1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
15 //
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "scalarrepl"
56
57 STATISTIC(NumReplaced, "Number of allocas broken up");
58 STATISTIC(NumPromoted, "Number of allocas promoted");
59 STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
60 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
61
62 namespace {
63 #define SROA SROA_
64 struct SROA : public FunctionPass {
SROA__anonfbe388980111::SROA65 SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
66 : FunctionPass(ID), HasDomTree(hasDT) {
67 if (T == -1)
68 SRThreshold = 128;
69 else
70 SRThreshold = T;
71 if (ST == -1)
72 StructMemberThreshold = 32;
73 else
74 StructMemberThreshold = ST;
75 if (AT == -1)
76 ArrayElementThreshold = 8;
77 else
78 ArrayElementThreshold = AT;
79 if (SLT == -1)
80 // Do not limit the scalar integer load size if no threshold is given.
81 ScalarLoadThreshold = -1;
82 else
83 ScalarLoadThreshold = SLT;
84 }
85
86 bool runOnFunction(Function &F) override;
87
88 bool performScalarRepl(Function &F);
89 bool performPromotion(Function &F);
90
91 private:
92 bool HasDomTree;
93
94 /// DeadInsts - Keep track of instructions we have made dead, so that
95 /// we can remove them after we are done working.
96 SmallVector<Value*, 32> DeadInsts;
97
98 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
99 /// information about the uses. All these fields are initialized to false
100 /// and set to true when something is learned.
101 struct AllocaInfo {
102 /// The alloca to promote.
103 AllocaInst *AI;
104
105 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
106 /// looping and avoid redundant work.
107 SmallPtrSet<PHINode*, 8> CheckedPHIs;
108
109 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
110 bool isUnsafe : 1;
111
112 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
113 bool isMemCpySrc : 1;
114
115 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
116 bool isMemCpyDst : 1;
117
118 /// hasSubelementAccess - This is true if a subelement of the alloca is
119 /// ever accessed, or false if the alloca is only accessed with mem
120 /// intrinsics or load/store that only access the entire alloca at once.
121 bool hasSubelementAccess : 1;
122
123 /// hasALoadOrStore - This is true if there are any loads or stores to it.
124 /// The alloca may just be accessed with memcpy, for example, which would
125 /// not set this.
126 bool hasALoadOrStore : 1;
127
AllocaInfo__anonfbe388980111::SROA::AllocaInfo128 explicit AllocaInfo(AllocaInst *ai)
129 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
130 hasSubelementAccess(false), hasALoadOrStore(false) {}
131 };
132
133 /// SRThreshold - The maximum alloca size to considered for SROA.
134 unsigned SRThreshold;
135
136 /// StructMemberThreshold - The maximum number of members a struct can
137 /// contain to be considered for SROA.
138 unsigned StructMemberThreshold;
139
140 /// ArrayElementThreshold - The maximum number of elements an array can
141 /// have to be considered for SROA.
142 unsigned ArrayElementThreshold;
143
144 /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
145 /// converting to scalar
146 unsigned ScalarLoadThreshold;
147
MarkUnsafe__anonfbe388980111::SROA148 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
149 I.isUnsafe = true;
150 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
151 }
152
153 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
154
155 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
156 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
157 AllocaInfo &Info);
158 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
159 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
160 Type *MemOpType, bool isStore, AllocaInfo &Info,
161 Instruction *TheAccess, bool AllowWholeAccess);
162 bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
163 const DataLayout &DL);
164 uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
165 const DataLayout &DL);
166
167 void DoScalarReplacement(AllocaInst *AI,
168 std::vector<AllocaInst*> &WorkList);
169 void DeleteDeadInstructions();
170
171 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
172 SmallVectorImpl<AllocaInst *> &NewElts);
173 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
174 SmallVectorImpl<AllocaInst *> &NewElts);
175 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
176 SmallVectorImpl<AllocaInst *> &NewElts);
177 void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
178 uint64_t Offset,
179 SmallVectorImpl<AllocaInst *> &NewElts);
180 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
181 AllocaInst *AI,
182 SmallVectorImpl<AllocaInst *> &NewElts);
183 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
184 SmallVectorImpl<AllocaInst *> &NewElts);
185 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
186 SmallVectorImpl<AllocaInst *> &NewElts);
187 bool ShouldAttemptScalarRepl(AllocaInst *AI);
188 };
189
190 // SROA_DT - SROA that uses DominatorTree.
191 struct SROA_DT : public SROA {
192 static char ID;
193 public:
SROA_DT__anonfbe388980111::SROA_DT194 SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
195 SROA(T, true, ID, ST, AT, SLT) {
196 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
197 }
198
199 // getAnalysisUsage - This pass does not require any passes, but we know it
200 // will not alter the CFG, so say so.
getAnalysisUsage__anonfbe388980111::SROA_DT201 void getAnalysisUsage(AnalysisUsage &AU) const override {
202 AU.addRequired<AssumptionCacheTracker>();
203 AU.addRequired<DominatorTreeWrapperPass>();
204 AU.setPreservesCFG();
205 }
206 };
207
208 // SROA_SSAUp - SROA that uses SSAUpdater.
209 struct SROA_SSAUp : public SROA {
210 static char ID;
211 public:
SROA_SSAUp__anonfbe388980111::SROA_SSAUp212 SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
213 SROA(T, false, ID, ST, AT, SLT) {
214 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
215 }
216
217 // getAnalysisUsage - This pass does not require any passes, but we know it
218 // will not alter the CFG, so say so.
getAnalysisUsage__anonfbe388980111::SROA_SSAUp219 void getAnalysisUsage(AnalysisUsage &AU) const override {
220 AU.addRequired<AssumptionCacheTracker>();
221 AU.setPreservesCFG();
222 }
223 };
224
225 }
226
227 char SROA_DT::ID = 0;
228 char SROA_SSAUp::ID = 0;
229
230 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
231 "Scalar Replacement of Aggregates (DT)", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)232 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
233 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
234 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
235 "Scalar Replacement of Aggregates (DT)", false, false)
236
237 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
238 "Scalar Replacement of Aggregates (SSAUp)", false, false)
239 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
240 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
241 "Scalar Replacement of Aggregates (SSAUp)", false, false)
242
243 // Public interface to the ScalarReplAggregates pass
244 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
245 bool UseDomTree,
246 int StructMemberThreshold,
247 int ArrayElementThreshold,
248 int ScalarLoadThreshold) {
249 if (UseDomTree)
250 return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
251 ScalarLoadThreshold);
252 return new SROA_SSAUp(Threshold, StructMemberThreshold,
253 ArrayElementThreshold, ScalarLoadThreshold);
254 }
255
256
257 //===----------------------------------------------------------------------===//
258 // Convert To Scalar Optimization.
259 //===----------------------------------------------------------------------===//
260
261 namespace {
262 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
263 /// optimization, which scans the uses of an alloca and determines if it can
264 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
265 class ConvertToScalarInfo {
266 /// AllocaSize - The size of the alloca being considered in bytes.
267 unsigned AllocaSize;
268 const DataLayout &DL;
269 unsigned ScalarLoadThreshold;
270
271 /// IsNotTrivial - This is set to true if there is some access to the object
272 /// which means that mem2reg can't promote it.
273 bool IsNotTrivial;
274
275 /// ScalarKind - Tracks the kind of alloca being considered for promotion,
276 /// computed based on the uses of the alloca rather than the LLVM type system.
277 enum {
278 Unknown,
279
280 // Accesses via GEPs that are consistent with element access of a vector
281 // type. This will not be converted into a vector unless there is a later
282 // access using an actual vector type.
283 ImplicitVector,
284
285 // Accesses via vector operations and GEPs that are consistent with the
286 // layout of a vector type.
287 Vector,
288
289 // An integer bag-of-bits with bitwise operations for insertion and
290 // extraction. Any combination of types can be converted into this kind
291 // of scalar.
292 Integer
293 } ScalarKind;
294
295 /// VectorTy - This tracks the type that we should promote the vector to if
296 /// it is possible to turn it into a vector. This starts out null, and if it
297 /// isn't possible to turn into a vector type, it gets set to VoidTy.
298 VectorType *VectorTy;
299
300 /// HadNonMemTransferAccess - True if there is at least one access to the
301 /// alloca that is not a MemTransferInst. We don't want to turn structs into
302 /// large integers unless there is some potential for optimization.
303 bool HadNonMemTransferAccess;
304
305 /// HadDynamicAccess - True if some element of this alloca was dynamic.
306 /// We don't yet have support for turning a dynamic access into a large
307 /// integer.
308 bool HadDynamicAccess;
309
310 public:
ConvertToScalarInfo(unsigned Size,const DataLayout & DL,unsigned SLT)311 explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
312 unsigned SLT)
313 : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
314 ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false),
315 HadDynamicAccess(false) { }
316
317 AllocaInst *TryConvert(AllocaInst *AI);
318
319 private:
320 bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
321 void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
322 bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
323 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
324 Value *NonConstantIdx);
325
326 Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
327 uint64_t Offset, Value* NonConstantIdx,
328 IRBuilder<> &Builder);
329 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
330 uint64_t Offset, Value* NonConstantIdx,
331 IRBuilder<> &Builder);
332 };
333 } // end anonymous namespace.
334
335
336 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
337 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
338 /// alloca if possible or null if not.
TryConvert(AllocaInst * AI)339 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
340 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
341 // out.
342 if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial)
343 return nullptr;
344
345 // If an alloca has only memset / memcpy uses, it may still have an Unknown
346 // ScalarKind. Treat it as an Integer below.
347 if (ScalarKind == Unknown)
348 ScalarKind = Integer;
349
350 if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
351 ScalarKind = Integer;
352
353 // If we were able to find a vector type that can handle this with
354 // insert/extract elements, and if there was at least one use that had
355 // a vector type, promote this to a vector. We don't want to promote
356 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
357 // we just get a lot of insert/extracts. If at least one vector is
358 // involved, then we probably really do have a union of vector/array.
359 Type *NewTy;
360 if (ScalarKind == Vector) {
361 assert(VectorTy && "Missing type for vector scalar.");
362 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
363 << *VectorTy << '\n');
364 NewTy = VectorTy; // Use the vector type.
365 } else {
366 unsigned BitWidth = AllocaSize * 8;
367
368 // Do not convert to scalar integer if the alloca size exceeds the
369 // scalar load threshold.
370 if (BitWidth > ScalarLoadThreshold)
371 return nullptr;
372
373 if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
374 !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
375 return nullptr;
376 // Dynamic accesses on integers aren't yet supported. They need us to shift
377 // by a dynamic amount which could be difficult to work out as we might not
378 // know whether to use a left or right shift.
379 if (ScalarKind == Integer && HadDynamicAccess)
380 return nullptr;
381
382 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
383 // Create and insert the integer alloca.
384 NewTy = IntegerType::get(AI->getContext(), BitWidth);
385 }
386 AllocaInst *NewAI =
387 new AllocaInst(NewTy, nullptr, "", &AI->getParent()->front());
388 ConvertUsesToScalar(AI, NewAI, 0, nullptr);
389 return NewAI;
390 }
391
392 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
393 /// (VectorTy) so far at the offset specified by Offset (which is specified in
394 /// bytes).
