1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ExprOpenMP.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Analysis/Analyses/FormatString.h"
28 #include "clang/Basic/CharInfo.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallBitVector.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <limits>
42 using namespace clang;
43 using namespace sema;
44 
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const45 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
46                                                     unsigned ByteNo) const {
47   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
48                                Context.getTargetInfo());
49 }
50 
51 /// Checks that a call expression's argument count is the desired number.
52 /// This is useful when doing custom type-checking.  Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)53 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
54   unsigned argCount = call->getNumArgs();
55   if (argCount == desiredArgCount) return false;
56 
57   if (argCount < desiredArgCount)
58     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
59         << 0 /*function call*/ << desiredArgCount << argCount
60         << call->getSourceRange();
61 
62   // Highlight all the excess arguments.
63   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
64                     call->getArg(argCount - 1)->getLocEnd());
65 
66   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
67     << 0 /*function call*/ << desiredArgCount << argCount
68     << call->getArg(1)->getSourceRange();
69 }
70 
71 /// Check that the first argument to __builtin_annotation is an integer
72 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)73 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
74   if (checkArgCount(S, TheCall, 2))
75     return true;
76 
77   // First argument should be an integer.
78   Expr *ValArg = TheCall->getArg(0);
79   QualType Ty = ValArg->getType();
80   if (!Ty->isIntegerType()) {
81     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
82       << ValArg->getSourceRange();
83     return true;
84   }
85 
86   // Second argument should be a constant string.
87   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
88   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
89   if (!Literal || !Literal->isAscii()) {
90     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
91       << StrArg->getSourceRange();
92     return true;
93   }
94 
95   TheCall->setType(Ty);
96   return false;
97 }
98 
99 /// Check that the argument to __builtin_addressof is a glvalue, and set the
100 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)101 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
102   if (checkArgCount(S, TheCall, 1))
103     return true;
104 
105   ExprResult Arg(TheCall->getArg(0));
106   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
107   if (ResultType.isNull())
108     return true;
109 
110   TheCall->setArg(0, Arg.get());
111   TheCall->setType(ResultType);
112   return false;
113 }
114 
SemaBuiltinOverflow(Sema & S,CallExpr * TheCall)115 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
116   if (checkArgCount(S, TheCall, 3))
117     return true;
118 
119   // First two arguments should be integers.
120   for (unsigned I = 0; I < 2; ++I) {
121     Expr *Arg = TheCall->getArg(I);
122     QualType Ty = Arg->getType();
123     if (!Ty->isIntegerType()) {
124       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_int)
125           << Ty << Arg->getSourceRange();
126       return true;
127     }
128   }
129 
130   // Third argument should be a pointer to a non-const integer.
131   // IRGen correctly handles volatile, restrict, and address spaces, and
132   // the other qualifiers aren't possible.
133   {
134     Expr *Arg = TheCall->getArg(2);
135     QualType Ty = Arg->getType();
136     const auto *PtrTy = Ty->getAs<PointerType>();
137     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
138           !PtrTy->getPointeeType().isConstQualified())) {
139       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_ptr_int)
140           << Ty << Arg->getSourceRange();
141       return true;
142     }
143   }
144 
145   return false;
146 }
147 
SemaBuiltinMemChkCall(Sema & S,FunctionDecl * FDecl,CallExpr * TheCall,unsigned SizeIdx,unsigned DstSizeIdx)148 static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
149 		                  CallExpr *TheCall, unsigned SizeIdx,
150                                   unsigned DstSizeIdx) {
151   if (TheCall->getNumArgs() <= SizeIdx ||
152       TheCall->getNumArgs() <= DstSizeIdx)
153     return;
154 
155   const Expr *SizeArg = TheCall->getArg(SizeIdx);
156   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
157 
158   llvm::APSInt Size, DstSize;
159 
160   // find out if both sizes are known at compile time
161   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
162       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
163     return;
164 
165   if (Size.ule(DstSize))
166     return;
167 
168   // confirmed overflow so generate the diagnostic.
169   IdentifierInfo *FnName = FDecl->getIdentifier();
170   SourceLocation SL = TheCall->getLocStart();
171   SourceRange SR = TheCall->getSourceRange();
172 
173   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
174 }
175 
SemaBuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)176 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
177   if (checkArgCount(S, BuiltinCall, 2))
178     return true;
179 
180   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
181   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
182   Expr *Call = BuiltinCall->getArg(0);
183   Expr *Chain = BuiltinCall->getArg(1);
184 
185   if (Call->getStmtClass() != Stmt::CallExprClass) {
186     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
187         << Call->getSourceRange();
188     return true;
189   }
190 
191   auto CE = cast<CallExpr>(Call);
192   if (CE->getCallee()->getType()->isBlockPointerType()) {
193     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
194         << Call->getSourceRange();
195     return true;
196   }
197 
198   const Decl *TargetDecl = CE->getCalleeDecl();
199   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
200     if (FD->getBuiltinID()) {
201       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
202           << Call->getSourceRange();
203       return true;
204     }
205 
206   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
207     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
208         << Call->getSourceRange();
209     return true;
210   }
211 
212   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
213   if (ChainResult.isInvalid())
214     return true;
215   if (!ChainResult.get()->getType()->isPointerType()) {
216     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
217         << Chain->getSourceRange();
218     return true;
219   }
220 
221   QualType ReturnTy = CE->getCallReturnType(S.Context);
222   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
223   QualType BuiltinTy = S.Context.getFunctionType(
224       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
225   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
226 
227   Builtin =
228       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
229 
230   BuiltinCall->setType(CE->getType());
231   BuiltinCall->setValueKind(CE->getValueKind());
232   BuiltinCall->setObjectKind(CE->getObjectKind());
233   BuiltinCall->setCallee(Builtin);
234   BuiltinCall->setArg(1, ChainResult.get());
235 
236   return false;
237 }
238 
SemaBuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)239 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
240                                      Scope::ScopeFlags NeededScopeFlags,
241                                      unsigned DiagID) {
242   // Scopes aren't available during instantiation. Fortunately, builtin
243   // functions cannot be template args so they cannot be formed through template
244   // instantiation. Therefore checking once during the parse is sufficient.
245   if (!SemaRef.ActiveTemplateInstantiations.empty())
246     return false;
247 
248   Scope *S = SemaRef.getCurScope();
249   while (S && !S->isSEHExceptScope())
250     S = S->getParent();
251   if (!S || !(S->getFlags() & NeededScopeFlags)) {
252     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
253     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
254         << DRE->getDecl()->getIdentifier();
255     return true;
256   }
257 
258   return false;
259 }
260 
261 ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)262 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
263                                CallExpr *TheCall) {
264   ExprResult TheCallResult(TheCall);
265 
266   // Find out if any arguments are required to be integer constant expressions.
267   unsigned ICEArguments = 0;
268   ASTContext::GetBuiltinTypeError Error;
269   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
270   if (Error != ASTContext::GE_None)
271     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
272 
273   // If any arguments are required to be ICE's, check and diagnose.
274   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
275     // Skip arguments not required to be ICE's.
276     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
277 
278     llvm::APSInt Result;
279     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
280       return true;
281     ICEArguments &= ~(1 << ArgNo);
282   }
283 
284   switch (BuiltinID) {
285   case Builtin::BI__builtin___CFStringMakeConstantString:
286     assert(TheCall->getNumArgs() == 1 &&
287            "Wrong # arguments to builtin CFStringMakeConstantString");
288     if (CheckObjCString(TheCall->getArg(0)))
289       return ExprError();
290     break;
291   case Builtin::BI__builtin_stdarg_start:
292   case Builtin::BI__builtin_va_start:
293     if (SemaBuiltinVAStart(TheCall))
294       return ExprError();
295     break;
296   case Builtin::BI__va_start: {
297     switch (Context.getTargetInfo().getTriple().getArch()) {
298     case llvm::Triple::arm:
299     case llvm::Triple::thumb:
300       if (SemaBuiltinVAStartARM(TheCall))
301         return ExprError();
302       break;
303     default:
304       if (SemaBuiltinVAStart(TheCall))
305         return ExprError();
306       break;
307     }
308     break;
309   }
310   case Builtin::BI__builtin_isgreater:
311   case Builtin::BI__builtin_isgreaterequal:
312   case Builtin::BI__builtin_isless:
313   case Builtin::BI__builtin_islessequal:
314   case Builtin::BI__builtin_islessgreater:
315   case Builtin::BI__builtin_isunordered:
316     if (SemaBuiltinUnorderedCompare(TheCall))
317       return ExprError();
318     break;
319   case Builtin::BI__builtin_fpclassify:
320     if (SemaBuiltinFPClassification(TheCall, 6))
321       return ExprError();
322     break;
323   case Builtin::BI__builtin_isfinite:
324   case Builtin::BI__builtin_isinf:
325   case Builtin::BI__builtin_isinf_sign:
326   case Builtin::BI__builtin_isnan:
327   case Builtin::BI__builtin_isnormal:
328     if (SemaBuiltinFPClassification(TheCall, 1))
329       return ExprError();
330     break;
331   case Builtin::BI__builtin_shufflevector:
332     return SemaBuiltinShuffleVector(TheCall);
333     // TheCall will be freed by the smart pointer here, but that's fine, since
334     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
335   case Builtin::BI__builtin_prefetch:
336     if (SemaBuiltinPrefetch(TheCall))
337       return ExprError();
338     break;
339   case Builtin::BI__assume:
340   case Builtin::BI__builtin_assume:
341     if (SemaBuiltinAssume(TheCall))
342       return ExprError();
343     break;
344   case Builtin::BI__builtin_assume_aligned:
345     if (SemaBuiltinAssumeAligned(TheCall))
346       return ExprError();
347     break;
348   case Builtin::BI__builtin_object_size:
349     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
350       return ExprError();
351     break;
352   case Builtin::BI__builtin_longjmp:
353     if (SemaBuiltinLongjmp(TheCall))
354       return ExprError();
355     break;
356   case Builtin::BI__builtin_setjmp:
357     if (SemaBuiltinSetjmp(TheCall))
358       return ExprError();
359     break;
360   case Builtin::BI_setjmp:
361   case Builtin::BI_setjmpex:
362     if (checkArgCount(*this, TheCall, 1))
363       return true;
364     break;
365 
366   case Builtin::BI__builtin_classify_type:
367     if (checkArgCount(*this, TheCall, 1)) return true;
368     TheCall->setType(Context.IntTy);
369     break;
370   case Builtin::BI__builtin_constant_p:
371     if (checkArgCount(*this, TheCall, 1)) return true;
372     TheCall->setType(Context.IntTy);
373     break;
374   case Builtin::BI__sync_fetch_and_add:
375   case Builtin::BI__sync_fetch_and_add_1:
376   case Builtin::BI__sync_fetch_and_add_2:
377   case Builtin::BI__sync_fetch_and_add_4:
378   case Builtin::BI__sync_fetch_and_add_8:
379   case Builtin::BI__sync_fetch_and_add_16:
380   case Builtin::BI__sync_fetch_and_sub:
381   case Builtin::BI__sync_fetch_and_sub_1:
382   case Builtin::BI__sync_fetch_and_sub_2:
383   case Builtin::BI__sync_fetch_and_sub_4:
384   case Builtin::BI__sync_fetch_and_sub_8:
385   case Builtin::BI__sync_fetch_and_sub_16:
386   case Builtin::BI__sync_fetch_and_or:
387   case Builtin::BI__sync_fetch_and_or_1:
388   case Builtin::BI__sync_fetch_and_or_2:
389   case Builtin::BI__sync_fetch_and_or_4:
390   case Builtin::BI__sync_fetch_and_or_8:
391   case Builtin::BI__sync_fetch_and_or_16:
392   case Builtin::BI__sync_fetch_and_and:
393   case Builtin::BI__sync_fetch_and_and_1:
394   case Builtin::BI__sync_fetch_and_and_2:
395   case Builtin::BI__sync_fetch_and_and_4:
396   case Builtin::BI__sync_fetch_and_and_8:
397   case Builtin::BI__sync_fetch_and_and_16:
398   case Builtin::BI__sync_fetch_and_xor:
399   case Builtin::BI__sync_fetch_and_xor_1:
400   case Builtin::BI__sync_fetch_and_xor_2:
401   case Builtin::BI__sync_fetch_and_xor_4:
402   case Builtin::BI__sync_fetch_and_xor_8:
403   case Builtin::BI__sync_fetch_and_xor_16:
404   case Builtin::BI__sync_fetch_and_nand:
405   case Builtin::BI__sync_fetch_and_nand_1:
406   case Builtin::BI__sync_fetch_and_nand_2:
407   case Builtin::BI__sync_fetch_and_nand_4:
408   case Builtin::BI__sync_fetch_and_nand_8:
409   case Builtin::BI__sync_fetch_and_nand_16:
410   case Builtin::BI__sync_add_and_fetch:
411   case Builtin::BI__sync_add_and_fetch_1:
412   case Builtin::BI__sync_add_and_fetch_2:
413   case Builtin::BI__sync_add_and_fetch_4:
414   case Builtin::BI__sync_add_and_fetch_8:
415   case Builtin::BI__sync_add_and_fetch_16:
416   case Builtin::BI__sync_sub_and_fetch:
417   case Builtin::BI__sync_sub_and_fetch_1:
418   case Builtin::BI__sync_sub_and_fetch_2:
419   case Builtin::BI__sync_sub_and_fetch_4:
420   case Builtin::BI__sync_sub_and_fetch_8:
421   case Builtin::BI__sync_sub_and_fetch_16:
422   case Builtin::BI__sync_and_and_fetch:
423   case Builtin::BI__sync_and_and_fetch_1:
424   case Builtin::BI__sync_and_and_fetch_2:
425   case Builtin::BI__sync_and_and_fetch_4:
426   case Builtin::BI__sync_and_and_fetch_8:
427   case Builtin::BI__sync_and_and_fetch_16:
428   case Builtin::BI__sync_or_and_fetch:
429   case Builtin::BI__sync_or_and_fetch_1:
430   case Builtin::BI__sync_or_and_fetch_2:
431   case Builtin::BI__sync_or_and_fetch_4:
432   case Builtin::BI__sync_or_and_fetch_8:
433   case Builtin::BI__sync_or_and_fetch_16:
434   case Builtin::BI__sync_xor_and_fetch:
435   case Builtin::BI__sync_xor_and_fetch_1:
436   case Builtin::BI__sync_xor_and_fetch_2:
437   case Builtin::BI__sync_xor_and_fetch_4:
438   case Builtin::BI__sync_xor_and_fetch_8:
439   case Builtin::BI__sync_xor_and_fetch_16:
440   case Builtin::BI__sync_nand_and_fetch:
441   case Builtin::BI__sync_nand_and_fetch_1:
442   case Builtin::BI__sync_nand_and_fetch_2:
443   case Builtin::BI__sync_nand_and_fetch_4:
444   case Builtin::BI__sync_nand_and_fetch_8:
445   case Builtin::BI__sync_nand_and_fetch_16:
446   case Builtin::BI__sync_val_compare_and_swap:
447   case Builtin::BI__sync_val_compare_and_swap_1:
448   case Builtin::BI__sync_val_compare_and_swap_2:
449   case Builtin::BI__sync_val_compare_and_swap_4:
450   case Builtin::BI__sync_val_compare_and_swap_8:
451   case Builtin::BI__sync_val_compare_and_swap_16:
452   case Builtin::BI__sync_bool_compare_and_swap:
453   case Builtin::BI__sync_bool_compare_and_swap_1:
454   case Builtin::BI__sync_bool_compare_and_swap_2:
455   case Builtin::BI__sync_bool_compare_and_swap_4:
456   case Builtin::BI__sync_bool_compare_and_swap_8:
457   case Builtin::BI__sync_bool_compare_and_swap_16:
458   case Builtin::BI__sync_lock_test_and_set:
459   case Builtin::BI__sync_lock_test_and_set_1:
460   case Builtin::BI__sync_lock_test_and_set_2:
461   case Builtin::BI__sync_lock_test_and_set_4:
462   case Builtin::BI__sync_lock_test_and_set_8:
463   case Builtin::BI__sync_lock_test_and_set_16:
464   case Builtin::BI__sync_lock_release:
465   case Builtin::BI__sync_lock_release_1:
466   case Builtin::BI__sync_lock_release_2:
467   case Builtin::BI__sync_lock_release_4:
468   case Builtin::BI__sync_lock_release_8:
469   case Builtin::BI__sync_lock_release_16:
470   case Builtin::BI__sync_swap:
471   case Builtin::BI__sync_swap_1:
472   case Builtin::BI__sync_swap_2:
473   case Builtin::BI__sync_swap_4:
474   case Builtin::BI__sync_swap_8:
475   case Builtin::BI__sync_swap_16:
476     return SemaBuiltinAtomicOverloaded(TheCallResult);
477   case Builtin::BI__builtin_nontemporal_load:
478   case Builtin::BI__builtin_nontemporal_store:
479     return SemaBuiltinNontemporalOverloaded(TheCallResult);
480 #define BUILTIN(ID, TYPE, ATTRS)
481 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
482   case Builtin::BI##ID: \
483     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
484 #include "clang/Basic/Builtins.def"
485   case Builtin::BI__builtin_annotation:
486     if (SemaBuiltinAnnotation(*this, TheCall))
487       return ExprError();
488     break;
489   case Builtin::BI__builtin_addressof:
490     if (SemaBuiltinAddressof(*this, TheCall))
491       return ExprError();
492     break;
493   case Builtin::BI__builtin_add_overflow:
494   case Builtin::BI__builtin_sub_overflow:
495   case Builtin::BI__builtin_mul_overflow:
496     if (SemaBuiltinOverflow(*this, TheCall))
497       return ExprError();
498     break;
499   case Builtin::BI__builtin_operator_new:
500   case Builtin::BI__builtin_operator_delete:
501     if (!getLangOpts().CPlusPlus) {
502       Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
503         << (BuiltinID == Builtin::BI__builtin_operator_new
504                 ? "__builtin_operator_new"
505                 : "__builtin_operator_delete")
506         << "C++";
507       return ExprError();
508     }
509     // CodeGen assumes it can find the global new and delete to call,
510     // so ensure that they are declared.
511     DeclareGlobalNewDelete();
512     break;
513 
514   // check secure string manipulation functions where overflows
515   // are detectable at compile time
516   case Builtin::BI__builtin___memcpy_chk:
517   case Builtin::BI__builtin___memmove_chk:
518   case Builtin::BI__builtin___memset_chk:
519   case Builtin::BI__builtin___strlcat_chk:
520   case Builtin::BI__builtin___strlcpy_chk:
521   case Builtin::BI__builtin___strncat_chk:
522   case Builtin::BI__builtin___strncpy_chk:
523   case Builtin::BI__builtin___stpncpy_chk:
524     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
525     break;
526   case Builtin::BI__builtin___memccpy_chk:
527     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
528     break;
529   case Builtin::BI__builtin___snprintf_chk:
530   case Builtin::BI__builtin___vsnprintf_chk:
531     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
532     break;
533 
534   case Builtin::BI__builtin_call_with_static_chain:
535     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
536       return ExprError();
537     break;
538 
539   case Builtin::BI__exception_code:
540   case Builtin::BI_exception_code: {
541     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
542                                  diag::err_seh___except_block))
543       return ExprError();
544     break;
545   }
546   case Builtin::BI__exception_info:
547   case Builtin::BI_exception_info: {
548     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
549                                  diag::err_seh___except_filter))
550       return ExprError();
551     break;
552   }
553 
554   case Builtin::BI__GetExceptionInfo:
555     if (checkArgCount(*this, TheCall, 1))
556       return ExprError();
557 
558     if (CheckCXXThrowOperand(
559             TheCall->getLocStart(),
560             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
561             TheCall))
562       return ExprError();
563 
564     TheCall->setType(Context.VoidPtrTy);
565     break;
566 
567   }
568 
569   // Since the target specific builtins for each arch overlap, only check those
570   // of the arch we are compiling for.
571   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
572     switch (Context.getTargetInfo().getTriple().getArch()) {
573       case llvm::Triple::arm:
574       case llvm::Triple::armeb:
575       case llvm::Triple::thumb:
576       case llvm::Triple::thumbeb:
577         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
578           return ExprError();
579         break;
580       case llvm::Triple::aarch64:
581       case llvm::Triple::aarch64_be:
582         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
583           return ExprError();
584         break;
585       case llvm::Triple::mips:
586       case llvm::Triple::mipsel:
587       case llvm::Triple::mips64:
588       case llvm::Triple::mips64el:
589         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
590           return ExprError();
591         break;
592       case llvm::Triple::systemz:
593         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
594           return ExprError();
595         break;
596       case llvm::Triple::x86:
597       case llvm::Triple::x86_64:
598         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
599           return ExprError();
600         break;
601       case llvm::Triple::ppc:
602       case llvm::Triple::ppc64:
603       case llvm::Triple::ppc64le:
604         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
605           return ExprError();
606         break;
607       default:
608         break;
609     }
610   }
611 
612   return TheCallResult;
613 }
614 
615 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)616 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
617   NeonTypeFlags Type(t);
618   int IsQuad = ForceQuad ? true : Type.isQuad();
619   switch (Type.getEltType()) {
620   case NeonTypeFlags::Int8:
621   case NeonTypeFlags::Poly8:
622     return shift ? 7 : (8 << IsQuad) - 1;
623   case NeonTypeFlags::Int16:
624   case NeonTypeFlags::Poly16:
625     return shift ? 15 : (4 << IsQuad) - 1;
626   case NeonTypeFlags::Int32:
627     return shift ? 31 : (2 << IsQuad) - 1;
628   case NeonTypeFlags::Int64:
629   case NeonTypeFlags::Poly64:
630     return shift ? 63 : (1 << IsQuad) - 1;
631   case NeonTypeFlags::Poly128:
632     return shift ? 127 : (1 << IsQuad) - 1;
633   case NeonTypeFlags::Float16:
634     assert(!shift && "cannot shift float types!");
635     return (4 << IsQuad) - 1;
636   case NeonTypeFlags::Float32:
637     assert(!shift && "cannot shift float types!");
638     return (2 << IsQuad) - 1;
639   case NeonTypeFlags::Float64:
640     assert(!shift && "cannot shift float types!");
641     return (1 << IsQuad) - 1;
642   }
643   llvm_unreachable("Invalid NeonTypeFlag!");
644 }
645 
646 /// getNeonEltType - Return the QualType corresponding to the elements of
647 /// the vector type specified by the NeonTypeFlags.  This is used to check
648 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)649 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
650                                bool IsPolyUnsigned, bool IsInt64Long) {
651   switch (Flags.getEltType()) {
652   case NeonTypeFlags::Int8:
653     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
654   case NeonTypeFlags::Int16:
655     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
656   case NeonTypeFlags::Int32:
657     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
658   case NeonTypeFlags::Int64:
659     if (IsInt64Long)
660       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
661     else
662       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
663                                 : Context.LongLongTy;
664   case NeonTypeFlags::Poly8:
665     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
666   case NeonTypeFlags::Poly16:
667     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
668   case NeonTypeFlags::Poly64:
669     if (IsInt64Long)
670       return Context.UnsignedLongTy;
671     else
672       return Context.UnsignedLongLongTy;
673   case NeonTypeFlags::Poly128:
674     break;
675   case NeonTypeFlags::Float16:
676     return Context.HalfTy;
677   case NeonTypeFlags::Float32:
678     return Context.FloatTy;
679   case NeonTypeFlags::Float64:
680     return Context.DoubleTy;
681   }
682   llvm_unreachable("Invalid NeonTypeFlag!");
683 }
684 
CheckNeonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)685 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
686   llvm::APSInt Result;
687   uint64_t mask = 0;
688   unsigned TV = 0;
689   int PtrArgNum = -1;
690   bool HasConstPtr = false;
691   switch (BuiltinID) {
692 #define GET_NEON_OVERLOAD_CHECK
693 #include "clang/Basic/arm_neon.inc"
694 #undef GET_NEON_OVERLOAD_CHECK
695   }
696 
697   // For NEON intrinsics which are overloaded on vector element type, validate
698   // the immediate which specifies which variant to emit.
699   unsigned ImmArg = TheCall->getNumArgs()-1;
700   if (mask) {
701     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
702       return true;
703 
704     TV = Result.getLimitedValue(64);
705     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
706       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
707         << TheCall->getArg(ImmArg)->getSourceRange();
708   }
709 
710   if (PtrArgNum >= 0) {
711     // Check that pointer arguments have the specified type.
712     Expr *Arg = TheCall->getArg(PtrArgNum);
713     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
714       Arg = ICE->getSubExpr();
715     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
716     QualType RHSTy = RHS.get()->getType();
717 
718     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
719     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
720     bool IsInt64Long =
721         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
722     QualType EltTy =
723         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
724     if (HasConstPtr)
725       EltTy = EltTy.withConst();
726     QualType LHSTy = Context.getPointerType(EltTy);
727     AssignConvertType ConvTy;
728     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
729     if (RHS.isInvalid())
730       return true;
731     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
732                                  RHS.get(), AA_Assigning))
733       return true;
734   }
735 
736   // For NEON intrinsics which take an immediate value as part of the
737   // instruction, range check them here.
738   unsigned i = 0, l = 0, u = 0;
739   switch (BuiltinID) {
740   default:
741     return false;
742 #define GET_NEON_IMMEDIATE_CHECK
743 #include "clang/Basic/arm_neon.inc"
744 #undef GET_NEON_IMMEDIATE_CHECK
745   }
746 
747   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
748 }
749 
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)750 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
751                                         unsigned MaxWidth) {
752   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
753           BuiltinID == ARM::BI__builtin_arm_ldaex ||
754           BuiltinID == ARM::BI__builtin_arm_strex ||
755           BuiltinID == ARM::BI__builtin_arm_stlex ||
756           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
757           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
758           BuiltinID == AArch64::BI__builtin_arm_strex ||
759           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
760          "unexpected ARM builtin");
761   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
762                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
763                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
764                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
765 
766   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
767 
768   // Ensure that we have the proper number of arguments.
769   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
770     return true;
771 
772   // Inspect the pointer argument of the atomic builtin.  This should always be
773   // a pointer type, whose element is an integral scalar or pointer type.
774   // Because it is a pointer type, we don't have to worry about any implicit
775   // casts here.
776   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
777   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
778   if (PointerArgRes.isInvalid())
779     return true;
780   PointerArg = PointerArgRes.get();
781 
782   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
783   if (!pointerType) {
784     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
785       << PointerArg->getType() << PointerArg->getSourceRange();
786     return true;
787   }
788 
789   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
790   // task is to insert the appropriate casts into the AST. First work out just
791   // what the appropriate type is.
792   QualType ValType = pointerType->getPointeeType();
793   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
794   if (IsLdrex)
795     AddrType.addConst();
796 
797   // Issue a warning if the cast is dodgy.
798   CastKind CastNeeded = CK_NoOp;
799   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
800     CastNeeded = CK_BitCast;
801     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
802       << PointerArg->getType()
803       << Context.getPointerType(AddrType)
804       << AA_Passing << PointerArg->getSourceRange();
805   }
806 
807   // Finally, do the cast and replace the argument with the corrected version.
808   AddrType = Context.getPointerType(AddrType);
809   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
810   if (PointerArgRes.isInvalid())
811     return true;
812   PointerArg = PointerArgRes.get();
813 
814   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
815 
816   // In general, we allow ints, floats and pointers to be loaded and stored.
817   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
818       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
819     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
820       << PointerArg->getType() << PointerArg->getSourceRange();
821     return true;
822   }
823 
824   // But ARM doesn't have instructions to deal with 128-bit versions.
