1 //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to NVPTX assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "NVPTXAsmPrinter.h"
16 #include "InstPrinter/NVPTXInstPrinter.h"
17 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
18 #include "NVPTX.h"
19 #include "NVPTXInstrInfo.h"
20 #include "NVPTXMCExpr.h"
21 #include "NVPTXMachineFunctionInfo.h"
22 #include "NVPTXRegisterInfo.h"
23 #include "NVPTXTargetMachine.h"
24 #include "NVPTXUtilities.h"
25 #include "cl_common_defines.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Mangler.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FormattedStream.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/TimeValue.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Transforms/Utils/UnrollLoop.h"
51 #include <sstream>
52 using namespace llvm;
53
54 #define DEPOTNAME "__local_depot"
55
56 static cl::opt<bool>
57 EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
58 cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
59 cl::init(true));
60
61 static cl::opt<bool>
62 InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
63 cl::desc("NVPTX Specific: Emit source line in ptx file"),
64 cl::init(false));
65
66 namespace {
67 /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
68 /// depends.
DiscoverDependentGlobals(const Value * V,DenseSet<const GlobalVariable * > & Globals)69 void DiscoverDependentGlobals(const Value *V,
70 DenseSet<const GlobalVariable *> &Globals) {
71 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
72 Globals.insert(GV);
73 else {
74 if (const User *U = dyn_cast<User>(V)) {
75 for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
76 DiscoverDependentGlobals(U->getOperand(i), Globals);
77 }
78 }
79 }
80 }
81
82 /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
83 /// instances to be emitted, but only after any dependents have been added
84 /// first.
VisitGlobalVariableForEmission(const GlobalVariable * GV,SmallVectorImpl<const GlobalVariable * > & Order,DenseSet<const GlobalVariable * > & Visited,DenseSet<const GlobalVariable * > & Visiting)85 void VisitGlobalVariableForEmission(
86 const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
87 DenseSet<const GlobalVariable *> &Visited,
88 DenseSet<const GlobalVariable *> &Visiting) {
89 // Have we already visited this one?
90 if (Visited.count(GV))
91 return;
92
93 // Do we have a circular dependency?
94 if (!Visiting.insert(GV).second)
95 report_fatal_error("Circular dependency found in global variable set");
96
97 // Make sure we visit all dependents first
98 DenseSet<const GlobalVariable *> Others;
99 for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
100 DiscoverDependentGlobals(GV->getOperand(i), Others);
101
102 for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
103 E = Others.end();
104 I != E; ++I)
105 VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
106
107 // Now we can visit ourself
108 Order.push_back(GV);
109 Visited.insert(GV);
110 Visiting.erase(GV);
111 }
112 }
113
emitLineNumberAsDotLoc(const MachineInstr & MI)114 void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
115 if (!EmitLineNumbers)
116 return;
117 if (ignoreLoc(MI))
118 return;
119
120 DebugLoc curLoc = MI.getDebugLoc();
121
122 if (!prevDebugLoc && !curLoc)
123 return;
124
125 if (prevDebugLoc == curLoc)
126 return;
127
128 prevDebugLoc = curLoc;
129
130 if (!curLoc)
131 return;
132
133 auto *Scope = cast_or_null<DIScope>(curLoc.getScope());
134 if (!Scope)
135 return;
136
137 StringRef fileName(Scope->getFilename());
138 StringRef dirName(Scope->getDirectory());
139 SmallString<128> FullPathName = dirName;
140 if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
141 sys::path::append(FullPathName, fileName);
142 fileName = FullPathName;
143 }
144
145 if (filenameMap.find(fileName) == filenameMap.end())
146 return;
147
148 // Emit the line from the source file.
149 if (InterleaveSrc)
150 this->emitSrcInText(fileName, curLoc.getLine());
151
152 std::stringstream temp;
153 temp << "\t.loc " << filenameMap[fileName] << " " << curLoc.getLine()
154 << " " << curLoc.getCol();
155 OutStreamer->EmitRawText(temp.str());
156 }
157
EmitInstruction(const MachineInstr * MI)158 void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
159 SmallString<128> Str;
160 raw_svector_ostream OS(Str);
161 if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA)
162 emitLineNumberAsDotLoc(*MI);
163
164 MCInst Inst;
165 lowerToMCInst(MI, Inst);
166 EmitToStreamer(*OutStreamer, Inst);
167 }
168
169 // Handle symbol backtracking for targets that do not support image handles
lowerImageHandleOperand(const MachineInstr * MI,unsigned OpNo,MCOperand & MCOp)170 bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
171 unsigned OpNo, MCOperand &MCOp) {
172 const MachineOperand &MO = MI->getOperand(OpNo);
173 const MCInstrDesc &MCID = MI->getDesc();
174
175 if (MCID.TSFlags & NVPTXII::IsTexFlag) {
176 // This is a texture fetch, so operand 4 is a texref and operand 5 is
177 // a samplerref
178 if (OpNo == 4 && MO.isImm()) {
179 lowerImageHandleSymbol(MO.getImm(), MCOp);
180 return true;
181 }
182 if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
183 lowerImageHandleSymbol(MO.getImm(), MCOp);
184 return true;
185 }
186
187 return false;
188 } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
189 unsigned VecSize =
190 1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
191
192 // For a surface load of vector size N, the Nth operand will be the surfref
193 if (OpNo == VecSize && MO.isImm()) {
194 lowerImageHandleSymbol(MO.getImm(), MCOp);
195 return true;
196 }
197
198 return false;
199 } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
200 // This is a surface store, so operand 0 is a surfref
201 if (OpNo == 0 && MO.isImm()) {
202 lowerImageHandleSymbol(MO.getImm(), MCOp);
203 return true;
204 }
205
206 return false;
207 } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
208 // This is a query, so operand 1 is a surfref/texref
209 if (OpNo == 1 && MO.isImm()) {
210 lowerImageHandleSymbol(MO.getImm(), MCOp);
211 return true;
212 }
213
214 return false;
215 }
216
217 return false;
218 }
219
lowerImageHandleSymbol(unsigned Index,MCOperand & MCOp)220 void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
221 // Ewwww
222 TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
223 NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
224 const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
225 const char *Sym = MFI->getImageHandleSymbol(Index);
226 std::string *SymNamePtr =
227 nvTM.getManagedStrPool()->getManagedString(Sym);
228 MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(
229 StringRef(SymNamePtr->c_str())));
230 }
231
lowerToMCInst(const MachineInstr * MI,MCInst & OutMI)232 void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
233 OutMI.setOpcode(MI->getOpcode());
234 // Special: Do not mangle symbol operand of CALL_PROTOTYPE
235 if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
236 const MachineOperand &MO = MI->getOperand(0);
237 OutMI.addOperand(GetSymbolRef(
238 OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
239 return;
240 }
241
242 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
243 const MachineOperand &MO = MI->getOperand(i);
244
245 MCOperand MCOp;
246 if (!nvptxSubtarget->hasImageHandles()) {
247 if (lowerImageHandleOperand(MI, i, MCOp)) {
248 OutMI.addOperand(MCOp);
249 continue;
250 }
251 }
252
253 if (lowerOperand(MO, MCOp))
254 OutMI.addOperand(MCOp);
255 }
256 }
257
lowerOperand(const MachineOperand & MO,MCOperand & MCOp)258 bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
259 MCOperand &MCOp) {
260 switch (MO.getType()) {
261 default: llvm_unreachable("unknown operand type");
262 case MachineOperand::MO_Register:
263 MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
264 break;
265 case MachineOperand::MO_Immediate:
266 MCOp = MCOperand::createImm(MO.getImm());
267 break;
268 case MachineOperand::MO_MachineBasicBlock:
269 MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
270 MO.getMBB()->getSymbol(), OutContext));
271 break;
272 case MachineOperand::MO_ExternalSymbol:
273 MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
274 break;
275 case MachineOperand::MO_GlobalAddress:
276 MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
277 break;
278 case MachineOperand::MO_FPImmediate: {
279 const ConstantFP *Cnt = MO.getFPImm();
280 APFloat Val = Cnt->getValueAPF();
281
282 switch (Cnt->getType()->getTypeID()) {
283 default: report_fatal_error("Unsupported FP type"); break;
284 case Type::FloatTyID:
285 MCOp = MCOperand::createExpr(
286 NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
287 break;
288 case Type::DoubleTyID:
289 MCOp = MCOperand::createExpr(
290 NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
291 break;
292 }
293 break;
294 }
295 }
296 return true;
297 }
298
encodeVirtualRegister(unsigned Reg)299 unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
300 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
301 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
302
303 DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
304 unsigned RegNum = RegMap[Reg];
305
306 // Encode the register class in the upper 4 bits
307 // Must be kept in sync with NVPTXInstPrinter::printRegName
308 unsigned Ret = 0;
309 if (RC == &NVPTX::Int1RegsRegClass) {
310 Ret = (1 << 28);
311 } else if (RC == &NVPTX::Int16RegsRegClass) {
312 Ret = (2 << 28);
313 } else if (RC == &NVPTX::Int32RegsRegClass) {
314 Ret = (3 << 28);
315 } else if (RC == &NVPTX::Int64RegsRegClass) {
316 Ret = (4 << 28);
317 } else if (RC == &NVPTX::Float32RegsRegClass) {
318 Ret = (5 << 28);
319 } else if (RC == &NVPTX::Float64RegsRegClass) {
320 Ret = (6 << 28);
321 } else {
322 report_fatal_error("Bad register class");
323 }
324
325 // Insert the vreg number
326 Ret |= (RegNum & 0x0FFFFFFF);
327 return Ret;
328 } else {
329 // Some special-use registers are actually physical registers.
