1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Place garbage collection safepoints at appropriate locations in the IR. This
11 // does not make relocation semantics or variable liveness explicit. That's
12 // done by RewriteStatepointsForGC.
13 //
14 // Terminology:
15 // - A call is said to be "parseable" if there is a stack map generated for the
16 // return PC of the call. A runtime can determine where values listed in the
17 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
18 // on the stack when the code is suspended inside such a call. Every parse
19 // point is represented by a call wrapped in an gc.statepoint intrinsic.
20 // - A "poll" is an explicit check in the generated code to determine if the
21 // runtime needs the generated code to cooperate by calling a helper routine
22 // and thus suspending its execution at a known state. The call to the helper
23 // routine will be parseable. The (gc & runtime specific) logic of a poll is
24 // assumed to be provided in a function of the name "gc.safepoint_poll".
25 //
26 // We aim to insert polls such that running code can quickly be brought to a
27 // well defined state for inspection by the collector. In the current
28 // implementation, this is done via the insertion of poll sites at method entry
29 // and the backedge of most loops. We try to avoid inserting more polls than
30 // are necessary to ensure a finite period between poll sites. This is not
31 // because the poll itself is expensive in the generated code; it's not. Polls
32 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
33 // perturbing the optimization of the method as much as we can.
34 //
35 // We also need to make most call sites parseable. The callee might execute a
36 // poll (or otherwise be inspected by the GC). If so, the entire stack
37 // (including the suspended frame of the current method) must be parseable.
38 //
39 // This pass will insert:
40 // - Call parse points ("call safepoints") for any call which may need to
41 // reach a safepoint during the execution of the callee function.
42 // - Backedge safepoint polls and entry safepoint polls to ensure that
43 // executing code reaches a safepoint poll in a finite amount of time.
44 //
45 // We do not currently support return statepoints, but adding them would not
46 // be hard. They are not required for correctness - entry safepoints are an
47 // alternative - but some GCs may prefer them. Patches welcome.
48 //
49 //===----------------------------------------------------------------------===//
50
51 #include "llvm/Pass.h"
52 #include "llvm/IR/LegacyPassManager.h"
53 #include "llvm/ADT/SetOperations.h"
54 #include "llvm/ADT/SetVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/CFG.h"
62 #include "llvm/Analysis/InstructionSimplify.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CallSite.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstIterator.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Intrinsics.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/Statepoint.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/Cloning.h"
82 #include "llvm/Transforms/Utils/Local.h"
83
84 #define DEBUG_TYPE "safepoint-placement"
85 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
86 STATISTIC(NumCallSafepoints, "Number of call safepoints inserted");
87 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
88
89 STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop");
90 STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution");
91
92 using namespace llvm;
93
94 // Ignore opportunities to avoid placing safepoints on backedges, useful for
95 // validation
96 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
97 cl::init(false));
98
99 /// How narrow does the trip count of a loop have to be to have to be considered
100 /// "counted"? Counted loops do not get safepoints at backedges.
101 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
102 cl::Hidden, cl::init(32));
103
104 // If true, split the backedge of a loop when placing the safepoint, otherwise
105 // split the latch block itself. Both are useful to support for
106 // experimentation, but in practice, it looks like splitting the backedge
107 // optimizes better.
108 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
109 cl::init(false));
110
111 // Print tracing output
112 static cl::opt<bool> TraceLSP("spp-trace", cl::Hidden, cl::init(false));
113
114 namespace {
115
116 /// An analysis pass whose purpose is to identify each of the backedges in
117 /// the function which require a safepoint poll to be inserted.
118 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
119 static char ID;
120
121 /// The output of the pass - gives a list of each backedge (described by
122 /// pointing at the branch) which need a poll inserted.
123 std::vector<TerminatorInst *> PollLocations;
124
125 /// True unless we're running spp-no-calls in which case we need to disable
126 /// the call-dependent placement opts.