395 ///
396 /// There are two cases we handle here:
397 /// 1) A union of vector types of the same size and potentially its elements.
398 /// Here we turn element accesses into insert/extract element operations.
399 /// This promotes a <4 x float> with a store of float to the third element
400 /// into a <4 x float> that uses insert element.
401 /// 2) A fully general blob of memory, which we turn into some (potentially
402 /// large) integer type with extract and insert operations where the loads
403 /// and stores would mutate the memory. We mark this by setting VectorTy
404 /// to VoidTy.
MergeInTypeForLoadOrStore(Type * In,uint64_t Offset)405 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
406 uint64_t Offset) {
407 // If we already decided to turn this into a blob of integer memory, there is
408 // nothing to be done.
409 if (ScalarKind == Integer)
410 return;
411
412 // If this could be contributing to a vector, analyze it.
413
414 // If the In type is a vector that is the same size as the alloca, see if it
415 // matches the existing VecTy.
416 if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
417 if (MergeInVectorType(VInTy, Offset))
418 return;
419 } else if (In->isFloatTy() || In->isDoubleTy() ||
420 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
421 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
422 // Full width accesses can be ignored, because they can always be turned
423 // into bitcasts.
424 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
425 if (EltSize == AllocaSize)
426 return;
427
428 // If we're accessing something that could be an element of a vector, see
429 // if the implied vector agrees with what we already have and if Offset is
430 // compatible with it.
431 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
432 (!VectorTy || EltSize == VectorTy->getElementType()
433 ->getPrimitiveSizeInBits()/8)) {
434 if (!VectorTy) {
435 ScalarKind = ImplicitVector;
436 VectorTy = VectorType::get(In, AllocaSize/EltSize);
437 }
438 return;
439 }
440 }
441
442 // Otherwise, we have a case that we can't handle with an optimized vector
443 // form. We can still turn this into a large integer.
444 ScalarKind = Integer;
445 }
446
447 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
448 /// returning true if the type was successfully merged and false otherwise.
MergeInVectorType(VectorType * VInTy,uint64_t Offset)449 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
450 uint64_t Offset) {
451 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
452 // If we're storing/loading a vector of the right size, allow it as a
453 // vector. If this the first vector we see, remember the type so that
454 // we know the element size. If this is a subsequent access, ignore it
455 // even if it is a differing type but the same size. Worst case we can
456 // bitcast the resultant vectors.
457 if (!VectorTy)
458 VectorTy = VInTy;
459 ScalarKind = Vector;
460 return true;
461 }
462
463 return false;
464 }
465
466 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
467 /// its accesses to a single vector type, return true and set VecTy to
468 /// the new type. If we could convert the alloca into a single promotable
469 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
470 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
471 /// is the current offset from the base of the alloca being analyzed.
472 ///
473 /// If we see at least one access to the value that is as a vector type, set the
474 /// SawVec flag.
CanConvertToScalar(Value * V,uint64_t Offset,Value * NonConstantIdx)475 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
476 Value* NonConstantIdx) {
477 for (User *U : V->users()) {
478 Instruction *UI = cast<Instruction>(U);
479
480 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
481 // Don't break volatile loads.
482 if (!LI->isSimple())
483 return false;
484 // Don't touch MMX operations.
485 if (LI->getType()->isX86_MMXTy())
486 return false;
487 HadNonMemTransferAccess = true;
488 MergeInTypeForLoadOrStore(LI->getType(), Offset);
489 continue;
490 }
491
492 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
493 // Storing the pointer, not into the value?
494 if (SI->getOperand(0) == V || !SI->isSimple()) return false;
495 // Don't touch MMX operations.
496 if (SI->getOperand(0)->getType()->isX86_MMXTy())
497 return false;
498 HadNonMemTransferAccess = true;
499 MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
500 continue;
501 }
502
503 if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) {
504 if (!onlyUsedByLifetimeMarkers(BCI))
505 IsNotTrivial = true; // Can't be mem2reg'd.
506 if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
507 return false;
508 continue;
509 }
510
511 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) {
512 // If this is a GEP with a variable indices, we can't handle it.
513 PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
514 if (!PtrTy)
515 return false;
516
517 // Compute the offset that this GEP adds to the pointer.
518 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
519 Value *GEPNonConstantIdx = nullptr;
520 if (!GEP->hasAllConstantIndices()) {
521 if (!isa<VectorType>(PtrTy->getElementType()))
522 return false;
523 if (NonConstantIdx)
524 return false;
525 GEPNonConstantIdx = Indices.pop_back_val();
526 if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
527 return false;
528 HadDynamicAccess = true;
529 } else
530 GEPNonConstantIdx = NonConstantIdx;
531 uint64_t GEPOffset = DL.getIndexedOffset(PtrTy,
532 Indices);
533 // See if all uses can be converted.
534 if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
535 return false;
536 IsNotTrivial = true; // Can't be mem2reg'd.
537 HadNonMemTransferAccess = true;
538 continue;
539 }
540
541 // If this is a constant sized memset of a constant value (e.g. 0) we can
542 // handle it.
543 if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) {
544 // Store to dynamic index.
545 if (NonConstantIdx)
546 return false;
547 // Store of constant value.
548 if (!isa<ConstantInt>(MSI->getValue()))
549 return false;
550
551 // Store of constant size.
552 ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
553 if (!Len)
554 return false;
555
556 // If the size differs from the alloca, we can only convert the alloca to
557 // an integer bag-of-bits.
558 // FIXME: This should handle all of the cases that are currently accepted
559 // as vector element insertions.
560 if (Len->getZExtValue() != AllocaSize || Offset != 0)
561 ScalarKind = Integer;
562
563 IsNotTrivial = true; // Can't be mem2reg'd.
564 HadNonMemTransferAccess = true;
565 continue;
566 }
567
568 // If this is a memcpy or memmove into or out of the whole allocation, we
569 // can handle it like a load or store of the scalar type.
570 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) {
571 // Store to dynamic index.
572 if (NonConstantIdx)
573 return false;
574 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
575 if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0)
576 return false;
577
578 IsNotTrivial = true; // Can't be mem2reg'd.
579 continue;
580 }
581
582 // If this is a lifetime intrinsic, we can handle it.
583 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) {
584 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
585 II->getIntrinsicID() == Intrinsic::lifetime_end) {
586 continue;
587 }
588 }
589
590 // Otherwise, we cannot handle this!
591 return false;
592 }
593
594 return true;
595 }
596
597 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
598 /// directly. This happens when we are converting an "integer union" to a
599 /// single integer scalar, or when we are converting a "vector union" to a
600 /// vector with insert/extractelement instructions.
601 ///
602 /// Offset is an offset from the original alloca, in bits that need to be
603 /// shifted to the right. By the end of this, there should be no uses of Ptr.
ConvertUsesToScalar(Value * Ptr,AllocaInst * NewAI,uint64_t Offset,Value * NonConstantIdx)604 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
605 uint64_t Offset,
606 Value* NonConstantIdx) {
607 while (!Ptr->use_empty()) {
608 Instruction *User = cast<Instruction>(Ptr->user_back());
609
610 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
611 ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
612 CI->eraseFromParent();
613 continue;
614 }
615
616 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
617 // Compute the offset that this GEP adds to the pointer.
618 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
619 Value* GEPNonConstantIdx = nullptr;
620 if (!GEP->hasAllConstantIndices()) {
621 assert(!NonConstantIdx &&
622 "Dynamic GEP reading from dynamic GEP unsupported");
623 GEPNonConstantIdx = Indices.pop_back_val();
624 } else
625 GEPNonConstantIdx = NonConstantIdx;
626 uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(),
627 Indices);
628 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
629 GEP->eraseFromParent();
630 continue;
631 }
632
633 IRBuilder<> Builder(User);
634
635 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
636 // The load is a bit extract from NewAI shifted right by Offset bits.
637 Value *LoadedVal = Builder.CreateLoad(NewAI);
638 Value *NewLoadVal
639 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
640 NonConstantIdx, Builder);
641 LI->replaceAllUsesWith(NewLoadVal);
642 LI->eraseFromParent();
643 continue;
644 }
645
646 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
647 assert(SI->getOperand(0) != Ptr && "Consistency error!");
648 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
649 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
650 NonConstantIdx, Builder);
651 Builder.CreateStore(New, NewAI);
652 SI->eraseFromParent();
653
654 // If the load we just inserted is now dead, then the inserted store
655 // overwrote the entire thing.
656 if (Old->use_empty())
657 Old->eraseFromParent();
658 continue;
659 }
660
661 // If this is a constant sized memset of a constant value (e.g. 0) we can
662 // transform it into a store of the expanded constant value.
663 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
664 assert(MSI->getRawDest() == Ptr && "Consistency error!");
665 assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
666 int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
667 if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
668 unsigned NumBytes = static_cast<unsigned>(SNumBytes);
669 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
670
671 // Compute the value replicated the right number of times.
672 APInt APVal(NumBytes*8, Val);
673
674 // Splat the value if non-zero.
675 if (Val)
676 for (unsigned i = 1; i != NumBytes; ++i)
677 APVal |= APVal << 8;
678
679 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
680 Value *New = ConvertScalar_InsertValue(
681 ConstantInt::get(User->getContext(), APVal),
682 Old, Offset, nullptr, Builder);
683 Builder.CreateStore(New, NewAI);
684
685 // If the load we just inserted is now dead, then the memset overwrote
686 // the entire thing.
687 if (Old->use_empty())
688 Old->eraseFromParent();
689 }
690 MSI->eraseFromParent();
691 continue;
692 }
693
694 // If this is a memcpy or memmove into or out of the whole allocation, we
695 // can handle it like a load or store of the scalar type.
696 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
697 assert(Offset == 0 && "must be store to start of alloca");
698 assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
699
700 // If the source and destination are both to the same alloca, then this is
701 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
702 // as appropriate.
703 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0));
704
705 if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) {
706 // Dest must be OrigAI, change this to be a load from the original
707 // pointer (bitcasted), then a store to our new alloca.
708 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
709 Value *SrcPtr = MTI->getSource();
710 PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
711 PointerType* AIPTy = cast<PointerType>(NewAI->getType());
712 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
713 AIPTy = PointerType::get(AIPTy->getElementType(),
714 SPTy->getAddressSpace());
715 }
716 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
717
718 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
719 SrcVal->setAlignment(MTI->getAlignment());
720 Builder.CreateStore(SrcVal, NewAI);
721 } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) {
722 // Src must be OrigAI, change this to be a load from NewAI then a store
723 // through the original dest pointer (bitcasted).
724 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
725 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
726
727 PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
728 PointerType* AIPTy = cast<PointerType>(NewAI->getType());
729 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
730 AIPTy = PointerType::get(AIPTy->getElementType(),
731 DPTy->getAddressSpace());
732 }
733 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
734
735 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
736 NewStore->setAlignment(MTI->getAlignment());
737 } else {
738 // Noop transfer. Src == Dst
739 }
740
741 MTI->eraseFromParent();
742 continue;
743 }
744
745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
746 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
747 II->getIntrinsicID() == Intrinsic::lifetime_end) {
748 // There's no need to preserve these, as the resulting alloca will be
749 // converted to a register anyways.