330 // Encode this as the register class ID of 0 and the real register ID.
331 return Reg & 0x0FFFFFFF;
332 }
333 }
334
GetSymbolRef(const MCSymbol * Symbol)335 MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
336 const MCExpr *Expr;
337 Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
338 OutContext);
339 return MCOperand::createExpr(Expr);
340 }
341
printReturnValStr(const Function * F,raw_ostream & O)342 void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
343 const DataLayout &DL = getDataLayout();
344 const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
345
346 Type *Ty = F->getReturnType();
347
348 bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
349
350 if (Ty->getTypeID() == Type::VoidTyID)
351 return;
352
353 O << " (";
354
355 if (isABI) {
356 if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
357 unsigned size = 0;
358 if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
359 size = ITy->getBitWidth();
360 if (size < 32)
361 size = 32;
362 } else {
363 assert(Ty->isFloatingPointTy() && "Floating point type expected here");
364 size = Ty->getPrimitiveSizeInBits();
365 }
366
367 O << ".param .b" << size << " func_retval0";
368 } else if (isa<PointerType>(Ty)) {
369 O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
370 << " func_retval0";
371 } else if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
372 unsigned totalsz = DL.getTypeAllocSize(Ty);
373 unsigned retAlignment = 0;
374 if (!llvm::getAlign(*F, 0, retAlignment))
375 retAlignment = DL.getABITypeAlignment(Ty);
376 O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
377 << "]";
378 } else
379 llvm_unreachable("Unknown return type");
380 } else {
381 SmallVector<EVT, 16> vtparts;
382 ComputeValueVTs(*TLI, DL, Ty, vtparts);
383 unsigned idx = 0;
384 for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
385 unsigned elems = 1;
386 EVT elemtype = vtparts[i];
387 if (vtparts[i].isVector()) {
388 elems = vtparts[i].getVectorNumElements();
389 elemtype = vtparts[i].getVectorElementType();
390 }
391
392 for (unsigned j = 0, je = elems; j != je; ++j) {
393 unsigned sz = elemtype.getSizeInBits();
394 if (elemtype.isInteger() && (sz < 32))
395 sz = 32;
396 O << ".reg .b" << sz << " func_retval" << idx;
397 if (j < je - 1)
398 O << ", ";
399 ++idx;
400 }
401 if (i < e - 1)
402 O << ", ";
403 }
404 }
405 O << ") ";
406 return;
407 }
408
printReturnValStr(const MachineFunction & MF,raw_ostream & O)409 void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
410 raw_ostream &O) {
411 const Function *F = MF.getFunction();
412 printReturnValStr(F, O);
413 }
414
415 // Return true if MBB is the header of a loop marked with
416 // llvm.loop.unroll.disable.
417 // TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
isLoopHeaderOfNoUnroll(const MachineBasicBlock & MBB) const418 bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
419 const MachineBasicBlock &MBB) const {
420 MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
421 // We insert .pragma "nounroll" only to the loop header.
422 if (!LI.isLoopHeader(&MBB))
423 return false;
424
425 // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
426 // we iterate through each back edge of the loop with header MBB, and check
427 // whether its metadata contains llvm.loop.unroll.disable.
428 for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
429 const MachineBasicBlock *PMBB = *I;
430 if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
431 // Edges from other loops to MBB are not back edges.
432 continue;
433 }
434 if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
435 if (MDNode *LoopID = PBB->getTerminator()->getMetadata("llvm.loop")) {
436 if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
437 return true;
438 }
439 }
440 }
441 return false;
442 }
443
EmitBasicBlockStart(const MachineBasicBlock & MBB) const444 void NVPTXAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
445 AsmPrinter::EmitBasicBlockStart(MBB);
446 if (isLoopHeaderOfNoUnroll(MBB))
447 OutStreamer->EmitRawText(StringRef("\t.pragma \"nounroll\";\n"));
448 }
449
EmitFunctionEntryLabel()450 void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
451 SmallString<128> Str;
452 raw_svector_ostream O(Str);
453
454 if (!GlobalsEmitted) {
455 emitGlobals(*MF->getFunction()->getParent());
456 GlobalsEmitted = true;
457 }
458
459 // Set up
460 MRI = &MF->getRegInfo();
461 F = MF->getFunction();
462 emitLinkageDirective(F, O);
463 if (llvm::isKernelFunction(*F))
464 O << ".entry ";
465 else {
466 O << ".func ";
467 printReturnValStr(*MF, O);
468 }
469
470 CurrentFnSym->print(O, MAI);
471
472 emitFunctionParamList(*MF, O);
473
474 if (llvm::isKernelFunction(*F))
475 emitKernelFunctionDirectives(*F, O);
476
477 OutStreamer->EmitRawText(O.str());
478
479 prevDebugLoc = DebugLoc();
480 }
481
EmitFunctionBodyStart()482 void NVPTXAsmPrinter::EmitFunctionBodyStart() {
483 VRegMapping.clear();
484 OutStreamer->EmitRawText(StringRef("{\n"));
485 setAndEmitFunctionVirtualRegisters(*MF);
486
487 SmallString<128> Str;
488 raw_svector_ostream O(Str);
489 emitDemotedVars(MF->getFunction(), O);
490 OutStreamer->EmitRawText(O.str());
491 }
492
EmitFunctionBodyEnd()493 void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
494 OutStreamer->EmitRawText(StringRef("}\n"));
495 VRegMapping.clear();
496 }
497
emitImplicitDef(const MachineInstr * MI) const498 void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
499 unsigned RegNo = MI->getOperand(0).getReg();
500 if (TargetRegisterInfo::isVirtualRegister(RegNo)) {
501 OutStreamer->AddComment(Twine("implicit-def: ") +
502 getVirtualRegisterName(RegNo));
503 } else {
504 OutStreamer->AddComment(Twine("implicit-def: ") +
505 nvptxSubtarget->getRegisterInfo()->getName(RegNo));
506 }
507 OutStreamer->AddBlankLine();
508 }
509
emitKernelFunctionDirectives(const Function & F,raw_ostream & O) const510 void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
511 raw_ostream &O) const {
512 // If the NVVM IR has some of reqntid* specified, then output
513 // the reqntid directive, and set the unspecified ones to 1.
514 // If none of reqntid* is specified, don't output reqntid directive.
515 unsigned reqntidx, reqntidy, reqntidz;
516 bool specified = false;
517 if (!llvm::getReqNTIDx(F, reqntidx))
518 reqntidx = 1;
519 else
520 specified = true;
521 if (!llvm::getReqNTIDy(F, reqntidy))
522 reqntidy = 1;
523 else
524 specified = true;
525 if (!llvm::getReqNTIDz(F, reqntidz))
526 reqntidz = 1;
527 else
528 specified = true;
529
530 if (specified)
531 O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
532 << "\n";
533
534 // If the NVVM IR has some of maxntid* specified, then output
535 // the maxntid directive, and set the unspecified ones to 1.
536 // If none of maxntid* is specified, don't output maxntid directive.
537 unsigned maxntidx, maxntidy, maxntidz;
538 specified = false;
539 if (!llvm::getMaxNTIDx(F, maxntidx))
540 maxntidx = 1;
541 else
542 specified = true;
543 if (!llvm::getMaxNTIDy(F, maxntidy))
544 maxntidy = 1;
545 else
546 specified = true;
547 if (!llvm::getMaxNTIDz(F, maxntidz))
548 maxntidz = 1;
549 else
550 specified = true;
551
552 if (specified)
553 O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
554 << "\n";
555
556 unsigned mincta;
557 if (llvm::getMinCTASm(F, mincta))
558 O << ".minnctapersm " << mincta << "\n";
559 }
560
561 std::string
getVirtualRegisterName(unsigned Reg) const562 NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
563 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
564
565 std::string Name;
566 raw_string_ostream NameStr(Name);
567
568 VRegRCMap::const_iterator I = VRegMapping.find(RC);
569 assert(I != VRegMapping.end() && "Bad register class");
570 const DenseMap<unsigned, unsigned> &RegMap = I->second;
571
572 VRegMap::const_iterator VI = RegMap.find(Reg);
573 assert(VI != RegMap.end() && "Bad virtual register");
574 unsigned MappedVR = VI->second;
575
576 NameStr << getNVPTXRegClassStr(RC) << MappedVR;
577
578 NameStr.flush();
579 return Name;
580 }
581
emitVirtualRegister(unsigned int vr,raw_ostream & O)582 void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
583 raw_ostream &O) {
584 O << getVirtualRegisterName(vr);
585 }
586
printVecModifiedImmediate(const MachineOperand & MO,const char * Modifier,raw_ostream & O)587 void NVPTXAsmPrinter::printVecModifiedImmediate(
588 const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
589 static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
590 int Imm = (int) MO.getImm();
591 if (0 == strcmp(Modifier, "vecelem"))
592 O << "_" << vecelem[Imm];
593 else if (0 == strcmp(Modifier, "vecv4comm1")) {
594 if ((Imm < 0) || (Imm > 3))
595 O << "//";
596 } else if (0 == strcmp(Modifier, "vecv4comm2")) {
597 if ((Imm < 4) || (Imm > 7))
598 O << "//";
599 } else if (0 == strcmp(Modifier, "vecv4pos")) {
600 if (Imm < 0)
601 Imm = 0;
602 O << "_" << vecelem[Imm % 4];
603 } else if (0 == strcmp(Modifier, "vecv2comm1")) {
604 if ((Imm < 0) || (Imm > 1))
605 O << "//";
606 } else if (0 == strcmp(Modifier, "vecv2comm2")) {
607 if ((Imm < 2) || (Imm > 3))
608 O << "//";
609 } else if (0 == strcmp(Modifier, "vecv2pos")) {
610 if (Imm < 0)
611 Imm = 0;
612 O << "_" << vecelem[Imm % 2];
613 } else
614 llvm_unreachable("Unknown Modifier on immediate operand");
615 }
616
617
618
emitDeclaration(const Function * F,raw_ostream & O)619 void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
620
621 emitLinkageDirective(F, O);
622 if (llvm::isKernelFunction(*F))
623 O << ".entry ";
624 else
625 O << ".func ";
626 printReturnValStr(F, O);
627 getSymbol(F)->print(O, MAI);
628 O << "\n";
629 emitFunctionParamList(F, O);
630 O << ";\n";
631 }
632
usedInGlobalVarDef(const Constant * C)633 static bool usedInGlobalVarDef(const Constant *C) {
634 if (!C)
635 return false;
636
637 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
638 return GV->getName() != "llvm.used";
639 }
640
641 for (const User *U : C->users())
642 if (const Constant *C = dyn_cast<Constant>(U))
643 if (usedInGlobalVarDef(C))
644 return true;
645
646 return false;
647 }
648
usedInOneFunc(const User * U,Function const * & oneFunc)649 static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
650 if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
651 if (othergv->getName() == "llvm.used")
652 return true;
653 }
654
655 if (const Instruction *instr = dyn_cast<Instruction>(U)) {
656 if (instr->getParent() && instr->getParent()->getParent()) {
657 const Function *curFunc = instr->getParent()->getParent();
658 if (oneFunc && (curFunc != oneFunc))
659 return false;
660 oneFunc = curFunc;
661 return true;
662 } else
663 return false;
664 }
665
666 for (const User *UU : U->users())
667 if (!usedInOneFunc(UU, oneFunc))
668 return false;
669
670 return true;
671 }
672
673 /* Find out if a global variable can be demoted to local scope.