127 bool CallSafepointsEnabled;
128
129 ScalarEvolution *SE = nullptr;
130 DominatorTree *DT = nullptr;
131 LoopInfo *LI = nullptr;
132
PlaceBackedgeSafepointsImpl__anon5fe5e7560111::PlaceBackedgeSafepointsImpl133 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
134 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
135 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
136 }
137
138 bool runOnLoop(Loop *);
runOnLoopAndSubLoops__anon5fe5e7560111::PlaceBackedgeSafepointsImpl139 void runOnLoopAndSubLoops(Loop *L) {
140 // Visit all the subloops
141 for (auto I = L->begin(), E = L->end(); I != E; I++)
142 runOnLoopAndSubLoops(*I);
143 runOnLoop(L);
144 }
145
runOnFunction__anon5fe5e7560111::PlaceBackedgeSafepointsImpl146 bool runOnFunction(Function &F) override {
147 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
148 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
149 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
150 for (auto I = LI->begin(), E = LI->end(); I != E; I++) {
151 runOnLoopAndSubLoops(*I);
152 }
153 return false;
154 }
155
getAnalysisUsage__anon5fe5e7560111::PlaceBackedgeSafepointsImpl156 void getAnalysisUsage(AnalysisUsage &AU) const override {
157 AU.addRequired<DominatorTreeWrapperPass>();
158 AU.addRequired<ScalarEvolutionWrapperPass>();
159 AU.addRequired<LoopInfoWrapperPass>();
160 // We no longer modify the IR at all in this pass. Thus all
161 // analysis are preserved.
162 AU.setPreservesAll();
163 }
164 };
165 }
166
167 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
168 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
169 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
170
171 namespace {
172 struct PlaceSafepoints : public FunctionPass {
173 static char ID; // Pass identification, replacement for typeid
174
PlaceSafepoints__anon5fe5e7560211::PlaceSafepoints175 PlaceSafepoints() : FunctionPass(ID) {
176 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
177 }
178 bool runOnFunction(Function &F) override;
179
getAnalysisUsage__anon5fe5e7560211::PlaceSafepoints180 void getAnalysisUsage(AnalysisUsage &AU) const override {
181 // We modify the graph wholesale (inlining, block insertion, etc). We
182 // preserve nothing at the moment. We could potentially preserve dom tree
183 // if that was worth doing
184 }
185 };
186 }
187
188 // Insert a safepoint poll immediately before the given instruction. Does
189 // not handle the parsability of state at the runtime call, that's the
190 // callers job.
191 static void
192 InsertSafepointPoll(Instruction *InsertBefore,
193 std::vector<CallSite> &ParsePointsNeeded /*rval*/);
194
needsStatepoint(const CallSite & CS)195 static bool needsStatepoint(const CallSite &CS) {
196 if (callsGCLeafFunction(CS))
197 return false;
198 if (CS.isCall()) {
199 CallInst *call = cast<CallInst>(CS.getInstruction());
200 if (call->isInlineAsm())
201 return false;
202 }
203 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) {
204 return false;
205 }
206 return true;
207 }
208
209 static Value *ReplaceWithStatepoint(const CallSite &CS);
210
211 /// Returns true if this loop is known to contain a call safepoint which
212 /// must unconditionally execute on any iteration of the loop which returns
213 /// to the loop header via an edge from Pred. Returns a conservative correct
214 /// answer; i.e. false is always valid.
containsUnconditionalCallSafepoint(Loop * L,BasicBlock * Header,BasicBlock * Pred,DominatorTree & DT)215 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
216 BasicBlock *Pred,
217 DominatorTree &DT) {
218 // In general, we're looking for any cut of the graph which ensures
219 // there's a call safepoint along every edge between Header and Pred.
220 // For the moment, we look only for the 'cuts' that consist of a single call
221 // instruction in a block which is dominated by the Header and dominates the
222 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
223 // of such dominating blocks gets substantially more occurrences than just
224 // checking the Pred and Header blocks themselves. This may be due to the
225 // density of loop exit conditions caused by range and null checks.
226 // TODO: structure this as an analysis pass, cache the result for subloops,
227 // avoid dom tree recalculations
228 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
229
230 BasicBlock *Current = Pred;
231 while (true) {
232 for (Instruction &I : *Current) {
233 if (auto CS = CallSite(&I))
234 // Note: Technically, needing a safepoint isn't quite the right
235 // condition here. We should instead be checking if the target method
236 // has an
237 // unconditional poll. In practice, this is only a theoretical concern
238 // since we don't have any methods with conditional-only safepoint
239 // polls.
240 if (needsStatepoint(CS))
241 return true;
242 }
243
244 if (Current == Header)
245 break;
246 Current = DT.getNode(Current)->getIDom()->getBlock();
247 }
248
249 return false;
250 }
251
252 /// Returns true if this loop is known to terminate in a finite number of
253 /// iterations. Note that this function may return false for a loop which
254 /// does actual terminate in a finite constant number of iterations due to
255 /// conservatism in the analysis.
mustBeFiniteCountedLoop(Loop * L,ScalarEvolution * SE,BasicBlock * Pred)256 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
257 BasicBlock *Pred) {
258 // A conservative bound on the loop as a whole.