750 II->eraseFromParent();
751 continue;
752 }
753 }
754
755 llvm_unreachable("Unsupported operation!");
756 }
757 }
758
759 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
760 /// or vector value FromVal, extracting the bits from the offset specified by
761 /// Offset. This returns the value, which is of type ToType.
762 ///
763 /// This happens when we are converting an "integer union" to a single
764 /// integer scalar, or when we are converting a "vector union" to a vector with
765 /// insert/extractelement instructions.
766 ///
767 /// Offset is an offset from the original alloca, in bits that need to be
768 /// shifted to the right.
769 Value *ConvertToScalarInfo::
ConvertScalar_ExtractValue(Value * FromVal,Type * ToType,uint64_t Offset,Value * NonConstantIdx,IRBuilder<> & Builder)770 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
771 uint64_t Offset, Value* NonConstantIdx,
772 IRBuilder<> &Builder) {
773 // If the load is of the whole new alloca, no conversion is needed.
774 Type *FromType = FromVal->getType();
775 if (FromType == ToType && Offset == 0)
776 return FromVal;
777
778 // If the result alloca is a vector type, this is either an element
779 // access or a bitcast to another vector type of the same size.
780 if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
781 unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
782 unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
783 if (FromTypeSize == ToTypeSize)
784 return Builder.CreateBitCast(FromVal, ToType);
785
786 // Otherwise it must be an element access.
787 unsigned Elt = 0;
788 if (Offset) {
789 unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
790 Elt = Offset/EltSize;
791 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
792 }
793 // Return the element extracted out of it.
794 Value *Idx;
795 if (NonConstantIdx) {
796 if (Elt)
797 Idx = Builder.CreateAdd(NonConstantIdx,
798 Builder.getInt32(Elt),
799 "dyn.offset");
800 else
801 Idx = NonConstantIdx;
802 } else
803 Idx = Builder.getInt32(Elt);
804 Value *V = Builder.CreateExtractElement(FromVal, Idx);
805 if (V->getType() != ToType)
806 V = Builder.CreateBitCast(V, ToType);
807 return V;
808 }
809
810 // If ToType is a first class aggregate, extract out each of the pieces and
811 // use insertvalue's to form the FCA.
812 if (StructType *ST = dyn_cast<StructType>(ToType)) {
813 assert(!NonConstantIdx &&
814 "Dynamic indexing into struct types not supported");
815 const StructLayout &Layout = *DL.getStructLayout(ST);
816 Value *Res = UndefValue::get(ST);
817 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
818 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
819 Offset+Layout.getElementOffsetInBits(i),
820 nullptr, Builder);
821 Res = Builder.CreateInsertValue(Res, Elt, i);
822 }
823 return Res;
824 }
825
826 if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
827 assert(!NonConstantIdx &&
828 "Dynamic indexing into array types not supported");
829 uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
830 Value *Res = UndefValue::get(AT);
831 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
832 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
833 Offset+i*EltSize, nullptr,
834 Builder);
835 Res = Builder.CreateInsertValue(Res, Elt, i);
836 }
837 return Res;
838 }
839
840 // Otherwise, this must be a union that was converted to an integer value.
841 IntegerType *NTy = cast<IntegerType>(FromVal->getType());
842
843 // If this is a big-endian system and the load is narrower than the
844 // full alloca type, we need to do a shift to get the right bits.
845 int ShAmt = 0;
846 if (DL.isBigEndian()) {
847 // On big-endian machines, the lowest bit is stored at the bit offset
848 // from the pointer given by getTypeStoreSizeInBits. This matters for
849 // integers with a bitwidth that is not a multiple of 8.
850 ShAmt = DL.getTypeStoreSizeInBits(NTy) -
851 DL.getTypeStoreSizeInBits(ToType) - Offset;
852 } else {
853 ShAmt = Offset;
854 }
855
856 // Note: we support negative bitwidths (with shl) which are not defined.
857 // We do this to support (f.e.) loads off the end of a structure where
858 // only some bits are used.
859 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
860 FromVal = Builder.CreateLShr(FromVal,
861 ConstantInt::get(FromVal->getType(), ShAmt));
862 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
863 FromVal = Builder.CreateShl(FromVal,
864 ConstantInt::get(FromVal->getType(), -ShAmt));
865
866 // Finally, unconditionally truncate the integer to the right width.
867 unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
868 if (LIBitWidth < NTy->getBitWidth())
869 FromVal =
870 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
871 LIBitWidth));
872 else if (LIBitWidth > NTy->getBitWidth())
873 FromVal =
874 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
875 LIBitWidth));
876
877 // If the result is an integer, this is a trunc or bitcast.
878 if (ToType->isIntegerTy()) {
879 // Should be done.
880 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
881 // Just do a bitcast, we know the sizes match up.
882 FromVal = Builder.CreateBitCast(FromVal, ToType);
883 } else {
884 // Otherwise must be a pointer.
885 FromVal = Builder.CreateIntToPtr(FromVal, ToType);
886 }
887 assert(FromVal->getType() == ToType && "Didn't convert right?");
888 return FromVal;
889 }
890
891 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
892 /// or vector value "Old" at the offset specified by Offset.
893 ///
894 /// This happens when we are converting an "integer union" to a
895 /// single integer scalar, or when we are converting a "vector union" to a
896 /// vector with insert/extractelement instructions.
897 ///
898 /// Offset is an offset from the original alloca, in bits that need to be
899 /// shifted to the right.
900 ///
901 /// NonConstantIdx is an index value if there was a GEP with a non-constant
902 /// index value. If this is 0 then all GEPs used to find this insert address
903 /// are constant.
904 Value *ConvertToScalarInfo::
ConvertScalar_InsertValue(Value * SV,Value * Old,uint64_t Offset,Value * NonConstantIdx,IRBuilder<> & Builder)905 ConvertScalar_InsertValue(Value *SV, Value *Old,
906 uint64_t Offset, Value* NonConstantIdx,
907 IRBuilder<> &Builder) {
908 // Convert the stored type to the actual type, shift it left to insert
909 // then 'or' into place.
910 Type *AllocaType = Old->getType();
911 LLVMContext &Context = Old->getContext();
912
913 if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
914 uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
915 uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
916
917 // Changing the whole vector with memset or with an access of a different
918 // vector type?
919 if (ValSize == VecSize)
920 return Builder.CreateBitCast(SV, AllocaType);
921
922 // Must be an element insertion.
923 Type *EltTy = VTy->getElementType();
924 if (SV->getType() != EltTy)
925 SV = Builder.CreateBitCast(SV, EltTy);
926 uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
927 unsigned Elt = Offset/EltSize;
928 Value *Idx;
929 if (NonConstantIdx) {
930 if (Elt)
931 Idx = Builder.CreateAdd(NonConstantIdx,
932 Builder.getInt32(Elt),
933 "dyn.offset");
934 else
935 Idx = NonConstantIdx;
936 } else
937 Idx = Builder.getInt32(Elt);
938 return Builder.CreateInsertElement(Old, SV, Idx);
939 }
940
941 // If SV is a first-class aggregate value, insert each value recursively.
942 if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
943 assert(!NonConstantIdx &&
944 "Dynamic indexing into struct types not supported");
945 const StructLayout &Layout = *DL.getStructLayout(ST);
946 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
947 Value *Elt = Builder.CreateExtractValue(SV, i);
948 Old = ConvertScalar_InsertValue(Elt, Old,
949 Offset+Layout.getElementOffsetInBits(i),
950 nullptr, Builder);
951 }
952 return Old;
953 }
954
955 if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
956 assert(!NonConstantIdx &&
957 "Dynamic indexing into array types not supported");
958 uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
959 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
960 Value *Elt = Builder.CreateExtractValue(SV, i);
961 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr,
962 Builder);
963 }
964 return Old;
965 }
966
967 // If SV is a float, convert it to the appropriate integer type.
968 // If it is a pointer, do the same.
969 unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
970 unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
971 unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
972 unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
973 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
974 SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
975 else if (SV->getType()->isPointerTy())
976 SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
977
978 // Zero extend or truncate the value if needed.
979 if (SV->getType() != AllocaType) {
980 if (SV->getType()->getPrimitiveSizeInBits() <
981 AllocaType->getPrimitiveSizeInBits())
982 SV = Builder.CreateZExt(SV, AllocaType);
983 else {
984 // Truncation may be needed if storing more than the alloca can hold
985 // (undefined behavior).
986 SV = Builder.CreateTrunc(SV, AllocaType);
987 SrcWidth = DestWidth;
988 SrcStoreWidth = DestStoreWidth;
989 }
990 }
991
992 // If this is a big-endian system and the store is narrower than the
993 // full alloca type, we need to do a shift to get the right bits.
994 int ShAmt = 0;
995 if (DL.isBigEndian()) {
996 // On big-endian machines, the lowest bit is stored at the bit offset
997 // from the pointer given by getTypeStoreSizeInBits. This matters for
998 // integers with a bitwidth that is not a multiple of 8.
999 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1000 } else {
1001 ShAmt = Offset;
1002 }
1003
1004 // Note: we support negative bitwidths (with shr) which are not defined.
1005 // We do this to support (f.e.) stores off the end of a structure where
1006 // only some bits in the structure are set.
1007 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1008 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1009 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1010 Mask <<= ShAmt;
1011 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1012 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1013 Mask = Mask.lshr(-ShAmt);
1014 }
1015
1016 // Mask out the bits we are about to insert from the old value, and or
1017 // in the new bits.
1018 if (SrcWidth != DestWidth) {
1019 assert(DestWidth > SrcWidth);
1020 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1021 SV = Builder.CreateOr(Old, SV, "ins");
1022 }
1023 return SV;
1024 }
1025
1026
1027 //===----------------------------------------------------------------------===//
1028 // SRoA Driver
1029 //===----------------------------------------------------------------------===//
1030
1031
runOnFunction(Function & F)1032 bool SROA::runOnFunction(Function &F) {
1033 if (skipOptnoneFunction(F))
1034 return false;
1035
1036 bool Changed = performPromotion(F);
1037
1038 while (1) {
1039 bool LocalChange = performScalarRepl(F);
1040 if (!LocalChange) break; // No need to repromote if no scalarrepl
1041 Changed = true;
1042 LocalChange = performPromotion(F);
1043 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
1044 }
1045
1046 return Changed;
1047 }
1048
1049 namespace {
1050 class AllocaPromoter : public LoadAndStorePromoter {
1051 AllocaInst *AI;
1052 DIBuilder *DIB;
1053 SmallVector<DbgDeclareInst *, 4> DDIs;
1054 SmallVector<DbgValueInst *, 4> DVIs;
1055 public:
AllocaPromoter(ArrayRef<Instruction * > Insts,SSAUpdater & S,DIBuilder * DB)1056 AllocaPromoter(ArrayRef<Instruction*> Insts, SSAUpdater &S,
1057 DIBuilder *DB)
1058 : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {}
1059
run(AllocaInst * AI,const SmallVectorImpl<Instruction * > & Insts)1060 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1061 // Remember which alloca we're promoting (for isInstInList).