674 * Currently, this is valid for CUDA shared variables, which have local
675 * scope and global lifetime. So the conditions to check are :
676 * 1. Is the global variable in shared address space?
677 * 2. Does it have internal linkage?
678 * 3. Is the global variable referenced only in one function?
679 */
canDemoteGlobalVar(const GlobalVariable * gv,Function const * & f)680 static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
681 if (!gv->hasInternalLinkage())
682 return false;
683 PointerType *Pty = gv->getType();
684 if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
685 return false;
686
687 const Function *oneFunc = nullptr;
688
689 bool flag = usedInOneFunc(gv, oneFunc);
690 if (!flag)
691 return false;
692 if (!oneFunc)
693 return false;
694 f = oneFunc;
695 return true;
696 }
697
useFuncSeen(const Constant * C,llvm::DenseMap<const Function *,bool> & seenMap)698 static bool useFuncSeen(const Constant *C,
699 llvm::DenseMap<const Function *, bool> &seenMap) {
700 for (const User *U : C->users()) {
701 if (const Constant *cu = dyn_cast<Constant>(U)) {
702 if (useFuncSeen(cu, seenMap))
703 return true;
704 } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
705 const BasicBlock *bb = I->getParent();
706 if (!bb)
707 continue;
708 const Function *caller = bb->getParent();
709 if (!caller)
710 continue;
711 if (seenMap.find(caller) != seenMap.end())
712 return true;
713 }
714 }
715 return false;
716 }
717
emitDeclarations(const Module & M,raw_ostream & O)718 void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
719 llvm::DenseMap<const Function *, bool> seenMap;
720 for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
721 const Function *F = &*FI;
722
723 if (F->isDeclaration()) {
724 if (F->use_empty())
725 continue;
726 if (F->getIntrinsicID())
727 continue;
728 emitDeclaration(F, O);
729 continue;
730 }
731 for (const User *U : F->users()) {
732 if (const Constant *C = dyn_cast<Constant>(U)) {
733 if (usedInGlobalVarDef(C)) {
734 // The use is in the initialization of a global variable
735 // that is a function pointer, so print a declaration
736 // for the original function
737 emitDeclaration(F, O);
738 break;
739 }
740 // Emit a declaration of this function if the function that
741 // uses this constant expr has already been seen.
742 if (useFuncSeen(C, seenMap)) {
743 emitDeclaration(F, O);
744 break;
745 }
746 }
747
748 if (!isa<Instruction>(U))
749 continue;
750 const Instruction *instr = cast<Instruction>(U);
751 const BasicBlock *bb = instr->getParent();
752 if (!bb)
753 continue;
754 const Function *caller = bb->getParent();
755 if (!caller)
756 continue;
757
758 // If a caller has already been seen, then the caller is
759 // appearing in the module before the callee. so print out
760 // a declaration for the callee.
761 if (seenMap.find(caller) != seenMap.end()) {
762 emitDeclaration(F, O);
763 break;
764 }
765 }
766 seenMap[F] = true;
767 }
768 }
769
recordAndEmitFilenames(Module & M)770 void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
771 DebugInfoFinder DbgFinder;
772 DbgFinder.processModule(M);
773
774 unsigned i = 1;
775 for (const DICompileUnit *DIUnit : DbgFinder.compile_units()) {
776 StringRef Filename = DIUnit->getFilename();
777 StringRef Dirname = DIUnit->getDirectory();
778 SmallString<128> FullPathName = Dirname;
779 if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
780 sys::path::append(FullPathName, Filename);
781 Filename = FullPathName;
782 }
783 if (filenameMap.find(Filename) != filenameMap.end())
784 continue;
785 filenameMap[Filename] = i;
786 OutStreamer->EmitDwarfFileDirective(i, "", Filename);
787 ++i;
788 }
789
790 for (DISubprogram *SP : DbgFinder.subprograms()) {
791 StringRef Filename = SP->getFilename();
792 StringRef Dirname = SP->getDirectory();
793 SmallString<128> FullPathName = Dirname;
794 if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
795 sys::path::append(FullPathName, Filename);
796 Filename = FullPathName;
797 }
798 if (filenameMap.find(Filename) != filenameMap.end())
799 continue;
800 filenameMap[Filename] = i;
801 ++i;
802 }
803 }
804
doInitialization(Module & M)805 bool NVPTXAsmPrinter::doInitialization(Module &M) {
806 // Construct a default subtarget off of the TargetMachine defaults. The
807 // rest of NVPTX isn't friendly to change subtargets per function and
808 // so the default TargetMachine will have all of the options.
809 const Triple &TT = TM.getTargetTriple();
810 StringRef CPU = TM.getTargetCPU();
811 StringRef FS = TM.getTargetFeatureString();
812 const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
813 const NVPTXSubtarget STI(TT, CPU, FS, NTM);
814
815 SmallString<128> Str1;
816 raw_svector_ostream OS1(Str1);
817
818 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
819
820 // We need to call the parent's one explicitly.
821 //bool Result = AsmPrinter::doInitialization(M);
822
823 // Initialize TargetLoweringObjectFile.
824 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
825 .Initialize(OutContext, TM);
826
827 Mang = new Mangler();
828
829 // Emit header before any dwarf directives are emitted below.
830 emitHeader(M, OS1, STI);
831 OutStreamer->EmitRawText(OS1.str());
832
833 // Already commented out
834 //bool Result = AsmPrinter::doInitialization(M);
835
836 // Emit module-level inline asm if it exists.
837 if (!M.getModuleInlineAsm().empty()) {
838 OutStreamer->AddComment("Start of file scope inline assembly");
839 OutStreamer->AddBlankLine();
840 OutStreamer->EmitRawText(StringRef(M.getModuleInlineAsm()));
841 OutStreamer->AddBlankLine();
842 OutStreamer->AddComment("End of file scope inline assembly");
843 OutStreamer->AddBlankLine();
844 }
845
846 // If we're not NVCL we're CUDA, go ahead and emit filenames.
847 if (TM.getTargetTriple().getOS() != Triple::NVCL)
848 recordAndEmitFilenames(M);
849
850 GlobalsEmitted = false;
851
852 return false; // success
853 }
854
emitGlobals(const Module & M)855 void NVPTXAsmPrinter::emitGlobals(const Module &M) {
856 SmallString<128> Str2;
857 raw_svector_ostream OS2(Str2);
858
859 emitDeclarations(M, OS2);
860
861 // As ptxas does not support forward references of globals, we need to first
862 // sort the list of module-level globals in def-use order. We visit each
863 // global variable in order, and ensure that we emit it *after* its dependent
864 // globals. We use a little extra memory maintaining both a set and a list to
865 // have fast searches while maintaining a strict ordering.
866 SmallVector<const GlobalVariable *, 8> Globals;
867 DenseSet<const GlobalVariable *> GVVisited;
868 DenseSet<const GlobalVariable *> GVVisiting;
869
870 // Visit each global variable, in order
871 for (const GlobalVariable &I : M.globals())
872 VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
873
874 assert(GVVisited.size() == M.getGlobalList().size() &&
875 "Missed a global variable");
876 assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
877
878 // Print out module-level global variables in proper order
879 for (unsigned i = 0, e = Globals.size(); i != e; ++i)
880 printModuleLevelGV(Globals[i], OS2);
881
882 OS2 << '\n';
883
884 OutStreamer->EmitRawText(OS2.str());
885 }
886
emitHeader(Module & M,raw_ostream & O,const NVPTXSubtarget & STI)887 void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
888 const NVPTXSubtarget &STI) {
889 O << "//\n";
890 O << "// Generated by LLVM NVPTX Back-End\n";
891 O << "//\n";
892 O << "\n";
893
894 unsigned PTXVersion = STI.getPTXVersion();
895 O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
896
897 O << ".target ";
898 O << STI.getTargetName();
899
900 const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
901 if (NTM.getDrvInterface() == NVPTX::NVCL)
902 O << ", texmode_independent";
903 else {
904 if (!STI.hasDouble())
905 O << ", map_f64_to_f32";
906 }
907
908 if (MAI->doesSupportDebugInformation())
909 O << ", debug";
910
911 O << "\n";
912
913 O << ".address_size ";
914 if (NTM.is64Bit())
915 O << "64";
916 else
917 O << "32";
918 O << "\n";
919
920 O << "\n";
921 }
922
doFinalization(Module & M)923 bool NVPTXAsmPrinter::doFinalization(Module &M) {
924 // If we did not emit any functions, then the global declarations have not
925 // yet been emitted.