259 const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
260 if (MaxTrips != SE->getCouldNotCompute() &&
261 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
262 CountedLoopTripWidth))
263 return true;
264
265 // If this is a conditional branch to the header with the alternate path
266 // being outside the loop, we can ask questions about the execution frequency
267 // of the exit block.
268 if (L->isLoopExiting(Pred)) {
269 // This returns an exact expression only. TODO: We really only need an
270 // upper bound here, but SE doesn't expose that.
271 const SCEV *MaxExec = SE->getExitCount(L, Pred);
272 if (MaxExec != SE->getCouldNotCompute() &&
273 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
274 CountedLoopTripWidth))
275 return true;
276 }
277
278 return /* not finite */ false;
279 }
280
scanOneBB(Instruction * start,Instruction * end,std::vector<CallInst * > & calls,std::set<BasicBlock * > & seen,std::vector<BasicBlock * > & worklist)281 static void scanOneBB(Instruction *start, Instruction *end,
282 std::vector<CallInst *> &calls,
283 std::set<BasicBlock *> &seen,
284 std::vector<BasicBlock *> &worklist) {
285 for (BasicBlock::iterator itr(start);
286 itr != start->getParent()->end() && itr != BasicBlock::iterator(end);
287 itr++) {
288 if (CallInst *CI = dyn_cast<CallInst>(&*itr)) {
289 calls.push_back(CI);
290 }
291 // FIXME: This code does not handle invokes
292 assert(!dyn_cast<InvokeInst>(&*itr) &&
293 "support for invokes in poll code needed");
294 // Only add the successor blocks if we reach the terminator instruction
295 // without encountering end first
296 if (itr->isTerminator()) {
297 BasicBlock *BB = itr->getParent();
298 for (BasicBlock *Succ : successors(BB)) {
299 if (seen.count(Succ) == 0) {
300 worklist.push_back(Succ);
301 seen.insert(Succ);
302 }
303 }
304 }
305 }
306 }
scanInlinedCode(Instruction * start,Instruction * end,std::vector<CallInst * > & calls,std::set<BasicBlock * > & seen)307 static void scanInlinedCode(Instruction *start, Instruction *end,
308 std::vector<CallInst *> &calls,
309 std::set<BasicBlock *> &seen) {
310 calls.clear();
311 std::vector<BasicBlock *> worklist;
312 seen.insert(start->getParent());
313 scanOneBB(start, end, calls, seen, worklist);
314 while (!worklist.empty()) {
315 BasicBlock *BB = worklist.back();
316 worklist.pop_back();
317 scanOneBB(&*BB->begin(), end, calls, seen, worklist);
318 }
319 }
320
runOnLoop(Loop * L)321 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
322 // Loop through all loop latches (branches controlling backedges). We need
323 // to place a safepoint on every backedge (potentially).
324 // Note: In common usage, there will be only one edge due to LoopSimplify
325 // having run sometime earlier in the pipeline, but this code must be correct
326 // w.r.t. loops with multiple backedges.
327 BasicBlock *header = L->getHeader();
328 SmallVector<BasicBlock*, 16> LoopLatches;
329 L->getLoopLatches(LoopLatches);
330 for (BasicBlock *pred : LoopLatches) {
331 assert(L->contains(pred));
332
333 // Make a policy decision about whether this loop needs a safepoint or
334 // not. Note that this is about unburdening the optimizer in loops, not
335 // avoiding the runtime cost of the actual safepoint.
336 if (!AllBackedges) {
337 if (mustBeFiniteCountedLoop(L, SE, pred)) {
338 if (TraceLSP)
339 errs() << "skipping safepoint placement in finite loop\n";
340 FiniteExecution++;
341 continue;
342 }
343 if (CallSafepointsEnabled &&
344 containsUnconditionalCallSafepoint(L, header, pred, *DT)) {
345 // Note: This is only semantically legal since we won't do any further
346 // IPO or inlining before the actual call insertion.. If we hadn't, we
347 // might latter loose this call safepoint.
348 if (TraceLSP)
349 errs() << "skipping safepoint placement due to unconditional call\n";
350 CallInLoop++;
351 continue;
352 }
353 }
354
355 // TODO: We can create an inner loop which runs a finite number of
356 // iterations with an outer loop which contains a safepoint. This would
357 // not help runtime performance that much, but it might help our ability to
358 // optimize the inner loop.