825   if (Context.getTypeSize(ValType) > MaxWidth) {
826     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
827     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
828       << PointerArg->getType() << PointerArg->getSourceRange();
829     return true;
830   }
831 
832   switch (ValType.getObjCLifetime()) {
833   case Qualifiers::OCL_None:
834   case Qualifiers::OCL_ExplicitNone:
835     // okay
836     break;
837 
838   case Qualifiers::OCL_Weak:
839   case Qualifiers::OCL_Strong:
840   case Qualifiers::OCL_Autoreleasing:
841     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
842       << ValType << PointerArg->getSourceRange();
843     return true;
844   }
845 
846 
847   if (IsLdrex) {
848     TheCall->setType(ValType);
849     return false;
850   }
851 
852   // Initialize the argument to be stored.
853   ExprResult ValArg = TheCall->getArg(0);
854   InitializedEntity Entity = InitializedEntity::InitializeParameter(
855       Context, ValType, /*consume*/ false);
856   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
857   if (ValArg.isInvalid())
858     return true;
859   TheCall->setArg(0, ValArg.get());
860 
861   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
862   // but the custom checker bypasses all default analysis.
863   TheCall->setType(Context.IntTy);
864   return false;
865 }
866 
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)867 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
868   llvm::APSInt Result;
869 
870   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
871       BuiltinID == ARM::BI__builtin_arm_ldaex ||
872       BuiltinID == ARM::BI__builtin_arm_strex ||
873       BuiltinID == ARM::BI__builtin_arm_stlex) {
874     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
875   }
876 
877   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
878     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
879       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
880   }
881 
882   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
883       BuiltinID == ARM::BI__builtin_arm_wsr64)
884     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
885 
886   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
887       BuiltinID == ARM::BI__builtin_arm_rsrp ||
888       BuiltinID == ARM::BI__builtin_arm_wsr ||
889       BuiltinID == ARM::BI__builtin_arm_wsrp)
890     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
891 
892   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
893     return true;
894 
895   // For intrinsics which take an immediate value as part of the instruction,
896   // range check them here.
897   unsigned i = 0, l = 0, u = 0;
898   switch (BuiltinID) {
899   default: return false;
900   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
901   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
902   case ARM::BI__builtin_arm_vcvtr_f:
903   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
904   case ARM::BI__builtin_arm_dmb:
905   case ARM::BI__builtin_arm_dsb:
906   case ARM::BI__builtin_arm_isb:
907   case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
908   }
909 
910   // FIXME: VFP Intrinsics should error if VFP not present.
911   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
912 }
913 
CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)914 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
915                                          CallExpr *TheCall) {
916   llvm::APSInt Result;
917 
918   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
919       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
920       BuiltinID == AArch64::BI__builtin_arm_strex ||
921       BuiltinID == AArch64::BI__builtin_arm_stlex) {
922     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
923   }
924 
925   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
926     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
927       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
928       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
929       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
930   }
931 
932   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
933       BuiltinID == AArch64::BI__builtin_arm_wsr64)
934     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, false);
935 
936   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
937       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
938       BuiltinID == AArch64::BI__builtin_arm_wsr ||
939       BuiltinID == AArch64::BI__builtin_arm_wsrp)
940     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
941 
942   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
943     return true;
944 
945   // For intrinsics which take an immediate value as part of the instruction,
946   // range check them here.
947   unsigned i = 0, l = 0, u = 0;
948   switch (BuiltinID) {
949   default: return false;
950   case AArch64::BI__builtin_arm_dmb:
951   case AArch64::BI__builtin_arm_dsb:
952   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
953   }
954 
955   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
956 }
957 
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)958 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
959   unsigned i = 0, l = 0, u = 0;
960   switch (BuiltinID) {
961   default: return false;
962   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
963   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
964   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
965   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
966   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
967   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
968   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
969   }
970 
971   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
972 }
973 
CheckPPCBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)974 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
975   unsigned i = 0, l = 0, u = 0;
976   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
977                       BuiltinID == PPC::BI__builtin_divdeu ||
978                       BuiltinID == PPC::BI__builtin_bpermd;
979   bool IsTarget64Bit = Context.getTargetInfo()
980                               .getTypeWidth(Context
981                                             .getTargetInfo()
982                                             .getIntPtrType()) == 64;
983   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
984                        BuiltinID == PPC::BI__builtin_divweu ||
985                        BuiltinID == PPC::BI__builtin_divde ||
986                        BuiltinID == PPC::BI__builtin_divdeu;
987 
988   if (Is64BitBltin && !IsTarget64Bit)
989       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
990              << TheCall->getSourceRange();
991 
992   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
993       (BuiltinID == PPC::BI__builtin_bpermd &&
994        !Context.getTargetInfo().hasFeature("bpermd")))
995     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
996            << TheCall->getSourceRange();
997 
998   switch (BuiltinID) {
999   default: return false;
1000   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
1001   case PPC::BI__builtin_altivec_crypto_vshasigmad:
1002     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1003            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1004   case PPC::BI__builtin_tbegin:
1005   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
1006   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
1007   case PPC::BI__builtin_tabortwc:
1008   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
1009   case PPC::BI__builtin_tabortwci:
1010   case PPC::BI__builtin_tabortdci:
1011     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
1012            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
1013   }
1014   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1015 }
1016 
CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1017 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
1018                                            CallExpr *TheCall) {
1019   if (BuiltinID == SystemZ::BI__builtin_tabort) {
1020     Expr *Arg = TheCall->getArg(0);
1021     llvm::APSInt AbortCode(32);
1022     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
1023         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
1024       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
1025              << Arg->getSourceRange();
1026   }
1027 
1028   // For intrinsics which take an immediate value as part of the instruction,
1029   // range check them here.
1030   unsigned i = 0, l = 0, u = 0;
1031   switch (BuiltinID) {
1032   default: return false;
1033   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
1034   case SystemZ::BI__builtin_s390_verimb:
1035   case SystemZ::BI__builtin_s390_verimh:
1036   case SystemZ::BI__builtin_s390_verimf:
1037   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
1038   case SystemZ::BI__builtin_s390_vfaeb:
1039   case SystemZ::BI__builtin_s390_vfaeh:
1040   case SystemZ::BI__builtin_s390_vfaef:
1041   case SystemZ::BI__builtin_s390_vfaebs:
1042   case SystemZ::BI__builtin_s390_vfaehs:
1043   case SystemZ::BI__builtin_s390_vfaefs:
1044   case SystemZ::BI__builtin_s390_vfaezb:
1045   case SystemZ::BI__builtin_s390_vfaezh:
1046   case SystemZ::BI__builtin_s390_vfaezf:
1047   case SystemZ::BI__builtin_s390_vfaezbs:
1048   case SystemZ::BI__builtin_s390_vfaezhs:
1049   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
1050   case SystemZ::BI__builtin_s390_vfidb:
1051     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
1052            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1053   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
1054   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
1055   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
1056   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
1057   case SystemZ::BI__builtin_s390_vstrcb:
1058   case SystemZ::BI__builtin_s390_vstrch:
1059   case SystemZ::BI__builtin_s390_vstrcf:
1060   case SystemZ::BI__builtin_s390_vstrczb:
1061   case SystemZ::BI__builtin_s390_vstrczh:
1062   case SystemZ::BI__builtin_s390_vstrczf:
1063   case SystemZ::BI__builtin_s390_vstrcbs:
1064   case SystemZ::BI__builtin_s390_vstrchs:
1065   case SystemZ::BI__builtin_s390_vstrcfs:
1066   case SystemZ::BI__builtin_s390_vstrczbs:
1067   case SystemZ::BI__builtin_s390_vstrczhs:
1068   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
1069   }
1070   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1071 }
1072 
1073 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
1074 /// This checks that the target supports __builtin_cpu_supports and
1075 /// that the string argument is constant and valid.
SemaBuiltinCpuSupports(Sema & S,CallExpr * TheCall)1076 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
1077   Expr *Arg = TheCall->getArg(0);
1078 
1079   // Check if the argument is a string literal.
1080   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
1081     return S.Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
1082            << Arg->getSourceRange();
1083 
1084   // Check the contents of the string.
1085   StringRef Feature =
1086       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
1087   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
1088     return S.Diag(TheCall->getLocStart(), diag::err_invalid_cpu_supports)
1089            << Arg->getSourceRange();
1090   return false;
1091 }
1092 
CheckX86BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1093 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1094   unsigned i = 0, l = 0, u = 0;
1095   switch (BuiltinID) {
1096   default: return false;
1097   case X86::BI__builtin_cpu_supports:
1098     return SemaBuiltinCpuSupports(*this, TheCall);
1099   case X86::BI__builtin_ms_va_start:
1100     return SemaBuiltinMSVAStart(TheCall);
1101   case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
1102   case X86::BI__builtin_ia32_sha1rnds4: i = 2, l = 0; u = 3; break;
1103   case X86::BI__builtin_ia32_vpermil2pd:
1104   case X86::BI__builtin_ia32_vpermil2pd256:
1105   case X86::BI__builtin_ia32_vpermil2ps:
1106   case X86::BI__builtin_ia32_vpermil2ps256: i = 3, l = 0; u = 3; break;
1107   case X86::BI__builtin_ia32_cmpb128_mask:
1108   case X86::BI__builtin_ia32_cmpw128_mask:
1109   case X86::BI__builtin_ia32_cmpd128_mask:
1110   case X86::BI__builtin_ia32_cmpq128_mask:
1111   case X86::BI__builtin_ia32_cmpb256_mask:
1112   case X86::BI__builtin_ia32_cmpw256_mask:
1113   case X86::BI__builtin_ia32_cmpd256_mask:
1114   case X86::BI__builtin_ia32_cmpq256_mask:
1115   case X86::BI__builtin_ia32_cmpb512_mask:
1116   case X86::BI__builtin_ia32_cmpw512_mask:
1117   case X86::BI__builtin_ia32_cmpd512_mask:
1118   case X86::BI__builtin_ia32_cmpq512_mask:
1119   case X86::BI__builtin_ia32_ucmpb128_mask:
1120   case X86::BI__builtin_ia32_ucmpw128_mask:
1121   case X86::BI__builtin_ia32_ucmpd128_mask:
1122   case X86::BI__builtin_ia32_ucmpq128_mask:
1123   case X86::BI__builtin_ia32_ucmpb256_mask:
1124   case X86::BI__builtin_ia32_ucmpw256_mask:
1125   case X86::BI__builtin_ia32_ucmpd256_mask:
1126   case X86::BI__builtin_ia32_ucmpq256_mask:
1127   case X86::BI__builtin_ia32_ucmpb512_mask:
1128   case X86::BI__builtin_ia32_ucmpw512_mask:
1129   case X86::BI__builtin_ia32_ucmpd512_mask:
1130   case X86::BI__builtin_ia32_ucmpq512_mask: i = 2; l = 0; u = 7; break;
1131   case X86::BI__builtin_ia32_roundps:
1132   case X86::BI__builtin_ia32_roundpd:
1133   case X86::BI__builtin_ia32_roundps256:
1134   case X86::BI__builtin_ia32_roundpd256: i = 1, l = 0; u = 15; break;
1135   case X86::BI__builtin_ia32_roundss:
1136   case X86::BI__builtin_ia32_roundsd: i = 2, l = 0; u = 15; break;
1137   case X86::BI__builtin_ia32_cmpps:
1138   case X86::BI__builtin_ia32_cmpss:
1139   case X86::BI__builtin_ia32_cmppd:
1140   case X86::BI__builtin_ia32_cmpsd:
1141   case X86::BI__builtin_ia32_cmpps256:
1142   case X86::BI__builtin_ia32_cmppd256:
1143   case X86::BI__builtin_ia32_cmpps512_mask:
1144   case X86::BI__builtin_ia32_cmppd512_mask: i = 2; l = 0; u = 31; break;
1145   case X86::BI__builtin_ia32_vpcomub:
1146   case X86::BI__builtin_ia32_vpcomuw:
1147   case X86::BI__builtin_ia32_vpcomud:
1148   case X86::BI__builtin_ia32_vpcomuq:
1149   case X86::BI__builtin_ia32_vpcomb:
1150   case X86::BI__builtin_ia32_vpcomw:
1151   case X86::BI__builtin_ia32_vpcomd:
1152   case X86::BI__builtin_ia32_vpcomq: i = 2; l = 0; u = 7; break;
1153   }
1154   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1155 }
1156 
1157 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
1158 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
1159 /// Returns true when the format fits the function and the FormatStringInfo has
1160 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)1161 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
1162                                FormatStringInfo *FSI) {
1163   FSI->HasVAListArg = Format->getFirstArg() == 0;
1164   FSI->FormatIdx = Format->getFormatIdx() - 1;
1165   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
1166 
1167   // The way the format attribute works in GCC, the implicit this argument
1168   // of member functions is counted. However, it doesn't appear in our own
1169   // lists, so decrement format_idx in that case.
1170   if (IsCXXMember) {
1171     if(FSI->FormatIdx == 0)
1172       return false;
1173     --FSI->FormatIdx;
1174     if (FSI->FirstDataArg != 0)
1175       --FSI->FirstDataArg;
1176   }
1177   return true;
1178 }
1179 
1180 /// Checks if a the given expression evaluates to null.
1181 ///
1182 /// \brief Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)1183 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
1184   // If the expression has non-null type, it doesn't evaluate to null.
1185   if (auto nullability
1186         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
1187     if (*nullability == NullabilityKind::NonNull)
1188       return false;
1189   }
1190 
1191   // As a special case, transparent unions initialized with zero are
1192   // considered null for the purposes of the nonnull attribute.