1062 this->AI = AI;
1063 if (auto *L = LocalAsMetadata::getIfExists(AI)) {
1064 if (auto *DINode = MetadataAsValue::getIfExists(AI->getContext(), L)) {
1065 for (User *U : DINode->users())
1066 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1067 DDIs.push_back(DDI);
1068 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1069 DVIs.push_back(DVI);
1070 }
1071 }
1072
1073 LoadAndStorePromoter::run(Insts);
1074 AI->eraseFromParent();
1075 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
1076 E = DDIs.end(); I != E; ++I) {
1077 DbgDeclareInst *DDI = *I;
1078 DDI->eraseFromParent();
1079 }
1080 for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
1081 E = DVIs.end(); I != E; ++I) {
1082 DbgValueInst *DVI = *I;
1083 DVI->eraseFromParent();
1084 }
1085 }
1086
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const1087 bool isInstInList(Instruction *I,
1088 const SmallVectorImpl<Instruction*> &Insts) const override {
1089 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1090 return LI->getOperand(0) == AI;
1091 return cast<StoreInst>(I)->getPointerOperand() == AI;
1092 }
1093
updateDebugInfo(Instruction * Inst) const1094 void updateDebugInfo(Instruction *Inst) const override {
1095 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
1096 E = DDIs.end(); I != E; ++I) {
1097 DbgDeclareInst *DDI = *I;
1098 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1099 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1100 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1101 ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1102 }
1103 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
1104 E = DVIs.end(); I != E; ++I) {
1105 DbgValueInst *DVI = *I;
1106 Value *Arg = nullptr;
1107 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1108 // If an argument is zero extended then use argument directly. The ZExt
1109 // may be zapped by an optimization pass in future.
1110 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1111 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1112 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1113 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1114 if (!Arg)
1115 Arg = SI->getOperand(0);
1116 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1117 Arg = LI->getOperand(0);
1118 } else {
1119 continue;
1120 }
1121 DIB->insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(),
1122 DVI->getExpression(), DVI->getDebugLoc(),
1123 Inst);
1124 }
1125 }
1126 };
1127 } // end anon namespace
1128
1129 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1130 /// subsequently loaded can be rewritten to load both input pointers and then
1131 /// select between the result, allowing the load of the alloca to be promoted.
1132 /// From this:
1133 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1134 /// %V = load i32* %P2
1135 /// to:
1136 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1137 /// %V2 = load i32* %Other
1138 /// %V = select i1 %cond, i32 %V1, i32 %V2
1139 ///
1140 /// We can do this to a select if its only uses are loads and if the operand to
1141 /// the select can be loaded unconditionally.
isSafeSelectToSpeculate(SelectInst * SI)1142 static bool isSafeSelectToSpeculate(SelectInst *SI) {
1143 const DataLayout &DL = SI->getModule()->getDataLayout();
1144 bool TDerefable = isDereferenceablePointer(SI->getTrueValue(), DL);
1145 bool FDerefable = isDereferenceablePointer(SI->getFalseValue(), DL);
1146
1147 for (User *U : SI->users()) {
1148 LoadInst *LI = dyn_cast<LoadInst>(U);
1149 if (!LI || !LI->isSimple()) return false;
1150
1151 // Both operands to the select need to be dereferencable, either absolutely
1152 // (e.g. allocas) or at this point because we can see other accesses to it.
1153 if (!TDerefable &&
1154 !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1155 LI->getAlignment()))
1156 return false;
1157 if (!FDerefable &&
1158 !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1159 LI->getAlignment()))
1160 return false;
1161 }
1162
1163 return true;
1164 }
1165
1166 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1167 /// subsequently loaded can be rewritten to load both input pointers in the pred
1168 /// blocks and then PHI the results, allowing the load of the alloca to be
1169 /// promoted.
1170 /// From this:
1171 /// %P2 = phi [i32* %Alloca, i32* %Other]
1172 /// %V = load i32* %P2
1173 /// to:
1174 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1175 /// ...
1176 /// %V2 = load i32* %Other
1177 /// ...
1178 /// %V = phi [i32 %V1, i32 %V2]
1179 ///
1180 /// We can do this to a select if its only uses are loads and if the operand to
1181 /// the select can be loaded unconditionally.
isSafePHIToSpeculate(PHINode * PN)1182 static bool isSafePHIToSpeculate(PHINode *PN) {
1183 // For now, we can only do this promotion if the load is in the same block as
1184 // the PHI, and if there are no stores between the phi and load.
1185 // TODO: Allow recursive phi users.
1186 // TODO: Allow stores.
1187 BasicBlock *BB = PN->getParent();
1188 unsigned MaxAlign = 0;
1189 for (User *U : PN->users()) {
1190 LoadInst *LI = dyn_cast<LoadInst>(U);
1191 if (!LI || !LI->isSimple()) return false;
1192
1193 // For now we only allow loads in the same block as the PHI. This is a
1194 // common case that happens when instcombine merges two loads through a PHI.
1195 if (LI->getParent() != BB) return false;
1196
1197 // Ensure that there are no instructions between the PHI and the load that
1198 // could store.
1199 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1200 if (BBI->mayWriteToMemory())
1201 return false;
1202
1203 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1204 }
1205
1206 const DataLayout &DL = PN->getModule()->getDataLayout();
1207
1208 // Okay, we know that we have one or more loads in the same block as the PHI.
1209 // We can transform this if it is safe to push the loads into the predecessor
1210 // blocks. The only thing to watch out for is that we can't put a possibly
1211 // trapping load in the predecessor if it is a critical edge.
1212 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1213 BasicBlock *Pred = PN->getIncomingBlock(i);
1214 Value *InVal = PN->getIncomingValue(i);
1215
1216 // If the terminator of the predecessor has side-effects (an invoke),
1217 // there is no safe place to put a load in the predecessor.
1218 if (Pred->getTerminator()->mayHaveSideEffects())
1219 return false;
1220
1221 // If the value is produced by the terminator of the predecessor
1222 // (an invoke), there is no valid place to put a load in the predecessor.
1223 if (Pred->getTerminator() == InVal)
1224 return false;
1225
1226 // If the predecessor has a single successor, then the edge isn't critical.
1227 if (Pred->getTerminator()->getNumSuccessors() == 1)
1228 continue;
1229
1230 // If this pointer is always safe to load, or if we can prove that there is
1231 // already a load in the block, then we can move the load to the pred block.
1232 if (isDereferenceablePointer(InVal, DL) ||
1233 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign))
1234 continue;
1235
1236 return false;
1237 }
1238
1239 return true;
1240 }
1241
1242
1243 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1244 /// direct (non-volatile) loads and stores to it. If the alloca is close but
1245 /// not quite there, this will transform the code to allow promotion. As such,
1246 /// it is a non-pure predicate.
tryToMakeAllocaBePromotable(AllocaInst * AI,const DataLayout & DL)1247 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) {
1248 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1249 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1250 for (User *U : AI->users()) {
1251 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1252 if (!LI->isSimple())
1253 return false;
1254 continue;
1255 }
1256
1257 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1258 if (SI->getOperand(0) == AI || !SI->isSimple())
1259 return false; // Don't allow a store OF the AI, only INTO the AI.
1260 continue;
1261 }
1262
1263 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1264 // If the condition being selected on is a constant, fold the select, yes
1265 // this does (rarely) happen early on.
1266 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1267 Value *Result = SI->getOperand(1+CI->isZero());
1268 SI->replaceAllUsesWith(Result);
1269 SI->eraseFromParent();
1270
1271 // This is very rare and we just scrambled the use list of AI, start
1272 // over completely.
1273 return tryToMakeAllocaBePromotable(AI, DL);
1274 }
1275
1276 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1277 // loads, then we can transform this by rewriting the select.
1278 if (!isSafeSelectToSpeculate(SI))
1279 return false;
1280
1281 InstsToRewrite.insert(SI);
1282 continue;
1283 }
1284
1285 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1286 if (PN->use_empty()) { // Dead PHIs can be stripped.
1287 InstsToRewrite.insert(PN);
1288 continue;
1289 }
1290
1291 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1292 // in the pred blocks, then we can transform this by rewriting the PHI.
1293 if (!isSafePHIToSpeculate(PN))
1294 return false;
1295
1296 InstsToRewrite.insert(PN);
1297 continue;
1298 }
1299
1300 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1301 if (onlyUsedByLifetimeMarkers(BCI)) {
1302 InstsToRewrite.insert(BCI);
1303 continue;
1304 }
1305 }
1306
1307 return false;
1308 }
1309
1310 // If there are no instructions to rewrite, then all uses are load/stores and
1311 // we're done!
1312 if (InstsToRewrite.empty())
1313 return true;
1314
1315 // If we have instructions that need to be rewritten for this to be promotable
1316 // take care of it now.
1317 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1318 if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1319 // This could only be a bitcast used by nothing but lifetime intrinsics.
1320 for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end();
1321 I != E;)
1322 cast<Instruction>(*I++)->eraseFromParent();
1323 BCI->eraseFromParent();
1324 continue;
1325 }
1326
1327 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1328 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1329 // loads with a new select.
1330 while (!SI->use_empty()) {
1331 LoadInst *LI = cast<LoadInst>(SI->user_back());
1332
1333 IRBuilder<> Builder(LI);
1334 LoadInst *TrueLoad =
1335 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1336 LoadInst *FalseLoad =
1337 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1338
1339 // Transfer alignment and AA info if present.
1340 TrueLoad->setAlignment(LI->getAlignment());
1341 FalseLoad->setAlignment(LI->getAlignment());
1342
1343 AAMDNodes Tags;
1344 LI->getAAMetadata(Tags);
1345 if (Tags) {
1346 TrueLoad->setAAMetadata(Tags);
1347 FalseLoad->setAAMetadata(Tags);
1348 }
1349
1350 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1351 V->takeName(LI);
1352 LI->replaceAllUsesWith(V);
1353 LI->eraseFromParent();
1354 }
1355
1356 // Now that all the loads are gone, the select is gone too.
1357 SI->eraseFromParent();
1358 continue;
1359 }
1360
1361 // Otherwise, we have a PHI node which allows us to push the loads into the
1362 // predecessors.
1363 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1364 if (PN->use_empty()) {
1365 PN->eraseFromParent();
1366 continue;
1367 }
1368
1369 Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1370 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1371 PN->getName()+".ld", PN);
1372
1373 // Get the AA tags and alignment to use from one of the loads. It doesn't
1374 // matter which one we get and if any differ, it doesn't matter.
1375 LoadInst *SomeLoad = cast<LoadInst>(PN->user_back());
1376
1377 AAMDNodes AATags;
1378 SomeLoad->getAAMetadata(AATags);
1379 unsigned Align = SomeLoad->getAlignment();
1380
1381 // Rewrite all loads of the PN to use the new PHI.
1382 while (!PN->use_empty()) {
1383 LoadInst *LI = cast<LoadInst>(PN->user_back());
1384 LI->replaceAllUsesWith(NewPN);
1385 LI->eraseFromParent();
1386 }
1387
1388 // Inject loads into all of the pred blocks. Keep track of which blocks we
1389 // insert them into in case we have multiple edges from the same block.