359
360 // Safepoint insertion would involve creating a new basic block (as the
361 // target of the current backedge) which does the safepoint (of all live
362 // variables) and branches to the true header
363 TerminatorInst *term = pred->getTerminator();
364
365 if (TraceLSP) {
366 errs() << "[LSP] terminator instruction: ";
367 term->dump();
368 }
369
370 PollLocations.push_back(term);
371 }
372
373 return false;
374 }
375
376 /// Returns true if an entry safepoint is not required before this callsite in
377 /// the caller function.
doesNotRequireEntrySafepointBefore(const CallSite & CS)378 static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
379 Instruction *Inst = CS.getInstruction();
380 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
381 switch (II->getIntrinsicID()) {
382 case Intrinsic::experimental_gc_statepoint:
383 case Intrinsic::experimental_patchpoint_void:
384 case Intrinsic::experimental_patchpoint_i64:
385 // The can wrap an actual call which may grow the stack by an unbounded
386 // amount or run forever.
387 return false;
388 default:
389 // Most LLVM intrinsics are things which do not expand to actual calls, or
390 // at least if they do, are leaf functions that cause only finite stack
391 // growth. In particular, the optimizer likes to form things like memsets
392 // out of stores in the original IR. Another important example is
393 // llvm.localescape which must occur in the entry block. Inserting a
394 // safepoint before it is not legal since it could push the localescape
395 // out of the entry block.
396 return true;
397 }
398 }
399 return false;
400 }
401
findLocationForEntrySafepoint(Function & F,DominatorTree & DT)402 static Instruction *findLocationForEntrySafepoint(Function &F,
403 DominatorTree &DT) {
404
405 // Conceptually, this poll needs to be on method entry, but in
406 // practice, we place it as late in the entry block as possible. We
407 // can place it as late as we want as long as it dominates all calls
408 // that can grow the stack. This, combined with backedge polls,
409 // give us all the progress guarantees we need.
410
411 // hasNextInstruction and nextInstruction are used to iterate
412 // through a "straight line" execution sequence.
413
414 auto hasNextInstruction = [](Instruction *I) {
415 if (!I->isTerminator()) {
416 return true;
417 }
418 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
419 return nextBB && (nextBB->getUniquePredecessor() != nullptr);
420 };
421
422 auto nextInstruction = [&hasNextInstruction](Instruction *I) {
423 assert(hasNextInstruction(I) &&
424 "first check if there is a next instruction!");
425 if (I->isTerminator()) {
426 return &I->getParent()->getUniqueSuccessor()->front();
427 } else {
428 return &*++I->getIterator();
429 }
430 };
431
432 Instruction *cursor = nullptr;
433 for (cursor = &F.getEntryBlock().front(); hasNextInstruction(cursor);
434 cursor = nextInstruction(cursor)) {
435
436 // We need to ensure a safepoint poll occurs before any 'real' call. The
437 // easiest way to ensure finite execution between safepoints in the face of
438 // recursive and mutually recursive functions is to enforce that each take
439 // a safepoint. Additionally, we need to ensure a poll before any call
440 // which can grow the stack by an unbounded amount. This isn't required
441 // for GC semantics per se, but is a common requirement for languages
442 // which detect stack overflow via guard pages and then throw exceptions.
443 if (auto CS = CallSite(cursor)) {
444 if (doesNotRequireEntrySafepointBefore(CS))
445 continue;
446 break;
447 }
448 }
449
450 assert((hasNextInstruction(cursor) || cursor->isTerminator()) &&
451 "either we stopped because of a call, or because of terminator");
452
453 return cursor;
454 }
455
456 /// Identify the list of call sites which need to be have parseable state
findCallSafepoints(Function & F,std::vector<CallSite> & Found)457 static void findCallSafepoints(Function &F,
458 std::vector<CallSite> &Found /*rval*/) {
459 assert(Found.empty() && "must be empty!");
460 for (Instruction &I : instructions(F)) {
461 Instruction *inst = &I;
462 if (isa<CallInst>(inst) || isa<InvokeInst>(inst)) {
463 CallSite CS(inst);
464
465 // No safepoint needed or wanted
466 if (!needsStatepoint(CS)) {
467 continue;
468 }
469
470 Found.push_back(CS);
471 }
472 }
473 }
474
475 /// Implement a unique function which doesn't require we sort the input
476 /// vector. Doing so has the effect of changing the output of a couple of
477 /// tests in ways which make them less useful in testing fused safepoints.