1193   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
1194     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1195       if (const CompoundLiteralExpr *CLE =
1196           dyn_cast<CompoundLiteralExpr>(Expr))
1197         if (const InitListExpr *ILE =
1198             dyn_cast<InitListExpr>(CLE->getInitializer()))
1199           Expr = ILE->getInit(0);
1200   }
1201 
1202   bool Result;
1203   return (!Expr->isValueDependent() &&
1204           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
1205           !Result);
1206 }
1207 
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)1208 static void CheckNonNullArgument(Sema &S,
1209                                  const Expr *ArgExpr,
1210                                  SourceLocation CallSiteLoc) {
1211   if (CheckNonNullExpr(S, ArgExpr))
1212     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
1213            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
1214 }
1215 
GetFormatNSStringIdx(const FormatAttr * Format,unsigned & Idx)1216 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
1217   FormatStringInfo FSI;
1218   if ((GetFormatStringType(Format) == FST_NSString) &&
1219       getFormatStringInfo(Format, false, &FSI)) {
1220     Idx = FSI.FormatIdx;
1221     return true;
1222   }
1223   return false;
1224 }
1225 /// \brief Diagnose use of %s directive in an NSString which is being passed
1226 /// as formatting string to formatting method.
1227 static void
DiagnoseCStringFormatDirectiveInCFAPI(Sema & S,const NamedDecl * FDecl,Expr ** Args,unsigned NumArgs)1228 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
1229                                         const NamedDecl *FDecl,
1230                                         Expr **Args,
1231                                         unsigned NumArgs) {
1232   unsigned Idx = 0;
1233   bool Format = false;
1234   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
1235   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
1236     Idx = 2;
1237     Format = true;
1238   }
1239   else
1240     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1241       if (S.GetFormatNSStringIdx(I, Idx)) {
1242         Format = true;
1243         break;
1244       }
1245     }
1246   if (!Format || NumArgs <= Idx)
1247     return;
1248   const Expr *FormatExpr = Args[Idx];
1249   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
1250     FormatExpr = CSCE->getSubExpr();
1251   const StringLiteral *FormatString;
1252   if (const ObjCStringLiteral *OSL =
1253       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
1254     FormatString = OSL->getString();
1255   else
1256     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
1257   if (!FormatString)
1258     return;
1259   if (S.FormatStringHasSArg(FormatString)) {
1260     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
1261       << "%s" << 1 << 1;
1262     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
1263       << FDecl->getDeclName();
1264   }
1265 }
1266 
1267 /// Determine whether the given type has a non-null nullability annotation.
isNonNullType(ASTContext & ctx,QualType type)1268 static bool isNonNullType(ASTContext &ctx, QualType type) {
1269   if (auto nullability = type->getNullability(ctx))
1270     return *nullability == NullabilityKind::NonNull;
1271 
1272   return false;
1273 }
1274 
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)1275 static void CheckNonNullArguments(Sema &S,
1276                                   const NamedDecl *FDecl,
1277                                   const FunctionProtoType *Proto,
1278                                   ArrayRef<const Expr *> Args,
1279                                   SourceLocation CallSiteLoc) {
1280   assert((FDecl || Proto) && "Need a function declaration or prototype");
1281 
1282   // Check the attributes attached to the method/function itself.
1283   llvm::SmallBitVector NonNullArgs;
1284   if (FDecl) {
1285     // Handle the nonnull attribute on the function/method declaration itself.
1286     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
1287       if (!NonNull->args_size()) {
1288         // Easy case: all pointer arguments are nonnull.
1289         for (const auto *Arg : Args)
1290           if (S.isValidPointerAttrType(Arg->getType()))
1291             CheckNonNullArgument(S, Arg, CallSiteLoc);
1292         return;
1293       }
1294 
1295       for (unsigned Val : NonNull->args()) {
1296         if (Val >= Args.size())
1297           continue;
1298         if (NonNullArgs.empty())
1299           NonNullArgs.resize(Args.size());
1300         NonNullArgs.set(Val);
1301       }
1302     }
1303   }
1304 
1305   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
1306     // Handle the nonnull attribute on the parameters of the
1307     // function/method.
1308     ArrayRef<ParmVarDecl*> parms;
1309     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
1310       parms = FD->parameters();
1311     else
1312       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
1313 
1314     unsigned ParamIndex = 0;
1315     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
1316          I != E; ++I, ++ParamIndex) {
1317       const ParmVarDecl *PVD = *I;
1318       if (PVD->hasAttr<NonNullAttr>() ||
1319           isNonNullType(S.Context, PVD->getType())) {
1320         if (NonNullArgs.empty())
1321           NonNullArgs.resize(Args.size());
1322 
1323         NonNullArgs.set(ParamIndex);
1324       }
1325     }
1326   } else {
1327     // If we have a non-function, non-method declaration but no
1328     // function prototype, try to dig out the function prototype.
1329     if (!Proto) {
1330       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
1331         QualType type = VD->getType().getNonReferenceType();
1332         if (auto pointerType = type->getAs<PointerType>())
1333           type = pointerType->getPointeeType();
1334         else if (auto blockType = type->getAs<BlockPointerType>())
1335           type = blockType->getPointeeType();
1336         // FIXME: data member pointers?
1337 
1338         // Dig out the function prototype, if there is one.
1339         Proto = type->getAs<FunctionProtoType>();
1340       }
1341     }
1342 
1343     // Fill in non-null argument information from the nullability
1344     // information on the parameter types (if we have them).
1345     if (Proto) {
1346       unsigned Index = 0;
1347       for (auto paramType : Proto->getParamTypes()) {
1348         if (isNonNullType(S.Context, paramType)) {
1349           if (NonNullArgs.empty())
1350             NonNullArgs.resize(Args.size());
1351 
1352           NonNullArgs.set(Index);
1353         }
1354 
1355         ++Index;
1356       }
1357     }
1358   }
1359 
1360   // Check for non-null arguments.
1361   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
1362        ArgIndex != ArgIndexEnd; ++ArgIndex) {
1363     if (NonNullArgs[ArgIndex])
1364       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
1365   }
1366 }
1367 
1368 /// Handles the checks for format strings, non-POD arguments to vararg
1369 /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)1370 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
1371                      ArrayRef<const Expr *> Args, bool IsMemberFunction,
1372                      SourceLocation Loc, SourceRange Range,
1373                      VariadicCallType CallType) {
1374   // FIXME: We should check as much as we can in the template definition.
1375   if (CurContext->isDependentContext())
1376     return;
1377 
1378   // Printf and scanf checking.
1379   llvm::SmallBitVector CheckedVarArgs;
1380   if (FDecl) {
1381     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1382       // Only create vector if there are format attributes.
1383       CheckedVarArgs.resize(Args.size());
1384 
1385       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
1386                            CheckedVarArgs);
1387     }
1388   }
1389 
1390   // Refuse POD arguments that weren't caught by the format string
1391   // checks above.
1392   if (CallType != VariadicDoesNotApply) {
1393     unsigned NumParams = Proto ? Proto->getNumParams()
1394                        : FDecl && isa<FunctionDecl>(FDecl)
1395                            ? cast<FunctionDecl>(FDecl)->getNumParams()
1396                        : FDecl && isa<ObjCMethodDecl>(FDecl)
1397                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
1398                        : 0;
1399 
1400     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
1401       // Args[ArgIdx] can be null in malformed code.
1402       if (const Expr *Arg = Args[ArgIdx]) {
1403         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
1404           checkVariadicArgument(Arg, CallType);
1405       }
1406     }
1407   }
1408 
1409   if (FDecl || Proto) {
1410     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
1411 
1412     // Type safety checking.
1413     if (FDecl) {
1414       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
1415         CheckArgumentWithTypeTag(I, Args.data());
1416     }
1417   }
1418 }
1419 
1420 /// CheckConstructorCall - Check a constructor call for correctness and safety
1421 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)1422 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
1423                                 ArrayRef<const Expr *> Args,
1424                                 const FunctionProtoType *Proto,
1425                                 SourceLocation Loc) {
1426   VariadicCallType CallType =
1427     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
1428   checkCall(FDecl, Proto, Args, /*IsMemberFunction=*/true, Loc, SourceRange(),
1429             CallType);
1430 }
1431 
1432 /// CheckFunctionCall - Check a direct function call for various correctness
1433 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)1434 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
1435                              const FunctionProtoType *Proto) {
1436   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1437                               isa<CXXMethodDecl>(FDecl);
1438   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
1439                           IsMemberOperatorCall;
1440   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
1441                                                   TheCall->getCallee());
1442   Expr** Args = TheCall->getArgs();
1443   unsigned NumArgs = TheCall->getNumArgs();
1444   if (IsMemberOperatorCall) {
1445     // If this is a call to a member operator, hide the first argument
1446     // from checkCall.
1447     // FIXME: Our choice of AST representation here is less than ideal.
1448     ++Args;
1449     --NumArgs;
1450   }
1451   checkCall(FDecl, Proto, llvm::makeArrayRef(Args, NumArgs),
1452             IsMemberFunction, TheCall->getRParenLoc(),
1453             TheCall->getCallee()->getSourceRange(), CallType);
1454 
1455   IdentifierInfo *FnInfo = FDecl->getIdentifier();
1456   // None of the checks below are needed for functions that don't have
1457   // simple names (e.g., C++ conversion functions).
1458   if (!FnInfo)
1459     return false;
1460 
1461   CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
1462   if (getLangOpts().ObjC1)
1463     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
1464 
1465   unsigned CMId = FDecl->getMemoryFunctionKind();
1466   if (CMId == 0)
1467     return false;
1468 
1469   // Handle memory setting and copying functions.
1470   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
1471     CheckStrlcpycatArguments(TheCall, FnInfo);
1472   else if (CMId == Builtin::BIstrncat)
1473     CheckStrncatArguments(TheCall, FnInfo);
1474   else
1475     CheckMemaccessArguments(TheCall, CMId, FnInfo);
1476 
1477   return false;
1478 }
1479 
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)1480 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
1481                                ArrayRef<const Expr *> Args) {
1482   VariadicCallType CallType =
1483       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
1484 
1485   checkCall(Method, nullptr, Args,
1486             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
1487             CallType);
1488 
1489   return false;
1490 }
1491 
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)1492 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
1493                             const FunctionProtoType *Proto) {
1494   QualType Ty;
1495   if (const auto *V = dyn_cast<VarDecl>(NDecl))
1496     Ty = V->getType().getNonReferenceType();
1497   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
1498     Ty = F->getType().getNonReferenceType();
1499   else
1500     return false;
1501 
1502   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
1503       !Ty->isFunctionProtoType())
1504     return false;
1505 
1506   VariadicCallType CallType;
1507   if (!Proto || !Proto->isVariadic()) {
1508     CallType = VariadicDoesNotApply;
1509   } else if (Ty->isBlockPointerType()) {
1510     CallType = VariadicBlock;
1511   } else { // Ty->isFunctionPointerType()
1512     CallType = VariadicFunction;
1513   }
1514 
1515   checkCall(NDecl, Proto,
1516             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1517             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1518             TheCall->getCallee()->getSourceRange(), CallType);
1519 
1520   return false;
1521 }
1522 
1523 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
1524 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)1525 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
1526   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
1527                                                   TheCall->getCallee());
1528   checkCall(/*FDecl=*/nullptr, Proto,
1529             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1530             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1531             TheCall->getCallee()->getSourceRange(), CallType);
1532 
1533   return false;
1534 }
1535 
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)1536 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
1537   if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
1538       Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
1539     return false;
1540 
1541   switch (Op) {
1542   case AtomicExpr::AO__c11_atomic_init:
1543     llvm_unreachable("There is no ordering argument for an init");
1544 
1545   case AtomicExpr::AO__c11_atomic_load:
1546   case AtomicExpr::AO__atomic_load_n:
1547   case AtomicExpr::AO__atomic_load:
1548     return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
1549            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1550 
1551   case AtomicExpr::AO__c11_atomic_store:
1552   case AtomicExpr::AO__atomic_store:
1553   case AtomicExpr::AO__atomic_store_n:
1554     return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
1555            Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
1556            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1557 
1558   default:
1559     return true;
1560   }
1561 }
1562 
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)1563 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
1564                                          AtomicExpr::AtomicOp Op) {
1565   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
1566   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1567 
1568   // All these operations take one of the following forms:
1569   enum {
1570     // C    __c11_atomic_init(A *, C)
1571     Init,
1572     // C    __c11_atomic_load(A *, int)
1573     Load,
1574     // void __atomic_load(A *, CP, int)
1575     Copy,
1576     // C    __c11_atomic_add(A *, M, int)
1577     Arithmetic,
1578     // C    __atomic_exchange_n(A *, CP, int)
1579     Xchg,
1580     // void __atomic_exchange(A *, C *, CP, int)
1581     GNUXchg,
1582     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
1583     C11CmpXchg,
1584     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
1585     GNUCmpXchg
1586   } Form = Init;
1587   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
1588   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
1589   // where:
1590   //   C is an appropriate type,
1591   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
1592   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
1593   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
1594   //   the int parameters are for orderings.
1595 
1596   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
1597                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
1598                         AtomicExpr::AO__atomic_load,
1599                 "need to update code for modified C11 atomics");
1600   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
1601                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
1602   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
1603              Op == AtomicExpr::AO__atomic_store_n ||
1604              Op == AtomicExpr::AO__atomic_exchange_n ||
1605              Op == AtomicExpr::AO__atomic_compare_exchange_n;
1606   bool IsAddSub = false;
1607 
1608   switch (Op) {
1609   case AtomicExpr::AO__c11_atomic_init:
1610     Form = Init;
1611     break;
1612 
1613   case AtomicExpr::AO__c11_atomic_load:
1614   case AtomicExpr::AO__atomic_load_n:
1615     Form = Load;
1616     break;
1617 
1618   case AtomicExpr::AO__c11_atomic_store:
1619   case AtomicExpr::AO__atomic_load:
1620   case AtomicExpr::AO__atomic_store:
1621   case AtomicExpr::AO__atomic_store_n:
1622     Form = Copy;
1623     break;
1624 
1625   case AtomicExpr::AO__c11_atomic_fetch_add:
1626   case AtomicExpr::AO__c11_atomic_fetch_sub:
1627   case AtomicExpr::AO__atomic_fetch_add:
1628   case AtomicExpr::AO__atomic_fetch_sub:
1629   case AtomicExpr::AO__atomic_add_fetch:
1630   case AtomicExpr::AO__atomic_sub_fetch:
1631     IsAddSub = true;
1632     // Fall through.