1390 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1391
1392 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1393 BasicBlock *Pred = PN->getIncomingBlock(i);
1394 LoadInst *&Load = InsertedLoads[Pred];
1395 if (!Load) {
1396 Load = new LoadInst(PN->getIncomingValue(i),
1397 PN->getName() + "." + Pred->getName(),
1398 Pred->getTerminator());
1399 Load->setAlignment(Align);
1400 if (AATags) Load->setAAMetadata(AATags);
1401 }
1402
1403 NewPN->addIncoming(Load, Pred);
1404 }
1405
1406 PN->eraseFromParent();
1407 }
1408
1409 ++NumAdjusted;
1410 return true;
1411 }
1412
performPromotion(Function & F)1413 bool SROA::performPromotion(Function &F) {
1414 std::vector<AllocaInst*> Allocas;
1415 const DataLayout &DL = F.getParent()->getDataLayout();
1416 DominatorTree *DT = nullptr;
1417 if (HasDomTree)
1418 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1419 AssumptionCache &AC =
1420 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1421
1422 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
1423 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1424 bool Changed = false;
1425 SmallVector<Instruction*, 64> Insts;
1426 while (1) {
1427 Allocas.clear();
1428
1429 // Find allocas that are safe to promote, by looking at all instructions in
1430 // the entry node
1431 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1432 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
1433 if (tryToMakeAllocaBePromotable(AI, DL))
1434 Allocas.push_back(AI);
1435
1436 if (Allocas.empty()) break;
1437
1438 if (HasDomTree)
1439 PromoteMemToReg(Allocas, *DT, nullptr, &AC);
1440 else {
1441 SSAUpdater SSA;
1442 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1443 AllocaInst *AI = Allocas[i];
1444
1445 // Build list of instructions to promote.
1446 for (User *U : AI->users())
1447 Insts.push_back(cast<Instruction>(U));
1448 AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1449 Insts.clear();
1450 }
1451 }
1452 NumPromoted += Allocas.size();
1453 Changed = true;
1454 }
1455
1456 return Changed;
1457 }
1458
1459
1460 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1461 /// SROA. It must be a struct or array type with a small number of elements.
ShouldAttemptScalarRepl(AllocaInst * AI)1462 bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1463 Type *T = AI->getAllocatedType();
1464 // Do not promote any struct that has too many members.
1465 if (StructType *ST = dyn_cast<StructType>(T))
1466 return ST->getNumElements() <= StructMemberThreshold;
1467 // Do not promote any array that has too many elements.
1468 if (ArrayType *AT = dyn_cast<ArrayType>(T))
1469 return AT->getNumElements() <= ArrayElementThreshold;
1470 return false;
1471 }
1472
1473 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1474 // which runs on all of the alloca instructions in the entry block, removing
1475 // them if they are only used by getelementptr instructions.
1476 //
performScalarRepl(Function & F)1477 bool SROA::performScalarRepl(Function &F) {
1478 std::vector<AllocaInst*> WorkList;
1479 const DataLayout &DL = F.getParent()->getDataLayout();
1480
1481 // Scan the entry basic block, adding allocas to the worklist.
1482 BasicBlock &BB = F.getEntryBlock();
1483 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1484 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1485 WorkList.push_back(A);
1486
1487 // Process the worklist
1488 bool Changed = false;
1489 while (!WorkList.empty()) {
1490 AllocaInst *AI = WorkList.back();
1491 WorkList.pop_back();
1492
1493 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1494 // with unused elements.
1495 if (AI->use_empty()) {
1496 AI->eraseFromParent();
1497 Changed = true;
1498 continue;
1499 }
1500
1501 // If this alloca is impossible for us to promote, reject it early.
1502 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1503 continue;
1504
1505 // Check to see if we can perform the core SROA transformation. We cannot
1506 // transform the allocation instruction if it is an array allocation
1507 // (allocations OF arrays are ok though), and an allocation of a scalar
1508 // value cannot be decomposed at all.
1509 uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1510
1511 // Do not promote [0 x %struct].
1512 if (AllocaSize == 0) continue;
1513
1514 // Do not promote any struct whose size is too big.
1515 if (AllocaSize > SRThreshold) continue;
1516
1517 // If the alloca looks like a good candidate for scalar replacement, and if
1518 // all its users can be transformed, then split up the aggregate into its
1519 // separate elements.
1520 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1521 DoScalarReplacement(AI, WorkList);
1522 Changed = true;
1523 continue;
1524 }
1525
1526 // If we can turn this aggregate value (potentially with casts) into a
1527 // simple scalar value that can be mem2reg'd into a register value.
1528 // IsNotTrivial tracks whether this is something that mem2reg could have
1529 // promoted itself. If so, we don't want to transform it needlessly. Note
1530 // that we can't just check based on the type: the alloca may be of an i32
1531 // but that has pointer arithmetic to set byte 3 of it or something.
1532 if (AllocaInst *NewAI =
1533 ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold)
1534 .TryConvert(AI)) {
1535 NewAI->takeName(AI);
1536 AI->eraseFromParent();
1537 ++NumConverted;
1538 Changed = true;
1539 continue;
1540 }
1541
1542 // Otherwise, couldn't process this alloca.
1543 }
1544
1545 return Changed;
1546 }
1547
1548 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1549 /// predicate, do SROA now.
DoScalarReplacement(AllocaInst * AI,std::vector<AllocaInst * > & WorkList)1550 void SROA::DoScalarReplacement(AllocaInst *AI,
1551 std::vector<AllocaInst*> &WorkList) {
1552 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1553 SmallVector<AllocaInst*, 32> ElementAllocas;
1554 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1555 ElementAllocas.reserve(ST->getNumContainedTypes());
1556 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1557 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr,
1558 AI->getAlignment(),
1559 AI->getName() + "." + Twine(i), AI);
1560 ElementAllocas.push_back(NA);
1561 WorkList.push_back(NA); // Add to worklist for recursive processing
1562 }
1563 } else {
1564 ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1565 ElementAllocas.reserve(AT->getNumElements());
1566 Type *ElTy = AT->getElementType();
1567 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1568 AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(),
1569 AI->getName() + "." + Twine(i), AI);
1570 ElementAllocas.push_back(NA);
1571 WorkList.push_back(NA); // Add to worklist for recursive processing
1572 }
1573 }
1574
1575 // Now that we have created the new alloca instructions, rewrite all the
1576 // uses of the old alloca.
1577 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1578
1579 // Now erase any instructions that were made dead while rewriting the alloca.
1580 DeleteDeadInstructions();
1581 AI->eraseFromParent();
1582
1583 ++NumReplaced;
1584 }
1585
1586 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1587 /// recursively including all their operands that become trivially dead.
DeleteDeadInstructions()1588 void SROA::DeleteDeadInstructions() {
1589 while (!DeadInsts.empty()) {
1590 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1591
1592 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1593 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1594 // Zero out the operand and see if it becomes trivially dead.
1595 // (But, don't add allocas to the dead instruction list -- they are
1596 // already on the worklist and will be deleted separately.)
1597 *OI = nullptr;
1598 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1599 DeadInsts.push_back(U);
1600 }
1601
1602 I->eraseFromParent();
1603 }
1604 }
1605
1606 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1607 /// performing scalar replacement of alloca AI. The results are flagged in
1608 /// the Info parameter. Offset indicates the position within AI that is
1609 /// referenced by this instruction.
isSafeForScalarRepl(Instruction * I,uint64_t Offset,AllocaInfo & Info)1610 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1611 AllocaInfo &Info) {
1612 const DataLayout &DL = I->getModule()->getDataLayout();
1613 for (Use &U : I->uses()) {
1614 Instruction *User = cast<Instruction>(U.getUser());
1615
1616 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1617 isSafeForScalarRepl(BC, Offset, Info);
1618 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1619 uint64_t GEPOffset = Offset;
1620 isSafeGEP(GEPI, GEPOffset, Info);
1621 if (!Info.isUnsafe)
1622 isSafeForScalarRepl(GEPI, GEPOffset, Info);
1623 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1624 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1625 if (!Length || Length->isNegative())
1626 return MarkUnsafe(Info, User);
1627
1628 isSafeMemAccess(Offset, Length->getZExtValue(), nullptr,
1629 U.getOperandNo() == 0, Info, MI,
1630 true /*AllowWholeAccess*/);
1631 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1632 if (!LI->isSimple())
1633 return MarkUnsafe(Info, User);
1634 Type *LIType = LI->getType();
1635 isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
1636 LI, true /*AllowWholeAccess*/);
1637 Info.hasALoadOrStore = true;
1638
1639 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1640 // Store is ok if storing INTO the pointer, not storing the pointer
1641 if (!SI->isSimple() || SI->getOperand(0) == I)
1642 return MarkUnsafe(Info, User);
1643
1644 Type *SIType = SI->getOperand(0)->getType();
1645 isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
1646 SI, true /*AllowWholeAccess*/);
1647 Info.hasALoadOrStore = true;
1648 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1649 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1650 II->getIntrinsicID() != Intrinsic::lifetime_end)
1651 return MarkUnsafe(Info, User);
1652 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1653 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1654 } else {
1655 return MarkUnsafe(Info, User);
1656 }
1657 if (Info.isUnsafe) return;
1658 }
1659 }
1660
1661
1662 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1663 /// derived from the alloca, we can often still split the alloca into elements.
1664 /// This is useful if we have a large alloca where one element is phi'd
1665 /// together somewhere: we can SRoA and promote all the other elements even if
1666 /// we end up not being able to promote this one.
1667 ///
1668 /// All we require is that the uses of the PHI do not index into other parts of
1669 /// the alloca. The most important use case for this is single load and stores
1670 /// that are PHI'd together, which can happen due to code sinking.
isSafePHISelectUseForScalarRepl(Instruction * I,uint64_t Offset,AllocaInfo & Info)1671 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1672 AllocaInfo &Info) {
1673 // If we've already checked this PHI, don't do it again.
1674 if (PHINode *PN = dyn_cast<PHINode>(I))
1675 if (!Info.CheckedPHIs.insert(PN).second)
1676 return;
1677
1678 const DataLayout &DL = I->getModule()->getDataLayout();
1679 for (User *U : I->users()) {
1680 Instruction *UI = cast<Instruction>(U);
1681
1682 if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) {
1683 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1684 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1685 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1686 // but would have to prove that we're staying inside of an element being
1687 // promoted.