unique_unsorted(std::vector<T> & vec)478 template <typename T> static void unique_unsorted(std::vector<T> &vec) {
479 std::set<T> seen;
480 std::vector<T> tmp;
481 vec.reserve(vec.size());
482 std::swap(tmp, vec);
483 for (auto V : tmp) {
484 if (seen.insert(V).second) {
485 vec.push_back(V);
486 }
487 }
488 }
489
490 static const char *const GCSafepointPollName = "gc.safepoint_poll";
491
isGCSafepointPoll(Function & F)492 static bool isGCSafepointPoll(Function &F) {
493 return F.getName().equals(GCSafepointPollName);
494 }
495
496 /// Returns true if this function should be rewritten to include safepoint
497 /// polls and parseable call sites. The main point of this function is to be
498 /// an extension point for custom logic.
shouldRewriteFunction(Function & F)499 static bool shouldRewriteFunction(Function &F) {
500 // TODO: This should check the GCStrategy
501 if (F.hasGC()) {
502 const char *FunctionGCName = F.getGC();
503 const StringRef StatepointExampleName("statepoint-example");
504 const StringRef CoreCLRName("coreclr");
505 return (StatepointExampleName == FunctionGCName) ||
506 (CoreCLRName == FunctionGCName);
507 } else
508 return false;
509 }
510
511 // TODO: These should become properties of the GCStrategy, possibly with
512 // command line overrides.
enableEntrySafepoints(Function & F)513 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
enableBackedgeSafepoints(Function & F)514 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
enableCallSafepoints(Function & F)515 static bool enableCallSafepoints(Function &F) { return !NoCall; }
516
517 // Normalize basic block to make it ready to be target of invoke statepoint.
518 // Ensure that 'BB' does not have phi nodes. It may require spliting it.
normalizeForInvokeSafepoint(BasicBlock * BB,BasicBlock * InvokeParent)519 static BasicBlock *normalizeForInvokeSafepoint(BasicBlock *BB,
520 BasicBlock *InvokeParent) {
521 BasicBlock *ret = BB;
522
523 if (!BB->getUniquePredecessor()) {
524 ret = SplitBlockPredecessors(BB, InvokeParent, "");
525 }
526
527 // Now that 'ret' has unique predecessor we can safely remove all phi nodes
528 // from it
529 FoldSingleEntryPHINodes(ret);
530 assert(!isa<PHINode>(ret->begin()));
531
532 return ret;
533 }
534
runOnFunction(Function & F)535 bool PlaceSafepoints::runOnFunction(Function &F) {
536 if (F.isDeclaration() || F.empty()) {
537 // This is a declaration, nothing to do. Must exit early to avoid crash in
538 // dom tree calculation
539 return false;
540 }
541
542 if (isGCSafepointPoll(F)) {
543 // Given we're inlining this inside of safepoint poll insertion, this
544 // doesn't make any sense. Note that we do make any contained calls
545 // parseable after we inline a poll.
546 return false;
547 }
548
549 if (!shouldRewriteFunction(F))
550 return false;
551
552 bool modified = false;
553
554 // In various bits below, we rely on the fact that uses are reachable from
555 // defs. When there are basic blocks unreachable from the entry, dominance
556 // and reachablity queries return non-sensical results. Thus, we preprocess
557 // the function to ensure these properties hold.
558 modified |= removeUnreachableBlocks(F);
559
560 // STEP 1 - Insert the safepoint polling locations. We do not need to
561 // actually insert parse points yet. That will be done for all polls and
562 // calls in a single pass.
563
564 DominatorTree DT;
565 DT.recalculate(F);
566
567 SmallVector<Instruction *, 16> PollsNeeded;
568 std::vector<CallSite> ParsePointNeeded;
569
570 if (enableBackedgeSafepoints(F)) {
571 // Construct a pass manager to run the LoopPass backedge logic. We
572 // need the pass manager to handle scheduling all the loop passes
573 // appropriately. Doing this by hand is painful and just not worth messing
574 // with for the moment.
575 legacy::FunctionPassManager FPM(F.getParent());
576 bool CanAssumeCallSafepoints = enableCallSafepoints(F);
577 PlaceBackedgeSafepointsImpl *PBS =
578 new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
579 FPM.add(PBS);
580 FPM.run(F);
581
582 // We preserve dominance information when inserting the poll, otherwise
583 // we'd have to recalculate this on every insert
584 DT.recalculate(F);
585
586 auto &PollLocations = PBS->PollLocations;
587
588 auto OrderByBBName = [](Instruction *a, Instruction *b) {
589 return a->getParent()->getName() < b->getParent()->getName();
590 };
591 // We need the order of list to be stable so that naming ends up stable
592 // when we split edges. This makes test cases much easier to write.