926 if (!GlobalsEmitted) {
927 emitGlobals(M);
928 GlobalsEmitted = true;
929 }
930
931 // XXX Temproarily remove global variables so that doFinalization() will not
932 // emit them again (global variables are emitted at beginning).
933
934 Module::GlobalListType &global_list = M.getGlobalList();
935 int i, n = global_list.size();
936 GlobalVariable **gv_array = new GlobalVariable *[n];
937
938 // first, back-up GlobalVariable in gv_array
939 i = 0;
940 for (Module::global_iterator I = global_list.begin(), E = global_list.end();
941 I != E; ++I)
942 gv_array[i++] = &*I;
943
944 // second, empty global_list
945 while (!global_list.empty())
946 global_list.remove(global_list.begin());
947
948 // call doFinalization
949 bool ret = AsmPrinter::doFinalization(M);
950
951 // now we restore global variables
952 for (i = 0; i < n; i++)
953 global_list.insert(global_list.end(), gv_array[i]);
954
955 clearAnnotationCache(&M);
956
957 delete[] gv_array;
958 return ret;
959
960 //bool Result = AsmPrinter::doFinalization(M);
961 // Instead of calling the parents doFinalization, we may
962 // clone parents doFinalization and customize here.
963 // Currently, we if NVISA out the EmitGlobals() in
964 // parent's doFinalization, which is too intrusive.
965 //
966 // Same for the doInitialization.
967 //return Result;
968 }
969
970 // This function emits appropriate linkage directives for
971 // functions and global variables.
972 //
973 // extern function declaration -> .extern
974 // extern function definition -> .visible
975 // external global variable with init -> .visible
976 // external without init -> .extern
977 // appending -> not allowed, assert.
978 // for any linkage other than
979 // internal, private, linker_private,
980 // linker_private_weak, linker_private_weak_def_auto,
981 // we emit -> .weak.
982
emitLinkageDirective(const GlobalValue * V,raw_ostream & O)983 void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
984 raw_ostream &O) {
985 if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
986 if (V->hasExternalLinkage()) {
987 if (isa<GlobalVariable>(V)) {
988 const GlobalVariable *GVar = cast<GlobalVariable>(V);
989 if (GVar) {
990 if (GVar->hasInitializer())
991 O << ".visible ";
992 else
993 O << ".extern ";
994 }
995 } else if (V->isDeclaration())
996 O << ".extern ";
997 else
998 O << ".visible ";
999 } else if (V->hasAppendingLinkage()) {
1000 std::string msg;
1001 msg.append("Error: ");
1002 msg.append("Symbol ");
1003 if (V->hasName())
1004 msg.append(V->getName());
1005 msg.append("has unsupported appending linkage type");
1006 llvm_unreachable(msg.c_str());
1007 } else if (!V->hasInternalLinkage() &&
1008 !V->hasPrivateLinkage()) {
1009 O << ".weak ";
1010 }
1011 }
1012 }
1013
printModuleLevelGV(const GlobalVariable * GVar,raw_ostream & O,bool processDemoted)1014 void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
1015 raw_ostream &O,
1016 bool processDemoted) {
1017
1018 // Skip meta data
1019 if (GVar->hasSection()) {
1020 if (GVar->getSection() == StringRef("llvm.metadata"))
1021 return;
1022 }
1023
1024 // Skip LLVM intrinsic global variables
1025 if (GVar->getName().startswith("llvm.") ||
1026 GVar->getName().startswith("nvvm."))
1027 return;
1028
1029 const DataLayout &DL = getDataLayout();
1030
1031 // GlobalVariables are always constant pointers themselves.
1032 PointerType *PTy = GVar->getType();
1033 Type *ETy = PTy->getElementType();
1034
1035 if (GVar->hasExternalLinkage()) {
1036 if (GVar->hasInitializer())
1037 O << ".visible ";
1038 else
1039 O << ".extern ";
1040 } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
1041 GVar->hasAvailableExternallyLinkage() ||
1042 GVar->hasCommonLinkage()) {
1043 O << ".weak ";
1044 }
1045
1046 if (llvm::isTexture(*GVar)) {
1047 O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1048 return;
1049 }
1050
1051 if (llvm::isSurface(*GVar)) {
1052 O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1053 return;
1054 }
1055
1056 if (GVar->isDeclaration()) {
1057 // (extern) declarations, no definition or initializer
1058 // Currently the only known declaration is for an automatic __local
1059 // (.shared) promoted to global.
1060 emitPTXGlobalVariable(GVar, O);
1061 O << ";\n";
1062 return;
1063 }
1064
1065 if (llvm::isSampler(*GVar)) {
1066 O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1067
1068 const Constant *Initializer = nullptr;
1069 if (GVar->hasInitializer())
1070 Initializer = GVar->getInitializer();
1071 const ConstantInt *CI = nullptr;
1072 if (Initializer)
1073 CI = dyn_cast<ConstantInt>(Initializer);
1074 if (CI) {
1075 unsigned sample = CI->getZExtValue();
1076
1077 O << " = { ";
1078
1079 for (int i = 0,
1080 addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
1081 i < 3; i++) {
1082 O << "addr_mode_" << i << " = ";
1083 switch (addr) {
1084 case 0:
1085 O << "wrap";
1086 break;
1087 case 1:
1088 O << "clamp_to_border";
1089 break;
1090 case 2:
1091 O << "clamp_to_edge";
1092 break;
1093 case 3:
1094 O << "wrap";
1095 break;
1096 case 4:
1097 O << "mirror";
1098 break;
1099 }
1100 O << ", ";
1101 }
1102 O << "filter_mode = ";
1103 switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
1104 case 0:
1105 O << "nearest";
1106 break;
1107 case 1:
1108 O << "linear";
1109 break;
1110 case 2:
1111 llvm_unreachable("Anisotropic filtering is not supported");
1112 default:
1113 O << "nearest";
1114 break;
1115 }
1116 if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
1117 O << ", force_unnormalized_coords = 1";
1118 }
1119 O << " }";
1120 }
1121
1122 O << ";\n";
1123 return;
1124 }
1125
1126 if (GVar->hasPrivateLinkage()) {
1127
1128 if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1129 return;
1130
1131 // FIXME - need better way (e.g. Metadata) to avoid generating this global
1132 if (!strncmp(GVar->getName().data(), "filename", 8))
1133 return;
1134 if (GVar->use_empty())
1135 return;
1136 }
1137
1138 const Function *demotedFunc = nullptr;
1139 if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1140 O << "// " << GVar->getName() << " has been demoted\n";
1141 if (localDecls.find(demotedFunc) != localDecls.end())
1142 localDecls[demotedFunc].push_back(GVar);
1143 else {
1144 std::vector<const GlobalVariable *> temp;
1145 temp.push_back(GVar);
1146 localDecls[demotedFunc] = temp;
1147 }
1148 return;
1149 }
1150
1151 O << ".";
1152 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1153
1154 if (isManaged(*GVar)) {
1155 O << " .attribute(.managed)";
1156 }
1157
1158 if (GVar->getAlignment() == 0)
1159 O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1160 else
1161 O << " .align " << GVar->getAlignment();
1162
1163 if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
1164 O << " .";
1165 // Special case: ABI requires that we use .u8 for predicates
1166 if (ETy->isIntegerTy(1))
1167 O << "u8";
1168 else
1169 O << getPTXFundamentalTypeStr(ETy, false);
1170 O << " ";
1171 getSymbol(GVar)->print(O, MAI);
1172
1173 // Ptx allows variable initilization only for constant and global state
1174 // spaces.
1175 if (GVar->hasInitializer()) {
1176 if ((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1177 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) {
1178 const Constant *Initializer = GVar->getInitializer();
1179 // 'undef' is treated as there is no value specified.
1180 if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
1181 O << " = ";
1182 printScalarConstant(Initializer, O);
1183 }
1184 } else {
1185 // The frontend adds zero-initializer to device and constant variables
1186 // that don't have an initial value, and UndefValue to shared
1187 // variables, so skip warning for this case.
1188 if (!GVar->getInitializer()->isNullValue() &&
1189 !isa<UndefValue>(GVar->getInitializer())) {
1190 report_fatal_error("initial value of '" + GVar->getName() +
1191 "' is not allowed in addrspace(" +
1192 Twine(PTy->getAddressSpace()) + ")");
1193 }
1194 }
1195 }
1196 } else {
1197 unsigned int ElementSize = 0;
1198
1199 // Although PTX has direct support for struct type and array type and
1200 // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1201 // targets that support these high level field accesses. Structs, arrays
1202 // and vectors are lowered into arrays of bytes.
1203 switch (ETy->getTypeID()) {
1204 case Type::StructTyID:
1205 case Type::ArrayTyID:
1206 case Type::VectorTyID:
1207 ElementSize = DL.getTypeStoreSize(ETy);
1208 // Ptx allows variable initilization only for constant and
1209 // global state spaces.
