1//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes Mips16 instructions. 11// 12//===----------------------------------------------------------------------===// 13// 14// 15// Mips Address 16// 17def addr16 : 18 ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>; 19 20// 21// Address operand 22def mem16 : Operand<i32> { 23 let PrintMethod = "printMemOperand"; 24 let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP); 25 let EncoderMethod = "getMemEncoding"; 26} 27 28def mem16_ea : Operand<i32> { 29 let PrintMethod = "printMemOperandEA"; 30 let MIOperandInfo = (ops CPU16RegsPlusSP, simm16); 31 let EncoderMethod = "getMemEncoding"; 32} 33 34// 35// I-type instruction format 36// 37// this is only used by bimm. the actual assembly value is a 12 bit signed 38// number 39// 40class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>: 41 FI16<op, (outs), (ins brtarget:$imm16), 42 !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>; 43 44// 45// 46// I8 instruction format 47// 48 49class FI816_ins_base<bits<3> _func, string asmstr, 50 string asmstr2, InstrItinClass itin>: 51 FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 52 [], itin>; 53 54class FI816_ins<bits<3> _func, string asmstr, 55 InstrItinClass itin>: 56 FI816_ins_base<_func, asmstr, "\t$imm # 16 bit inst", itin>; 57 58class FI816_SP_ins<bits<3> _func, string asmstr, 59 InstrItinClass itin>: 60 FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>; 61 62// 63// RI instruction format 64// 65 66 67class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2, 68 InstrItinClass itin>: 69 FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm), 70 !strconcat(asmstr, asmstr2), [], itin>; 71 72class FRI16_ins<bits<5> op, string asmstr, 73 InstrItinClass itin>: 74 FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 75 76class FRI16_TCP_ins<bits<5> _op, string asmstr, 77 InstrItinClass itin>: 78 FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 79 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>; 80 81class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2, 82 InstrItinClass itin>: 83 FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm), 84 !strconcat(asmstr, asmstr2), [], itin>; 85 86class FRI16R_ins<bits<5> op, string asmstr, 87 InstrItinClass itin>: 88 FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>; 89 90class F2RI16_ins<bits<5> _op, string asmstr, 91 InstrItinClass itin>: 92 FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 93 !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> { 94 let Constraints = "$rx_ = $rx"; 95} 96 97class FRI16_B_ins<bits<5> _op, string asmstr, 98 InstrItinClass itin>: 99 FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 100 !strconcat(asmstr, "\t$rx, $imm # 16 bit inst"), [], itin>; 101// 102// Compare a register and immediate and place result in CC 103// Implicit use of T8 104// 105// EXT-CCRR Instruction format 106// 107class FEXT_CCRXI16_ins<string asmstr>: 108 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm), 109 !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> { 110 let isCodeGenOnly=1; 111 let usesCustomInserter = 1; 112} 113 114// JAL and JALX instruction format 115// 116class FJAL16_ins<bits<1> _X, string asmstr, 117 InstrItinClass itin>: 118 FJAL16<_X, (outs), (ins simm20:$imm), 119 !strconcat(asmstr, "\t$imm\n\tnop"),[], 120 itin> { 121 let isCodeGenOnly=1; 122 let Size=6; 123} 124 125class FJALB16_ins<bits<1> _X, string asmstr, 126 InstrItinClass itin>: 127 FJAL16<_X, (outs), (ins simm20:$imm), 128 !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[], 129 itin> { 130 let isCodeGenOnly=1; 131 let Size=6; 132} 133 134// 135// EXT-I instruction format 136// 137class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> : 138 FEXT_I16<eop, (outs), (ins brtarget:$imm16), 139 !strconcat(asmstr, "\t$imm16"),[], itin>; 140 141// 142// EXT-I8 instruction format 143// 144 145class FEXT_I816_ins_base<bits<3> _func, string asmstr, 146 string asmstr2, InstrItinClass itin>: 147 FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2), 148 [], itin>; 149 150class FEXT_I816_ins<bits<3> _func, string asmstr, 151 InstrItinClass itin>: 152 FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>; 153 154class FEXT_I816_SP_ins<bits<3> _func, string asmstr, 155 InstrItinClass itin>: 156 FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>; 157 158// 159// Assembler formats in alphabetical order. 160// Natural and pseudos are mixed together. 161// 162// Compare two registers and place result in CC 163// Implicit use of T8 164// 165// CC-RR Instruction format 166// 167class FCCRR16_ins<string asmstr> : 168 MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry), 169 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> { 170 let isCodeGenOnly=1; 171 let usesCustomInserter = 1; 172} 173 174// 175// EXT-RI instruction format 176// 177 178class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2, 179 InstrItinClass itin>: 180 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm), 181 !strconcat(asmstr, asmstr2), [], itin>; 182 183class FEXT_RI16_ins<bits<5> _op, string asmstr, 184 InstrItinClass itin>: 185 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 186 187class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2, 188 InstrItinClass itin>: 189 FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm), 190 !strconcat(asmstr, asmstr2), [], itin>; 191 192class FEXT_RI16R_ins<bits<5> _op, string asmstr, 193 InstrItinClass itin>: 194 FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>; 195 196class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>: 197 FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>; 198 199class FEXT_RI16_B_ins<bits<5> _op, string asmstr, 200 InstrItinClass itin>: 201 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm), 202 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 203 204class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr, 205 InstrItinClass itin>: 206 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size), 207 !strconcat(asmstr, "\t$rx, $imm"), [], itin>; 208 209class FEXT_2RI16_ins<bits<5> _op, string asmstr, 210 InstrItinClass itin>: 211 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm), 212 !strconcat(asmstr, "\t$rx, $imm"), [], itin> { 213 let Constraints = "$rx_ = $rx"; 214} 215 216 217// this has an explicit sp argument that we ignore to work around a problem 218// in the compiler 219class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr, 220 InstrItinClass itin>: 221 FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm), 222 !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>; 223 224class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr, 225 InstrItinClass itin>: 226 FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm), 227 !