593 std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);
594
595 // We can sometimes end up with duplicate poll locations. This happens if
596 // a single loop is visited more than once. The fact this happens seems
597 // wrong, but it does happen for the split-backedge.ll test case.
598 PollLocations.erase(std::unique(PollLocations.begin(),
599 PollLocations.end()),
600 PollLocations.end());
601
602 // Insert a poll at each point the analysis pass identified
603 // The poll location must be the terminator of a loop latch block.
604 for (TerminatorInst *Term : PollLocations) {
605 // We are inserting a poll, the function is modified
606 modified = true;
607
608 if (SplitBackedge) {
609 // Split the backedge of the loop and insert the poll within that new
610 // basic block. This creates a loop with two latches per original
611 // latch (which is non-ideal), but this appears to be easier to
612 // optimize in practice than inserting the poll immediately before the
613 // latch test.
614
615 // Since this is a latch, at least one of the successors must dominate
616 // it. Its possible that we have a) duplicate edges to the same header
617 // and b) edges to distinct loop headers. We need to insert pools on
618 // each.
619 SetVector<BasicBlock *> Headers;
620 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
621 BasicBlock *Succ = Term->getSuccessor(i);
622 if (DT.dominates(Succ, Term->getParent())) {
623 Headers.insert(Succ);
624 }
625 }
626 assert(!Headers.empty() && "poll location is not a loop latch?");
627
628 // The split loop structure here is so that we only need to recalculate
629 // the dominator tree once. Alternatively, we could just keep it up to
630 // date and use a more natural merged loop.
631 SetVector<BasicBlock *> SplitBackedges;
632 for (BasicBlock *Header : Headers) {
633 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
634 PollsNeeded.push_back(NewBB->getTerminator());
635 NumBackedgeSafepoints++;
636 }
637 } else {
638 // Split the latch block itself, right before the terminator.
639 PollsNeeded.push_back(Term);
640 NumBackedgeSafepoints++;
641 }
642 }
643 }
644
645 if (enableEntrySafepoints(F)) {
646 Instruction *Location = findLocationForEntrySafepoint(F, DT);
647 if (!Location) {
648 // policy choice not to insert?
649 } else {
650 PollsNeeded.push_back(Location);
651 modified = true;
652 NumEntrySafepoints++;
653 }
654 }
655
656 // Now that we've identified all the needed safepoint poll locations, insert
657 // safepoint polls themselves.
658 for (Instruction *PollLocation : PollsNeeded) {
659 std::vector<CallSite> RuntimeCalls;
660 InsertSafepointPoll(PollLocation, RuntimeCalls);
661 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
662 RuntimeCalls.end());
663 }
664 PollsNeeded.clear(); // make sure we don't accidentally use
665 // The dominator tree has been invalidated by the inlining performed in the
666 // above loop. TODO: Teach the inliner how to update the dom tree?
667 DT.recalculate(F);
668
669 if (enableCallSafepoints(F)) {
670 std::vector<CallSite> Calls;
671 findCallSafepoints(F, Calls);
672 NumCallSafepoints += Calls.size();
673 ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end());
674 }
675
676 // Unique the vectors since we can end up with duplicates if we scan the call
677 // site for call safepoints after we add it for entry or backedge. The
678 // only reason we need tracking at all is that some functions might have
679 // polls but not call safepoints and thus we might miss marking the runtime
680 // calls for the polls. (This is useful in test cases!)
681 unique_unsorted(ParsePointNeeded);
682
683 // Any parse point (no matter what source) will be handled here
684
685 // We're about to start modifying the function
686 if (!ParsePointNeeded.empty())
687 modified = true;
688
689 // Now run through and insert the safepoints, but do _NOT_ update or remove
690 // any existing uses. We have references to live variables that need to
691 // survive to the last iteration of this loop.
692 std::vector<Value *> Results;
693 Results.reserve(ParsePointNeeded.size());
694 for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
695 CallSite &CS = ParsePointNeeded[i];
696
697 // For invoke statepoints we need to remove all phi nodes at the normal
698 // destination block.
699 // Reason for this is that we can place gc_result only after last phi node
700 // in basic block. We will get malformed code after RAUW for the
701 // gc_result if one of this phi nodes uses result from the invoke.
