeleteChecker;
1474 }
1475 return Optional<MallocChecker::CheckKind>();
1476 }
1477 case AF_None: {
1478 llvm_unreachable("no family");
1479 }
1480 }
1481 llvm_unreachable("unhandled family");
1482 }
1483
1484 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,const Stmt * AllocDeallocStmt,bool IsALeakCheck) const1485 MallocChecker::getCheckIfTracked(CheckerContext &C,
1486 const Stmt *AllocDeallocStmt,
1487 bool IsALeakCheck) const {
1488 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
1489 IsALeakCheck);
1490 }
1491
1492 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,SymbolRef Sym,bool IsALeakCheck) const1493 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
1494 bool IsALeakCheck) const {
1495 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
1496 return CK_MallocChecker;
1497
1498 const RefState *RS = C.getState()->get<RegionState>(Sym);
1499 assert(RS);
1500 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
1501 }
1502
SummarizeValue(raw_ostream & os,SVal V)1503 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
1504 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
1505 os << "an integer (" << IntVal->getValue() << ")";
1506 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
1507 os << "a constant address (" << ConstAddr->getValue() << ")";
1508 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
1509 os << "the address of the label '" << Label->getLabel()->getName() << "'";
1510 else
1511 return false;
1512
1513 return true;
1514 }
1515
SummarizeRegion(raw_ostream & os,const MemRegion * MR)1516 bool MallocChecker::SummarizeRegion(raw_ostream &os,
1517 const MemRegion *MR) {
1518 switch (MR->getKind()) {
1519 case MemRegion::FunctionTextRegionKind: {
1520 const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
1521 if (FD)
1522 os << "the address of the function '" << *FD << '\'';
1523 else
1524 os << "the address of a function";
1525 return true;
1526 }
1527 case MemRegion::BlockTextRegionKind:
1528 os << "block text";
1529 return true;
1530 case MemRegion::BlockDataRegionKind:
1531 // FIXME: where the block came from?
1532 os << "a block";
1533 return true;
1534 default: {
1535 const MemSpaceRegion *MS = MR->getMemorySpace();
1536
1537 if (isa<StackLocalsSpaceRegion>(MS)) {
1538 const VarRegion *VR = dyn_cast<VarRegion>(MR);
1539 const VarDecl *VD;
1540 if (VR)
1541 VD = VR->getDecl();
1542 else
1543 VD = nullptr;
1544
1545 if (VD)
1546 os << "the address of the local variable '" << VD->getName() << "'";
1547 else
1548 os << "the address of a local stack variable";
1549 return true;
1550 }
1551
1552 if (isa<StackArgumentsSpaceRegion>(MS)) {
1553 const VarRegion *VR = dyn_cast<VarRegion>(MR);
1554 const VarDecl *VD;
1555 if (VR)
1556 VD = VR->getDecl();
1557 else
1558 VD = nullptr;
1559
1560 if (VD)
1561 os << "the address of the parameter '" << VD->getName() << "'";
1562 else
1563 os << "the address of a parameter";
1564 return true;
1565 }
1566
1567 if (isa<GlobalsSpaceRegion>(MS)) {
1568 const VarRegion *VR = dyn_cast<VarRegion>(MR);
1569 const VarDecl *VD;
1570 if (VR)
1571 VD = VR->getDecl();
1572 else
1573 VD = nullptr;
1574
1575 if (VD) {
1576 if (VD->isStaticLocal())
1577 os << "the address of the static variable '" << VD->getName() << "'";
1578 else
1579 os << "the address of the global variable '" << VD->getName() << "'";
1580 } else
1581 os << "the address of a global variable";
1582 return true;
1583 }
1584
1585 return false;
1586 }
1587 }
1588 }
1589
ReportBadFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr) const1590 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
1591 SourceRange Range,
1592 const Expr *DeallocExpr) const {
1593
1594 if (!ChecksEnabled[CK_MallocChecker] &&
1595 !ChecksEnabled[CK_NewDeleteChecker])
1596 return;
1597
1598 Optional<MallocChecker::CheckKind> CheckKind =
1599 getCheckIfTracked(C, DeallocExpr);
1600 if (!CheckKind.hasValue())
1601 return;
1602
1603 if (ExplodedNode *N = C.generateErrorNode()) {
1604 if (!BT_BadFree[*CheckKind])
1605 BT_BadFree[*CheckKind].reset(
1606 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error"));
1607
1608 SmallString<100> buf;
1609 llvm::raw_svector_ostream os(buf);
1610
1611 const MemRegion *MR = ArgVal.getAsRegion();
1612 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
1613 MR = ER->getSuperRegion();
1614
1615 os << "Argument to ";
1616 if (!printAllocDeallocName(os, C, DeallocExpr))
1617 os << "deallocator";
1618
1619 os << " is ";
1620 bool Summarized = MR ? SummarizeRegion(os, MR)
1621 : SummarizeValue(os, ArgVal);
1622 if (Summarized)
1623 os << ", which is not memory allocated by ";
1624 else
1625 os << "not memory allocated by ";
1626
1627 printExpectedAllocName(os, C, DeallocExpr);
1628
1629 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N);
1630 R->markInteresting(MR);
1631 R->addRange(Range);
1632 C.emitReport(std::move(R));
1633 }
1634 }
1635
ReportFreeAlloca(CheckerContext & C,SVal ArgVal,SourceRange Range) const1636 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
1637 SourceRange Range) const {
1638
1639 Optional<MallocChecker::CheckKind> CheckKind;
1640
1641 if (ChecksEnabled[CK_MallocChecker])
1642 CheckKind = CK_MallocChecker;
1643 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
1644 CheckKind = CK_MismatchedDeallocatorChecker;
1645 else
1646 return;
1647
1648 if (ExplodedNode *N = C.generateErrorNode()) {