1210 if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1211 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
1212 GVar->hasInitializer()) {
1213 const Constant *Initializer = GVar->getInitializer();
1214 if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
1215 AggBuffer aggBuffer(ElementSize, O, *this);
1216 bufferAggregateConstant(Initializer, &aggBuffer);
1217 if (aggBuffer.numSymbols) {
1218 if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
1219 O << " .u64 ";
1220 getSymbol(GVar)->print(O, MAI);
1221 O << "[";
1222 O << ElementSize / 8;
1223 } else {
1224 O << " .u32 ";
1225 getSymbol(GVar)->print(O, MAI);
1226 O << "[";
1227 O << ElementSize / 4;
1228 }
1229 O << "]";
1230 } else {
1231 O << " .b8 ";
1232 getSymbol(GVar)->print(O, MAI);
1233 O << "[";
1234 O << ElementSize;
1235 O << "]";
1236 }
1237 O << " = {";
1238 aggBuffer.print();
1239 O << "}";
1240 } else {
1241 O << " .b8 ";
1242 getSymbol(GVar)->print(O, MAI);
1243 if (ElementSize) {
1244 O << "[";
1245 O << ElementSize;
1246 O << "]";
1247 }
1248 }
1249 } else {
1250 O << " .b8 ";
1251 getSymbol(GVar)->print(O, MAI);
1252 if (ElementSize) {
1253 O << "[";
1254 O << ElementSize;
1255 O << "]";
1256 }
1257 }
1258 break;
1259 default:
1260 llvm_unreachable("type not supported yet");
1261 }
1262
1263 }
1264 O << ";\n";
1265 }
1266
emitDemotedVars(const Function * f,raw_ostream & O)1267 void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1268 if (localDecls.find(f) == localDecls.end())
1269 return;
1270
1271 std::vector<const GlobalVariable *> &gvars = localDecls[f];
1272
1273 for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
1274 O << "\t// demoted variable\n\t";
1275 printModuleLevelGV(gvars[i], O, true);
1276 }
1277 }
1278
emitPTXAddressSpace(unsigned int AddressSpace,raw_ostream & O) const1279 void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1280 raw_ostream &O) const {
1281 switch (AddressSpace) {
1282 case llvm::ADDRESS_SPACE_LOCAL:
1283 O << "local";
1284 break;
1285 case llvm::ADDRESS_SPACE_GLOBAL:
1286 O << "global";
1287 break;
1288 case llvm::ADDRESS_SPACE_CONST:
1289 O << "const";
1290 break;
1291 case llvm::ADDRESS_SPACE_SHARED:
1292 O << "shared";
1293 break;
1294 default:
1295 report_fatal_error("Bad address space found while emitting PTX");
1296 break;
1297 }
1298 }
1299
1300 std::string
getPTXFundamentalTypeStr(Type * Ty,bool useB4PTR) const1301 NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
1302 switch (Ty->getTypeID()) {
1303 default:
1304 llvm_unreachable("unexpected type");
1305 break;
1306 case Type::IntegerTyID: {
1307 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1308 if (NumBits == 1)
1309 return "pred";
1310 else if (NumBits <= 64) {
1311 std::string name = "u";
1312 return name + utostr(NumBits);
1313 } else {
1314 llvm_unreachable("Integer too large");
1315 break;
1316 }
1317 break;
1318 }
1319 case Type::FloatTyID:
1320 return "f32";
1321 case Type::DoubleTyID:
1322 return "f64";
1323 case Type::PointerTyID:
1324 if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
1325 if (useB4PTR)
1326 return "b64";
1327 else
1328 return "u64";
1329 else if (useB4PTR)
1330 return "b32";
1331 else
1332 return "u32";
1333 }
1334 llvm_unreachable("unexpected type");
1335 return nullptr;
1336 }
1337
emitPTXGlobalVariable(const GlobalVariable * GVar,raw_ostream & O)1338 void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
1339 raw_ostream &O) {
1340
1341 const DataLayout &DL = getDataLayout();
1342
1343 // GlobalVariables are always constant pointers themselves.
1344 PointerType *PTy = GVar->getType();
1345 Type *ETy = PTy->getElementType();
1346
1347 O << ".";
1348 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1349 if (GVar->getAlignment() == 0)
1350 O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
1351 else
1352 O << " .align " << GVar->getAlignment();
1353
1354 if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
1355 O << " .";
1356 O << getPTXFundamentalTypeStr(ETy);
1357 O << " ";
1358 getSymbol(GVar)->print(O, MAI);
1359 return;
1360 }
1361
1362 int64_t ElementSize = 0;
1363
1364 // Although PTX has direct support for struct type and array type and LLVM IR
1365 // is very similar to PTX, the LLVM CodeGen does not support for targets that
1366 // support these high level field accesses. Structs and arrays are lowered
1367 // into arrays of bytes.
1368 switch (ETy->getTypeID()) {
1369 case Type::StructTyID:
1370 case Type::ArrayTyID:
1371 case Type::VectorTyID:
1372 ElementSize = DL.getTypeStoreSize(ETy);
1373 O << " .b8 ";
1374 getSymbol(GVar)->print(O, MAI);
1375 O << "[";
1376 if (ElementSize) {
1377 O << ElementSize;
1378 }
1379 O << "]";
1380 break;
1381 default:
1382 llvm_unreachable("type not supported yet");
1383 }
1384 return;
1385 }
1386
getOpenCLAlignment(const DataLayout & DL,Type * Ty)1387 static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
1388 if (Ty->isSingleValueType())
1389 return DL.getPrefTypeAlignment(Ty);
1390
1391 auto *ATy = dyn_cast<ArrayType>(Ty);
1392 if (ATy)
1393 return getOpenCLAlignment(DL, ATy->getElementType());
1394
1395 auto *STy = dyn_cast<StructType>(Ty);
1396 if (STy) {
1397 unsigned int alignStruct = 1;
1398 // Go through each element of the struct and find the
1399 // largest alignment.
1400 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1401 Type *ETy = STy->getElementType(i);
1402 unsigned int align = getOpenCLAlignment(DL, ETy);
1403 if (align > alignStruct)
1404 alignStruct = align;
1405 }
1406 return alignStruct;
1407 }
1408
1409 auto *FTy = dyn_cast<FunctionType>(Ty);
1410 if (FTy)
1411 return DL.getPointerPrefAlignment();
1412 return DL.getPrefTypeAlignment(Ty);
1413 }
1414
printParamName(Function::const_arg_iterator I,int paramIndex,raw_ostream & O)1415 void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1416 int paramIndex, raw_ostream &O) {
1417 getSymbol(I->getParent())->print(O, MAI);
1418 O << "_param_" << paramIndex;
1419 }
1420
emitFunctionParamList(const Function * F,raw_ostream & O)1421 void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
1422 const DataLayout &DL = getDataLayout();
1423 const AttributeSet &PAL = F->getAttributes();
1424 const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
1425 Function::const_arg_iterator I, E;
1426 unsigned paramIndex = 0;
1427 bool first = true;
1428 bool isKernelFunc = llvm::isKernelFunction(*F);
1429 bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
1430 MVT thePointerTy = TLI->getPointerTy(DL);
1431
1432 O << "(\n";
1433
1434 for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1435 Type *Ty = I->getType();
1436
1437 if (!first)
1438 O << ",\n";
1439
1440 first = false;
1441
1442 // Handle image/sampler parameters
1443 if (isKernelFunction(*F)) {
1444 if (isSampler(*I) || isImage(*I)) {
1445 if (isImage(*I)) {
1446 std::string sname = I->getName();
1447 if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
1448 if (nvptxSubtarget->hasImageHandles())
1449 O << "\t.param .u64 .ptr .surfref ";
1450 else
1451 O << "\t.param .surfref ";
1452 CurrentFnSym->print(O, MAI);
1453 O << "_param_" << paramIndex;
1454 }
1455 else { // Default image is read_only
1456 if (nvptxSubtarget->hasImageHandles())
1457 O << "\t.param .u64 .ptr .texref ";
1458 else
1459 O << "\t.param .texref ";
1460 CurrentFnSym->print(O, MAI);
1461 O << "_param_" << paramIndex;
1462 }
1463 } else {
1464 if (nvptxSubtarget->hasImageHandles())
1465 O << "\t.param .u64 .ptr .samplerref ";
1466 else
1467 O << "\t.param .samplerref ";
1468 CurrentFnSym->print(O, MAI);
1469 O << "_param_" << paramIndex;
1470 }
1471 continue;
1472 }
1473 }
1474
1475 if (!PAL.hasAttribute(paramIndex + 1, Attribute::ByVal)) {
1476 if (Ty->isAggregateType() || Ty->isVectorTy()) {
1477 // Just print .param .align <a> .b8 .param[size];
1478 // <a> = PAL.getparamalignment
1479 // size = typeallocsize of element type
1480 unsigned align = PAL.getParamAlignment(paramIndex + 1);
1481 if (align == 0)
1482 align = DL.getABITypeAlignment(Ty);
1483
1484 unsigned sz = DL.getTypeAllocSize(Ty);
1485 O << "\t.param .align " << align << " .b8 ";
1486 printParamName(I, paramIndex, O);
1487 O << "[" << sz << "]";
1488
1489 continue;
1490 }
1491 // Just a scalar
1492 auto *PTy = dyn_cast<PointerType>(Ty);
1493 if (isKernelFunc) {
1494 if (PTy) {
1495 // Special handling for pointer arguments to kernel
1496 O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1497
1498 if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
1499 NVPTX::CUDA) {
1500 Type *ETy = PTy->getElementType();
1501 int addrSpace = PTy->getAddressSpace();
1502 switch (addrSpace) {
1503 default:
1504 O << ".ptr ";
1505 break;
1506 case llvm::ADDRESS_SPACE_CONST:
1507 O << ".ptr .const ";
1508 break;
1509 case llvm::ADDRESS_SPACE_SHARED:
1510 O << ".ptr .shared ";
1511 break;
1512 case llvm::ADDRESS_SPACE_GLOBAL:
1513 O << ".ptr .global ";
1514 break;
1515 }
1516 O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
1517 }
1518 printParamName(I, paramIndex, O);
1519 continue;
1520 }
1521
1522 // non-pointer scalar to kernel func
1523 O << "\t.param .";
1524 // Special case: predicate operands become .u8 types
1525 if (Ty->isIntegerTy(1))
1526 O << "u8";
1527 else
1528 O << getPTXFundamentalTypeStr(Ty);
1529 O << " ";
1530 printParamName(I, paramIndex, O);
1531 continue;
1532 }
1533 // Non-kernel function, just print .param .b<size> for ABI
1534 // and .reg .b<size> for non-ABI
1535 unsigned sz = 0;
1536 if (isa<IntegerType>(Ty)) {
1537 sz = cast<IntegerType>(Ty)->getBitWidth();
1538 if (sz < 32)
1539 sz = 32;
1540 } else if (isa<PointerType>(Ty))
1541 sz = thePointerTy.getSizeInBits();
1542 else
1543 sz = Ty->getPrimitiveSizeInBits();
1544 if (isABI)
1545 O << "\t.param .b" << sz << " ";
1546 else
1547 O << "\t.reg .b" << sz << " ";
1548 printParamName(I, paramIndex, O);
1549 continue;
1550 }
1551
1552 // param has byVal attribute. So should be a pointer
1553 auto *PTy = dyn_cast<PointerType>(Ty);
1554 assert(PTy && "Param with byval attribute should be a pointer type");
1555 Type *ETy = PTy->getElementType();
1556
1557 if (isABI || isKernelFunc) {
1558 // Just print .param .align <a> .b8 .param[size];
1559 // <a> = PAL.getparamalignment
1560 // size = typeallocsize of element type
1561 unsigned align = PAL.getParamAlignment(paramIndex + 1);
1562 if (align == 0)
1563 align = DL.getABITypeAlignment(ETy);
1564
1565 unsigned sz = DL.getTypeAllocSize(ETy);
1566 O << "\t.param .align " << align << " .b8 ";
1567 printParamName(I, paramIndex, O);
1568 O << "[" << sz << "]";
1569 continue;
1570 } else {
1571 // Split the ETy into constituent parts and
1572 // print .param .b<size> <name> for each part.