702 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(CS.getInstruction())) {
703 normalizeForInvokeSafepoint(Invoke->getNormalDest(),
704 Invoke->getParent());
705 }
706
707 Value *GCResult = ReplaceWithStatepoint(CS);
708 Results.push_back(GCResult);
709 }
710 assert(Results.size() == ParsePointNeeded.size());
711
712 // Adjust all users of the old call sites to use the new ones instead
713 for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
714 CallSite &CS = ParsePointNeeded[i];
715 Value *GCResult = Results[i];
716 if (GCResult) {
717 // Can not RAUW for the invoke gc result in case of phi nodes preset.
718 assert(CS.isCall() || !isa<PHINode>(cast<Instruction>(GCResult)->getParent()->begin()));
719
720 // Replace all uses with the new call
721 CS.getInstruction()->replaceAllUsesWith(GCResult);
722 }
723
724 // Now that we've handled all uses, remove the original call itself
725 // Note: The insert point can't be the deleted instruction!
726 CS.getInstruction()->eraseFromParent();
727 }
728 return modified;
729 }
730
731 char PlaceBackedgeSafepointsImpl::ID = 0;
732 char PlaceSafepoints::ID = 0;
733
createPlaceSafepointsPass()734 FunctionPass *llvm::createPlaceSafepointsPass() {
735 return new PlaceSafepoints();
736 }
737
738 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
739 "place-backedge-safepoints-impl",
740 "Place Backedge Safepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)741 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
743 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
744 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
745 "place-backedge-safepoints-impl",
746 "Place Backedge Safepoints", false, false)
747
748 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
749 false, false)
750 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
751 false, false)
752
753 static void
754 InsertSafepointPoll(Instruction *InsertBefore,
755 std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
756 BasicBlock *OrigBB = InsertBefore->getParent();
757 Module *M = InsertBefore->getModule();
758 assert(M && "must be part of a module");
759
760 // Inline the safepoint poll implementation - this will get all the branch,
761 // control flow, etc.. Most importantly, it will introduce the actual slow
762 // path call - where we need to insert a safepoint (parsepoint).
763
764 auto *F = M->getFunction(GCSafepointPollName);
765 assert(F->getType()->getElementType() ==
766 FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
767 "gc.safepoint_poll declared with wrong type");
768 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
769 CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
770
771 // Record some information about the call site we're replacing
772 BasicBlock::iterator before(PollCall), after(PollCall);
773 bool isBegin(false);
774 if (before == OrigBB->begin()) {
775 isBegin = true;
776 } else {
777 before--;
778 }
779 after++;
780 assert(after != OrigBB->end() && "must have successor");
781
782 // do the actual inlining
783 InlineFunctionInfo IFI;
784 bool InlineStatus = InlineFunction(PollCall, IFI);
785 assert(InlineStatus && "inline must succeed");
786 (void)InlineStatus; // suppress warning in release-asserts
787
788 // Check post conditions
789 assert(IFI.StaticAllocas.empty() && "can't have allocs");
790
791 std::vector<CallInst *> calls; // new calls
792 std::set<BasicBlock *> BBs; // new BBs + insertee
793 // Include only the newly inserted instructions, Note: begin may not be valid
794 // if we inserted to the beginning of the basic block
795 BasicBlock::iterator start;
796 if (isBegin) {
797 start = OrigBB->begin();
798 } else {
799 start = before;
800 start++;
801 }
802
803 // If your poll function includes an unreachable at the end, that's not
804 // valid. Bugpoint likes to create this, so check for it.
805 assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) &&
806 "malformed poll function");
807
808 scanInlinedCode(&*(start), &*(after), calls, BBs);
809 assert(!calls.empty() && "slow path not found for safepoint poll");
810
811 // Record the fact we need a parsable state at the runtime call contained in
812 // the poll function. This is required so that the runtime knows how to
813 // parse the last frame when we actually take the safepoint (i.e. execute
814 // the slow path)
815 assert(ParsePointsNeeded.empty());
816 for (size_t i = 0; i < calls.size(); i++) {
817
818 // No safepoint needed or wanted
819 if (!needsStatepoint(calls[i])) {
820 continue;
821 }
822
823 // These are likely runtime calls. Should we assert that via calling
824 // convention or something?
825 ParsePointsNeeded.push_back(CallSite(calls[i]));
826 }
827 assert(ParsePointsNeeded.size() <= calls.size());
828 }
829
830 /// Replaces the given call site (Call or Invoke) with a gc.statepoint
831 /// intrinsic with an empty deoptimization arguments list. This does
832 /// NOT do explicit relocation for GC support.