1649 if (!BT_FreeAlloca[*CheckKind])
1650 BT_FreeAlloca[*CheckKind].reset(
1651 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error"));
1652
1653 auto R = llvm::make_unique<BugReport>(
1654 *BT_FreeAlloca[*CheckKind],
1655 "Memory allocated by alloca() should not be deallocated", N);
1656 R->markInteresting(ArgVal.getAsRegion());
1657 R->addRange(Range);
1658 C.emitReport(std::move(R));
1659 }
1660 }
1661
ReportMismatchedDealloc(CheckerContext & C,SourceRange Range,const Expr * DeallocExpr,const RefState * RS,SymbolRef Sym,bool OwnershipTransferred) const1662 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
1663 SourceRange Range,
1664 const Expr *DeallocExpr,
1665 const RefState *RS,
1666 SymbolRef Sym,
1667 bool OwnershipTransferred) const {
1668
1669 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
1670 return;
1671
1672 if (ExplodedNode *N = C.generateErrorNode()) {
1673 if (!BT_MismatchedDealloc)
1674 BT_MismatchedDealloc.reset(
1675 new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
1676 "Bad deallocator", "Memory Error"));
1677
1678 SmallString<100> buf;
1679 llvm::raw_svector_ostream os(buf);
1680
1681 const Expr *AllocExpr = cast<Expr>(RS->getStmt());
1682 SmallString<20> AllocBuf;
1683 llvm::raw_svector_ostream AllocOs(AllocBuf);
1684 SmallString<20> DeallocBuf;
1685 llvm::raw_svector_ostream DeallocOs(DeallocBuf);
1686
1687 if (OwnershipTransferred) {
1688 if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1689 os << DeallocOs.str() << " cannot";
1690 else
1691 os << "Cannot";
1692
1693 os << " take ownership of memory";
1694
1695 if (printAllocDeallocName(AllocOs, C, AllocExpr))
1696 os << " allocated by " << AllocOs.str();
1697 } else {
1698 os << "Memory";
1699 if (printAllocDeallocName(AllocOs, C, AllocExpr))
1700 os << " allocated by " << AllocOs.str();
1701
1702 os << " should be deallocated by ";
1703 printExpectedDeallocName(os, RS->getAllocationFamily());
1704
1705 if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1706 os << ", not " << DeallocOs.str();
1707 }
1708
1709 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N);
1710 R->markInteresting(Sym);
1711 R->addRange(Range);
1712 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1713 C.emitReport(std::move(R));
1714 }
1715 }
1716
ReportOffsetFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr,const Expr * AllocExpr) const1717 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
1718 SourceRange Range, const Expr *DeallocExpr,
1719 const Expr *AllocExpr) const {
1720
1721
1722 if (!ChecksEnabled[CK_MallocChecker] &&
1723 !ChecksEnabled[CK_NewDeleteChecker])
1724 return;
1725
1726 Optional<MallocChecker::CheckKind> CheckKind =
1727 getCheckIfTracked(C, AllocExpr);
1728 if (!CheckKind.hasValue())
1729 return;
1730
1731 ExplodedNode *N = C.generateErrorNode();
1732 if (!N)
1733 return;
1734
1735 if (!BT_OffsetFree[*CheckKind])
1736 BT_OffsetFree[*CheckKind].reset(
1737 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error"));
1738
1739 SmallString<100> buf;
1740 llvm::raw_svector_ostream os(buf);
1741 SmallString<20> AllocNameBuf;
1742 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
1743
1744 const MemRegion *MR = ArgVal.getAsRegion();
1745 assert(MR && "Only MemRegion based symbols can have offset free errors");
1746
1747 RegionOffset Offset = MR->getAsOffset();
1748 assert((Offset.isValid() &&
1749 !Offset.hasSymbolicOffset() &&
1750 Offset.getOffset() != 0) &&
1751 "Only symbols with a valid offset can have offset free errors");
1752
1753 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
1754
1755 os << "Argument to ";
1756 if (!printAllocDeallocName(os, C, DeallocExpr))
1757 os << "deallocator";
1758 os << " is offset by "
1759 << offsetBytes
1760 << " "
1761 << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
1762 << " from the start of ";
1763 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
1764 os << "memory allocated by " << AllocNameOs.str();
1765 else
1766 os << "allocated memory";
1767
1768 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N);
1769 R->markInteresting(MR->getBaseRegion());
1770 R->addRange(Range);
1771 C.emitReport(std::move(R));
1772 }
1773
ReportUseAfterFree(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1774 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
1775 SymbolRef Sym) const {
1776
1777 if (!ChecksEnabled[CK_MallocChecker] &&
1778 !ChecksEnabled[CK_NewDeleteChecker])
1779 return;
1780
1781 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1782 if (!CheckKind.hasValue())
1783 return;
1784
1785 if (ExplodedNode *N = C.generateErrorNode()) {
1786 if (!BT_UseFree[*CheckKind])
1787 BT_UseFree[*CheckKind].reset(new BugType(
1788 CheckNames[*CheckKind], "Use-after-free", "Memory Error"));
1789
1790 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind],
1791 "Use of memory after it is freed", N);
1792
1793 R->markInteresting(Sym);
1794 R->addRange(Range);
1795 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1796 C.emitReport(std::move(R));
1797 }
1798 }
1799
ReportDoubleFree(CheckerContext & C,SourceRange Range,bool Released,SymbolRef Sym,SymbolRef PrevSym) const1800 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
1801 bool Released, SymbolRef Sym,
1802 SymbolRef PrevSym) const {
1803
1804 if (!ChecksEnabled[CK_MallocChecker] &&
1805 !ChecksEnabled[CK_NewDeleteChecker])