1633   case AtomicExpr::AO__c11_atomic_fetch_and:
1634   case AtomicExpr::AO__c11_atomic_fetch_or:
1635   case AtomicExpr::AO__c11_atomic_fetch_xor:
1636   case AtomicExpr::AO__atomic_fetch_and:
1637   case AtomicExpr::AO__atomic_fetch_or:
1638   case AtomicExpr::AO__atomic_fetch_xor:
1639   case AtomicExpr::AO__atomic_fetch_nand:
1640   case AtomicExpr::AO__atomic_and_fetch:
1641   case AtomicExpr::AO__atomic_or_fetch:
1642   case AtomicExpr::AO__atomic_xor_fetch:
1643   case AtomicExpr::AO__atomic_nand_fetch:
1644     Form = Arithmetic;
1645     break;
1646 
1647   case AtomicExpr::AO__c11_atomic_exchange:
1648   case AtomicExpr::AO__atomic_exchange_n:
1649     Form = Xchg;
1650     break;
1651 
1652   case AtomicExpr::AO__atomic_exchange:
1653     Form = GNUXchg;
1654     break;
1655 
1656   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1657   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1658     Form = C11CmpXchg;
1659     break;
1660 
1661   case AtomicExpr::AO__atomic_compare_exchange:
1662   case AtomicExpr::AO__atomic_compare_exchange_n:
1663     Form = GNUCmpXchg;
1664     break;
1665   }
1666 
1667   // Check we have the right number of arguments.
1668   if (TheCall->getNumArgs() < NumArgs[Form]) {
1669     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1670       << 0 << NumArgs[Form] << TheCall->getNumArgs()
1671       << TheCall->getCallee()->getSourceRange();
1672     return ExprError();
1673   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
1674     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
1675          diag::err_typecheck_call_too_many_args)
1676       << 0 << NumArgs[Form] << TheCall->getNumArgs()
1677       << TheCall->getCallee()->getSourceRange();
1678     return ExprError();
1679   }
1680 
1681   // Inspect the first argument of the atomic operation.
1682   Expr *Ptr = TheCall->getArg(0);
1683   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1684   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1685   if (!pointerType) {
1686     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1687       << Ptr->getType() << Ptr->getSourceRange();
1688     return ExprError();
1689   }
1690 
1691   // For a __c11 builtin, this should be a pointer to an _Atomic type.
1692   QualType AtomTy = pointerType->getPointeeType(); // 'A'
1693   QualType ValType = AtomTy; // 'C'
1694   if (IsC11) {
1695     if (!AtomTy->isAtomicType()) {
1696       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1697         << Ptr->getType() << Ptr->getSourceRange();
1698       return ExprError();
1699     }
1700     if (AtomTy.isConstQualified()) {
1701       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1702         << Ptr->getType() << Ptr->getSourceRange();
1703       return ExprError();
1704     }
1705     ValType = AtomTy->getAs<AtomicType>()->getValueType();
1706   } else if (Form != Load && Op != AtomicExpr::AO__atomic_load) {
1707     if (ValType.isConstQualified()) {
1708       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_pointer)
1709         << Ptr->getType() << Ptr->getSourceRange();
1710       return ExprError();
1711     }
1712   }
1713 
1714   // For an arithmetic operation, the implied arithmetic must be well-formed.
1715   if (Form == Arithmetic) {
1716     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1717     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1718       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1719         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1720       return ExprError();
1721     }
1722     if (!IsAddSub && !ValType->isIntegerType()) {
1723       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1724         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1725       return ExprError();
1726     }
1727     if (IsC11 && ValType->isPointerType() &&
1728         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
1729                             diag::err_incomplete_type)) {
1730       return ExprError();
1731     }
1732   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1733     // For __atomic_*_n operations, the value type must be a scalar integral or
1734     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1735     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1736       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1737     return ExprError();
1738   }
1739 
1740   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1741       !AtomTy->isScalarType()) {
1742     // For GNU atomics, require a trivially-copyable type. This is not part of
1743     // the GNU atomics specification, but we enforce it for sanity.
1744     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1745       << Ptr->getType() << Ptr->getSourceRange();
1746     return ExprError();
1747   }
1748 
1749   switch (ValType.getObjCLifetime()) {
1750   case Qualifiers::OCL_None:
1751   case Qualifiers::OCL_ExplicitNone:
1752     // okay
1753     break;
1754 
1755   case Qualifiers::OCL_Weak:
1756   case Qualifiers::OCL_Strong:
1757   case Qualifiers::OCL_Autoreleasing:
1758     // FIXME: Can this happen? By this point, ValType should be known
1759     // to be trivially copyable.
1760     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1761       << ValType << Ptr->getSourceRange();
1762     return ExprError();
1763   }
1764 
1765   // atomic_fetch_or takes a pointer to a volatile 'A'.  We shouldn't let the
1766   // volatile-ness of the pointee-type inject itself into the result or the
1767   // other operands.
1768   ValType.removeLocalVolatile();
1769   QualType ResultType = ValType;
1770   if (Form == Copy || Form == GNUXchg || Form == Init)
1771     ResultType = Context.VoidTy;
1772   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1773     ResultType = Context.BoolTy;
1774 
1775   // The type of a parameter passed 'by value'. In the GNU atomics, such
1776   // arguments are actually passed as pointers.
1777   QualType ByValType = ValType; // 'CP'
1778   if (!IsC11 && !IsN)
1779     ByValType = Ptr->getType();
1780 
1781   // FIXME: __atomic_load allows the first argument to be a a pointer to const
1782   // but not the second argument. We need to manually remove possible const
1783   // qualifiers.
1784 
1785   // The first argument --- the pointer --- has a fixed type; we
1786   // deduce the types of the rest of the arguments accordingly.  Walk
1787   // the remaining arguments, converting them to the deduced value type.
1788   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1789     QualType Ty;
1790     if (i < NumVals[Form] + 1) {
1791       switch (i) {
1792       case 1:
1793         // The second argument is the non-atomic operand. For arithmetic, this
1794         // is always passed by value, and for a compare_exchange it is always
1795         // passed by address. For the rest, GNU uses by-address and C11 uses
1796         // by-value.
1797         assert(Form != Load);
1798         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1799           Ty = ValType;
1800         else if (Form == Copy || Form == Xchg)
1801           Ty = ByValType;
1802         else if (Form == Arithmetic)
1803           Ty = Context.getPointerDiffType();
1804         else
1805           Ty = Context.getPointerType(ValType.getUnqualifiedType());
1806         break;
1807       case 2:
1808         // The third argument to compare_exchange / GNU exchange is a
1809         // (pointer to a) desired value.
1810         Ty = ByValType;
1811         break;
1812       case 3:
1813         // The fourth argument to GNU compare_exchange is a 'weak' flag.
1814         Ty = Context.BoolTy;
1815         break;
1816       }
1817     } else {
1818       // The order(s) are always converted to int.
1819       Ty = Context.IntTy;
1820     }
1821 
1822     InitializedEntity Entity =
1823         InitializedEntity::InitializeParameter(Context, Ty, false);
1824     ExprResult Arg = TheCall->getArg(i);
1825     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1826     if (Arg.isInvalid())
1827       return true;
1828     TheCall->setArg(i, Arg.get());
1829   }
1830 
1831   // Permute the arguments into a 'consistent' order.
1832   SmallVector<Expr*, 5> SubExprs;
1833   SubExprs.push_back(Ptr);
1834   switch (Form) {
1835   case Init:
1836     // Note, AtomicExpr::getVal1() has a special case for this atomic.
1837     SubExprs.push_back(TheCall->getArg(1)); // Val1
1838     break;
1839   case Load:
1840     SubExprs.push_back(TheCall->getArg(1)); // Order
1841     break;
1842   case Copy:
1843   case Arithmetic:
1844   case Xchg:
1845     SubExprs.push_back(TheCall->getArg(2)); // Order
1846     SubExprs.push_back(TheCall->getArg(1)); // Val1
1847     break;
1848   case GNUXchg:
1849     // Note, AtomicExpr::getVal2() has a special case for this atomic.
1850     SubExprs.push_back(TheCall->getArg(3)); // Order
1851     SubExprs.push_back(TheCall->getArg(1)); // Val1
1852     SubExprs.push_back(TheCall->getArg(2)); // Val2
1853     break;
1854   case C11CmpXchg:
1855     SubExprs.push_back(TheCall->getArg(3)); // Order
1856     SubExprs.push_back(TheCall->getArg(1)); // Val1
1857     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1858     SubExprs.push_back(TheCall->getArg(2)); // Val2
1859     break;
1860   case GNUCmpXchg:
1861     SubExprs.push_back(TheCall->getArg(4)); // Order
1862     SubExprs.push_back(TheCall->getArg(1)); // Val1
1863     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1864     SubExprs.push_back(TheCall->getArg(2)); // Val2
1865     SubExprs.push_back(TheCall->getArg(3)); // Weak
1866     break;
1867   }
1868 
1869   if (SubExprs.size() >= 2 && Form != Init) {
1870     llvm::APSInt Result(32);
1871     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
1872         !isValidOrderingForOp(Result.getSExtValue(), Op))
1873       Diag(SubExprs[1]->getLocStart(),
1874            diag::warn_atomic_op_has_invalid_memory_order)
1875           << SubExprs[1]->getSourceRange();
1876   }
1877 
1878   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1879                                             SubExprs, ResultType, Op,
1880                                             TheCall->getRParenLoc());
1881 
1882   if ((Op == AtomicExpr::AO__c11_atomic_load ||
1883        (Op == AtomicExpr::AO__c11_atomic_store)) &&
1884       Context.AtomicUsesUnsupportedLibcall(AE))
1885     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1886     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1887 
1888   return AE;
1889 }
1890 
1891 
1892 /// checkBuiltinArgument - Given a call to a builtin function, perform
1893 /// normal type-checking on the given argument, updating the call in
1894 /// place.  This is useful when a builtin function requires custom
1895 /// type-checking for some of its arguments but not necessarily all of
1896 /// them.
1897 ///
1898 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)1899 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1900   FunctionDecl *Fn = E->getDirectCallee();
1901   assert(Fn && "builtin call without direct callee!");
1902 
1903   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1904   InitializedEntity Entity =
1905     InitializedEntity::InitializeParameter(S.Context, Param);
1906 
1907   ExprResult Arg = E->getArg(0);
1908   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1909   if (Arg.isInvalid())
1910     return true;
1911 
1912   E->setArg(ArgIndex, Arg.get());
1913   return false;
1914 }
1915 
1916 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
1917 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
1918 /// type of its first argument.  The main ActOnCallExpr routines have already
1919 /// promoted the types of arguments because all of these calls are prototyped as
1920 /// void(...).
1921 ///
1922 /// This function goes through and does final semantic checking for these
1923 /// builtins,
1924 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)1925 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1926   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1927   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1928   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1929 
1930   // Ensure that we have at least one argument to do type inference from.
1931   if (TheCall->getNumArgs() < 1) {
1932     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1933       << 0 << 1 << TheCall->getNumArgs()
1934       << TheCall->getCallee()->getSourceRange();
1935     return ExprError();
1936   }
1937 
1938   // Inspect the first argument of the atomic builtin.  This should always be
1939   // a pointer type, whose element is an integral scalar or pointer type.
1940   // Because it is a pointer type, we don't have to worry about any implicit
1941   // casts here.
1942   // FIXME: We don't allow floating point scalars as input.
1943   Expr *FirstArg = TheCall->getArg(0);
1944   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1945   if (FirstArgResult.isInvalid())
1946     return ExprError();
1947   FirstArg = FirstArgResult.get();
1948   TheCall->setArg(0, FirstArg);
1949 
1950   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1951   if (!pointerType) {
1952     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1953       << FirstArg->getType() << FirstArg->getSourceRange();
1954     return ExprError();
1955   }
1956 
1957   QualType ValType = pointerType->getPointeeType();
1958   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1959       !ValType->isBlockPointerType()) {
1960     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1961       << FirstArg->getType() << FirstArg->getSourceRange();
1962     return ExprError();
1963   }
1964 
1965   switch (ValType.getObjCLifetime()) {
1966   case Qualifiers::OCL_None:
1967   case Qualifiers::OCL_ExplicitNone:
1968     // okay
1969     break;
1970 
1971   case Qualifiers::OCL_Weak:
1972   case Qualifiers::OCL_Strong:
1973   case Qualifiers::OCL_Autoreleasing:
1974     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1975       << ValType << FirstArg->getSourceRange();
1976     return ExprError();
1977   }
1978 
1979   // Strip any qualifiers off ValType.
1980   ValType = ValType.getUnqualifiedType();
1981 
1982   // The majority of builtins return a value, but a few have special return
1983   // types, so allow them to override appropriately below.
1984   QualType ResultType = ValType;
1985 
1986   // We need to figure out which concrete builtin this maps onto.  For example,
1987   // __sync_fetch_and_add with a 2 byte object turns into
1988   // __sync_fetch_and_add_2.
1989 #define BUILTIN_ROW(x) \
1990   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1991     Builtin::BI##x##_8, Builtin::BI##x##_16 }
1992 
1993   static const unsigned BuiltinIndices[][5] = {
1994     BUILTIN_ROW(__sync_fetch_and_add),
1995     BUILTIN_ROW(__sync_fetch_and_sub),
1996     BUILTIN_ROW(__sync_fetch_and_or),
1997     BUILTIN_ROW(__sync_fetch_and_and),
1998     BUILTIN_ROW(__sync_fetch_and_xor),
1999     BUILTIN_ROW(__sync_fetch_and_nand),
2000 
2001     BUILTIN_ROW(__sync_add_and_fetch),
2002     BUILTIN_ROW(__sync_sub_and_fetch),
2003     BUILTIN_ROW(__sync_and_and_fetch),
2004     BUILTIN_ROW(__sync_or_and_fetch),
2005     BUILTIN_ROW(__sync_xor_and_fetch),
2006     BUILTIN_ROW(__sync_nand_and_fetch),
2007 
2008     BUILTIN_ROW(__sync_val_compare_and_swap),
2009     BUILTIN_ROW(__sync_bool_compare_and_swap),
2010     BUILTIN_ROW(__sync_lock_test_and_set),
2011     BUILTIN_ROW(__sync_lock_release),
2012     BUILTIN_ROW(__sync_swap)
2013   };
2014 #undef BUILTIN_ROW
2015 
2016   // Determine the index of the size.