1688 if (!GEPI->hasAllZeroIndices())
1689 return MarkUnsafe(Info, UI);
1690 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1691 } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
1692 if (!LI->isSimple())
1693 return MarkUnsafe(Info, UI);
1694 Type *LIType = LI->getType();
1695 isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
1696 LI, false /*AllowWholeAccess*/);
1697 Info.hasALoadOrStore = true;
1698
1699 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1700 // Store is ok if storing INTO the pointer, not storing the pointer
1701 if (!SI->isSimple() || SI->getOperand(0) == I)
1702 return MarkUnsafe(Info, UI);
1703
1704 Type *SIType = SI->getOperand(0)->getType();
1705 isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
1706 SI, false /*AllowWholeAccess*/);
1707 Info.hasALoadOrStore = true;
1708 } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
1709 isSafePHISelectUseForScalarRepl(UI, Offset, Info);
1710 } else {
1711 return MarkUnsafe(Info, UI);
1712 }
1713 if (Info.isUnsafe) return;
1714 }
1715 }
1716
1717 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1718 /// replacement. It is safe when all the indices are constant, in-bounds
1719 /// references, and when the resulting offset corresponds to an element within
1720 /// the alloca type. The results are flagged in the Info parameter. Upon
1721 /// return, Offset is adjusted as specified by the GEP indices.
isSafeGEP(GetElementPtrInst * GEPI,uint64_t & Offset,AllocaInfo & Info)1722 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1723 uint64_t &Offset, AllocaInfo &Info) {
1724 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1725 if (GEPIt == E)
1726 return;
1727 bool NonConstant = false;
1728 unsigned NonConstantIdxSize = 0;
1729
1730 // Walk through the GEP type indices, checking the types that this indexes
1731 // into.
1732 for (; GEPIt != E; ++GEPIt) {
1733 // Ignore struct elements, no extra checking needed for these.
1734 if ((*GEPIt)->isStructTy())
1735 continue;
1736
1737 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1738 if (!IdxVal)
1739 return MarkUnsafe(Info, GEPI);
1740 }
1741
1742 // Compute the offset due to this GEP and check if the alloca has a
1743 // component element at that offset.
1744 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1745 // If this GEP is non-constant then the last operand must have been a
1746 // dynamic index into a vector. Pop this now as it has no impact on the
1747 // constant part of the offset.
1748 if (NonConstant)
1749 Indices.pop_back();
1750
1751 const DataLayout &DL = GEPI->getModule()->getDataLayout();
1752 Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1753 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize,
1754 DL))
1755 MarkUnsafe(Info, GEPI);
1756 }
1757
1758 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1759 /// elements of the same type (which is always true for arrays). If so,
1760 /// return true with NumElts and EltTy set to the number of elements and the
1761 /// element type, respectively.
isHomogeneousAggregate(Type * T,unsigned & NumElts,Type * & EltTy)1762 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1763 Type *&EltTy) {
1764 if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1765 NumElts = AT->getNumElements();
1766 EltTy = (NumElts == 0 ? nullptr : AT->getElementType());
1767 return true;
1768 }
1769 if (StructType *ST = dyn_cast<StructType>(T)) {
1770 NumElts = ST->getNumContainedTypes();
1771 EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0));
1772 for (unsigned n = 1; n < NumElts; ++n) {
1773 if (ST->getContainedType(n) != EltTy)
1774 return false;
1775 }
1776 return true;
1777 }
1778 return false;
1779 }
1780
1781 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1782 /// "homogeneous" aggregates with the same element type and number of elements.
isCompatibleAggregate(Type * T1,Type * T2)1783 static bool isCompatibleAggregate(Type *T1, Type *T2) {
1784 if (T1 == T2)
1785 return true;
1786
1787 unsigned NumElts1, NumElts2;
1788 Type *EltTy1, *EltTy2;
1789 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1790 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1791 NumElts1 == NumElts2 &&
1792 EltTy1 == EltTy2)
1793 return true;
1794
1795 return false;
1796 }
1797
1798 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1799 /// alloca or has an offset and size that corresponds to a component element
1800 /// within it. The offset checked here may have been formed from a GEP with a
1801 /// pointer bitcasted to a different type.
1802 ///
1803 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1804 /// unit. If false, it only allows accesses known to be in a single element.
isSafeMemAccess(uint64_t Offset,uint64_t MemSize,Type * MemOpType,bool isStore,AllocaInfo & Info,Instruction * TheAccess,bool AllowWholeAccess)1805 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1806 Type *MemOpType, bool isStore,
1807 AllocaInfo &Info, Instruction *TheAccess,
1808 bool AllowWholeAccess) {
1809 const DataLayout &DL = TheAccess->getModule()->getDataLayout();
1810 // Check if this is a load/store of the entire alloca.
1811 if (Offset == 0 && AllowWholeAccess &&
1812 MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) {
1813 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1814 // loads/stores (which are essentially the same as the MemIntrinsics with
1815 // regard to copying padding between elements). But, if an alloca is
1816 // flagged as both a source and destination of such operations, we'll need
1817 // to check later for padding between elements.
1818 if (!MemOpType || MemOpType->isIntegerTy()) {
1819 if (isStore)
1820 Info.isMemCpyDst = true;
1821 else
1822 Info.isMemCpySrc = true;
1823 return;
1824 }
1825 // This is also safe for references using a type that is compatible with
1826 // the type of the alloca, so that loads/stores can be rewritten using
1827 // insertvalue/extractvalue.
1828 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1829 Info.hasSubelementAccess = true;
1830 return;
1831 }
1832 }
1833 // Check if the offset/size correspond to a component within the alloca type.
1834 Type *T = Info.AI->getAllocatedType();
1835 if (TypeHasComponent(T, Offset, MemSize, DL)) {
1836 Info.hasSubelementAccess = true;
1837 return;
1838 }
1839
1840 return MarkUnsafe(Info, TheAccess);
1841 }
1842
1843 /// TypeHasComponent - Return true if T has a component type with the
1844 /// specified offset and size. If Size is zero, do not check the size.
TypeHasComponent(Type * T,uint64_t Offset,uint64_t Size,const DataLayout & DL)1845 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
1846 const DataLayout &DL) {
1847 Type *EltTy;
1848 uint64_t EltSize;
1849 if (StructType *ST = dyn_cast<StructType>(T)) {
1850 const StructLayout *Layout = DL.getStructLayout(ST);
1851 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1852 EltTy = ST->getContainedType(EltIdx);
1853 EltSize = DL.getTypeAllocSize(EltTy);
1854 Offset -= Layout->getElementOffset(EltIdx);
1855 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1856 EltTy = AT->getElementType();
1857 EltSize = DL.getTypeAllocSize(EltTy);
1858 if (Offset >= AT->getNumElements() * EltSize)
1859 return false;
1860 Offset %= EltSize;
1861 } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1862 EltTy = VT->getElementType();
1863 EltSize = DL.getTypeAllocSize(EltTy);
1864 if (Offset >= VT->getNumElements() * EltSize)
1865 return false;
1866 Offset %= EltSize;
1867 } else {
1868 return false;
1869 }
1870 if (Offset == 0 && (Size == 0 || EltSize == Size))
1871 return true;
1872 // Check if the component spans multiple elements.
1873 if (Offset + Size > EltSize)
1874 return false;
1875 return TypeHasComponent(EltTy, Offset, Size, DL);
1876 }
1877
1878 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1879 /// the instruction I, which references it, to use the separate elements.
1880 /// Offset indicates the position within AI that is referenced by this
1881 /// instruction.
RewriteForScalarRepl(Instruction * I,AllocaInst * AI,uint64_t Offset,SmallVectorImpl<AllocaInst * > & NewElts)1882 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1883 SmallVectorImpl<AllocaInst *> &NewElts) {
1884 const DataLayout &DL = I->getModule()->getDataLayout();
1885 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1886 Use &TheUse = *UI++;
1887 Instruction *User = cast<Instruction>(TheUse.getUser());
1888
1889 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1890 RewriteBitCast(BC, AI, Offset, NewElts);
1891 continue;
1892 }
1893
1894 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1895 RewriteGEP(GEPI, AI, Offset, NewElts);
1896 continue;
1897 }
1898
1899 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1900 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1901 uint64_t MemSize = Length->getZExtValue();
1902 if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType()))
1903 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1904 // Otherwise the intrinsic can only touch a single element and the
1905 // address operand will be updated, so nothing else needs to be done.
1906 continue;
1907 }
1908
1909 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1910 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1911 II->getIntrinsicID() == Intrinsic::lifetime_end) {
1912 RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1913 }
1914 continue;
1915 }
1916
1917 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1918 Type *LIType = LI->getType();
1919
1920 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1921 // Replace:
1922 // %res = load { i32, i32 }* %alloc
1923 // with:
1924 // %load.0 = load i32* %alloc.0
1925 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1926 // %load.1 = load i32* %alloc.1
1927 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1928 // (Also works for arrays instead of structs)
1929 Value *Insert = UndefValue::get(LIType);
1930 IRBuilder<> Builder(LI);
1931 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1932 Value *Load = Builder.CreateLoad(NewElts[i], "load");
1933 Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1934 }
1935 LI->replaceAllUsesWith(Insert);
1936 DeadInsts.push_back(LI);
1937 } else if (LIType->isIntegerTy() &&
1938 DL.getTypeAllocSize(LIType) ==
1939 DL.getTypeAllocSize(AI->getAllocatedType())) {
1940 // If this is a load of the entire alloca to an integer, rewrite it.
1941 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1942 }
1943 continue;
1944 }
1945
1946 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1947 Value *Val = SI->getOperand(0);
1948 Type *SIType = Val->getType();
1949 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1950 // Replace:
1951 // store { i32, i32 } %val, { i32, i32 }* %alloc
1952 // with:
1953 // %val.0 = extractvalue { i32, i32 } %val, 0
1954 // store i32 %val.0, i32* %alloc.0
1955 // %val.1 = extractvalue { i32, i32 } %val, 1
1956 // store i32 %val.1, i32* %alloc.1
1957 // (Also works for arrays instead of structs)
1958 IRBuilder<> Builder(SI);
1959 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1960 Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1961 Builder.CreateStore(Extract, NewElts[i]);
1962 }
1963 DeadInsts.push_back(SI);
1964 } else if (SIType->isIntegerTy() &&
1965 DL.getTypeAllocSize(SIType) ==
1966 DL.getTypeAllocSize(AI->getAllocatedType())) {
1967 // If this is a store of the entire alloca from an integer, rewrite it.
1968 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1969 }
1970 continue;
1971 }
1972
1973 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1974 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1975 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1976 // the new pointer.
1977 if (!isa<AllocaInst>(I)) continue;
1978
1979 assert(Offset == 0 && NewElts[0] &&
1980 "Direct alloca use should have a zero offset");
1981
1982 // If we have a use of the alloca, we know the derived uses will be
1983 // utilizing just the first element of the scalarized result. Insert a
1984 // bitcast of the first alloca before the user as required.
1985 AllocaInst *NewAI = NewElts[0];
1986 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1987 NewAI->moveBefore(BCI);
1988 TheUse = BCI;
1989 continue;
1990 }
1991 }
1992 }
1993
1994 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1995 /// and recursively continue updating all of its uses.
RewriteBitCast(BitCastInst * BC,AllocaInst * AI,uint64_t Offset,SmallVectorImpl<AllocaInst * > & NewElts)1996 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1997 SmallVectorImpl<AllocaInst *> &NewElts) {
1998 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1999 if (BC->getOperand(0) != AI)
2000 return;
2001
2002 // The bitcast references the original alloca. Replace its uses with
2003 // references to the alloca containing offset zero (which is normally at
2004 // index zero, but might not be in cases involving structs with elements
2005 // of size zero).