1806 return;
1807
1808 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1809 if (!CheckKind.hasValue())
1810 return;
1811
1812 if (ExplodedNode *N = C.generateErrorNode()) {
1813 if (!BT_DoubleFree[*CheckKind])
1814 BT_DoubleFree[*CheckKind].reset(
1815 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error"));
1816
1817 auto R = llvm::make_unique<BugReport>(
1818 *BT_DoubleFree[*CheckKind],
1819 (Released ? "Attempt to free released memory"
1820 : "Attempt to free non-owned memory"),
1821 N);
1822 R->addRange(Range);
1823 R->markInteresting(Sym);
1824 if (PrevSym)
1825 R->markInteresting(PrevSym);
1826 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1827 C.emitReport(std::move(R));
1828 }
1829 }
1830
ReportDoubleDelete(CheckerContext & C,SymbolRef Sym) const1831 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
1832
1833 if (!ChecksEnabled[CK_NewDeleteChecker])
1834 return;
1835
1836 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1837 if (!CheckKind.hasValue())
1838 return;
1839
1840 if (ExplodedNode *N = C.generateErrorNode()) {
1841 if (!BT_DoubleDelete)
1842 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
1843 "Double delete", "Memory Error"));
1844
1845 auto R = llvm::make_unique<BugReport>(
1846 *BT_DoubleDelete, "Attempt to delete released memory", N);
1847
1848 R->markInteresting(Sym);
1849 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1850 C.emitReport(std::move(R));
1851 }
1852 }
1853
ReportUseZeroAllocated(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1854 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
1855 SourceRange Range,
1856 SymbolRef Sym) const {
1857
1858 if (!ChecksEnabled[CK_MallocChecker] &&
1859 !ChecksEnabled[CK_NewDeleteChecker])
1860 return;
1861
1862 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1863
1864 if (!CheckKind.hasValue())
1865 return;
1866
1867 if (ExplodedNode *N = C.generateErrorNode()) {
1868 if (!BT_UseZerroAllocated[*CheckKind])
1869 BT_UseZerroAllocated[*CheckKind].reset(new BugType(
1870 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error"));
1871
1872 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind],
1873 "Use of zero-allocated memory", N);
1874
1875 R->addRange(Range);
1876 if (Sym) {
1877 R->markInteresting(Sym);
1878 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1879 }
1880 C.emitReport(std::move(R));
1881 }
1882 }
1883
ReallocMem(CheckerContext & C,const CallExpr * CE,bool FreesOnFail,ProgramStateRef State) const1884 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
1885 const CallExpr *CE,
1886 bool FreesOnFail,
1887 ProgramStateRef State) const {
1888 if (!State)
1889 return nullptr;
1890
1891 if (CE->getNumArgs() < 2)
1892 return nullptr;
1893
1894 const Expr *arg0Expr = CE->getArg(0);
1895 const LocationContext *LCtx = C.getLocationContext();
1896 SVal Arg0Val = State->getSVal(arg0Expr, LCtx);
1897 if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
1898 return nullptr;
1899 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
1900
1901 SValBuilder &svalBuilder = C.getSValBuilder();
1902
1903 DefinedOrUnknownSVal PtrEQ =
1904 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
1905
1906 // Get the size argument. If there is no size arg then give up.
1907 const Expr *Arg1 = CE->getArg(1);
1908 if (!Arg1)
1909 return nullptr;
1910
1911 // Get the value of the size argument.
1912 SVal Arg1ValG = State->getSVal(Arg1, LCtx);
1913 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>())
1914 return nullptr;
1915 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>();
1916
1917 // Compare the size argument to 0.
1918 DefinedOrUnknownSVal SizeZero =
1919 svalBuilder.evalEQ(State, Arg1Val,
1920 svalBuilder.makeIntValWithPtrWidth(0, false));
1921
1922 ProgramStateRef StatePtrIsNull, StatePtrNotNull;
1923 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
1924 ProgramStateRef StateSizeIsZero, StateSizeNotZero;
1925 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
1926 // We only assume exceptional states if they are definitely true; if the
1927 // state is under-constrained, assume regular realloc behavior.
1928 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
1929 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
1930
1931 // If the ptr is NULL and the size is not 0, the call is equivalent to
1932 // malloc(size).
1933 if ( PrtIsNull && !SizeIsZero) {
1934 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
1935 UndefinedVal(), StatePtrIsNull);
1936 return stateMalloc;
1937 }
1938
1939 if (PrtIsNull && SizeIsZero)
1940 return State;
1941
1942 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
1943 assert(!PrtIsNull);
1944 SymbolRef FromPtr = arg0Val.getAsSymbol();
1945 SVal RetVal = State->getSVal(CE, LCtx);
1946 SymbolRef ToPtr = RetVal.getAsSymbol();
1947 if (!FromPtr || !ToPtr)
1948 return nullptr;
1949
1950 bool ReleasedAllocated = false;
1951
1952 // If the size is 0, free the memory.
1953 if (SizeIsZero)
1954 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
1955 false, ReleasedAllocated)){
1956 // The semantics of the return value are:
1957 // If size was equal to 0, either NULL or a pointer suitable to be passed
1958 // to free() is returned. We just free the input pointer and do not add
1959 // any constrains on the output pointer.
1960 return stateFree;
1961 }
1962
1963 // Default behavior.