2017   unsigned SizeIndex;
2018   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
2019   case 1: SizeIndex = 0; break;
2020   case 2: SizeIndex = 1; break;
2021   case 4: SizeIndex = 2; break;
2022   case 8: SizeIndex = 3; break;
2023   case 16: SizeIndex = 4; break;
2024   default:
2025     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
2026       << FirstArg->getType() << FirstArg->getSourceRange();
2027     return ExprError();
2028   }
2029 
2030   // Each of these builtins has one pointer argument, followed by some number of
2031   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
2032   // that we ignore.  Find out which row of BuiltinIndices to read from as well
2033   // as the number of fixed args.
2034   unsigned BuiltinID = FDecl->getBuiltinID();
2035   unsigned BuiltinIndex, NumFixed = 1;
2036   bool WarnAboutSemanticsChange = false;
2037   switch (BuiltinID) {
2038   default: llvm_unreachable("Unknown overloaded atomic builtin!");
2039   case Builtin::BI__sync_fetch_and_add:
2040   case Builtin::BI__sync_fetch_and_add_1:
2041   case Builtin::BI__sync_fetch_and_add_2:
2042   case Builtin::BI__sync_fetch_and_add_4:
2043   case Builtin::BI__sync_fetch_and_add_8:
2044   case Builtin::BI__sync_fetch_and_add_16:
2045     BuiltinIndex = 0;
2046     break;
2047 
2048   case Builtin::BI__sync_fetch_and_sub:
2049   case Builtin::BI__sync_fetch_and_sub_1:
2050   case Builtin::BI__sync_fetch_and_sub_2:
2051   case Builtin::BI__sync_fetch_and_sub_4:
2052   case Builtin::BI__sync_fetch_and_sub_8:
2053   case Builtin::BI__sync_fetch_and_sub_16:
2054     BuiltinIndex = 1;
2055     break;
2056 
2057   case Builtin::BI__sync_fetch_and_or:
2058   case Builtin::BI__sync_fetch_and_or_1:
2059   case Builtin::BI__sync_fetch_and_or_2:
2060   case Builtin::BI__sync_fetch_and_or_4:
2061   case Builtin::BI__sync_fetch_and_or_8:
2062   case Builtin::BI__sync_fetch_and_or_16:
2063     BuiltinIndex = 2;
2064     break;
2065 
2066   case Builtin::BI__sync_fetch_and_and:
2067   case Builtin::BI__sync_fetch_and_and_1:
2068   case Builtin::BI__sync_fetch_and_and_2:
2069   case Builtin::BI__sync_fetch_and_and_4:
2070   case Builtin::BI__sync_fetch_and_and_8:
2071   case Builtin::BI__sync_fetch_and_and_16:
2072     BuiltinIndex = 3;
2073     break;
2074 
2075   case Builtin::BI__sync_fetch_and_xor:
2076   case Builtin::BI__sync_fetch_and_xor_1:
2077   case Builtin::BI__sync_fetch_and_xor_2:
2078   case Builtin::BI__sync_fetch_and_xor_4:
2079   case Builtin::BI__sync_fetch_and_xor_8:
2080   case Builtin::BI__sync_fetch_and_xor_16:
2081     BuiltinIndex = 4;
2082     break;
2083 
2084   case Builtin::BI__sync_fetch_and_nand:
2085   case Builtin::BI__sync_fetch_and_nand_1:
2086   case Builtin::BI__sync_fetch_and_nand_2:
2087   case Builtin::BI__sync_fetch_and_nand_4:
2088   case Builtin::BI__sync_fetch_and_nand_8:
2089   case Builtin::BI__sync_fetch_and_nand_16:
2090     BuiltinIndex = 5;
2091     WarnAboutSemanticsChange = true;
2092     break;
2093 
2094   case Builtin::BI__sync_add_and_fetch:
2095   case Builtin::BI__sync_add_and_fetch_1:
2096   case Builtin::BI__sync_add_and_fetch_2:
2097   case Builtin::BI__sync_add_and_fetch_4:
2098   case Builtin::BI__sync_add_and_fetch_8:
2099   case Builtin::BI__sync_add_and_fetch_16:
2100     BuiltinIndex = 6;
2101     break;
2102 
2103   case Builtin::BI__sync_sub_and_fetch:
2104   case Builtin::BI__sync_sub_and_fetch_1:
2105   case Builtin::BI__sync_sub_and_fetch_2:
2106   case Builtin::BI__sync_sub_and_fetch_4:
2107   case Builtin::BI__sync_sub_and_fetch_8:
2108   case Builtin::BI__sync_sub_and_fetch_16:
2109     BuiltinIndex = 7;
2110     break;
2111 
2112   case Builtin::BI__sync_and_and_fetch:
2113   case Builtin::BI__sync_and_and_fetch_1:
2114   case Builtin::BI__sync_and_and_fetch_2:
2115   case Builtin::BI__sync_and_and_fetch_4:
2116   case Builtin::BI__sync_and_and_fetch_8:
2117   case Builtin::BI__sync_and_and_fetch_16:
2118     BuiltinIndex = 8;
2119     break;
2120 
2121   case Builtin::BI__sync_or_and_fetch:
2122   case Builtin::BI__sync_or_and_fetch_1:
2123   case Builtin::BI__sync_or_and_fetch_2:
2124   case Builtin::BI__sync_or_and_fetch_4:
2125   case Builtin::BI__sync_or_and_fetch_8:
2126   case Builtin::BI__sync_or_and_fetch_16:
2127     BuiltinIndex = 9;
2128     break;
2129 
2130   case Builtin::BI__sync_xor_and_fetch:
2131   case Builtin::BI__sync_xor_and_fetch_1:
2132   case Builtin::BI__sync_xor_and_fetch_2:
2133   case Builtin::BI__sync_xor_and_fetch_4:
2134   case Builtin::BI__sync_xor_and_fetch_8:
2135   case Builtin::BI__sync_xor_and_fetch_16:
2136     BuiltinIndex = 10;
2137     break;
2138 
2139   case Builtin::BI__sync_nand_and_fetch:
2140   case Builtin::BI__sync_nand_and_fetch_1:
2141   case Builtin::BI__sync_nand_and_fetch_2:
2142   case Builtin::BI__sync_nand_and_fetch_4:
2143   case Builtin::BI__sync_nand_and_fetch_8:
2144   case Builtin::BI__sync_nand_and_fetch_16:
2145     BuiltinIndex = 11;
2146     WarnAboutSemanticsChange = true;
2147     break;
2148 
2149   case Builtin::BI__sync_val_compare_and_swap:
2150   case Builtin::BI__sync_val_compare_and_swap_1:
2151   case Builtin::BI__sync_val_compare_and_swap_2:
2152   case Builtin::BI__sync_val_compare_and_swap_4:
2153   case Builtin::BI__sync_val_compare_and_swap_8:
2154   case Builtin::BI__sync_val_compare_and_swap_16:
2155     BuiltinIndex = 12;
2156     NumFixed = 2;
2157     break;
2158 
2159   case Builtin::BI__sync_bool_compare_and_swap:
2160   case Builtin::BI__sync_bool_compare_and_swap_1:
2161   case Builtin::BI__sync_bool_compare_and_swap_2:
2162   case Builtin::BI__sync_bool_compare_and_swap_4:
2163   case Builtin::BI__sync_bool_compare_and_swap_8:
2164   case Builtin::BI__sync_bool_compare_and_swap_16:
2165     BuiltinIndex = 13;
2166     NumFixed = 2;
2167     ResultType = Context.BoolTy;
2168     break;
2169 
2170   case Builtin::BI__sync_lock_test_and_set:
2171   case Builtin::BI__sync_lock_test_and_set_1:
2172   case Builtin::BI__sync_lock_test_and_set_2:
2173   case Builtin::BI__sync_lock_test_and_set_4:
2174   case Builtin::BI__sync_lock_test_and_set_8:
2175   case Builtin::BI__sync_lock_test_and_set_16:
2176     BuiltinIndex = 14;
2177     break;
2178 
2179   case Builtin::BI__sync_lock_release:
2180   case Builtin::BI__sync_lock_release_1:
2181   case Builtin::BI__sync_lock_release_2:
2182   case Builtin::BI__sync_lock_release_4:
2183   case Builtin::BI__sync_lock_release_8:
2184   case Builtin::BI__sync_lock_release_16:
2185     BuiltinIndex = 15;
2186     NumFixed = 0;
2187     ResultType = Context.VoidTy;
2188     break;
2189 
2190   case Builtin::BI__sync_swap:
2191   case Builtin::BI__sync_swap_1:
2192   case Builtin::BI__sync_swap_2:
2193   case Builtin::BI__sync_swap_4:
2194   case Builtin::BI__sync_swap_8:
2195   case Builtin::BI__sync_swap_16:
2196     BuiltinIndex = 16;
2197     break;
2198   }
2199 
2200   // Now that we know how many fixed arguments we expect, first check that we
2201   // have at least that many.
2202   if (TheCall->getNumArgs() < 1+NumFixed) {
2203     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
2204       << 0 << 1+NumFixed << TheCall->getNumArgs()
2205       << TheCall->getCallee()->getSourceRange();
2206     return ExprError();
2207   }
2208 
2209   if (WarnAboutSemanticsChange) {
2210     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
2211       << TheCall->getCallee()->getSourceRange();
2212   }
2213 
2214   // Get the decl for the concrete builtin from this, we can tell what the
2215   // concrete integer type we should convert to is.
2216   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
2217   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
2218   FunctionDecl *NewBuiltinDecl;
2219   if (NewBuiltinID == BuiltinID)
2220     NewBuiltinDecl = FDecl;
2221   else {
2222     // Perform builtin lookup to avoid redeclaring it.
2223     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
2224     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
2225     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
2226     assert(Res.getFoundDecl());
2227     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
2228     if (!NewBuiltinDecl)
2229       return ExprError();
2230   }
2231 
2232   // The first argument --- the pointer --- has a fixed type; we
2233   // deduce the types of the rest of the arguments accordingly.  Walk
2234   // the remaining arguments, converting them to the deduced value type.
2235   for (unsigned i = 0; i != NumFixed; ++i) {
2236     ExprResult Arg = TheCall->getArg(i+1);
2237 
2238     // GCC does an implicit conversion to the pointer or integer ValType.  This
2239     // can fail in some cases (1i -> int**), check for this error case now.
2240     // Initialize the argument.
2241     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2242                                                    ValType, /*consume*/ false);
2243     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2244     if (Arg.isInvalid())
2245       return ExprError();
2246 
2247     // Okay, we have something that *can* be converted to the right type.  Check
2248     // to see if there is a potentially weird extension going on here.  This can
2249     // happen when you do an atomic operation on something like an char* and
2250     // pass in 42.  The 42 gets converted to char.  This is even more strange
2251     // for things like 45.123 -> char, etc.
2252     // FIXME: Do this check.
2253     TheCall->setArg(i+1, Arg.get());
2254   }
2255 
2256   ASTContext& Context = this->getASTContext();
2257 
2258   // Create a new DeclRefExpr to refer to the new decl.
2259   DeclRefExpr* NewDRE = DeclRefExpr::Create(
2260       Context,
2261       DRE->getQualifierLoc(),
2262       SourceLocation(),
2263       NewBuiltinDecl,
2264       /*enclosing*/ false,
2265       DRE->getLocation(),
2266       Context.BuiltinFnTy,
2267       DRE->getValueKind());
2268 
2269   // Set the callee in the CallExpr.
2270   // FIXME: This loses syntactic information.
2271   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
2272   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
2273                                               CK_BuiltinFnToFnPtr);
2274   TheCall->setCallee(PromotedCall.get());
2275 
2276   // Change the result type of the call to match the original value type. This
2277   // is arbitrary, but the codegen for these builtins ins design to handle it
2278   // gracefully.
2279   TheCall->setType(ResultType);
2280 
2281   return TheCallResult;
2282 }
2283 
2284 /// SemaBuiltinNontemporalOverloaded - We have a call to
2285 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
2286 /// overloaded function based on the pointer type of its last argument.
2287 ///
2288 /// This function goes through and does final semantic checking for these
2289 /// builtins.
SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult)2290 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
2291   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
2292   DeclRefExpr *DRE =
2293       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2294   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2295   unsigned BuiltinID = FDecl->getBuiltinID();
2296   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
2297           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
2298          "Unexpected nontemporal load/store builtin!");
2299   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
2300   unsigned numArgs = isStore ? 2 : 1;
2301 
2302   // Ensure that we have the proper number of arguments.
2303   if (checkArgCount(*this, TheCall, numArgs))
2304     return ExprError();
2305 
2306   // Inspect the last argument of the nontemporal builtin.  This should always
2307   // be a pointer type, from which we imply the type of the memory access.
2308   // Because it is a pointer type, we don't have to worry about any implicit
2309   // casts here.
2310   Expr *PointerArg = TheCall->getArg(numArgs - 1);
2311   ExprResult PointerArgResult =
2312       DefaultFunctionArrayLvalueConversion(PointerArg);
2313 
2314   if (PointerArgResult.isInvalid())
2315     return ExprError();
2316   PointerArg = PointerArgResult.get();
2317   TheCall->setArg(numArgs - 1, PointerArg);
2318 
2319   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2320   if (!pointerType) {
2321     Diag(DRE->getLocStart(), diag::err_nontemporal_builtin_must_be_pointer)
2322         << PointerArg->getType() << PointerArg->getSourceRange();
2323     return ExprError();
2324   }
2325 
2326   QualType ValType = pointerType->getPointeeType();
2327 
2328   // Strip any qualifiers off ValType.