2006 Type *T = AI->getAllocatedType();
2007 uint64_t EltOffset = 0;
2008 Type *IdxTy;
2009 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy,
2010 BC->getModule()->getDataLayout());
2011 Instruction *Val = NewElts[Idx];
2012 if (Val->getType() != BC->getDestTy()) {
2013 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2014 Val->takeName(BC);
2015 }
2016 BC->replaceAllUsesWith(Val);
2017 DeadInsts.push_back(BC);
2018 }
2019
2020 /// FindElementAndOffset - Return the index of the element containing Offset
2021 /// within the specified type, which must be either a struct or an array.
2022 /// Sets T to the type of the element and Offset to the offset within that
2023 /// element. IdxTy is set to the type of the index result to be used in a
2024 /// GEP instruction.
FindElementAndOffset(Type * & T,uint64_t & Offset,Type * & IdxTy,const DataLayout & DL)2025 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
2026 const DataLayout &DL) {
2027 uint64_t Idx = 0;
2028
2029 if (StructType *ST = dyn_cast<StructType>(T)) {
2030 const StructLayout *Layout = DL.getStructLayout(ST);
2031 Idx = Layout->getElementContainingOffset(Offset);
2032 T = ST->getContainedType(Idx);
2033 Offset -= Layout->getElementOffset(Idx);
2034 IdxTy = Type::getInt32Ty(T->getContext());
2035 return Idx;
2036 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2037 T = AT->getElementType();
2038 uint64_t EltSize = DL.getTypeAllocSize(T);
2039 Idx = Offset / EltSize;
2040 Offset -= Idx * EltSize;
2041 IdxTy = Type::getInt64Ty(T->getContext());
2042 return Idx;
2043 }
2044 VectorType *VT = cast<VectorType>(T);
2045 T = VT->getElementType();
2046 uint64_t EltSize = DL.getTypeAllocSize(T);
2047 Idx = Offset / EltSize;
2048 Offset -= Idx * EltSize;
2049 IdxTy = Type::getInt64Ty(T->getContext());
2050 return Idx;
2051 }
2052
2053 /// RewriteGEP - Check if this GEP instruction moves the pointer across
2054 /// elements of the alloca that are being split apart, and if so, rewrite
2055 /// the GEP to be relative to the new element.
RewriteGEP(GetElementPtrInst * GEPI,AllocaInst * AI,uint64_t Offset,SmallVectorImpl<AllocaInst * > & NewElts)2056 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2057 SmallVectorImpl<AllocaInst *> &NewElts) {
2058 uint64_t OldOffset = Offset;
2059 const DataLayout &DL = GEPI->getModule()->getDataLayout();
2060 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2061 // If the GEP was dynamic then it must have been a dynamic vector lookup.
2062 // In this case, it must be the last GEP operand which is dynamic so keep that
2063 // aside until we've found the constant GEP offset then add it back in at the
2064 // end.
2065 Value* NonConstantIdx = nullptr;
2066 if (!GEPI->hasAllConstantIndices())
2067 NonConstantIdx = Indices.pop_back_val();
2068 Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2069
2070 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2071
2072 Type *T = AI->getAllocatedType();
2073 Type *IdxTy;
2074 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL);
2075 if (GEPI->getOperand(0) == AI)
2076 OldIdx = ~0ULL; // Force the GEP to be rewritten.
2077
2078 T = AI->getAllocatedType();
2079 uint64_t EltOffset = Offset;
2080 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
2081
2082 // If this GEP does not move the pointer across elements of the alloca
2083 // being split, then it does not needs to be rewritten.
2084 if (Idx == OldIdx)
2085 return;
2086
2087 Type *i32Ty = Type::getInt32Ty(AI->getContext());
2088 SmallVector<Value*, 8> NewArgs;
2089 NewArgs.push_back(Constant::getNullValue(i32Ty));
2090 while (EltOffset != 0) {
2091 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
2092 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2093 }
2094 if (NonConstantIdx) {
2095 Type* GepTy = T;
2096 // This GEP has a dynamic index. We need to add "i32 0" to index through
2097 // any structs or arrays in the original type until we get to the vector
2098 // to index.
2099 while (!isa<VectorType>(GepTy)) {
2100 NewArgs.push_back(Constant::getNullValue(i32Ty));
2101 GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2102 }
2103 NewArgs.push_back(NonConstantIdx);
2104 }
2105 Instruction *Val = NewElts[Idx];
2106 if (NewArgs.size() > 1) {
2107 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2108 Val->takeName(GEPI);
2109 }
2110 if (Val->getType() != GEPI->getType())
2111 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2112 GEPI->replaceAllUsesWith(Val);
2113 DeadInsts.push_back(GEPI);
2114 }
2115
2116 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2117 /// to mark the lifetime of the scalarized memory.
RewriteLifetimeIntrinsic(IntrinsicInst * II,AllocaInst * AI,uint64_t Offset,SmallVectorImpl<AllocaInst * > & NewElts)2118 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2119 uint64_t Offset,
2120 SmallVectorImpl<AllocaInst *> &NewElts) {
2121 ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2122 // Put matching lifetime markers on everything from Offset up to
2123 // Offset+OldSize.
2124 Type *AIType = AI->getAllocatedType();
2125 const DataLayout &DL = II->getModule()->getDataLayout();
2126 uint64_t NewOffset = Offset;
2127 Type *IdxTy;
2128 uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL);
2129
2130 IRBuilder<> Builder(II);
2131 uint64_t Size = OldSize->getLimitedValue();
2132
2133 if (NewOffset) {
2134 // Splice the first element and index 'NewOffset' bytes in. SROA will
2135 // split the alloca again later.
2136 unsigned AS = AI->getType()->getAddressSpace();
2137 Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS));
2138 V = Builder.CreateGEP(Builder.getInt8Ty(), V, Builder.getInt64(NewOffset));
2139
2140 IdxTy = NewElts[Idx]->getAllocatedType();
2141 uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset;
2142 if (EltSize > Size) {
2143 EltSize = Size;
2144 Size = 0;
2145 } else {
2146 Size -= EltSize;
2147 }
2148 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2149 Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2150 else
2151 Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2152 ++Idx;
2153 }
2154
2155 for (; Idx != NewElts.size() && Size; ++Idx) {
2156 IdxTy = NewElts[Idx]->getAllocatedType();
2157 uint64_t EltSize = DL.getTypeAllocSize(IdxTy);
2158 if (EltSize > Size) {
2159 EltSize = Size;
2160 Size = 0;
2161 } else {
2162 Size -= EltSize;
2163 }
2164 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2165 Builder.CreateLifetimeStart(NewElts[Idx],
2166 Builder.getInt64(EltSize));
2167 else
2168 Builder.CreateLifetimeEnd(NewElts[Idx],
2169 Builder.getInt64(EltSize));
2170 }
2171 DeadInsts.push_back(II);
2172 }
2173
2174 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2175 /// Rewrite it to copy or set the elements of the scalarized memory.
2176 void
RewriteMemIntrinUserOfAlloca(MemIntrinsic * MI,Instruction * Inst,AllocaInst * AI,SmallVectorImpl<AllocaInst * > & NewElts)2177 SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2178 AllocaInst *AI,
2179 SmallVectorImpl<AllocaInst *> &NewElts) {
2180 // If this is a memcpy/memmove, construct the other pointer as the
2181 // appropriate type. The "Other" pointer is the pointer that goes to memory
2182 // that doesn't have anything to do with the alloca that we are promoting. For
2183 // memset, this Value* stays null.
2184 Value *OtherPtr = nullptr;
2185 unsigned MemAlignment = MI->getAlignment();
2186 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2187 if (Inst == MTI->getRawDest())
2188 OtherPtr = MTI->getRawSource();
2189 else {
2190 assert(Inst == MTI->getRawSource());
2191 OtherPtr = MTI->getRawDest();
2192 }
2193 }
2194
2195 // If there is an other pointer, we want to convert it to the same pointer
2196 // type as AI has, so we can GEP through it safely.
2197 if (OtherPtr) {
2198 unsigned AddrSpace =
2199 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2200
2201 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2202 // optimization, but it's also required to detect the corner case where
2203 // both pointer operands are referencing the same memory, and where
2204 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2205 // function is only called for mem intrinsics that access the whole
2206 // aggregate, so non-zero GEPs are not an issue here.)
2207 OtherPtr = OtherPtr->stripPointerCasts();
2208
2209 // Copying the alloca to itself is a no-op: just delete it.
2210 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2211 // This code will run twice for a no-op memcpy -- once for each operand.
2212 // Put only one reference to MI on the DeadInsts list.
2213 for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
2214 E = DeadInsts.end(); I != E; ++I)
2215 if (*I == MI) return;
2216 DeadInsts.push_back(MI);
2217 return;
2218 }
2219
2220 // If the pointer is not the right type, insert a bitcast to the right
2221 // type.
2222 Type *NewTy =
2223 PointerType::get(AI->getType()->getElementType(), AddrSpace);
2224
2225 if (OtherPtr->getType() != NewTy)
2226 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2227 }
2228
2229 // Process each element of the aggregate.
2230 bool SROADest = MI->getRawDest() == Inst;
2231
2232 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2233 const DataLayout &DL = MI->getModule()->getDataLayout();
2234
2235 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2236 // If this is a memcpy/memmove, emit a GEP of the other element address.
2237 Value *OtherElt = nullptr;
2238 unsigned OtherEltAlign = MemAlignment;
2239
2240 if (OtherPtr) {
2241 Value *Idx[2] = { Zero,
2242 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2243 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2244 OtherPtr->getName()+"."+Twine(i),
2245 MI);
2246 uint64_t EltOffset;
2247 PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2248 Type *OtherTy = OtherPtrTy->getElementType();
2249 if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2250 EltOffset = DL.getStructLayout(ST)->getElementOffset(i);
2251 } else {
2252 Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2253 EltOffset = DL.getTypeAllocSize(EltTy) * i;
2254 }
2255
2256 // The alignment of the other pointer is the guaranteed alignment of the
2257 // element, which is affected by both the known alignment of the whole
2258 // mem intrinsic and the alignment of the element. If the alignment of
2259 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2260 // known alignment is just 4 bytes.
2261 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2262 }
2263
2264 Value *EltPtr = NewElts[i];
2265 Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2266
2267 // If we got down to a scalar, insert a load or store as appropriate.
2268 if (EltTy->isSingleValueType()) {
2269 if (isa<MemTransferInst>(MI)) {
2270 if (SROADest) {
2271 // From Other to Alloca.
2272 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2273 new StoreInst(Elt, EltPtr, MI);
2274 } else {
2275 // From Alloca to Other.
2276 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2277 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2278 }
2279 continue;
2280 }
2281 assert(isa<MemSetInst>(MI));
2282
2283 // If the stored element is zero (common case), just store a null
2284 // constant.
2285 Constant *StoreVal;
2286 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2287 if (CI->isZero()) {
2288 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
2289 } else {
2290 // If EltTy is a vector type, get the element type.
2291 Type *ValTy = EltTy->getScalarType();
2292
2293 // Construct an integer with the right value.
2294 unsigned EltSize = DL.getTypeSizeInBits(ValTy);
2295 APInt OneVal(EltSize, CI->getZExtValue());
2296 APInt TotalVal(OneVal);
2297 // Set each byte.