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>; 228 229// 230// EXT-RRI instruction format 231// 232 233class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd, 234 InstrItinClass itin>: 235 FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 236 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 237 238class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd, 239 InstrItinClass itin>: 240 FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, MemOpnd:$addr), 241 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 242 243// 244// 245// EXT-RRI-A instruction format 246// 247 248class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd, 249 InstrItinClass itin>: 250 FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr), 251 !strconcat(asmstr, "\t$ry, $addr"), [], itin>; 252 253// 254// EXT-SHIFT instruction format 255// 256class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>: 257 FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa), 258 !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>; 259 260// 261// EXT-T8I8 262// 263class FEXT_T8I816_ins<string asmstr, string asmstr2>: 264 MipsPseudo16<(outs), 265 (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm), 266 !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t", 267 !strconcat(asmstr, "\t$imm"))),[]> { 268 let isCodeGenOnly=1; 269 let usesCustomInserter = 1; 270} 271 272// 273// EXT-T8I8I 274// 275class FEXT_T8I8I16_ins<string asmstr, string asmstr2>: 276 MipsPseudo16<(outs), 277 (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ), 278 !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t", 279 !strconcat(asmstr, "\t$targ"))), []> { 280 let isCodeGenOnly=1; 281 let usesCustomInserter = 1; 282} 283// 284 285 286// 287// I8_MOVR32 instruction format (used only by the MOVR32 instructio 288// 289class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>: 290 FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32), 291 !strconcat(asmstr, "\t$rz, $r32"), [], itin>; 292 293// 294// I8_MOV32R instruction format (used only by MOV32R instruction) 295// 296 297class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>: 298 FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz), 299 !strconcat(asmstr, "\t$r32, $rz"), [], itin>; 300 301// 302// This are pseudo formats for multiply 303// This first one can be changed to non-pseudo now. 304// 305// MULT 306// 307class FMULT16_ins<string asmstr, InstrItinClass itin> : 308 MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 309 !strconcat(asmstr, "\t$rx, $ry"), []>; 310 311// 312// MULT-LO 313// 314class FMULT16_LO_ins<string asmstr, InstrItinClass itin> : 315 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 316 !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> { 317 let isCodeGenOnly=1; 318} 319 320// 321// RR-type instruction format 322// 323 324class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 325 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 326 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 327} 328 329class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> : 330 FRRBreak16<(outs), (ins), asmstr, [], itin> { 331 let Code=0; 332} 333 334class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> : 335 FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry), 336 !strconcat(asmstr, "\t$rx, $ry"), [], itin> { 337} 338 339class FRRTR16_ins<string asmstr> : 340 MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 341 !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ; 342 343// 344// maybe refactor but need a $zero as a dummy first parameter 345// 346class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> : 347 FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry), 348 !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ; 349 350class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> : 351 FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry), 352 !strconcat(asmstr, "\t$rx, $ry"), [], itin> ; 353 354 355class FRR16_M_ins<bits<5> f, string asmstr, 356 InstrItinClass itin> : 357 FRR16<f, (outs CPU16Regs:$rx), (ins), 358 !strconcat(asmstr, "\t$rx"), [], itin>; 359 360class FRxRxRy16_ins<bits<5> f, string asmstr, 361 InstrItinClass itin> : 362 FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 363 !strconcat(asmstr, "\t$rz, $ry"), 364 [], itin> { 365 let Constraints = "$rx = $rz"; 366} 367 368let rx=0 in 369class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_, 370 string asmstr, InstrItinClass itin>: 371 FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"), 372 [], itin> ; 373 374 375class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra, 376 string asmstr, InstrItinClass itin>: 377 FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx), 378 !strconcat(asmstr, "\t $rx"), [], itin> ; 379 380class FRR_SF16_ins 381 <bits<5> _funct, bits<3> _subfunc, 382 string asmstr, InstrItinClass itin>: 383 FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_), 384 !strconcat(asmstr, "\t $rx"), 385 [], itin> { 386 let Constraints = "$rx_ = $rx"; 387 } 388// 389// RRR-type instruction format 390// 391 392class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> : 393 FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry), 394 !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>; 395 396// 397// These Sel patterns support the generation of conditional move 398// pseudo instructions. 399// 400// The nomenclature uses the components making up the pseudo and may 401// be a bit counter intuitive when compared with the end result we seek. 402// For example using a bqez in the example directly below results in the 403// conditional move being done if the tested register is not zero. 404// I considered in easier to check by keeping the pseudo consistent with 405// it's components but it could have been done differently. 406// 407// The simplest case is when can test and operand directly and do the 408// conditional move based on a simple mips16 conditional 409// branch instruction. 410// for example: 411// if $op == beqz or bnez: 412// 413// $op1 $rt, .+4 414// move $rd, $rs 415// 416// if $op == beqz, then if $rt != 0, then the conditional assignment 417// $rd = $rs is done. 418 419// if $op == bnez, then if $rt == 0, then the conditional assignment 420// $rd = $rs is done. 421// 422// So this pseudo class only has one operand, i.e. op 423// 424class Sel<string op>: 425 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 426 CPU16Regs:$rt), 427 !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> { 428 //let isCodeGenOnly=1; 429 let Constraints = "$rd = $rd_"; 430 let usesCustomInserter = 1; 431} 432 433// 434// The next two instruction classes allow for an operand which tests 435// two operands and returns a value in register T8 and 436//then does a conditional branch based on the value of T8 437// 438 439// op2 can be cmpi or slti/sltiu 440// op1 can bteqz or btnez 441// the operands for op2 are a register and a signed constant 442// 443// $op2 $t, $imm ;test register t and branch conditionally 444// $op1 .