2329   ValType = ValType.getUnqualifiedType();
2330   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2331       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
2332       !ValType->isVectorType()) {
2333     Diag(DRE->getLocStart(),
2334          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
2335         << PointerArg->getType() << PointerArg->getSourceRange();
2336     return ExprError();
2337   }
2338 
2339   if (!isStore) {
2340     TheCall->setType(ValType);
2341     return TheCallResult;
2342   }
2343 
2344   ExprResult ValArg = TheCall->getArg(0);
2345   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2346       Context, ValType, /*consume*/ false);
2347   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2348   if (ValArg.isInvalid())
2349     return ExprError();
2350 
2351   TheCall->setArg(0, ValArg.get());
2352   TheCall->setType(Context.VoidTy);
2353   return TheCallResult;
2354 }
2355 
2356 /// CheckObjCString - Checks that the argument to the builtin
2357 /// CFString constructor is correct
2358 /// Note: It might also make sense to do the UTF-16 conversion here (would
2359 /// simplify the backend).
CheckObjCString(Expr * Arg)2360 bool Sema::CheckObjCString(Expr *Arg) {
2361   Arg = Arg->IgnoreParenCasts();
2362   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
2363 
2364   if (!Literal || !Literal->isAscii()) {
2365     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
2366       << Arg->getSourceRange();
2367     return true;
2368   }
2369 
2370   if (Literal->containsNonAsciiOrNull()) {
2371     StringRef String = Literal->getString();
2372     unsigned NumBytes = String.size();
2373     SmallVector<UTF16, 128> ToBuf(NumBytes);
2374     const UTF8 *FromPtr = (const UTF8 *)String.data();
2375     UTF16 *ToPtr = &ToBuf[0];
2376 
2377     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2378                                                  &ToPtr, ToPtr + NumBytes,
2379                                                  strictConversion);
2380     // Check for conversion failure.
2381     if (Result != conversionOK)
2382       Diag(Arg->getLocStart(),
2383            diag::warn_cfstring_truncated) << Arg->getSourceRange();
2384   }
2385   return false;
2386 }
2387 
2388 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
2389 /// for validity.  Emit an error and return true on failure; return false
2390 /// on success.
SemaBuiltinVAStartImpl(CallExpr * TheCall)2391 bool Sema::SemaBuiltinVAStartImpl(CallExpr *TheCall) {
2392   Expr *Fn = TheCall->getCallee();
2393   if (TheCall->getNumArgs() > 2) {
2394     Diag(TheCall->getArg(2)->getLocStart(),
2395          diag::err_typecheck_call_too_many_args)
2396       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2397       << Fn->getSourceRange()
2398       << SourceRange(TheCall->getArg(2)->getLocStart(),
2399                      (*(TheCall->arg_end()-1))->getLocEnd());
2400     return true;
2401   }
2402 
2403   if (TheCall->getNumArgs() < 2) {
2404     return Diag(TheCall->getLocEnd(),
2405       diag::err_typecheck_call_too_few_args_at_least)
2406       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
2407   }
2408 
2409   // Type-check the first argument normally.
2410   if (checkBuiltinArgument(*this, TheCall, 0))
2411     return true;
2412 
2413   // Determine whether the current function is variadic or not.
2414   BlockScopeInfo *CurBlock = getCurBlock();
2415   bool isVariadic;
2416   if (CurBlock)
2417     isVariadic = CurBlock->TheDecl->isVariadic();
2418   else if (FunctionDecl *FD = getCurFunctionDecl())
2419     isVariadic = FD->isVariadic();
2420   else
2421     isVariadic = getCurMethodDecl()->isVariadic();
2422 
2423   if (!isVariadic) {
2424     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2425     return true;
2426   }
2427 
2428   // Verify that the second argument to the builtin is the last argument of the
2429   // current function or method.
2430   bool SecondArgIsLastNamedArgument = false;
2431   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
2432 
2433   // These are valid if SecondArgIsLastNamedArgument is false after the next
2434   // block.
2435   QualType Type;
2436   SourceLocation ParamLoc;
2437 
2438   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
2439     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
2440       // FIXME: This isn't correct for methods (results in bogus warning).
2441       // Get the last formal in the current function.
2442       const ParmVarDecl *LastArg;
2443       if (CurBlock)
2444         LastArg = *(CurBlock->TheDecl->param_end()-1);
2445       else if (FunctionDecl *FD = getCurFunctionDecl())
2446         LastArg = *(FD->param_end()-1);
2447       else
2448         LastArg = *(getCurMethodDecl()->param_end()-1);
2449       SecondArgIsLastNamedArgument = PV == LastArg;
2450 
2451       Type = PV->getType();
2452       ParamLoc = PV->getLocation();
2453     }
2454   }
2455 
2456   if (!SecondArgIsLastNamedArgument)
2457     Diag(TheCall->getArg(1)->getLocStart(),
2458          diag::warn_second_parameter_of_va_start_not_last_named_argument);
2459   else if (Type->isReferenceType()) {
2460     Diag(Arg->getLocStart(),
2461          diag::warn_va_start_of_reference_type_is_undefined);
2462     Diag(ParamLoc, diag::note_parameter_type) << Type;
2463   }
2464 
2465   TheCall->setType(Context.VoidTy);
2466   return false;
2467 }
2468 
2469 /// Check the arguments to '__builtin_va_start' for validity, and that
2470 /// it was called from a function of the native ABI.
2471 /// Emit an error and return true on failure; return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)2472 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
2473   // On x86-64 Unix, don't allow this in Win64 ABI functions.
2474   // On x64 Windows, don't allow this in System V ABI functions.
2475   // (Yes, that means there's no corresponding way to support variadic
2476   // System V ABI functions on Windows.)
2477   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64) {
2478     unsigned OS = Context.getTargetInfo().getTriple().getOS();
2479     clang::CallingConv CC = CC_C;
2480     if (const FunctionDecl *FD = getCurFunctionDecl())
2481       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
2482     if ((OS == llvm::Triple::Win32 && CC == CC_X86_64SysV) ||
2483         (OS != llvm::Triple::Win32 && CC == CC_X86_64Win64))
2484       return Diag(TheCall->getCallee()->getLocStart(),
2485                   diag::err_va_start_used_in_wrong_abi_function)
2486              << (OS != llvm::Triple::Win32);
2487   }
2488   return SemaBuiltinVAStartImpl(TheCall);
2489 }
2490 
2491 /// Check the arguments to '__builtin_ms_va_start' for validity, and that
2492 /// it was called from a Win64 ABI function.
2493 /// Emit an error and return true on failure; return false on success.
SemaBuiltinMSVAStart(CallExpr * TheCall)2494 bool Sema::SemaBuiltinMSVAStart(CallExpr *TheCall) {
2495   // This only makes sense for x86-64.
2496   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
2497   Expr *Callee = TheCall->getCallee();
2498   if (TT.getArch() != llvm::Triple::x86_64)
2499     return Diag(Callee->getLocStart(), diag::err_x86_builtin_32_bit_tgt);
2500   // Don't allow this in System V ABI functions.
2501   clang::CallingConv CC = CC_C;
2502   if (const FunctionDecl *FD = getCurFunctionDecl())
2503     CC = FD->getType()->getAs<FunctionType>()->getCallConv();
2504   if (CC == CC_X86_64SysV ||
2505       (TT.getOS() != llvm::Triple::Win32 && CC != CC_X86_64Win64))
2506     return Diag(Callee->getLocStart(),
2507                 diag::err_ms_va_start_used_in_sysv_function);
2508   return SemaBuiltinVAStartImpl(TheCall);
2509 }
2510 
SemaBuiltinVAStartARM(CallExpr * Call)2511 bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
2512   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
2513   //                 const char *named_addr);
2514 
2515   Expr *Func = Call->getCallee();
2516 
2517   if (Call->getNumArgs() < 3)
2518     return Diag(Call->getLocEnd(),
2519                 diag::err_typecheck_call_too_few_args_at_least)
2520            << 0 /*function call*/ << 3 << Call->getNumArgs();
2521 
2522   // Determine whether the current function is variadic or not.
2523   bool IsVariadic;
2524   if (BlockScopeInfo *CurBlock = getCurBlock())
2525     IsVariadic = CurBlock->TheDecl->isVariadic();
2526   else if (FunctionDecl *FD = getCurFunctionDecl())
2527     IsVariadic = FD->isVariadic();
2528   else if (ObjCMethodDecl *MD = getCurMethodDecl())
2529     IsVariadic = MD->isVariadic();
2530   else
2531     llvm_unreachable("unexpected statement type");
2532 
2533   if (!IsVariadic) {
2534     Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2535     return true;
2536   }
2537 
2538   // Type-check the first argument normally.
2539   if (checkBuiltinArgument(*this, Call, 0))
2540     return true;
2541 
2542   const struct {
2543     unsigned ArgNo;
2544     QualType Type;
2545   } ArgumentTypes[] = {
2546     { 1, Context.getPointerType(Context.CharTy.withConst()) },
2547     { 2, Context.getSizeType() },
2548   };
2549 
2550   for (const auto &AT : ArgumentTypes) {
2551     const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
2552     if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
2553       continue;
2554     Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
2555       << Arg->getType() << AT.Type << 1 /* different class */
2556       << 0 /* qualifier difference */ << 3 /* parameter mismatch */
2557       << AT.ArgNo + 1 << Arg->getType() << AT.Type;
2558   }
2559 
2560   return false;
2561 }
2562 
2563 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
2564 /// friends.  This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)2565 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
2566   if (TheCall->getNumArgs() < 2)
2567     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2568       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
2569   if (TheCall->getNumArgs() > 2)
2570     return Diag(TheCall->getArg(2)->getLocStart(),
2571                 diag::err_typecheck_call_too_many_args)
2572       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2573       << SourceRange(TheCall->getArg(2)->getLocStart(),
2574                      (*(TheCall->arg_end()-1))->getLocEnd());
2575 
2576   ExprResult OrigArg0 = TheCall->getArg(0);
2577   ExprResult OrigArg1 = TheCall->getArg(1);
2578 
2579   // Do standard promotions between the two arguments, returning their common
2580   // type.
2581   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
2582   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
2583     return true;
2584 
2585   // Make sure any conversions are pushed back into the call; this is
2586   // type safe since unordered compare builtins are declared as "_Bool
2587   // foo(...)".
2588   TheCall->setArg(0, OrigArg0.get());
2589   TheCall->setArg(1, OrigArg1.get());
2590 
2591   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
2592     return false;
2593 
2594   // If the common type isn't a real floating type, then the arguments were
2595   // invalid for this operation.
2596   if (Res.isNull() || !Res->isRealFloatingType())
2597     return Diag(OrigArg0.get()->getLocStart(),
2598                 diag::err_typecheck_call_invalid_ordered_compare)
2599       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
2600       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
2601 
2602   return false;
2603 }
2604 
2605 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
2606 /// __builtin_isnan and friends.  This is declared to take (...), so we have
2607 /// to check everything. We expect the last argument to be a floating point
2608 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)2609 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
2610   if (TheCall->getNumArgs() < NumArgs)
2611     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2612       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
2613   if (TheCall->getNumArgs() > NumArgs)
2614     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
2615                 diag::err_typecheck_call_too_many_args)
2616       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
2617       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
2618                      (*(TheCall->arg_end()-1))->getLocEnd());
2619 
2620   Expr *OrigArg = TheCall->getArg(NumArgs-1);
2621 
2622   if (OrigArg->isTypeDependent())
2623     return false;
2624 
2625   // This operation requires a non-_Complex floating-point number.
2626   if (!OrigArg->getType()->isRealFloatingType())
2627     return Diag(OrigArg->getLocStart(),
2628                 diag::err_typecheck_call_invalid_unary_fp)
2629       << OrigArg->getType() << OrigArg->getSourceRange();
2630 
2631   // If this is an implicit conversion from float -> double, remove it.
2632   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
2633     Expr *CastArg = Cast->getSubExpr();
2634     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
2635       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
2636              "promotion from float to double is the only expected cast here");
2637       Cast->setSubExpr(nullptr);
2638       TheCall->setArg(NumArgs-1, CastArg);
2639     }
2640   }
2641 
2642   return false;
2643 }
2644 
2645 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
2646 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)2647 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
2648   if (TheCall->getNumArgs() < 2)
2649     return ExprError(Diag(TheCall->getLocEnd(),
2650                           diag::err_typecheck_call_too_few_args_at_least)
2651                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2652                      << TheCall->getSourceRange());
2653 
2654   // Determine which of the following types of shufflevector we're checking:
2655   // 1) unary, vector mask: (lhs, mask)
2656   // 2) binary, vector mask: (lhs, rhs, mask)
2657   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
2658   QualType resType = TheCall->getArg(0)->getType();
2659   unsigned numElements = 0;
2660 
2661   if (!TheCall->getArg(0)->isTypeDependent() &&
2662       !TheCall->getArg(1)->isTypeDependent()) {
2663     QualType LHSType = TheCall->getArg(0)->getType();
2664     QualType RHSType = TheCall->getArg(1)->getType();
2665 
2666     if (!LHSType->isVectorType() || !RHSType->isVectorType())
2667       return ExprError(Diag(TheCall->getLocStart(),
2668                             diag::err_shufflevector_non_vector)
2669                        << SourceRange(TheCall->getArg(0)->getLocStart(),
2670                                       TheCall->getArg(1)->getLocEnd()));
2671 
2672     numElements = LHSType->getAs<VectorType>()->getNumElements();
2673     unsigned numResElements = TheCall->getNumArgs() - 2;
2674 
2675     // Check to see if we have a call with 2 vector arguments, the unary shuffle
2676     // with mask.  If so, verify that RHS is an integer vector type with the
2677     // same number of elts as lhs.