1964 if (ProgramStateRef stateFree =
1965 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
1966
1967 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
1968 UnknownVal(), stateFree);
1969 if (!stateRealloc)
1970 return nullptr;
1971
1972 ReallocPairKind Kind = RPToBeFreedAfterFailure;
1973 if (FreesOnFail)
1974 Kind = RPIsFreeOnFailure;
1975 else if (!ReleasedAllocated)
1976 Kind = RPDoNotTrackAfterFailure;
1977
1978 // Record the info about the reallocated symbol so that we could properly
1979 // process failed reallocation.
1980 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
1981 ReallocPair(FromPtr, Kind));
1982 // The reallocated symbol should stay alive for as long as the new symbol.
1983 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
1984 return stateRealloc;
1985 }
1986 return nullptr;
1987 }
1988
CallocMem(CheckerContext & C,const CallExpr * CE,ProgramStateRef State)1989 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
1990 ProgramStateRef State) {
1991 if (!State)
1992 return nullptr;
1993
1994 if (CE->getNumArgs() < 2)
1995 return nullptr;
1996
1997 SValBuilder &svalBuilder = C.getSValBuilder();
1998 const LocationContext *LCtx = C.getLocationContext();
1999 SVal count = State->getSVal(CE->getArg(0), LCtx);
2000 SVal elementSize = State->getSVal(CE->getArg(1), LCtx);
2001 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize,
2002 svalBuilder.getContext().getSizeType());
2003 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
2004
2005 return MallocMemAux(C, CE, TotalSize, zeroVal, State);
2006 }
2007
2008 LeakInfo
getAllocationSite(const ExplodedNode * N,SymbolRef Sym,CheckerContext & C) const2009 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
2010 CheckerContext &C) const {
2011 const LocationContext *LeakContext = N->getLocationContext();
2012 // Walk the ExplodedGraph backwards and find the first node that referred to
2013 // the tracked symbol.
2014 const ExplodedNode *AllocNode = N;
2015 const MemRegion *ReferenceRegion = nullptr;
2016
2017 while (N) {
2018 ProgramStateRef State = N->getState();
2019 if (!State->get<RegionState>(Sym))
2020 break;
2021
2022 // Find the most recent expression bound to the symbol in the current
2023 // context.
2024 if (!ReferenceRegion) {
2025 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2026 SVal Val = State->getSVal(MR);
2027 if (Val.getAsLocSymbol() == Sym) {
2028 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
2029 // Do not show local variables belonging to a function other than
2030 // where the error is reported.
2031 if (!VR ||
2032 (VR->getStackFrame() == LeakContext->getCurrentStackFrame()))
2033 ReferenceRegion = MR;
2034 }
2035 }
2036 }
2037
2038 // Allocation node, is the last node in the current or parent context in
2039 // which the symbol was tracked.
2040 const LocationContext *NContext = N->getLocationContext();
2041 if (NContext == LeakContext ||
2042 NContext->isParentOf(LeakContext))
2043 AllocNode = N;
2044 N = N->pred_empty() ? nullptr : *(N->pred_begin());
2045 }
2046
2047 return LeakInfo(AllocNode, ReferenceRegion);
2048 }
2049
reportLeak(SymbolRef Sym,ExplodedNode * N,CheckerContext & C) const2050 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
2051 CheckerContext &C) const {
2052
2053 if (!ChecksEnabled[CK_MallocChecker] &&
2054 !ChecksEnabled[CK_NewDeleteLeaksChecker])
2055 return;
2056
2057 const RefState *RS = C.getState()->get<RegionState>(Sym);
2058 assert(RS && "cannot leak an untracked symbol");
2059 AllocationFamily Family = RS->getAllocationFamily();
2060
2061 if (Family == AF_Alloca)
2062 return;
2063
2064 Optional<MallocChecker::CheckKind>
2065 CheckKind = getCheckIfTracked(Family, true);
2066
2067 if (!CheckKind.hasValue())
2068 return;
2069
2070 assert(N);
2071 if (!BT_Leak[*CheckKind]) {
2072 BT_Leak[*CheckKind].reset(
2073 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error"));
2074 // Leaks should not be reported if they are post-dominated by a sink:
2075 // (1) Sinks are higher importance bugs.
2076 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2077 // with __noreturn functions such as assert() or exit(). We choose not
2078 // to report leaks on such paths.
2079 BT_Leak[*CheckKind]->setSuppressOnSink(true);
2080 }
2081
2082 // Most bug reports are cached at the location where they occurred.
2083 // With leaks, we want to unique them by the location where they were
2084 // allocated, and only report a single path.
2085 PathDiagnosticLocation LocUsedForUniqueing;
2086 const ExplodedNode *AllocNode = nullptr;
2087 const MemRegion *Region = nullptr;
2088 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2089
2090 ProgramPoint P = AllocNode->getLocation();
2091 const Stmt *AllocationStmt = nullptr;
2092 if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
2093 AllocationStmt = Exit->getCalleeContext()->getCallSite();
2094 else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
2095 AllocationStmt = SP->getStmt();
2096 if (AllocationStmt)
2097 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2098 C.getSourceManager(),
2099 AllocNode->getLocationContext());
2100
2101 SmallString<200> buf;
2102 llvm::raw_svector_ostream os(buf);
2103 if (Region && Region->canPrintPretty()) {
2104 os << "Potential leak of memory pointed to by ";
2105 Region->printPretty(os);
2106 } else {
2107 os << "Potential memory leak";
2108 }
2109
2110 auto R = llvm::make_unique<BugReport>(
2111 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2112 AllocNode->getLocationContext()->getDecl());
2113 R->markInteresting(Sym);
2114 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
2115 C.emitReport(std::move(R));
2116 }
2117
checkDeadSymbols(SymbolReaper & SymReaper,CheckerContext & C) const2118 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2119 CheckerContext &C) const
2120 {
2121 if (!SymReaper.hasDeadSymbols())
2122 return;
2123
2124 ProgramStateRef state = C.getState();
2125 RegionStateTy RS = state->get<RegionState>();
2126 RegionStateTy::Factory &F = state->get_context<RegionState>();
2127
2128 SmallVector<SymbolRef, 2> Errors;
2129 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2130 if (SymReaper.isDead(I->first)) {
2131 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
2132 Errors.push_back(I->first);
2133 // Remove the dead symbol from the map.