+4 ;op1 is a conditional branch 445// move $rd, $rs 446// 447// 448class SeliT<string op1, string op2>: 449 MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs, 450 CPU16Regs:$rl, simm16:$imm), 451 !strconcat(op2, 452 !strconcat("\t$rl, $imm\n\t", 453 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 454 let isCodeGenOnly=1; 455 let Constraints = "$rd = $rd_"; 456 let usesCustomInserter = 1; 457} 458 459// 460// op2 can be cmp or slt/sltu 461// op1 can be bteqz or btnez 462// the operands for op2 are two registers 463// op1 is a conditional branch 464// 465// 466// $op2 $rl, $rr ;test registers rl,rr 467// $op1 .+4 ;op2 is a conditional branch 468// move $rd, $rs 469// 470// 471class SelT<string op1, string op2>: 472 MipsPseudo16<(outs CPU16Regs:$rd_), 473 (ins CPU16Regs:$rd, CPU16Regs:$rs, 474 CPU16Regs:$rl, CPU16Regs:$rr), 475 !strconcat(op2, 476 !strconcat("\t$rl, $rr\n\t", 477 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> { 478 let isCodeGenOnly=1; 479 let Constraints = "$rd = $rd_"; 480 let usesCustomInserter = 1; 481} 482 483// 484// 32 bit constant 485// 486def imm32: Operand<i32>; 487 488def Constant32: 489 MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>; 490 491def LwConstant32: 492 MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm, imm32:$constid), 493 "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>; 494 495 496// 497// Some general instruction class info 498// 499// 500 501class ArithLogic16Defs<bit isCom=0> { 502 bits<5> shamt = 0; 503 bit isCommutable = isCom; 504 bit isReMaterializable = 1; 505 bit hasSideEffects = 0; 506} 507 508class branch16 { 509 bit isBranch = 1; 510 bit isTerminator = 1; 511 bit isBarrier = 1; 512} 513 514class cbranch16 { 515 bit isBranch = 1; 516 bit isTerminator = 1; 517} 518 519class MayLoad { 520 bit mayLoad = 1; 521} 522 523class MayStore { 524 bit mayStore = 1; 525} 526// 527 528 529// Format: ADDIU rx, immediate MIPS16e 530// Purpose: Add Immediate Unsigned Word (2-Operand, Extended) 531// To add a constant to a 32-bit integer. 532// 533def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>; 534 535def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>, 536 ArithLogic16Defs<0> { 537 let AddedComplexity = 5; 538} 539def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>, 540 ArithLogic16Defs<0> { 541 let isCodeGenOnly = 1; 542} 543 544def AddiuRxRyOffMemX16: 545 FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>; 546 547// 548 549// Format: ADDIU rx, pc, immediate MIPS16e 550// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) 551// To add a constant to the program counter. 552// 553def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>; 554 555// 556// Format: ADDIU sp, immediate MIPS16e 557// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) 558// To add a constant to the stack pointer. 559// 560def AddiuSpImm16 561 : FI816_SP_ins<0b011, "addiu", IIM16Alu> { 562 let Defs = [SP]; 563 let Uses = [SP]; 564 let AddedComplexity = 5; 565} 566 567def AddiuSpImmX16 568 : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> { 569 let Defs = [SP]; 570 let Uses = [SP]; 571} 572 573// 574// Format: ADDU rz, rx, ry MIPS16e 575// Purpose: Add Unsigned Word (3-Operand) 576// To add 32-bit integers. 577// 578 579def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>; 580 581// 582// Format: AND rx, ry MIPS16e 583// Purpose: AND 584// To do a bitwise logical AND. 585 586def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>; 587 588 589// 590// Format: BEQZ rx, offset MIPS16e 591// Purpose: Branch on Equal to Zero 592// To test a GPR then do a PC-relative conditional branch. 593// 594def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 595 596 597// 598// Format: BEQZ rx, offset MIPS16e 599// Purpose: Branch on Equal to Zero (Extended) 600// To test a GPR then do a PC-relative conditional branch. 601// 602def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16; 603 604// 605// Format: B offset MIPS16e 606// Purpose: Unconditional Branch (Extended) 607// To do an unconditional PC-relative branch. 608// 609 610def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16; 611 612// Format: B offset MIPS16e 613// Purpose: Unconditional Branch 614// To do an unconditional PC-relative branch. 615// 616def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16; 617 618// 619// Format: BNEZ rx, offset MIPS16e 620// Purpose: Branch on Not Equal to Zero 621// To test a GPR then do a PC-relative conditional branch. 622// 623def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 624 625// 626// Format: BNEZ rx, offset MIPS16e 627// Purpose: Branch on Not Equal to Zero (Extended) 628// To test a GPR then do a PC-relative conditional branch. 629// 630def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16; 631 632 633// 634//Format: BREAK immediate 635// Purpose: Breakpoint 636// To cause a Breakpoint exception. 637 638def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 639// 640// Format: BTEQZ offset MIPS16e 641// Purpose: Branch on T Equal to Zero (Extended) 642// To test special register T then do a PC-relative conditional branch. 643// 644def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 645 let Uses = [T8]; 646} 647 648def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 { 649 let Uses = [T8]; 650} 651 652def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16; 653 654def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">, 655 cbranch16; 656 657def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16; 658 659def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16; 660 661def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16; 662 663def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">, 664 cbranch16; 665 666// 667// Format: BTNEZ offset MIPS16e 668// Purpose: Branch on T Not Equal to Zero (Extended) 669// To test special register T then do a PC-relative conditional branch. 670// 671 672def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 { 673 let Uses = [T8]; 674} 675 676def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 { 677 let Uses = [T8]; 678} 679 680def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16; 681 682def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16; 683 684def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16; 685 686def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16; 687 688def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16; 689 690def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">, 691 cbranch16; 692 693// 694// Format: CMP rx, ry MIPS16e 695// Purpose: Compare 696// To compare the contents of two GPRs. 697// 698def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> { 699 let Defs = [T8]; 700} 701 702// 703// Format: CMPI rx, immediate MIPS16e 704// Purpose: Compare Immediate 705// To compare a constant with the contents of a GPR. 706// 707def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> { 708 let Defs = [T8]; 709} 710 711// 712// Format: CMPI rx, immediate MIPS16e 713// Purpose: Compare Immediate (Extended) 714// To compare a constant with the contents of a GPR. 715// 716def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> { 717 let Defs = [T8]; 718} 719 720 721// 722// Format: DIV rx, ry MIPS16e 723// Purpose: Divide Word 724// To divide 32-bit signed integers. 