ReplaceWithStatepoint(const CallSite & CS)833 static Value *ReplaceWithStatepoint(const CallSite &CS /* to replace */) {
834 assert(CS.getInstruction()->getModule() && "must be set");
835
836 // TODO: technically, a pass is not allowed to get functions from within a
837 // function pass since it might trigger a new function addition. Refactor
838 // this logic out to the initialization of the pass. Doesn't appear to
839 // matter in practice.
840
841 // Then go ahead and use the builder do actually do the inserts. We insert
842 // immediately before the previous instruction under the assumption that all
843 // arguments will be available here. We can't insert afterwards since we may
844 // be replacing a terminator.
845 IRBuilder<> Builder(CS.getInstruction());
846
847 // Note: The gc args are not filled in at this time, that's handled by
848 // RewriteStatepointsForGC (which is currently under review).
849
850 // Create the statepoint given all the arguments
851 Instruction *Token = nullptr;
852
853 uint64_t ID;
854 uint32_t NumPatchBytes;
855
856 AttributeSet OriginalAttrs = CS.getAttributes();
857 Attribute AttrID =
858 OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id");
859 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
860 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
861
862 AttrBuilder AttrsToRemove;
863 bool HasID = AttrID.isStringAttribute() &&
864 !AttrID.getValueAsString().getAsInteger(10, ID);
865
866 if (HasID)
867 AttrsToRemove.addAttribute("statepoint-id");
868 else
869 ID = 0xABCDEF00;
870
871 bool HasNumPatchBytes =
872 AttrNumPatchBytes.isStringAttribute() &&
873 !AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
874
875 if (HasNumPatchBytes)
876 AttrsToRemove.addAttribute("statepoint-num-patch-bytes");
877 else
878 NumPatchBytes = 0;
879
880 OriginalAttrs = OriginalAttrs.removeAttributes(
881 CS.getInstruction()->getContext(), AttributeSet::FunctionIndex,
882 AttrsToRemove);
883
884 if (CS.isCall()) {
885 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
886 CallInst *Call = Builder.CreateGCStatepointCall(
887 ID, NumPatchBytes, CS.getCalledValue(),
888 makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None,
889 "safepoint_token");
890 Call->setTailCall(ToReplace->isTailCall());
891 Call->setCallingConv(ToReplace->getCallingConv());
892
893 // In case if we can handle this set of attributes - set up function
894 // attributes directly on statepoint and return attributes later for
895 // gc_result intrinsic.
896 Call->setAttributes(OriginalAttrs.getFnAttributes());
897
898 Token = Call;
899
900 // Put the following gc_result and gc_relocate calls immediately after
901 // the old call (which we're about to delete).
902 assert(ToReplace->getNextNode() && "not a terminator, must have next");
903 Builder.SetInsertPoint(ToReplace->getNextNode());
904 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
905 } else if (CS.isInvoke()) {
906 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
907
908 // Insert the new invoke into the old block. We'll remove the old one in a
909 // moment at which point this will become the new terminator for the
910 // original block.
911 Builder.SetInsertPoint(ToReplace->getParent());
912 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
913 ID, NumPatchBytes, CS.getCalledValue(), ToReplace->getNormalDest(),
914 ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()),
915 None, None, "safepoint_token");
916
917 Invoke->setCallingConv(ToReplace->getCallingConv());
918
919 // In case if we can handle this set of attributes - set up function
920 // attributes directly on statepoint and return attributes later for
921 // gc_result intrinsic.
922 Invoke->setAttributes(OriginalAttrs.getFnAttributes());
923
924 Token = Invoke;
925
926 // We'll insert the gc.result into the normal block
927 BasicBlock *NormalDest = ToReplace->getNormalDest();
928 // Can not insert gc.result in case of phi nodes preset.
929 // Should have removed this cases prior to running this function
930 assert(!isa<PHINode>(NormalDest->begin()));
931 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
932 Builder.SetInsertPoint(IP);
933 } else {
934 llvm_unreachable("unexpect type of CallSite");
935 }
936 assert(Token);
937
938 // Handle the return value of the original call - update all uses to use a
939 // gc_result hanging off the statepoint node we just inserted
940
941 // Only add the gc_result iff there is actually a used result
942 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
943 std::string TakenName =
944 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
945 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName);
946 GCResult->setAttributes(OriginalAttrs.getRetAttributes());
947 return GCResult;
948 } else {
949 // No return value for the call.
950 return nullptr;
951 }
952 }
953