2134 RS = F.remove(RS, I->first);
2135
2136 }
2137 }
2138
2139 // Cleanup the Realloc Pairs Map.
2140 ReallocPairsTy RP = state->get<ReallocPairs>();
2141 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2142 if (SymReaper.isDead(I->first) ||
2143 SymReaper.isDead(I->second.ReallocatedSym)) {
2144 state = state->remove<ReallocPairs>(I->first);
2145 }
2146 }
2147
2148 // Cleanup the FreeReturnValue Map.
2149 FreeReturnValueTy FR = state->get<FreeReturnValue>();
2150 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
2151 if (SymReaper.isDead(I->first) ||
2152 SymReaper.isDead(I->second)) {
2153 state = state->remove<FreeReturnValue>(I->first);
2154 }
2155 }
2156
2157 // Generate leak node.
2158 ExplodedNode *N = C.getPredecessor();
2159 if (!Errors.empty()) {
2160 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2161 N = C.generateNonFatalErrorNode(C.getState(), &Tag);
2162 if (N) {
2163 for (SmallVectorImpl<SymbolRef>::iterator
2164 I = Errors.begin(), E = Errors.end(); I != E; ++I) {
2165 reportLeak(*I, N, C);
2166 }
2167 }
2168 }
2169
2170 C.addTransition(state->set<RegionState>(RS), N);
2171 }
2172
checkPreCall(const CallEvent & Call,CheckerContext & C) const2173 void MallocChecker::checkPreCall(const CallEvent &Call,
2174 CheckerContext &C) const {
2175
2176 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2177 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2178 if (!Sym || checkDoubleDelete(Sym, C))
2179 return;
2180 }
2181
2182 // We will check for double free in the post visit.
2183 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2184 const FunctionDecl *FD = FC->getDecl();
2185 if (!FD)
2186 return;
2187
2188 ASTContext &Ctx = C.getASTContext();
2189 if (ChecksEnabled[CK_MallocChecker] &&
2190 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
2191 isCMemFunction(FD, Ctx, AF_IfNameIndex,
2192 MemoryOperationKind::MOK_Free)))
2193 return;
2194
2195 if (ChecksEnabled[CK_NewDeleteChecker] &&
2196 isStandardNewDelete(FD, Ctx))
2197 return;
2198 }
2199
2200 // Check if the callee of a method is deleted.
2201 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2202 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2203 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2204 return;
2205 }
2206
2207 // Check arguments for being used after free.
2208 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2209 SVal ArgSVal = Call.getArgSVal(I);
2210 if (ArgSVal.getAs<Loc>()) {
2211 SymbolRef Sym = ArgSVal.getAsSymbol();
2212 if (!Sym)
2213 continue;
2214 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2215 return;
2216 }
2217 }
2218 }
2219
checkPreStmt(const ReturnStmt * S,CheckerContext & C) const2220 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
2221 const Expr *E = S->getRetValue();
2222 if (!E)
2223 return;
2224
2225 // Check if we are returning a symbol.
2226 ProgramStateRef State = C.getState();
2227 SVal RetVal = State->getSVal(E, C.getLocationContext());
2228 SymbolRef Sym = RetVal.getAsSymbol();
2229 if (!Sym)
2230 // If we are returning a field of the allocated struct or an array element,
2231 // the callee could still free the memory.
2232 // TODO: This logic should be a part of generic symbol escape callback.
2233 if (const MemRegion *MR = RetVal.getAsRegion())
2234 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
2235 if (const SymbolicRegion *BMR =
2236 dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2237 Sym = BMR->getSymbol();
2238
2239 // Check if we are returning freed memory.
2240 if (Sym)
2241 checkUseAfterFree(Sym, C, E);
2242 }
2243
2244 // TODO: Blocks should be either inlined or should call invalidate regions
2245 // upon invocation. After that's in place, special casing here will not be
2246 // needed.
checkPostStmt(const BlockExpr * BE,CheckerContext & C) const2247 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2248 CheckerContext &C) const {
2249
2250 // Scan the BlockDecRefExprs for any object the retain count checker
2251 // may be tracking.