725// 726def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> { 727 let Defs = [HI0, LO0]; 728} 729 730// 731// Format: DIVU rx, ry MIPS16e 732// Purpose: Divide Unsigned Word 733// To divide 32-bit unsigned integers. 734// 735def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> { 736 let Defs = [HI0, LO0]; 737} 738// 739// Format: JAL target MIPS16e 740// Purpose: Jump and Link 741// To execute a procedure call within the current 256 MB-aligned 742// region and preserve the current ISA. 743// 744 745def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> { 746 let hasDelaySlot = 0; // not true, but we add the nop for now 747 let isCall=1; 748 let Defs = [RA]; 749} 750 751def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 { 752 let hasDelaySlot = 0; // not true, but we add the nop for now 753 let isBranch=1; 754 let Defs = [RA]; 755} 756 757// 758// Format: JR ra MIPS16e 759// Purpose: Jump Register Through Register ra 760// To execute a branch to the instruction address in the return 761// address register. 762// 763 764def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> { 765 let isBranch = 1; 766 let isIndirectBranch = 1; 767 let hasDelaySlot = 1; 768 let isTerminator=1; 769 let isBarrier=1; 770} 771 772def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> { 773 let isBranch = 1; 774 let isIndirectBranch = 1; 775 let isTerminator=1; 776 let isBarrier=1; 777} 778 779def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> { 780 let isBranch = 1; 781 let isIndirectBranch = 1; 782 let isTerminator=1; 783 let isBarrier=1; 784} 785// 786// Format: LB ry, offset(rx) MIPS16e 787// Purpose: Load Byte (Extended) 788// To load a byte from memory as a signed value. 789// 790def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{ 791 let isCodeGenOnly = 1; 792} 793 794// 795// Format: LBU ry, offset(rx) MIPS16e 796// Purpose: Load Byte Unsigned (Extended) 797// To load a byte from memory as a unsigned value. 798// 799def LbuRxRyOffMemX16: 800 FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad { 801 let isCodeGenOnly = 1; 802} 803 804// 805// Format: LH ry, offset(rx) MIPS16e 806// Purpose: Load Halfword signed (Extended) 807// To load a halfword from memory as a signed value. 808// 809def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{ 810 let isCodeGenOnly = 1; 811} 812 813// 814// Format: LHU ry, offset(rx) MIPS16e 815// Purpose: Load Halfword unsigned (Extended) 816// To load a halfword from memory as an unsigned value. 817// 818def LhuRxRyOffMemX16: 819 FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad { 820 let isCodeGenOnly = 1; 821} 822 823// 824// Format: LI rx, immediate MIPS16e 825// Purpose: Load Immediate 826// To load a constant into a GPR. 827// 828def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>; 829 830// 831// Format: LI rx, immediate MIPS16e 832// Purpose: Load Immediate (Extended) 833// To load a constant into a GPR. 834// 835def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>; 836 837def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> { 838 let isCodeGenOnly = 1; 839} 840 841// 842// Format: LW ry, offset(rx) MIPS16e 843// Purpose: Load Word (Extended) 844// To load a word from memory as a signed value. 845// 846def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{ 847 let isCodeGenOnly = 1; 848} 849 850// Format: LW rx, offset(sp) MIPS16e 851// Purpose: Load Word (SP-Relative, Extended) 852// To load an SP-relative word from memory as a signed value. 853// 854def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10010, "lw", II_LW>, MayLoad{ 855 let Uses = [SP]; 856} 857 858def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 859 860def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad; 861// 862// Format: MOVE r32, rz MIPS16e 863// Purpose: Move 864// To move the contents of a GPR to a GPR. 865// 866def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>; 867 868// 869// Format: MOVE ry, r32 MIPS16e 870//Purpose: Move 871// To move the contents of a GPR to a GPR. 872// 873def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu>; 874 875// 876// Format: MFHI rx MIPS16e 877// Purpose: Move From HI Register 878// To copy the special purpose HI register to a GPR. 879// 880def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> { 881 let Uses = [HI0]; 882 let hasSideEffects = 0; 883} 884 885// 886// Format: MFLO rx MIPS16e 887// Purpose: Move From LO Register 888// To copy the special purpose LO register to a GPR. 889// 890def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> { 891 let Uses = [LO0]; 892 let hasSideEffects = 0; 893} 894 895// 896// Pseudo Instruction for mult 897// 898def MultRxRy16: FMULT16_ins<"mult", IIM16Alu> { 899 let isCommutable = 1; 900 let hasSideEffects = 0; 901 let Defs = [HI0, LO0]; 902} 903 904def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> { 905 let isCommutable = 1; 906 let hasSideEffects = 0; 907 let Defs = [HI0, LO0]; 908} 909 910// 911// Format: MULT rx, ry MIPS16e 912// Purpose: Multiply Word 913// To multiply 32-bit signed integers. 914// 915def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> { 916 let isCommutable = 1; 917 let hasSideEffects = 0; 918 let Defs = [HI0, LO0]; 919} 920 921// 922// Format: MULTU rx, ry MIPS16e 923// Purpose: Multiply Unsigned Word 924// To multiply 32-bit unsigned integers. 925// 926def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> { 927 let isCommutable = 1; 928 let hasSideEffects = 0; 929 let Defs = [HI0, LO0]; 930} 931 932// 933// Format: NEG rx, ry MIPS16e 934// Purpose: Negate 935// To negate an integer value. 936// 937def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>; 938 939// 940// Format: NOT rx, ry MIPS16e 941// Purpose: Not 942// To complement an integer value 943// 944def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>; 945 946// 947// Format: OR rx, ry MIPS16e 948// Purpose: Or 949// To do a bitwise logical OR. 950// 951def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>; 952 953// 954// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} 955// (All args are optional) MIPS16e 956// Purpose: Restore Registers and Deallocate Stack Frame 957// To deallocate a stack frame before exit from a subroutine, 958// restoring return address and static registers, and adjusting 959// stack 960// 961 962def Restore16: 963 FI8_SVRS16<0b1, (outs), (ins variable_ops), 964 "", [], II_RESTORE >, MayLoad { 965 let isCodeGenOnly = 1; 966 let Defs = [SP]; 967 let Uses = [SP]; 968} 969 970 971def RestoreX16: 972 FI8_SVRS16<0b1, (outs), (ins variable_ops), 973 "", [], II_RESTORE >, MayLoad { 974 let isCodeGenOnly = 1; 975 let Defs = [SP]; 976 let Uses = [SP]; 977} 978 979// 980// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) 981// MIPS16e 982// Purpose: Save Registers and Set Up Stack Frame 983// To set up a stack frame on entry to a subroutine, 984// saving return address and static registers, and adjusting stack 985// 986def Save16: 987 FI8_SVRS16<0b1, (outs), (ins variable_ops), 988 "", [], II_SAVE >, MayStore { 989 let isCodeGenOnly = 1; 990 let Uses = [SP]; 991 let Defs = [SP]; 992} 993 994def SaveX16: 995 FI8_SVRS16<0b1, (outs), (ins variable_ops), 996 "", [], II_SAVE >, MayStore { 997 let isCodeGenOnly = 1; 998 let Uses = [SP]; 999 let Defs = [SP]; 1000} 1001// 1002// Format: SB ry, offset(rx) MIPS16e 1003// Purpose: Store Byte (Extended) 1004// To store a byte to memory. 