1573 // Further, if a part is vector, print the above for
1574 // each vector element.
1575 SmallVector<EVT, 16> vtparts;
1576 ComputeValueVTs(*TLI, DL, ETy, vtparts);
1577 for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
1578 unsigned elems = 1;
1579 EVT elemtype = vtparts[i];
1580 if (vtparts[i].isVector()) {
1581 elems = vtparts[i].getVectorNumElements();
1582 elemtype = vtparts[i].getVectorElementType();
1583 }
1584
1585 for (unsigned j = 0, je = elems; j != je; ++j) {
1586 unsigned sz = elemtype.getSizeInBits();
1587 if (elemtype.isInteger() && (sz < 32))
1588 sz = 32;
1589 O << "\t.reg .b" << sz << " ";
1590 printParamName(I, paramIndex, O);
1591 if (j < je - 1)
1592 O << ",\n";
1593 ++paramIndex;
1594 }
1595 if (i < e - 1)
1596 O << ",\n";
1597 }
1598 --paramIndex;
1599 continue;
1600 }
1601 }
1602
1603 O << "\n)\n";
1604 }
1605
emitFunctionParamList(const MachineFunction & MF,raw_ostream & O)1606 void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1607 raw_ostream &O) {
1608 const Function *F = MF.getFunction();
1609 emitFunctionParamList(F, O);
1610 }
1611
setAndEmitFunctionVirtualRegisters(const MachineFunction & MF)1612 void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1613 const MachineFunction &MF) {
1614 SmallString<128> Str;
1615 raw_svector_ostream O(Str);
1616
1617 // Map the global virtual register number to a register class specific
1618 // virtual register number starting from 1 with that class.
1619 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1620 //unsigned numRegClasses = TRI->getNumRegClasses();
1621
1622 // Emit the Fake Stack Object
1623 const MachineFrameInfo *MFI = MF.getFrameInfo();
1624 int NumBytes = (int) MFI->getStackSize();
1625 if (NumBytes) {
1626 O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
1627 << getFunctionNumber() << "[" << NumBytes << "];\n";
1628 if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
1629 O << "\t.reg .b64 \t%SP;\n";
1630 O << "\t.reg .b64 \t%SPL;\n";
1631 } else {
1632 O << "\t.reg .b32 \t%SP;\n";
1633 O << "\t.reg .b32 \t%SPL;\n";
1634 }
1635 }
1636
1637 // Go through all virtual registers to establish the mapping between the
1638 // global virtual
1639 // register number and the per class virtual register number.
1640 // We use the per class virtual register number in the ptx output.
1641 unsigned int numVRs = MRI->getNumVirtRegs();
1642 for (unsigned i = 0; i < numVRs; i++) {
1643 unsigned int vr = TRI->index2VirtReg(i);
1644 const TargetRegisterClass *RC = MRI->getRegClass(vr);
1645 DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
1646 int n = regmap.size();
1647 regmap.insert(std::make_pair(vr, n + 1));
1648 }
1649
1650 // Emit register declarations
1651 // @TODO: Extract out the real register usage
1652 // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1653 // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1654 // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1655 // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1656 // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
1657 // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1658 // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
1659
1660 // Emit declaration of the virtual registers or 'physical' registers for
1661 // each register class
1662 for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
1663 const TargetRegisterClass *RC = TRI->getRegClass(i);
1664 DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
1665 std::string rcname = getNVPTXRegClassName(RC);
1666 std::string rcStr = getNVPTXRegClassStr(RC);
1667 int n = regmap.size();
1668
1669 // Only declare those registers that may be used.
1670 if (n) {
1671 O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1672 << ">;\n";
1673 }
1674 }
1675
1676 OutStreamer->EmitRawText(O.str());
1677 }
1678
printFPConstant(const ConstantFP * Fp,raw_ostream & O)1679 void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1680 APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1681 bool ignored;
1682 unsigned int numHex;
1683 const char *lead;
1684
1685 if (Fp->getType()->getTypeID() == Type::FloatTyID) {
1686 numHex = 8;
1687 lead = "0f";
1688 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
1689 } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1690 numHex = 16;
1691 lead = "0d";
1692 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
1693 } else
1694 llvm_unreachable("unsupported fp type");
1695
1696 APInt API = APF.bitcastToAPInt();
1697 std::string hexstr(utohexstr(API.getZExtValue()));
1698 O << lead;
1699 if (hexstr.length() < numHex)
1700 O << std::string(numHex - hexstr.length(), '0');
1701 O << utohexstr(API.getZExtValue());
1702 }
1703
printScalarConstant(const Constant * CPV,raw_ostream & O)1704 void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
1705 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1706 O << CI->getValue();
1707 return;
1708 }
1709 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1710 printFPConstant(CFP, O);
1711 return;
1712 }
1713 if (isa<ConstantPointerNull>(CPV)) {
1714 O << "0";
1715 return;
1716 }
1717 if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1718 PointerType *PTy = dyn_cast<PointerType>(GVar->getType());
1719 bool IsNonGenericPointer = false;
1720 if (PTy && PTy->getAddressSpace() != 0) {
1721 IsNonGenericPointer = true;
1722 }
1723 if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
1724 O << "generic(";
1725 getSymbol(GVar)->print(O, MAI);
1726 O << ")";
1727 } else {
1728 getSymbol(GVar)->print(O, MAI);
1729 }
1730 return;
1731 }
1732 if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1733 const Value *v = Cexpr->stripPointerCasts();
1734 PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
1735 bool IsNonGenericPointer = false;
1736 if (PTy && PTy->getAddressSpace() != 0) {
1737 IsNonGenericPointer = true;
1738 }
1739 if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1740 if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
1741 O << "generic(";
1742 getSymbol(GVar)->print(O, MAI);
1743 O << ")";
1744 } else {
1745 getSymbol(GVar)->print(O, MAI);
1746 }
1747 return;
1748 } else {
1749 lowerConstant(CPV)->print(O, MAI);
1750 return;
1751 }
1752 }
1753 llvm_unreachable("Not scalar type found in printScalarConstant()");
1754 }
1755
1756 // These utility functions assure we get the right sequence of bytes for a given
1757 // type even for big-endian machines
ConvertIntToBytes(unsigned char * p,T val)1758 template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
1759 int64_t vp = (int64_t)val;
1760 for (unsigned i = 0; i < sizeof(T); ++i) {
1761 p[i] = (unsigned char)vp;
1762 vp >>= 8;
1763 }
1764 }
ConvertFloatToBytes(unsigned char * p,float val)1765 static void ConvertFloatToBytes(unsigned char *p, float val) {
1766 int32_t *vp = (int32_t *)&val;
1767 for (unsigned i = 0; i < sizeof(int32_t); ++i) {
1768 p[i] = (unsigned char)*vp;
1769 *vp >>= 8;
1770 }
1771 }
ConvertDoubleToBytes(unsigned char * p,double val)1772 static void ConvertDoubleToBytes(unsigned char *p, double val) {
1773 int64_t *vp = (int64_t *)&val;
1774 for (unsigned i = 0; i < sizeof(int64_t); ++i) {
1775 p[i] = (unsigned char)*vp;
1776 *vp >>= 8;
1777 }
1778 }
1779
bufferLEByte(const Constant * CPV,int Bytes,AggBuffer * aggBuffer)1780 void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
1781 AggBuffer *aggBuffer) {
1782
1783 const DataLayout &DL = getDataLayout();
1784
1785 if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1786 int s = DL.getTypeAllocSize(CPV->getType());
1787 if (s < Bytes)
1788 s = Bytes;
1789 aggBuffer->addZeros(s);
1790 return;
1791 }
1792
1793 unsigned char ptr[8];
1794 switch (CPV->getType()->getTypeID()) {
1795
1796 case Type::IntegerTyID: {
1797 Type *ETy = CPV->getType();
1798 if (ETy == Type::getInt8Ty(CPV->getContext())) {
1799 unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
1800 ConvertIntToBytes<>(ptr, c);
1801 aggBuffer->addBytes(ptr, 1, Bytes);
1802 } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
1803 short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
1804 ConvertIntToBytes<>(ptr, int16);
1805 aggBuffer->addBytes(ptr, 2, Bytes);
1806 } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