2252 if (!BE->getBlockDecl()->hasCaptures())
2253 return;
2254
2255 ProgramStateRef state = C.getState();
2256 const BlockDataRegion *R =
2257 cast<BlockDataRegion>(state->getSVal(BE,
2258 C.getLocationContext()).getAsRegion());
2259
2260 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
2261 E = R->referenced_vars_end();
2262
2263 if (I == E)
2264 return;
2265
2266 SmallVector<const MemRegion*, 10> Regions;
2267 const LocationContext *LC = C.getLocationContext();
2268 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2269
2270 for ( ; I != E; ++I) {
2271 const VarRegion *VR = I.getCapturedRegion();
2272 if (VR->getSuperRegion() == R) {
2273 VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2274 }
2275 Regions.push_back(VR);
2276 }
2277
2278 state =
2279 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
2280 Regions.data() + Regions.size()).getState();
2281 C.addTransition(state);
2282 }
2283
isReleased(SymbolRef Sym,CheckerContext & C) const2284 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
2285 assert(Sym);
2286 const RefState *RS = C.getState()->get<RegionState>(Sym);
2287 return (RS && RS->isReleased());
2288 }
2289
checkUseAfterFree(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2290 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
2291 const Stmt *S) const {
2292
2293 if (isReleased(Sym, C)) {
2294 ReportUseAfterFree(C, S->getSourceRange(), Sym);
2295 return true;
2296 }
2297
2298 return false;
2299 }
2300
checkUseZeroAllocated(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2301 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
2302 const Stmt *S) const {
2303 assert(Sym);
2304
2305 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
2306 if (RS->isAllocatedOfSizeZero())
2307 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
2308 }
2309 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
2310 ReportUseZeroAllocated(C, S->getSourceRange(), Sym);
2311 }
2312 }
2313
checkDoubleDelete(SymbolRef Sym,CheckerContext & C) const2314 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
2315
2316 if (isReleased(Sym, C)) {
2317 ReportDoubleDelete(C, Sym);
2318 return true;
2319 }
2320 return false;
2321 }
2322
2323 // Check if the location is a freed symbolic region.
checkLocation(SVal l,bool isLoad,const Stmt * S,CheckerContext & C) const2324 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
2325 CheckerContext &C) const {
2326 SymbolRef Sym = l.getLocSymbolInBase();
2327 if (Sym) {
2328 checkUseAfterFree(Sym, C, S);
2329 checkUseZeroAllocated(Sym, C, S);
2330 }
2331 }
2332
2333 // If a symbolic region is assumed to NULL (or another constant), stop tracking
2334 // it - assuming that allocation failed on this path.
evalAssume(ProgramStateRef state,SVal Cond,bool Assumption) const2335 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
2336 SVal Cond,
2337 bool Assumption) const {
2338 RegionStateTy RS = state->get<RegionState>();
2339 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2340 // If the symbol is assumed to be NULL, remove it from consideration.
2341 ConstraintManager &CMgr = state->getConstraintManager();
2342 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2343 if (AllocFailed.isConstrainedTrue())
2344 state = state->remove<RegionState>(I.getKey());
2345 }
2346
2347 // Realloc returns 0 when reallocation fails, which means that we should
2348 // restore the state of the pointer being reallocated.
2349 ReallocPairsTy RP = state->get<ReallocPairs>();
2350 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2351 // If the symbol is assumed to be NULL, remove it from consideration.
2352 ConstraintManager &CMgr = state->getConstraintManager();
2353 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2354 if (!AllocFailed.isConstrainedTrue())
2355 continue;
2356
2357 SymbolRef ReallocSym = I.getData().ReallocatedSym;
2358 if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
2359 if (RS->isReleased()) {
2360 if (I.getData().Kind == RPToBeFreedAfterFailure)
2361 state = state->set<RegionState>(ReallocSym,
2362 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
2363 else if (I.getData().Kind == RPDoNotTrackAfterFailure)
2364 state = state->remove<RegionState>(ReallocSym);
2365 else
2366 assert(I.getData().Kind == RPIsFreeOnFailure);
2367 }
2368 }
2369 state = state->remove<ReallocPairs>(I.getKey());
2370 }
2371
2372 return state;
2373 }
2374
mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent * Call,ProgramStateRef State,SymbolRef & EscapingSymbol) const2375 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
2376 const CallEvent *Call,
2377 ProgramStateRef State,
2378 SymbolRef &EscapingSymbol) const {
2379 assert(Call);
2380 EscapingSymbol = nullptr;
2381
2382 // For now, assume that any C++ or block call can free memory.
2383 // TODO: If we want to be more optimistic here, we'll need to make sure that
2384 // regions escape to C++ containers. They seem to do that even now, but for
2385 // mysterious reasons.
2386 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
2387 return true;
2388
2389 // Check Objective-C messages by selector name.
2390 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
2391 // If it's not a framework call, or if it takes a callback, assume it
2392 // can free memory.
2393 if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
2394 return true;
2395
2396 // If it's a method we know about, handle it explicitly post-call.
2397 // This should happen before the "freeWhenDone" check below.
2398 if (isKnownDeallocObjCMethodName(*Msg))
2399 return false;
2400
2401 // If there's a "freeWhenDone" parameter, but the method isn't one we know
2402 // about, we can't be sure that the object will use free() to deallocate the
2403 // memory, so we can't model it explicitly. The best we can do is use it to
2404 // decide whether the pointer escapes.
2405 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
2406 return *FreeWhenDone;
2407
2408 // If the first selector piece ends with "NoCopy", and there is no
2409 // "freeWhenDone" parameter set to zero, we know ownership is being
2410 // transferred. Again, though, we can't be sure that the object will use
2411 // free() to deallocate the memory, so we can't model it explicitly.
2412 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
2413 if (FirstSlot.endswith("NoCopy"))
2414 return true;
2415
2416 // If the first selector starts with addPointer, insertPointer,
2417 // or replacePointer, assume we are dealing with NSPointerArray or similar.
2418 // This is similar to C++ containers (vector); we still might want to check
2419 // that the pointers get freed by following the container itself.
2420 if (FirstSlot.startswith("addPointer") ||
2421 FirstSlot.startswith("insertPointer") ||
2422 FirstSlot.startswith("replacePointer") ||
2423 FirstSlot.equals("valueWithPointer")) {
2424 return true;
2425 }
2426
2427 // We should escape receiver on call to 'init'. This is especially relevant
2428 // to the receiver, as the corresponding symbol is usually not referenced
2429 // after the call.