1005// 1006def SbRxRyOffMemX16: 1007 FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore; 1008 1009// 1010// Format: SEB rx MIPS16e 1011// Purpose: Sign-Extend Byte 1012// Sign-extend least significant byte in register rx. 1013// 1014def SebRx16 1015 : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>; 1016 1017// 1018// Format: SEH rx MIPS16e 1019// Purpose: Sign-Extend Halfword 1020// Sign-extend least significant word in register rx. 1021// 1022def SehRx16 1023 : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>; 1024 1025// 1026// The Sel(T) instructions are pseudos 1027// T means that they use T8 implicitly. 1028// 1029// 1030// Format: SelBeqZ rd, rs, rt 1031// Purpose: if rt==0, do nothing 1032// else rs = rt 1033// 1034def SelBeqZ: Sel<"beqz">; 1035 1036// 1037// Format: SelTBteqZCmp rd, rs, rl, rr 1038// Purpose: b = Cmp rl, rr. 1039// If b==0 then do nothing. 1040// if b!=0 then rd = rs 1041// 1042def SelTBteqZCmp: SelT<"bteqz", "cmp">; 1043 1044// 1045// Format: SelTBteqZCmpi rd, rs, rl, rr 1046// Purpose: b = Cmpi rl, imm. 1047// If b==0 then do nothing. 1048// if b!=0 then rd = rs 1049// 1050def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">; 1051 1052// 1053// Format: SelTBteqZSlt rd, rs, rl, rr 1054// Purpose: b = Slt rl, rr. 1055// If b==0 then do nothing. 1056// if b!=0 then rd = rs 1057// 1058def SelTBteqZSlt: SelT<"bteqz", "slt">; 1059 1060// 1061// Format: SelTBteqZSlti rd, rs, rl, rr 1062// Purpose: b = Slti rl, imm. 1063// If b==0 then do nothing. 1064// if b!=0 then rd = rs 1065// 1066def SelTBteqZSlti: SeliT<"bteqz", "slti">; 1067 1068// 1069// Format: SelTBteqZSltu rd, rs, rl, rr 1070// Purpose: b = Sltu rl, rr. 1071// If b==0 then do nothing. 1072// if b!=0 then rd = rs 1073// 1074def SelTBteqZSltu: SelT<"bteqz", "sltu">; 1075 1076// 1077// Format: SelTBteqZSltiu rd, rs, rl, rr 1078// Purpose: b = Sltiu rl, imm. 1079// If b==0 then do nothing. 1080// if b!=0 then rd = rs 1081// 1082def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">; 1083 1084// 1085// Format: SelBnez rd, rs, rt 1086// Purpose: if rt!=0, do nothing 1087// else rs = rt 1088// 1089def SelBneZ: Sel<"bnez">; 1090 1091// 1092// Format: SelTBtneZCmp rd, rs, rl, rr 1093// Purpose: b = Cmp rl, rr. 1094// If b!=0 then do nothing. 1095// if b0=0 then rd = rs 1096// 1097def SelTBtneZCmp: SelT<"btnez", "cmp">; 1098 1099// 1100// Format: SelTBtnezCmpi rd, rs, rl, rr 1101// Purpose: b = Cmpi rl, imm. 1102// If b!=0 then do nothing. 1103// if b==0 then rd = rs 1104// 1105def SelTBtneZCmpi: SeliT<"btnez", "cmpi">; 1106 1107// 1108// Format: SelTBtneZSlt rd, rs, rl, rr 1109// Purpose: b = Slt rl, rr. 1110// If b!=0 then do nothing. 1111// if b==0 then rd = rs 1112// 1113def SelTBtneZSlt: SelT<"btnez", "slt">; 1114 1115// 1116// Format: SelTBtneZSlti rd, rs, rl, rr 1117// Purpose: b = Slti rl, imm. 1118// If b!=0 then do nothing. 1119// if b==0 then rd = rs 1120// 1121def SelTBtneZSlti: SeliT<"btnez", "slti">; 1122 1123// 1124// Format: SelTBtneZSltu rd, rs, rl, rr 1125// Purpose: b = Sltu rl, rr. 1126// If b!=0 then do nothing. 1127// if b==0 then rd = rs 1128// 1129def SelTBtneZSltu: SelT<"btnez", "sltu">; 1130 1131// 1132// Format: SelTBtneZSltiu rd, rs, rl, rr 1133// Purpose: b = Slti rl, imm. 1134// If b!=0 then do nothing. 1135// if b==0 then rd = rs 1136// 1137def SelTBtneZSltiu: SeliT<"btnez", "sltiu">; 1138// 1139// 1140// Format: SH ry, offset(rx) MIPS16e 1141// Purpose: Store Halfword (Extended) 1142// To store a halfword to memory. 1143// 1144def ShRxRyOffMemX16: 1145 FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore; 1146 1147// 1148// Format: SLL rx, ry, sa MIPS16e 1149// Purpose: Shift Word Left Logical (Extended) 1150// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits. 1151// 1152def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>; 1153 1154// 1155// Format: SLLV ry, rx MIPS16e 1156// Purpose: Shift Word Left Logical Variable 1157// To execute a left-shift of a word by a variable number of bits. 1158// 1159def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>; 1160 1161// Format: SLTI rx, immediate MIPS16e 1162// Purpose: Set on Less Than Immediate 1163// To record the result of a less-than comparison with a constant. 1164// 1165// 1166def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> { 1167 let Defs = [T8]; 1168} 1169 1170// 1171// Format: SLTI rx, immediate MIPS16e 1172// Purpose: Set on Less Than Immediate (Extended) 1173// To record the result of a less-than comparison with a constant. 1174// 1175// 1176def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> { 1177 let Defs = [T8]; 1178} 1179 1180def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">; 1181 1182// Format: SLTIU rx, immediate MIPS16e 1183// Purpose: Set on Less Than Immediate Unsigned 1184// To record the result of a less-than comparison with a constant. 1185// 1186// 1187def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> { 1188 let Defs = [T8]; 1189} 1190 1191// 1192// Format: SLTI rx, immediate MIPS16e 1193// Purpose: Set on Less Than Immediate Unsigned (Extended) 1194// To record the result of a less-than comparison with a constant. 1195// 1196// 1197def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> { 1198 let Defs = [T8]; 1199} 1200// 1201// Format: SLTIU rx, immediate MIPS16e 1202// Purpose: Set on Less Than Immediate Unsigned (Extended) 1203// To record the result of a less-than comparison with a constant. 1204// 1205def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">; 1206 1207// 1208// Format: SLT rx, ry MIPS16e 1209// Purpose: Set on Less Than 1210// To record the result of a less-than comparison. 1211// 1212def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{ 1213 let Defs = [T8]; 1214} 1215 1216def SltCCRxRy16: FCCRR16_ins<"slt">; 1217 1218// Format: SLTU rx, ry MIPS16e 1219// Purpose: Set on Less Than Unsigned 1220// To record the result of an unsigned less-than comparison. 