2298 for (unsigned i = 0; 8*i < EltSize; ++i) {
2299 TotalVal = TotalVal.shl(8);
2300 TotalVal |= OneVal;
2301 }
2302
2303 // Convert the integer value to the appropriate type.
2304 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2305 if (ValTy->isPointerTy())
2306 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2307 else if (ValTy->isFloatingPointTy())
2308 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2309 assert(StoreVal->getType() == ValTy && "Type mismatch!");
2310
2311 // If the requested value was a vector constant, create it.
2312 if (EltTy->isVectorTy()) {
2313 unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2314 StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2315 }
2316 }
2317 new StoreInst(StoreVal, EltPtr, MI);
2318 continue;
2319 }
2320 // Otherwise, if we're storing a byte variable, use a memset call for
2321 // this element.
2322 }
2323
2324 unsigned EltSize = DL.getTypeAllocSize(EltTy);
2325 if (!EltSize)
2326 continue;
2327
2328 IRBuilder<> Builder(MI);
2329
2330 // Finally, insert the meminst for this element.
2331 if (isa<MemSetInst>(MI)) {
2332 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2333 MI->isVolatile());
2334 } else {
2335 assert(isa<MemTransferInst>(MI));
2336 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2337 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
2338
2339 if (isa<MemCpyInst>(MI))
2340 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2341 else
2342 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2343 }
2344 }
2345 DeadInsts.push_back(MI);
2346 }
2347
2348 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2349 /// overwrites the entire allocation. Extract out the pieces of the stored
2350 /// integer and store them individually.
2351 void
RewriteStoreUserOfWholeAlloca(StoreInst * SI,AllocaInst * AI,SmallVectorImpl<AllocaInst * > & NewElts)2352 SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2353 SmallVectorImpl<AllocaInst *> &NewElts) {
2354 // Extract each element out of the integer according to its structure offset
2355 // and store the element value to the individual alloca.
2356 Value *SrcVal = SI->getOperand(0);
2357 Type *AllocaEltTy = AI->getAllocatedType();
2358 const DataLayout &DL = SI->getModule()->getDataLayout();
2359 uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
2360
2361 IRBuilder<> Builder(SI);
2362
2363 // Handle tail padding by extending the operand
2364 if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2365 SrcVal = Builder.CreateZExt(SrcVal,
2366 IntegerType::get(SI->getContext(), AllocaSizeBits));
2367
2368 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2369 << '\n');
2370
2371 // There are two forms here: AI could be an array or struct. Both cases
2372 // have different ways to compute the element offset.
2373 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2374 const StructLayout *Layout = DL.getStructLayout(EltSTy);
2375
2376 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2377 // Get the number of bits to shift SrcVal to get the value.
2378 Type *FieldTy = EltSTy->getElementType(i);
2379 uint64_t Shift = Layout->getElementOffsetInBits(i);
2380
2381 if (DL.isBigEndian())
2382 Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy);
2383
2384 Value *EltVal = SrcVal;
2385 if (Shift) {
2386 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2387 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2388 }
2389
2390 // Truncate down to an integer of the right size.
2391 uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
2392
2393 // Ignore zero sized fields like {}, they obviously contain no data.
2394 if (FieldSizeBits == 0) continue;
2395
2396 if (FieldSizeBits != AllocaSizeBits)
2397 EltVal = Builder.CreateTrunc(EltVal,
2398 IntegerType::get(SI->getContext(), FieldSizeBits));
2399 Value *DestField = NewElts[i];
2400 if (EltVal->getType() == FieldTy) {
2401 // Storing to an integer field of this size, just do it.
2402 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2403 // Bitcast to the right element type (for fp/vector values).
2404 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2405 } else {
2406 // Otherwise, bitcast the dest pointer (for aggregates).
2407 DestField = Builder.CreateBitCast(DestField,
2408 PointerType::getUnqual(EltVal->getType()));
2409 }
2410 new StoreInst(EltVal, DestField, SI);
2411 }
2412
2413 } else {
2414 ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2415 Type *ArrayEltTy = ATy->getElementType();
2416 uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
2417 uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy);
2418
2419 uint64_t Shift;
2420
2421 if (DL.isBigEndian())
2422 Shift = AllocaSizeBits-ElementOffset;
2423 else
2424 Shift = 0;
2425
2426 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2427 // Ignore zero sized fields like {}, they obviously contain no data.
2428 if (ElementSizeBits == 0) continue;
2429
2430 Value *EltVal = SrcVal;
2431 if (Shift) {
2432 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2433 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2434 }
2435
2436 // Truncate down to an integer of the right size.
2437 if (ElementSizeBits != AllocaSizeBits)
2438 EltVal = Builder.CreateTrunc(EltVal,
2439 IntegerType::get(SI->getContext(),
2440 ElementSizeBits));
2441 Value *DestField = NewElts[i];
2442 if (EltVal->getType() == ArrayEltTy) {
2443 // Storing to an integer field of this size, just do it.
2444 } else if (ArrayEltTy->isFloatingPointTy() ||
2445 ArrayEltTy->isVectorTy()) {
2446 // Bitcast to the right element type (for fp/vector values).
2447 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2448 } else {
2449 // Otherwise, bitcast the dest pointer (for aggregates).
2450 DestField = Builder.CreateBitCast(DestField,
2451 PointerType::getUnqual(EltVal->getType()));
2452 }
2453 new StoreInst(EltVal, DestField, SI);
2454
2455 if (DL.isBigEndian())
2456 Shift -= ElementOffset;
2457 else
2458 Shift += ElementOffset;
2459 }
2460 }
2461
2462 DeadInsts.push_back(SI);
2463 }
2464
2465 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2466 /// an integer. Load the individual pieces to form the aggregate value.
2467 void
RewriteLoadUserOfWholeAlloca(LoadInst * LI,AllocaInst * AI,SmallVectorImpl<AllocaInst * > & NewElts)2468 SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2469 SmallVectorImpl<AllocaInst *> &NewElts) {
2470 // Extract each element out of the NewElts according to its structure offset
2471 // and form the result value.
2472 Type *AllocaEltTy = AI->getAllocatedType();
2473 const DataLayout &DL = LI->getModule()->getDataLayout();
2474 uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
2475
2476 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2477 << '\n');
2478
2479 // There are two forms here: AI could be an array or struct. Both cases
2480 // have different ways to compute the element offset.
2481 const StructLayout *Layout = nullptr;
2482 uint64_t ArrayEltBitOffset = 0;
2483 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2484 Layout = DL.getStructLayout(EltSTy);
2485 } else {
2486 Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2487 ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
2488 }
2489
2490 Value *ResultVal =
2491 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2492
2493 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2494 // Load the value from the alloca. If the NewElt is an aggregate, cast
2495 // the pointer to an integer of the same size before doing the load.
2496 Value *SrcField = NewElts[i];
2497 Type *FieldTy =
2498 cast<PointerType>(SrcField->getType())->getElementType();
2499 uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
2500
2501 // Ignore zero sized fields like {}, they obviously contain no data.
2502 if (FieldSizeBits == 0) continue;
2503
2504 IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2505 FieldSizeBits);
2506 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2507 !FieldTy->isVectorTy())
2508 SrcField = new BitCastInst(SrcField,
2509 PointerType::getUnqual(FieldIntTy),
2510 "", LI);
2511 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2512
2513 // If SrcField is a fp or vector of the right size but that isn't an
2514 // integer type, bitcast to an integer so we can shift it.
2515 if (SrcField->getType() != FieldIntTy)
2516 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2517
2518 // Zero extend the field to be the same size as the final alloca so that
2519 // we can shift and insert it.
2520 if (SrcField->getType() != ResultVal->getType())
2521 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2522
2523 // Determine the number of bits to shift SrcField.
2524 uint64_t Shift;
2525 if (Layout) // Struct case.
2526 Shift = Layout->getElementOffsetInBits(i);
2527 else // Array case.
2528 Shift = i*ArrayEltBitOffset;
2529
2530 if (DL.isBigEndian())
2531 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2532
2533 if (Shift) {
2534 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2535 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2536 }
2537
2538 // Don't create an 'or x, 0' on the first iteration.
2539 if (!isa<Constant>(ResultVal) ||
2540 !cast<Constant>(ResultVal)->isNullValue())
2541 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2542 else
2543 ResultVal = SrcField;
2544 }
2545
2546 // Handle tail padding by truncating the result
2547 if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2548 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2549
2550 LI->replaceAllUsesWith(ResultVal);
2551 DeadInsts.push_back(LI);
2552 }
2553
2554 /// HasPadding - Return true if the specified type has any structure or
2555 /// alignment padding in between the elements that would be split apart
2556 /// by SROA; return false otherwise.
HasPadding(Type * Ty,const DataLayout & DL)2557 static bool HasPadding(Type *Ty, const DataLayout &DL) {
2558 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2559 Ty = ATy->getElementType();
2560 return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
2561 }
2562
2563 // SROA currently handles only Arrays and Structs.
2564 StructType *STy = cast<StructType>(Ty);
2565 const StructLayout *SL = DL.getStructLayout(STy);
2566 unsigned PrevFieldBitOffset = 0;
2567 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2568 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2569
2570 // Check to see if there is any padding between this element and the
2571 // previous one.
2572 if (i) {
2573 unsigned PrevFieldEnd =
2574 PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
2575 if (PrevFieldEnd < FieldBitOffset)
2576 return true;
2577 }
2578 PrevFieldBitOffset = FieldBitOffset;
2579 }
2580 // Check for tail padding.
2581 if (unsigned EltCount = STy->getNumElements()) {
2582 unsigned PrevFieldEnd = PrevFieldBitOffset +
2583 DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
2584 if (PrevFieldEnd < SL->getSizeInBits())
2585 return true;
2586 }
2587 return false;
2588 }
2589
2590 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2591 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2592 /// or 1 if safe after canonicalization has been performed.
isSafeAllocaToScalarRepl(AllocaInst * AI)2593 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2594 // Loop over the use list of the alloca. We can only transform it if all of
2595 // the users are safe to transform.
2596 AllocaInfo Info(AI);
2597
2598 isSafeForScalarRepl(AI, 0, Info);
2599 if (Info.isUnsafe) {
2600 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2601 return false;
2602 }
2603
2604 const DataLayout &DL = AI->getModule()->getDataLayout();
2605
2606 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2607 // source and destination, we have to be careful. In particular, the memcpy
2608 // could be moving around elements that live in structure padding of the LLVM
2609 // types, but may actually be used. In these cases, we refuse to promote the
2610 // struct.
2611 if (Info.isMemCpySrc && Info.isMemCpyDst &&
2612 HasPadding(AI->getAllocatedType(), DL))
2613 return false;
2614
2615 // If the alloca never has an access to just *part* of it, but is accessed
2616 // via loads and stores, then we should use ConvertToScalarInfo to promote
2617 // the alloca instead of promoting each piece at a time and inserting fission
2618 // and fusion code.
2619 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2620 // If the struct/array just has one element, use basic SRoA.
2621 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2622 if (ST->getNumElements() > 1) return false;
2623 } else {
2624 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2625 return false;
2626 }
2627 }
2628
2629 return true;
2630 }
2631