2430 if (Msg->getMethodFamily() == OMF_init) {
2431 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
2432 return true;
2433 }
2434
2435 // Otherwise, assume that the method does not free memory.
2436 // Most framework methods do not free memory.
2437 return false;
2438 }
2439
2440 // At this point the only thing left to handle is straight function calls.
2441 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
2442 if (!FD)
2443 return true;
2444
2445 ASTContext &ASTC = State->getStateManager().getContext();
2446
2447 // If it's one of the allocation functions we can reason about, we model
2448 // its behavior explicitly.
2449 if (isMemFunction(FD, ASTC))
2450 return false;
2451
2452 // If it's not a system call, assume it frees memory.
2453 if (!Call->isInSystemHeader())
2454 return true;
2455
2456 // White list the system functions whose arguments escape.
2457 const IdentifierInfo *II = FD->getIdentifier();
2458 if (!II)
2459 return true;
2460 StringRef FName = II->getName();
2461
2462 // White list the 'XXXNoCopy' CoreFoundation functions.
2463 // We specifically check these before
2464 if (FName.endswith("NoCopy")) {
2465 // Look for the deallocator argument. We know that the memory ownership
2466 // is not transferred only if the deallocator argument is
2467 // 'kCFAllocatorNull'.
2468 for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
2469 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
2470 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
2471 StringRef DeallocatorName = DE->getFoundDecl()->getName();
2472 if (DeallocatorName == "kCFAllocatorNull")
2473 return false;
2474 }
2475 }
2476 return true;
2477 }
2478
2479 // Associating streams with malloced buffers. The pointer can escape if
2480 // 'closefn' is specified (and if that function does free memory),
2481 // but it will not if closefn is not specified.
2482 // Currently, we do not inspect the 'closefn' function (PR12101).
2483 if (FName == "funopen")
2484 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
2485 return false;
2486
2487 // Do not warn on pointers passed to 'setbuf' when used with std streams,
2488 // these leaks might be intentional when setting the buffer for stdio.
2489 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
2490 if (FName == "setbuf" || FName =="setbuffer" ||
2491 FName == "setlinebuf" || FName == "setvbuf") {
2492 if (Call->getNumArgs() >= 1) {
2493 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
2494 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
2495 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
2496 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
2497 return true;
2498 }
2499 }
2500
2501 // A bunch of other functions which either take ownership of a pointer or
2502 // wrap the result up in a struct or object, meaning it can be freed later.
2503 // (See RetainCountChecker.) Not all the parameters here are invalidated,
2504 // but the Malloc checker cannot differentiate between them. The right way
2505 // of doing this would be to implement a pointer escapes callback.
2506 if (FName == "CGBitmapContextCreate" ||
2507 FName == "CGBitmapContextCreateWithData" ||
2508 FName == "CVPixelBufferCreateWithBytes" ||
2509 FName == "CVPixelBufferCreateWithPlanarBytes" ||
2510 FName == "OSAtomicEnqueue") {
2511 return true;
2512 }
2513
2514 // Handle cases where we know a buffer's /address/ can escape.
2515 // Note that the above checks handle some special cases where we know that
2516 // even though the address escapes, it's still our responsibility to free the
2517 // buffer.
2518 if (Call->argumentsMayEscape())
2519 return true;
2520
2521 // Otherwise, assume that the function does not free memory.
2522 // Most system calls do not free the memory.
2523 return false;
2524 }
2525
retTrue(const RefState * RS)2526 static bool retTrue(const RefState *RS) {
2527 return true;
2528 }
2529
checkIfNewOrNewArrayFamily(const RefState * RS)2530 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
2531 return (RS->getAllocationFamily() == AF_CXXNewArray ||
2532 RS->getAllocationFamily() == AF_CXXNew);
2533 }
2534
checkPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2535 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
2536 const InvalidatedSymbols &Escaped,
2537 const CallEvent *Call,
2538 PointerEscapeKind Kind) const {
2539 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
2540 }
2541
checkConstPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2542 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
2543 const InvalidatedSymbols &Escaped,
2544 const CallEvent *Call,
2545 PointerEscapeKind Kind) const {
2546 return checkPointerEscapeAux(State, Escaped, Call, Kind,
2547 &checkIfNewOrNewArrayFamily);
2548 }
2549
checkPointerEscapeAux(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind,bool (* CheckRefState)(const RefState *)) const2550 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
2551 const InvalidatedSymbols &Escaped,
2552 const CallEvent *Call,
2553 PointerEscapeKind Kind,
2554 bool(*CheckRefState)(const RefState*)) const {
2555 // If we know that the call does not free memory, or we want to process the
2556 // call later, keep tracking the top level arguments.