1221// 1222def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{ 1223 let Defs = [T8]; 1224} 1225 1226def SltuRxRyRz16: FRRTR16_ins<"sltu"> { 1227 let isCodeGenOnly=1; 1228 let Defs = [T8]; 1229} 1230 1231 1232def SltuCCRxRy16: FCCRR16_ins<"sltu">; 1233// 1234// Format: SRAV ry, rx MIPS16e 1235// Purpose: Shift Word Right Arithmetic Variable 1236// To execute an arithmetic right-shift of a word by a variable 1237// number of bits. 1238// 1239def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>; 1240 1241 1242// 1243// Format: SRA rx, ry, sa MIPS16e 1244// Purpose: Shift Word Right Arithmetic (Extended) 1245// To execute an arithmetic right-shift of a word by a fixed 1246// number of bits-1 to 8 bits. 1247// 1248def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>; 1249 1250 1251// 1252// Format: SRLV ry, rx MIPS16e 1253// Purpose: Shift Word Right Logical Variable 1254// To execute a logical right-shift of a word by a variable 1255// number of bits. 1256// 1257def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>; 1258 1259 1260// 1261// Format: SRL rx, ry, sa MIPS16e 1262// Purpose: Shift Word Right Logical (Extended) 1263// To execute a logical right-shift of a word by a fixed 1264// number of bits-1 to 31 bits. 1265// 1266def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>; 1267 1268// 1269// Format: SUBU rz, rx, ry MIPS16e 1270// Purpose: Subtract Unsigned Word 1271// To subtract 32-bit integers 1272// 1273def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>; 1274 1275// 1276// Format: SW ry, offset(rx) MIPS16e 1277// Purpose: Store Word (Extended) 1278// To store a word to memory. 1279// 1280def SwRxRyOffMemX16: 1281 FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore; 1282 1283// 1284// Format: SW rx, offset(sp) MIPS16e 1285// Purpose: Store Word rx (SP-Relative) 1286// To store an SP-relative word to memory. 1287// 1288def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins 1289 <0b11010, "sw", II_SW>, MayStore; 1290 1291// 1292// 1293// Format: XOR rx, ry MIPS16e 1294// Purpose: Xor 1295// To do a bitwise logical XOR. 1296// 1297def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>; 1298 1299class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> { 1300 let Predicates = [InMips16Mode]; 1301} 1302 1303// Unary Arith/Logic 1304// 1305class ArithLogicU_pat<PatFrag OpNode, Instruction I> : 1306 Mips16Pat<(OpNode CPU16Regs:$r), 1307 (I CPU16Regs:$r)>; 1308 1309def: ArithLogicU_pat<not, NotRxRy16>; 1310def: ArithLogicU_pat<ineg, NegRxRy16>; 1311 1312class ArithLogic16_pat<SDNode OpNode, Instruction I> : 1313 Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r), 1314 (I CPU16Regs:$l, CPU16Regs:$r)>; 1315 1316def: ArithLogic16_pat<add, AdduRxRyRz16>; 1317def: ArithLogic16_pat<and, AndRxRxRy16>; 1318def: ArithLogic16_pat<mul, MultRxRyRz16>; 1319def: ArithLogic16_pat<or, OrRxRxRy16>; 1320def: ArithLogic16_pat<sub, SubuRxRyRz16>; 1321def: ArithLogic16_pat<xor, XorRxRxRy16>; 1322 1323// Arithmetic and logical instructions with 2 register operands. 1324 1325class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> : 1326 Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm), 1327 (I CPU16Regs:$in, imm_type:$imm)>; 1328 1329def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>; 1330def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>; 1331def: ArithLogicI16_pat<shl, immZExt5, SllX16>; 1332def: ArithLogicI16_pat<srl, immZExt5, SrlX16>; 1333def: ArithLogicI16_pat<sra, immZExt5, SraX16>; 1334 1335class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> : 1336 Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra), 1337 (I CPU16Regs:$r, CPU16Regs:$ra)>; 1338 1339def: shift_rotate_reg16_pat<shl, SllvRxRy16>; 1340def: shift_rotate_reg16_pat<sra, SravRxRy16>; 1341def: shift_rotate_reg16_pat<srl, SrlvRxRy16>; 1342 1343class LoadM16_pat<PatFrag OpNode, Instruction I> : 1344 Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>; 1345 1346def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>; 1347def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>; 1348def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>; 1349def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>; 1350def: LoadM16_pat<load, LwRxRyOffMemX16>; 1351 1352class StoreM16_pat<PatFrag OpNode, Instruction I> : 1353 Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr), 1354 (I CPU16Regs:$r, addr16:$addr)>; 1355 1356def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>; 1357def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>; 1358def: StoreM16_pat<store, SwRxRyOffMemX16>; 1359 1360// Unconditional branch 1361class UncondBranch16_pat<SDNode OpNode, Instruction I>: 1362 Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> { 1363 let Predicates = [InMips16Mode]; 1364 } 1365 1366def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), 1367 (Jal16 tglobaladdr:$dst)>; 1368 1369def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)), 1370 (Jal16 texternalsym:$dst)>; 1371 1372// Indirect branch 1373def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> { 1374 // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change 1375 // MIPS16's behaviour. 1376 let AddedComplexity = 1; 1377} 1378 1379// Jump and Link (Call) 1380let isCall=1, hasDelaySlot=0 in 1381def JumpLinkReg16: 1382 FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs), 1383 "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> { 1384 let Defs = [RA]; 1385} 1386 1387// Mips16 pseudos 1388let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, 1389 hasExtraSrcRegAllocReq = 1 in 1390def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>; 1391 1392 1393// setcc patterns 1394 1395class SetCC_R16<PatFrag cond_op, Instruction I>: 1396 Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry), 1397 (I CPU16Regs:$rx, CPU16Regs:$ry)>; 1398 1399class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>: 1400 Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16), 1401 (I CPU16Regs:$rx, imm_type:$imm16)>; 1402 1403 1404def: Mips16Pat<(i32 addr16:$addr), 1405 (AddiuRxRyOffMemX16 addr16:$addr)>; 1406 1407 1408// Large (>16 bit) immediate loads 1409def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>; 1410 1411// Carry MipsPatterns 1412def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs), 1413 (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>; 1414def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs), 1415 (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>; 1416def : Mips16Pat<(addc CPU16Regs:$src, immSExt16:$imm), 1417 (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>; 1418 1419// 1420// Some branch conditional patterns are not generated by llvm at this time. 1421// Some are for seemingly arbitrary reasons not used: i.e. with signed number 1422// comparison they are used and for unsigned a different pattern is used. 1423// I am pushing upstream from the full mips16 port and it seemed that I needed 1424// these earlier and the mips32 port has these but now I cannot create test 1425// cases that use these patterns. While I sort this all out I will leave these 1426// extra patterns commented out and if I can be sure they are really not used, 1427// I will delete the code. I don't want to check the code in uncommented without 1428// a valid test case. In some cases, the compiler is generating patterns with 1429// setcc instead and earlier I had implemented setcc first so may have masked 1430// the problem. The setcc variants are suboptimal for mips16 so I may wantto 1431// figure out how to enable the brcond patterns or else possibly new 1432// combinations of of brcond and setcc. 