1807 if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1808 int int32 = (int)(constInt->getZExtValue());
1809 ConvertIntToBytes<>(ptr, int32);
1810 aggBuffer->addBytes(ptr, 4, Bytes);
1811 break;
1812 } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1813 if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1814 ConstantFoldConstantExpression(Cexpr, DL))) {
1815 int int32 = (int)(constInt->getZExtValue());
1816 ConvertIntToBytes<>(ptr, int32);
1817 aggBuffer->addBytes(ptr, 4, Bytes);
1818 break;
1819 }
1820 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1821 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1822 aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1823 aggBuffer->addZeros(4);
1824 break;
1825 }
1826 }
1827 llvm_unreachable("unsupported integer const type");
1828 } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
1829 if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1830 long long int64 = (long long)(constInt->getZExtValue());
1831 ConvertIntToBytes<>(ptr, int64);
1832 aggBuffer->addBytes(ptr, 8, Bytes);
1833 break;
1834 } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1835 if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1836 ConstantFoldConstantExpression(Cexpr, DL))) {
1837 long long int64 = (long long)(constInt->getZExtValue());
1838 ConvertIntToBytes<>(ptr, int64);
1839 aggBuffer->addBytes(ptr, 8, Bytes);
1840 break;
1841 }
1842 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1843 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1844 aggBuffer->addSymbol(v, Cexpr->getOperand(0));
1845 aggBuffer->addZeros(8);
1846 break;
1847 }
1848 }
1849 llvm_unreachable("unsupported integer const type");
1850 } else
1851 llvm_unreachable("unsupported integer const type");
1852 break;
1853 }
1854 case Type::FloatTyID:
1855 case Type::DoubleTyID: {
1856 const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1857 Type *Ty = CFP->getType();
1858 if (Ty == Type::getFloatTy(CPV->getContext())) {
1859 float float32 = (float) CFP->getValueAPF().convertToFloat();
1860 ConvertFloatToBytes(ptr, float32);
1861 aggBuffer->addBytes(ptr, 4, Bytes);
1862 } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1863 double float64 = CFP->getValueAPF().convertToDouble();
1864 ConvertDoubleToBytes(ptr, float64);
1865 aggBuffer->addBytes(ptr, 8, Bytes);
1866 } else {
1867 llvm_unreachable("unsupported fp const type");
1868 }
1869 break;
1870 }
1871 case Type::PointerTyID: {
1872 if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1873 aggBuffer->addSymbol(GVar, GVar);
1874 } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1875 const Value *v = Cexpr->stripPointerCasts();
1876 aggBuffer->addSymbol(v, Cexpr);
1877 }
1878 unsigned int s = DL.getTypeAllocSize(CPV->getType());
1879 aggBuffer->addZeros(s);
1880 break;
1881 }
1882
1883 case Type::ArrayTyID:
1884 case Type::VectorTyID:
1885 case Type::StructTyID: {
1886 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
1887 isa<ConstantStruct>(CPV) || isa<ConstantDataSequential>(CPV)) {
1888 int ElementSize = DL.getTypeAllocSize(CPV->getType());
1889 bufferAggregateConstant(CPV, aggBuffer);
1890 if (Bytes > ElementSize)
1891 aggBuffer->addZeros(Bytes - ElementSize);
1892 } else if (isa<ConstantAggregateZero>(CPV))
1893 aggBuffer->addZeros(Bytes);
1894 else
1895 llvm_unreachable("Unexpected Constant type");
1896 break;
1897 }
1898
1899 default:
1900 llvm_unreachable("unsupported type");
1901 }
1902 }
1903
bufferAggregateConstant(const Constant * CPV,AggBuffer * aggBuffer)1904 void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
1905 AggBuffer *aggBuffer) {
1906 const DataLayout &DL = getDataLayout();
1907 int Bytes;
1908
1909 // Old constants
1910 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1911 if (CPV->getNumOperands())
1912 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1913 bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1914 return;
1915 }
1916
1917 if (const ConstantDataSequential *CDS =
1918 dyn_cast<ConstantDataSequential>(CPV)) {
1919 if (CDS->getNumElements())
1920 for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1921 bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1922 aggBuffer);
1923 return;
1924 }
1925
1926 if (isa<ConstantStruct>(CPV)) {
1927 if (CPV->getNumOperands()) {
1928 StructType *ST = cast<StructType>(CPV->getType());
1929 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1930 if (i == (e - 1))
1931 Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
1932 DL.getTypeAllocSize(ST) -
1933 DL.getStructLayout(ST)->getElementOffset(i);
1934 else
1935 Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
1936 DL.getStructLayout(ST)->getElementOffset(i);
1937 bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
1938 }
1939 }
1940 return;
1941 }
1942 llvm_unreachable("unsupported constant type in printAggregateConstant()");
1943 }
1944
1945 // buildTypeNameMap - Run through symbol table looking for type names.
1946 //
1947
1948
ignoreLoc(const MachineInstr & MI)1949 bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
1950 switch (MI.getOpcode()) {
1951 default:
1952 return false;
1953 case NVPTX::CallArgBeginInst:
1954 case NVPTX::CallArgEndInst0:
1955 case NVPTX::CallArgEndInst1:
1956 case NVPTX::CallArgF32:
1957 case NVPTX::CallArgF64:
1958 case NVPTX::CallArgI16:
1959 case NVPTX::CallArgI32:
1960 case NVPTX::CallArgI32imm:
1961 case NVPTX::CallArgI64:
1962 case NVPTX::CallArgParam:
1963 case NVPTX::CallVoidInst:
1964 case NVPTX::CallVoidInstReg:
1965 case NVPTX::Callseq_End:
1966 case NVPTX::CallVoidInstReg64:
1967 case NVPTX::DeclareParamInst:
1968 case NVPTX::DeclareRetMemInst:
1969 case NVPTX::DeclareRetRegInst:
1970 case NVPTX::DeclareRetScalarInst:
1971 case NVPTX::DeclareScalarParamInst:
1972 case NVPTX::DeclareScalarRegInst:
1973 case NVPTX::StoreParamF32:
1974 case NVPTX::StoreParamF64:
1975 case NVPTX::StoreParamI16:
1976 case NVPTX::StoreParamI32:
1977 case NVPTX::StoreParamI64:
1978 case NVPTX::StoreParamI8:
1979 case NVPTX::StoreRetvalF32:
1980 case NVPTX::StoreRetvalF64:
1981 case NVPTX::StoreRetvalI16:
1982 case NVPTX::StoreRetvalI32:
1983 case NVPTX::StoreRetvalI64:
1984 case NVPTX::StoreRetvalI8:
1985 case NVPTX::LastCallArgF32:
1986 case NVPTX::LastCallArgF64:
1987 case NVPTX::LastCallArgI16:
1988 case NVPTX::LastCallArgI32:
1989 case NVPTX::LastCallArgI32imm:
1990 case NVPTX::LastCallArgI64:
1991 case NVPTX::LastCallArgParam:
1992 case NVPTX::LoadParamMemF32:
1993 case NVPTX::LoadParamMemF64:
1994 case NVPTX::LoadParamMemI16:
1995 case NVPTX::LoadParamMemI32:
1996 case NVPTX::LoadParamMemI64:
1997 case NVPTX::LoadParamMemI8:
1998 case NVPTX::PrototypeInst:
1999 case NVPTX::DBG_VALUE:
2000 return true;
2001 }
2002 return false;
2003 }
2004
2005 /// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
2006 /// a copy from AsmPrinter::lowerConstant, except customized to only handle
2007 /// expressions that are representable in PTX and create
2008 /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
2009 const MCExpr *
lowerConstantForGV(const Constant * CV,bool ProcessingGeneric)2010 NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
2011 MCContext &Ctx = OutContext;
2012
2013 if (CV->isNullValue() || isa<UndefValue>(CV))
2014 return MCConstantExpr::create(0, Ctx);
2015
2016 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2017 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2018
2019 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
2020 const MCSymbolRefExpr *Expr =
2021 MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2022 if (ProcessingGeneric) {
2023 return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
2024 } else {
2025 return Expr;
2026 }
2027 }
2028
2029 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2030 if (!CE) {
2031 llvm_unreachable("Unknown constant value to lower!");
2032 }
2033
2034 switch (CE->getOpcode()) {
2035 default:
2036 // If the code isn't optimized, there may be outstanding folding
2037 // opportunities. Attempt to fold the expression using DataLayout as a
2038 // last resort before giving up.
2039 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
2040 if (C != CE)
2041 return lowerConstantForGV(C, ProcessingGeneric);
2042
2043 // Otherwise report the problem to the user.