2557 SymbolRef EscapingSymbol = nullptr;
2558 if (Kind == PSK_DirectEscapeOnCall &&
2559 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
2560 EscapingSymbol) &&
2561 !EscapingSymbol) {
2562 return State;
2563 }
2564
2565 for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
2566 E = Escaped.end();
2567 I != E; ++I) {
2568 SymbolRef sym = *I;
2569
2570 if (EscapingSymbol && EscapingSymbol != sym)
2571 continue;
2572
2573 if (const RefState *RS = State->get<RegionState>(sym)) {
2574 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
2575 CheckRefState(RS)) {
2576 State = State->remove<RegionState>(sym);
2577 State = State->set<RegionState>(sym, RefState::getEscaped(RS));
2578 }
2579 }
2580 }
2581 return State;
2582 }
2583
findFailedReallocSymbol(ProgramStateRef currState,ProgramStateRef prevState)2584 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
2585 ProgramStateRef prevState) {
2586 ReallocPairsTy currMap = currState->get<ReallocPairs>();
2587 ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
2588
2589 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
2590 I != E; ++I) {
2591 SymbolRef sym = I.getKey();
2592 if (!currMap.lookup(sym))
2593 return sym;
2594 }
2595
2596 return nullptr;
2597 }
2598
2599 PathDiagnosticPiece *
VisitNode(const ExplodedNode * N,const ExplodedNode * PrevN,BugReporterContext & BRC,BugReport & BR)2600 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
2601 const ExplodedNode *PrevN,
2602 BugReporterContext &BRC,
2603 BugReport &BR) {
2604 ProgramStateRef state = N->getState();
2605 ProgramStateRef statePrev = PrevN->getState();
2606
2607 const RefState *RS = state->get<RegionState>(Sym);
2608 const RefState *RSPrev = statePrev->get<RegionState>(Sym);
2609 if (!RS)
2610 return nullptr;
2611
2612 const Stmt *S = nullptr;
2613 const char *Msg = nullptr;
2614 StackHintGeneratorForSymbol *StackHint = nullptr;
2615
2616 // Retrieve the associated statement.
2617 ProgramPoint ProgLoc = N->getLocation();
2618 if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
2619 S = SP->getStmt();
2620 } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) {
2621 S = Exit->getCalleeContext()->getCallSite();
2622 } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) {
2623 // If an assumption was made on a branch, it should be caught
2624 // here by looking at the state transition.
2625 S = Edge->getSrc()->getTerminator();
2626 }
2627
2628 if (!S)
2629 return nullptr;
2630
2631 // FIXME: We will eventually need to handle non-statement-based events
2632 // (__attribute__((cleanup))).
2633
2634 // Find out if this is an interesting point and what is the kind.
2635 if (Mode == Normal) {
2636 if (isAllocated(RS, RSPrev, S)) {
2637 Msg = "Memory is allocated";
2638 StackHint = new StackHintGeneratorForSymbol(Sym,
2639 "Returned allocated memory");
2640 } else if (isReleased(RS, RSPrev, S)) {
2641 Msg = "Memory is released";
2642 StackHint = new StackHintGeneratorForSymbol(Sym,
2643 "Returning; memory was released");
2644 } else if (isRelinquished(RS, RSPrev, S)) {
2645 Msg = "Memory ownership is transferred";
2646 StackHint = new StackHintGeneratorForSymbol(Sym, "");
2647 } else if (isReallocFailedCheck(RS, RSPrev, S)) {
2648 Mode = ReallocationFailed;
2649 Msg = "Reallocation failed";
2650 StackHint = new StackHintGeneratorForReallocationFailed(Sym,
2651 "Reallocation failed");
2652
2653 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
2654 // Is it possible to fail two reallocs WITHOUT testing in between?
2655 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
2656 "We only support one failed realloc at a time.");
2657 BR.markInteresting(sym);
2658 FailedReallocSymbol = sym;
2659 }
2660 }
2661
2662 // We are in a special mode if a reallocation failed later in the path.
2663 } else if (Mode == ReallocationFailed) {
2664 assert(FailedReallocSymbol && "No symbol to look for.");
2665
2666 // Is this is the first appearance of the reallocated symbol?
2667 if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
2668 // We're at the reallocation point.
2669 Msg = "Attempt to reallocate memory";
2670 StackHint = new StackHintGeneratorForSymbol(Sym,
2671 "Returned reallocated memory");
2672 FailedReallocSymbol = nullptr;
2673 Mode = Normal;
2674 }
2675 }
2676
2677 if (!Msg)
2678 return nullptr;
2679 assert(StackHint);
2680
2681 // Generate the extra diagnostic.
2682 PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
2683 N->getLocationContext());
2684 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
2685 }
2686
printState(raw_ostream & Out,ProgramStateRef State,const char * NL,const char * Sep) const2687 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
2688 const char *NL, const char *Sep) const {
2689
2690 RegionStateTy RS = State->get<RegionState>();
2691
2692 if (!RS.isEmpty()) {
2693 Out << Sep << "MallocChecker :" << NL;
2694 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2695 const RefState *RefS = State->get<RegionState>(I.getKey());
2696 AllocationFamily Family = RefS->getAllocationFamily();
2697 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2698 if (!CheckKind.hasValue())
2699 CheckKind = getCheckIfTracked(Family, true);
2700
2701 I.getKey()->dumpToStream(Out);
2702 Out << " : ";
2703 I.getData().dump(Out);
2704 if (CheckKind.hasValue())
2705 Out << " (" << CheckNames[*CheckKind].getName() << ")";
2706 Out << NL;
2707 }
2708 }
2709 }
2710
registerNewDeleteLeaksChecker(CheckerManager & mgr)2711 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) {
2712 registerCStringCheckerBasic(mgr);
2713 MallocChecker *checker = mgr.registerChecker<MallocChecker>();
2714 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(
2715 "Optimistic", false, checker);
2716 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true;
2717 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] =
2718 mgr.getCurrentCheckName();
2719 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete
2720 // checker.
2721 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker])
2722 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true;
2723 }
2724
2725 #define REGISTER_CHECKER(name) \
2726 void ento::register##name(CheckerManager &mgr) { \
2727 registerCStringCheckerBasic(mgr); \
2728 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \
2729 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \
2730 "Optimistic", false, checker); \
2731 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
2732 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
2733 }
2734
2735 REGISTER_CHECKER(MallocChecker)
2736 REGISTER_CHECKER(NewDeleteChecker)
2737 REGISTER_CHECKER(MismatchedDeallocatorChecker)
2738