1433// 1434// 1435// bcond-seteq 1436// 1437def: Mips16Pat 1438 <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1439 (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1440 >; 1441 1442 1443def: Mips16Pat 1444 <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1445 (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1446 >; 1447 1448def: Mips16Pat 1449 <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16), 1450 (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16) 1451 >; 1452 1453// 1454// bcond-setgt (do we need to have this pair of setlt, setgt??) 1455// 1456def: Mips16Pat 1457 <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1458 (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1459 >; 1460 1461// 1462// bcond-setge 1463// 1464def: Mips16Pat 1465 <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1466 (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1467 >; 1468 1469// 1470// never called because compiler transforms a >= k to a > (k-1) 1471def: Mips16Pat 1472 <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1473 (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1474 >; 1475 1476// 1477// bcond-setlt 1478// 1479def: Mips16Pat 1480 <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1481 (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1482 >; 1483 1484def: Mips16Pat 1485 <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16), 1486 (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16) 1487 >; 1488 1489// 1490// bcond-setle 1491// 1492def: Mips16Pat 1493 <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1494 (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1495 >; 1496 1497// 1498// bcond-setne 1499// 1500def: Mips16Pat 1501 <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1502 (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1503 >; 1504 1505def: Mips16Pat 1506 <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16), 1507 (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16) 1508 >; 1509 1510def: Mips16Pat 1511 <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16), 1512 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1513 >; 1514 1515// 1516// This needs to be there but I forget which code will generate it 1517// 1518def: Mips16Pat 1519 <(brcond CPU16Regs:$rx, bb:$targ16), 1520 (BnezRxImm16 CPU16Regs:$rx, bb:$targ16) 1521 >; 1522 1523// 1524 1525// 1526// bcond-setugt 1527// 1528//def: Mips16Pat 1529// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1530// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16) 1531// >; 1532 1533// 1534// bcond-setuge 1535// 1536//def: Mips16Pat 1537// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1538// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1539// >; 1540 1541 1542// 1543// bcond-setult 1544// 1545//def: Mips16Pat 1546// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16), 1547// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16) 1548// >; 1549 1550def: UncondBranch16_pat<br, Bimm16>; 1551 1552// Small immediates 1553def: Mips16Pat<(i32 immSExt16:$in), 1554 (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>; 1555 1556def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>; 1557 1558// 1559// MipsDivRem 1560// 1561def: Mips16Pat 1562 <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry), 1563 (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1564 1565// 1566// MipsDivRemU 1567// 1568def: Mips16Pat 1569 <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry), 1570 (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>; 1571 1572// signed a,b 1573// x = (a>=b)?x:y 1574// 1575// if !(a < b) x = y 1576// 1577def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)), 1578 CPU16Regs:$x, CPU16Regs:$y), 1579 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1580 CPU16Regs:$a, CPU16Regs:$b)>; 1581 1582// signed a,b 1583// x = (a>b)?x:y 1584// 1585// if (b < a) x = y 1586// 1587def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)), 1588 CPU16Regs:$x, CPU16Regs:$y), 1589 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y, 1590 CPU16Regs:$b, CPU16Regs:$a)>; 1591 1592// unsigned a,b 1593// x = (a>=b)?x:y 1594// 1595// if !(a < b) x = y; 1596// 1597def : Mips16Pat< 1598 (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)), 1599 CPU16Regs:$x, CPU16Regs:$y), 1600 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1601 CPU16Regs:$a, CPU16Regs:$b)>; 1602 1603// unsigned a,b 1604// x = (a>b)?x:y 1605// 1606// if (b < a) x = y 1607// 1608def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)), 1609 CPU16Regs:$x, CPU16Regs:$y), 1610 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y, 1611 CPU16Regs:$b, CPU16Regs:$a)>; 1612 1613// signed 1614// x = (a >= k)?x:y 1615// due to an llvm optimization, i don't think that this will ever 1616// be used. This is transformed into x = (a > k-1)?x:y 1617// 1618// 1619 1620//def : Mips16Pat< 1621// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)), 1622// CPU16Regs:$T, CPU16Regs:$F), 1623// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F, 1624// CPU16Regs:$lhs, immSExt16:$rhs)>; 1625 1626//def : Mips16Pat< 1627// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)), 1628// CPU16Regs:$T, CPU16Regs:$F), 1629// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F, 1630// CPU16Regs:$lhs, immSExt16:$rhs)>; 1631 1632// signed 1633// x = (a < k)?x:y 1634// 1635// if !(a < k) x = y; 1636// 1637def : Mips16Pat< 1638 (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)), 1639 CPU16Regs:$x, CPU16Regs:$y), 1640 (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y, 1641 CPU16Regs:$a, immSExt16:$b)>; 1642 1643 1644// 1645// 1646// signed 1647// x = (a <= b)? x : y 1648// 1649// if (b < a) x = y 1650// 1651def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)), 1652 CPU16Regs:$x, CPU16Regs:$y), 1653 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y, 1654 CPU16Regs:$b, CPU16Regs:$a)>; 1655 1656// 1657// unnsigned 1658// x = (a <= b)? x : y 1659// 1660// if (b < a) x = y 1661// 1662def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)), 1663 CPU16Regs:$x, CPU16Regs:$y), 1664 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y, 1665 CPU16Regs:$b, CPU16Regs:$a)>; 1666 1667// 1668// signed/unsigned 1669// x = (a == b)? x : y 1670// 1671// if (a != b) x = y 1672// 1673def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)), 1674 CPU16Regs:$x, CPU16Regs:$y), 1675 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y, 