2044 {
2045 std::string S;
2046 raw_string_ostream OS(S);
2047 OS << "Unsupported expression in static initializer: ";
2048 CE->printAsOperand(OS, /*PrintType=*/false,
2049 !MF ? nullptr : MF->getFunction()->getParent());
2050 report_fatal_error(OS.str());
2051 }
2052
2053 case Instruction::AddrSpaceCast: {
2054 // Strip the addrspacecast and pass along the operand
2055 PointerType *DstTy = cast<PointerType>(CE->getType());
2056 if (DstTy->getAddressSpace() == 0) {
2057 return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
2058 }
2059 std::string S;
2060 raw_string_ostream OS(S);
2061 OS << "Unsupported expression in static initializer: ";
2062 CE->printAsOperand(OS, /*PrintType=*/ false,
2063 !MF ? 0 : MF->getFunction()->getParent());
2064 report_fatal_error(OS.str());
2065 }
2066
2067 case Instruction::GetElementPtr: {
2068 const DataLayout &DL = getDataLayout();
2069
2070 // Generate a symbolic expression for the byte address
2071 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
2072 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
2073
2074 const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
2075 ProcessingGeneric);
2076 if (!OffsetAI)
2077 return Base;
2078
2079 int64_t Offset = OffsetAI.getSExtValue();
2080 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2081 Ctx);
2082 }
2083
2084 case Instruction::Trunc:
2085 // We emit the value and depend on the assembler to truncate the generated
2086 // expression properly. This is important for differences between
2087 // blockaddress labels. Since the two labels are in the same function, it
2088 // is reasonable to treat their delta as a 32-bit value.
2089 // FALL THROUGH.
2090 case Instruction::BitCast:
2091 return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2092
2093 case Instruction::IntToPtr: {
2094 const DataLayout &DL = getDataLayout();
2095
2096 // Handle casts to pointers by changing them into casts to the appropriate
2097 // integer type. This promotes constant folding and simplifies this code.
2098 Constant *Op = CE->getOperand(0);
2099 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2100 false/*ZExt*/);
2101 return lowerConstantForGV(Op, ProcessingGeneric);
2102 }
2103
2104 case Instruction::PtrToInt: {
2105 const DataLayout &DL = getDataLayout();
2106
2107 // Support only foldable casts to/from pointers that can be eliminated by
2108 // changing the pointer to the appropriately sized integer type.
2109 Constant *Op = CE->getOperand(0);
2110 Type *Ty = CE->getType();
2111
2112 const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
2113
2114 // We can emit the pointer value into this slot if the slot is an
2115 // integer slot equal to the size of the pointer.
2116 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2117 return OpExpr;
2118
2119 // Otherwise the pointer is smaller than the resultant integer, mask off
2120 // the high bits so we are sure to get a proper truncation if the input is
2121 // a constant expr.
2122 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2123 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2124 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2125 }
2126
2127 // The MC library also has a right-shift operator, but it isn't consistently
2128 // signed or unsigned between different targets.
2129 case Instruction::Add: {
2130 const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
2131 const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
2132 switch (CE->getOpcode()) {
2133 default: llvm_unreachable("Unknown binary operator constant cast expr");
2134 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2135 }
2136 }
2137 }
2138 }
2139
2140 // Copy of MCExpr::print customized for NVPTX
printMCExpr(const MCExpr & Expr,raw_ostream & OS)2141 void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
2142 switch (Expr.getKind()) {
2143 case MCExpr::Target:
2144 return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
2145 case MCExpr::Constant:
2146 OS << cast<MCConstantExpr>(Expr).getValue();
2147 return;
2148
2149 case MCExpr::SymbolRef: {
2150 const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
2151 const MCSymbol &Sym = SRE.getSymbol();
2152 Sym.print(OS, MAI);
2153 return;
2154 }
2155
2156 case MCExpr::Unary: {
2157 const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
2158 switch (UE.getOpcode()) {
2159 case MCUnaryExpr::LNot: OS << '!'; break;
2160 case MCUnaryExpr::Minus: OS << '-'; break;
2161 case MCUnaryExpr::Not: OS << '~'; break;
2162 case MCUnaryExpr::Plus: OS << '+'; break;
2163 }
2164 printMCExpr(*UE.getSubExpr(), OS);
2165 return;
2166 }
2167
2168 case MCExpr::Binary: {
2169 const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
2170
2171 // Only print parens around the LHS if it is non-trivial.
2172 if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
2173 isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
2174 printMCExpr(*BE.getLHS(), OS);
2175 } else {
2176 OS << '(';
2177 printMCExpr(*BE.getLHS(), OS);
2178 OS<< ')';
2179 }
2180
2181 switch (BE.getOpcode()) {
2182 case MCBinaryExpr::Add:
2183 // Print "X-42" instead of "X+-42".
2184 if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
2185 if (RHSC->getValue() < 0) {
2186 OS << RHSC->getValue();
2187 return;
2188 }
2189 }
2190
2191 OS << '+';
2192 break;
2193 default: llvm_unreachable("Unhandled binary operator");
2194 }
2195
2196 // Only print parens around the LHS if it is non-trivial.
2197 if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
2198 printMCExpr(*BE.getRHS(), OS);
2199 } else {
2200 OS << '(';
2201 printMCExpr(*BE.getRHS(), OS);
2202 OS << ')';
2203 }
2204 return;
2205 }
2206 }
2207
2208 llvm_unreachable("Invalid expression kind!");
2209 }
2210
2211 /// PrintAsmOperand - Print out an operand for an inline asm expression.
2212 ///
PrintAsmOperand(const MachineInstr * MI,unsigned OpNo,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)2213 bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
2214 unsigned AsmVariant,
2215 const char *ExtraCode, raw_ostream &O) {
2216 if (ExtraCode && ExtraCode[0]) {
2217 if (ExtraCode[1] != 0)
2218 return true; // Unknown modifier.
2219
2220 switch (ExtraCode[0]) {
2221 default:
2222 // See if this is a generic print operand
2223 return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
2224 case 'r':
2225 break;
2226 }
2227 }
2228
2229 printOperand(MI, OpNo, O);
2230
2231 return false;
2232 }
2233
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNo,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)2234 bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
2235 const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
2236 const char *ExtraCode, raw_ostream &O) {
2237 if (ExtraCode && ExtraCode[0])
2238 return true; // Unknown modifier
2239
2240 O << '[';
2241 printMemOperand(MI, OpNo, O);
2242 O << ']';
2243
2244 return false;
2245 }
2246
printOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)2247 void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
2248 raw_ostream &O, const char *Modifier) {
2249 const MachineOperand &MO = MI->getOperand(opNum);
2250 switch (MO.getType()) {
2251 case MachineOperand::MO_Register:
2252 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
2253 if (MO.getReg() == NVPTX::VRDepot)
2254 O << DEPOTNAME << getFunctionNumber();
2255 else
2256 O << NVPTXInstPrinter::getRegisterName(MO.getReg());
2257 } else {
2258 emitVirtualRegister(MO.getReg(), O);
2259 }
2260 return;
2261
2262 case MachineOperand::MO_Immediate:
2263 if (!Modifier)
2264 O << MO.getImm();
2265 else if (strstr(Modifier, "vec") == Modifier)
2266 printVecModifiedImmediate(MO, Modifier, O);
2267 else
2268 llvm_unreachable(
2269 "Don't know how to handle modifier on immediate operand");
2270 return;
2271
2272 case MachineOperand::MO_FPImmediate:
2273 printFPConstant(MO.getFPImm(), O);
2274 break;
2275
2276 case MachineOperand::MO_GlobalAddress:
2277 getSymbol(MO.getGlobal())->print(O, MAI);
2278 break;
2279
2280 case MachineOperand::MO_MachineBasicBlock:
2281 MO.getMBB()->getSymbol()->print(O, MAI);
2282 return;
2283
2284 default:
2285 llvm_unreachable("Operand type not supported.");
2286 }
2287 }
2288
printMemOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)2289 void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
2290 raw_ostream &O, const char *Modifier) {
2291 printOperand(MI, opNum, O);
2292
2293 if (Modifier && !strcmp(Modifier, "add")) {
2294 O << ", ";
2295 printOperand(MI, opNum + 1, O);
2296 } else {
2297 if (MI->getOperand(opNum + 1).isImm() &&
2298 MI->getOperand(opNum + 1).getImm() == 0)
2299 return; // don't print ',0' or '+0'
2300 O << "+";
2301 printOperand(MI, opNum + 1, O);
2302 }
2303 }
2304
emitSrcInText(StringRef filename,unsigned line)2305 void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2306 std::stringstream temp;
2307 LineReader *reader = this->getReader(filename);
2308 temp << "\n//";
2309 temp << filename.str();
2310 temp << ":";
2311 temp << line;
2312 temp << " ";
2313 temp << reader->readLine(line);
2314 temp << "\n";
2315 this->OutStreamer->EmitRawText(temp.str());
2316 }
2317
getReader(std::string filename)2318 LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
2319 if (!reader) {
2320 reader = new LineReader(filename);
2321 }
2322
2323 if (reader->fileName() != filename) {
2324 delete reader;
2325 reader = new LineReader(filename);
2326 }
2327
2328 return reader;
2329 }
2330
readLine(unsigned lineNum)2331 std::string LineReader::readLine(unsigned lineNum) {
2332 if (lineNum < theCurLine) {
2333 theCurLine = 0;
2334 fstr.seekg(0, std::ios::beg);
2335 }
2336 while (theCurLine < lineNum) {
2337 fstr.getline(buff, 500);
2338 theCurLine++;
2339 }
2340 return buff;
2341 }
2342
2343 // Force static initialization.
LLVMInitializeNVPTXAsmPrinter()2344 extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2345 RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2346 RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2347 }
2348