1676 CPU16Regs:$b, CPU16Regs:$a)>; 1677 1678// 1679// signed/unsigned 1680// x = (a == 0)? x : y 1681// 1682// if (a != 0) x = y 1683// 1684def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)), 1685 CPU16Regs:$x, CPU16Regs:$y), 1686 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y, 1687 CPU16Regs:$a)>; 1688 1689 1690// 1691// signed/unsigned 1692// x = (a == k)? x : y 1693// 1694// if (a != k) x = y 1695// 1696def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)), 1697 CPU16Regs:$x, CPU16Regs:$y), 1698 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y, 1699 CPU16Regs:$a, immZExt16:$k)>; 1700 1701 1702// 1703// signed/unsigned 1704// x = (a != b)? x : y 1705// 1706// if (a == b) x = y 1707// 1708// 1709def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)), 1710 CPU16Regs:$x, CPU16Regs:$y), 1711 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y, 1712 CPU16Regs:$b, CPU16Regs:$a)>; 1713 1714// 1715// signed/unsigned 1716// x = (a != 0)? x : y 1717// 1718// if (a == 0) x = y 1719// 1720def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)), 1721 CPU16Regs:$x, CPU16Regs:$y), 1722 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1723 CPU16Regs:$a)>; 1724 1725// signed/unsigned 1726// x = (a)? x : y 1727// 1728// if (!a) x = y 1729// 1730def : Mips16Pat<(select CPU16Regs:$a, 1731 CPU16Regs:$x, CPU16Regs:$y), 1732 (SelBneZ CPU16Regs:$x, CPU16Regs:$y, 1733 CPU16Regs:$a)>; 1734 1735 1736// 1737// signed/unsigned 1738// x = (a != k)? x : y 1739// 1740// if (a == k) x = y 1741// 1742def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)), 1743 CPU16Regs:$x, CPU16Regs:$y), 1744 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y, 1745 CPU16Regs:$a, immZExt16:$k)>; 1746 1747// 1748// When writing C code to test setxx these patterns, 1749// some will be transformed into 1750// other things. So we test using C code but using -O3 and -O0 1751// 1752// seteq 1753// 1754def : Mips16Pat 1755 <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs), 1756 (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>; 1757 1758def : Mips16Pat 1759 <(seteq CPU16Regs:$lhs, 0), 1760 (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>; 1761 1762 1763// 1764// setge 1765// 1766 1767def: Mips16Pat 1768 <(setge CPU16Regs:$lhs, CPU16Regs:$rhs), 1769 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1770 (LiRxImmX16 1))>; 1771 1772// 1773// For constants, llvm transforms this to: 1774// x > (k - 1) and then reverses the operands to use setlt. So this pattern 1775// is not used now by the compiler. (Presumably checking that k-1 does not 1776// overflow). The compiler never uses this at the current time, due to 1777// other optimizations. 1778// 1779//def: Mips16Pat 1780// <(setge CPU16Regs:$lhs, immSExt16:$rhs), 1781// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs), 1782// (LiRxImmX16 1))>; 1783 1784// This catches the x >= -32768 case by transforming it to x > -32769 1785// 1786def: Mips16Pat 1787 <(setgt CPU16Regs:$lhs, -32769), 1788 (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768), 1789 (LiRxImmX16 1))>; 1790 1791// 1792// setgt 1793// 1794// 1795 1796def: Mips16Pat 1797 <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs), 1798 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1799 1800// 1801// setle 1802// 1803def: Mips16Pat 1804 <(setle CPU16Regs:$lhs, CPU16Regs:$rhs), 1805 (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>; 1806 1807// 1808// setlt 1809// 1810def: SetCC_R16<setlt, SltCCRxRy16>; 1811 1812def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>; 1813 1814// 1815// setne 1816// 1817def : Mips16Pat 1818 <(setne CPU16Regs:$lhs,CPU16Regs:$rhs), 1819 (SltuCCRxRy16 (LiRxImmX16 0), 1820 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>; 1821 1822 1823// 1824// setuge 1825// 1826def: Mips16Pat 1827 <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs), 1828 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1829 (LiRxImmX16 1))>; 1830 1831// this pattern will never be used because the compiler will transform 1832// x >= k to x > (k - 1) and then use SLT 1833// 1834//def: Mips16Pat 1835// <(setuge CPU16Regs:$lhs, immZExt16:$rhs), 1836// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs), 1837// (LiRxImmX16 1))>; 1838 1839// 1840// setugt 1841// 1842def: Mips16Pat 1843 <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs), 1844 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>; 1845 1846// 1847// setule 1848// 1849def: Mips16Pat 1850 <(setule CPU16Regs:$lhs, CPU16Regs:$rhs), 1851 (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>; 1852 1853// 1854// setult 1855// 1856def: SetCC_R16<setult, SltuCCRxRy16>; 1857 1858def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>; 1859 1860def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)), 1861 (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>; 1862 1863// hi/lo relocs 1864def : Mips16Pat<(MipsHi tblockaddress:$in), 1865 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>; 1866def : Mips16Pat<(MipsHi tglobaladdr:$in), 1867 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>; 1868def : Mips16Pat<(MipsHi tjumptable:$in), 1869 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>; 1870def : Mips16Pat<(MipsHi tglobaltlsaddr:$in), 1871 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>; 1872 1873def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>; 1874 1875// wrapper_pic 1876class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 1877 Mips16Pat<(MipsWrapper RC:$gp, node:$in), 1878 (ADDiuOp RC:$gp, node:$in)>; 1879 1880 1881def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>; 1882def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>; 1883 1884def : Mips16Pat<(i32 (extloadi8 addr16:$src)), 1885 (LbuRxRyOffMemX16 addr16:$src)>; 1886def : Mips16Pat<(i32 (extloadi16 addr16:$src)), 1887 (LhuRxRyOffMemX16 addr16:$src)>; 1888 1889def: Mips16Pat<(trap), (Break16)>; 1890 1891def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8), 1892 (SebRx16 CPU16Regs:$val)>; 1893 1894def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16), 1895 (SehRx16 CPU16Regs:$val)>; 1896 1897def GotPrologue16: 1898 MipsPseudo16< 1899 (outs CPU16Regs:$rh, CPU16Regs:$rl), 1900 (ins simm16:$immHi, simm16:$immLo), 1901 "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ; 1902 1903// An operand for the CONSTPOOL_ENTRY pseudo-instruction. 1904def cpinst_operand : Operand<i32> { 1905 // let PrintMethod = "printCPInstOperand"; 1906} 1907 1908// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1909// the function. The first operand is the ID# for this instruction, the second 1910// is the index into the MachineConstantPool that this is, the third is the 1911// size in bytes of this constant pool entry. 1912// 1913let hasSideEffects = 0, isNotDuplicable = 1 in 1914def CONSTPOOL_ENTRY : 1915MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1916 i32imm:$size), "foo", []>; 1917 1918