2678     if (TheCall->getNumArgs() == 2) {
2679       if (!RHSType->hasIntegerRepresentation() ||
2680           RHSType->getAs<VectorType>()->getNumElements() != numElements)
2681         return ExprError(Diag(TheCall->getLocStart(),
2682                               diag::err_shufflevector_incompatible_vector)
2683                          << SourceRange(TheCall->getArg(1)->getLocStart(),
2684                                         TheCall->getArg(1)->getLocEnd()));
2685     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
2686       return ExprError(Diag(TheCall->getLocStart(),
2687                             diag::err_shufflevector_incompatible_vector)
2688                        << SourceRange(TheCall->getArg(0)->getLocStart(),
2689                                       TheCall->getArg(1)->getLocEnd()));
2690     } else if (numElements != numResElements) {
2691       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
2692       resType = Context.getVectorType(eltType, numResElements,
2693                                       VectorType::GenericVector);
2694     }
2695   }
2696 
2697   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
2698     if (TheCall->getArg(i)->isTypeDependent() ||
2699         TheCall->getArg(i)->isValueDependent())
2700       continue;
2701 
2702     llvm::APSInt Result(32);
2703     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
2704       return ExprError(Diag(TheCall->getLocStart(),
2705                             diag::err_shufflevector_nonconstant_argument)
2706                        << TheCall->getArg(i)->getSourceRange());
2707 
2708     // Allow -1 which will be translated to undef in the IR.
2709     if (Result.isSigned() && Result.isAllOnesValue())
2710       continue;
2711 
2712     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
2713       return ExprError(Diag(TheCall->getLocStart(),
2714                             diag::err_shufflevector_argument_too_large)
2715                        << TheCall->getArg(i)->getSourceRange());
2716   }
2717 
2718   SmallVector<Expr*, 32> exprs;
2719 
2720   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
2721     exprs.push_back(TheCall->getArg(i));
2722     TheCall->setArg(i, nullptr);
2723   }
2724 
2725   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
2726                                          TheCall->getCallee()->getLocStart(),
2727                                          TheCall->getRParenLoc());
2728 }
2729 
2730 /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)2731 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
2732                                        SourceLocation BuiltinLoc,
2733                                        SourceLocation RParenLoc) {
2734   ExprValueKind VK = VK_RValue;
2735   ExprObjectKind OK = OK_Ordinary;
2736   QualType DstTy = TInfo->getType();
2737   QualType SrcTy = E->getType();
2738 
2739   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
2740     return ExprError(Diag(BuiltinLoc,
2741                           diag::err_convertvector_non_vector)
2742                      << E->getSourceRange());
2743   if (!DstTy->isVectorType() && !DstTy->isDependentType())
2744     return ExprError(Diag(BuiltinLoc,
2745                           diag::err_convertvector_non_vector_type));
2746 
2747   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
2748     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
2749     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
2750     if (SrcElts != DstElts)
2751       return ExprError(Diag(BuiltinLoc,
2752                             diag::err_convertvector_incompatible_vector)
2753                        << E->getSourceRange());
2754   }
2755 
2756   return new (Context)
2757       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
2758 }
2759 
2760 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
2761 // This is declared to take (const void*, ...) and can take two
2762 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)2763 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
2764   unsigned NumArgs = TheCall->getNumArgs();
2765 
2766   if (NumArgs > 3)
2767     return Diag(TheCall->getLocEnd(),
2768              diag::err_typecheck_call_too_many_args_at_most)
2769              << 0 /*function call*/ << 3 << NumArgs
2770              << TheCall->getSourceRange();
2771 
2772   // Argument 0 is checked for us and the remaining arguments must be
2773   // constant integers.
2774   for (unsigned i = 1; i != NumArgs; ++i)
2775     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
2776       return true;
2777 
2778   return false;
2779 }
2780 
2781 /// SemaBuiltinAssume - Handle __assume (MS Extension).
2782 // __assume does not evaluate its arguments, and should warn if its argument
2783 // has side effects.
SemaBuiltinAssume(CallExpr * TheCall)2784 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
2785   Expr *Arg = TheCall->getArg(0);
2786   if (Arg->isInstantiationDependent()) return false;
2787 
2788   if (Arg->HasSideEffects(Context))
2789     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
2790       << Arg->getSourceRange()
2791       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
2792 
2793   return false;
2794 }
2795 
2796 /// Handle __builtin_assume_aligned. This is declared
2797 /// as (const void*, size_t, ...) and can take one optional constant int arg.
SemaBuiltinAssumeAligned(CallExpr * TheCall)2798 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
2799   unsigned NumArgs = TheCall->getNumArgs();
2800 
2801   if (NumArgs > 3)
2802     return Diag(TheCall->getLocEnd(),
2803              diag::err_typecheck_call_too_many_args_at_most)
2804              << 0 /*function call*/ << 3 << NumArgs
2805              << TheCall->getSourceRange();
2806 
2807   // The alignment must be a constant integer.
2808   Expr *Arg = TheCall->getArg(1);
2809 
2810   // We can't check the value of a dependent argument.
2811   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
2812     llvm::APSInt Result;
2813     if (SemaBuiltinConstantArg(TheCall, 1, Result))
2814       return true;
2815 
2816     if (!Result.isPowerOf2())
2817       return Diag(TheCall->getLocStart(),
2818                   diag::err_alignment_not_power_of_two)
2819            << Arg->getSourceRange();
2820   }
2821 
2822   if (NumArgs > 2) {
2823     ExprResult Arg(TheCall->getArg(2));
2824     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2825       Context.getSizeType(), false);
2826     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2827     if (Arg.isInvalid()) return true;
2828     TheCall->setArg(2, Arg.get());
2829   }
2830 
2831   return false;
2832 }
2833 
2834 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
2835 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)2836 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
2837                                   llvm::APSInt &Result) {
2838   Expr *Arg = TheCall->getArg(ArgNum);
2839   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2840   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2841 
2842   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
2843 
2844   if (!Arg->isIntegerConstantExpr(Result, Context))
2845     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
2846                 << FDecl->getDeclName() <<  Arg->getSourceRange();
2847 
2848   return false;
2849 }
2850 
2851 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
2852 /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High)2853 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
2854                                        int Low, int High) {
2855   llvm::APSInt Result;
2856 
2857   // We can't check the value of a dependent argument.
2858   Expr *Arg = TheCall->getArg(ArgNum);
2859   if (Arg->isTypeDependent() || Arg->isValueDependent())
2860     return false;
2861 
2862   // Check constant-ness first.
2863   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2864     return true;
2865 
2866   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
2867     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
2868       << Low << High << Arg->getSourceRange();
2869 
2870   return false;
2871 }
2872 
2873 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
2874 /// TheCall is an ARM/AArch64 special register string literal.
SemaBuiltinARMSpecialReg(unsigned BuiltinID,CallExpr * TheCall,int ArgNum,unsigned ExpectedFieldNum,bool AllowName)2875 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
2876                                     int ArgNum, unsigned ExpectedFieldNum,
2877                                     bool AllowName) {
2878   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2879                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
2880                       BuiltinID == ARM::BI__builtin_arm_rsr ||
2881                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2882                       BuiltinID == ARM::BI__builtin_arm_wsr ||
2883                       BuiltinID == ARM::BI__builtin_arm_wsrp;
2884   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2885                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
2886                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
2887                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2888                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
2889                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
2890   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
2891 
2892   // We can't check the value of a dependent argument.
2893   Expr *Arg = TheCall->getArg(ArgNum);
2894   if (Arg->isTypeDependent() || Arg->isValueDependent())
2895     return false;
2896 
2897   // Check if the argument is a string literal.
2898   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
2899     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
2900            << Arg->getSourceRange();
2901 
2902   // Check the type of special register given.
2903   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
2904   SmallVector<StringRef, 6> Fields;
2905   Reg.split(Fields, ":");
2906 
2907   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
2908     return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
2909            << Arg->getSourceRange();
2910 
2911   // If the string is the name of a register then we cannot check that it is
2912   // valid here but if the string is of one the forms described in ACLE then we
2913   // can check that the supplied fields are integers and within the valid
2914   // ranges.
2915   if (Fields.size() > 1) {
2916     bool FiveFields = Fields.size() == 5;
2917 
2918     bool ValidString = true;
2919     if (IsARMBuiltin) {
2920       ValidString &= Fields[0].startswith_lower("cp") ||
2921                      Fields[0].startswith_lower("p");
2922       if (ValidString)
2923         Fields[0] =
2924           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
2925 
2926       ValidString &= Fields[2].startswith_lower("c");
2927       if (ValidString)
2928         Fields[2] = Fields[2].drop_front(1);
2929 
2930       if (FiveFields) {
2931         ValidString &= Fields[3].startswith_lower("c");
2932         if (ValidString)
2933           Fields[3] = Fields[3].drop_front(1);
2934       }
2935     }
2936 
2937     SmallVector<int, 5> Ranges;
2938     if (FiveFields)
2939       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 7, 15, 15});
2940     else
2941       Ranges.append({15, 7, 15});
2942 
2943     for (unsigned i=0; i<Fields.size(); ++i) {
2944       int IntField;
2945       ValidString &= !Fields[i].getAsInteger(10, IntField);
2946       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
2947     }
2948 
2949     if (!ValidString)
2950       return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
2951              << Arg->getSourceRange();
2952 
2953   } else if (IsAArch64Builtin && Fields.size() == 1) {
2954     // If the register name is one of those that appear in the condition below
2955     // and the special register builtin being used is one of the write builtins,
2956     // then we require that the argument provided for writing to the register
2957     // is an integer constant expression. This is because it will be lowered to
2958     // an MSR (immediate) instruction, so we need to know the immediate at
2959     // compile time.
2960     if (TheCall->getNumArgs() != 2)
2961       return false;
2962 
2963     std::string RegLower = Reg.lower();
2964     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
2965         RegLower != "pan" && RegLower != "uao")
2966       return false;
2967 
2968     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2969   }
2970 
2971   return false;
2972 }
2973 
2974 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
2975 /// This checks that the target supports __builtin_longjmp and
2976 /// that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)2977 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
2978   if (!Context.getTargetInfo().hasSjLjLowering())
2979     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
2980              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2981 
2982   Expr *Arg = TheCall->getArg(1);
2983   llvm::APSInt Result;
2984 
2985   // TODO: This is less than ideal. Overload this to take a value.
2986   if (SemaBuiltinConstantArg(TheCall, 1, Result))
2987     return true;
2988 
2989   if (Result != 1)
2990     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
2991              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
2992 
2993   return false;
2994 }
2995 
2996 
2997 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
2998 /// This checks that the target supports __builtin_setjmp.
SemaBuiltinSetjmp(CallExpr * TheCall)2999 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
3000   if (!Context.getTargetInfo().hasSjLjLowering())
3001     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
3002              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
3003   return false;
3004 }
3005 
3006 namespace {
3007 enum StringLiteralCheckType {
3008   SLCT_NotALiteral,
3009   SLCT_UncheckedLiteral,
3010   SLCT_CheckedLiteral
3011 };
3012 }
3013 
3014 // Determine if an expression is a string literal or constant string.
3015 // If this function returns false on the arguments to a function expecting a
3016 // format string, we will usually need to emit a warning.
3017 // True string literals are then checked by CheckFormatString.
3018 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs)3019 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
3020                       bool HasVAListArg, unsigned format_idx,
3021                       unsigned firstDataArg, Sema::FormatStringType Type,
3022                       Sema::VariadicCallType CallType, bool InFunctionCall,
3023                       llvm::SmallBitVector &CheckedVarArgs) {
3024  tryAgain:
3025   if (E->isTypeDependent() || E->isValueDependent())
3026     return SLCT_NotALiteral;
3027 
3028   E = E->IgnoreParenCasts();
3029 
3030   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
3031     // Technically -Wformat-nonliteral does not warn about this case.
3032     // The behavior of printf and friends in this case is implementation
3033     // dependent.  Ideally if the format string cannot be null then
3034     // it should have a 'nonnull' attribute in the function prototype.
3035     return SLCT_UncheckedLiteral;
3036 
3037   switch (E->getStmtClass()) {
3038   case Stmt::BinaryConditionalOperatorClass:
3039   case Stmt::ConditionalOperatorClass: {
3040     // The expression is a literal if both sub-expressions were, and it was
3041     // completely checked only if both sub-expressions were checked.
3042     const AbstractConditionalOperator *C =
3043         cast<AbstractConditionalOperator>(E);
3044     StringLiteralCheckType Left =
3045         checkFormatStringExpr(S, C->getTrueExpr(), Args,
3046                               HasVAListArg, format_idx, firstDataArg,
3047                               Type, CallType, InFunctionCall, CheckedVarArgs);
3048     if (Left == SLCT_NotALiteral)
3049       return SLCT_NotALiteral;
3050     StringLiteralCheckType Right =
3051         checkFormatStringExpr(S, C->getFalseExpr(), Args,
3052                               HasVAListArg, format_idx, firstDataArg,
3053                               Type, CallType, InFunctionCall, CheckedVarArgs);
3054     return Left < Right ? Left : Right;
3055   }
3056 
3057   case Stmt::ImplicitCastExprClass: {
3058     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3059     goto tryAgain;
3060   }
3061 
3062   case Stmt::OpaqueValueExprClass:
3063     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
3064       E = src;
3065       goto tryAgain;
3066     }
3067     return SLCT_NotALiteral;
3068 
3069   case Stmt::PredefinedExprClass:
3070     // While __func__, etc., are technically not string literals, they
3071     // cannot contain format specifiers and thus are not a security
3072     // liability.
3073     return SLCT_UncheckedLiteral;
3074 
3075   case Stmt::DeclRefExprClass: {
3076     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
3077 
3078     // As an exception, do not flag errors for variables binding to
3079     // const string literals.
3080     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
3081       bool isConstant = false;
3082       QualType T = DR->getType();
3083 
3084       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
3085         isConstant = AT->getElementType().isConstant(S.Context);
3086       } else if (const PointerType *PT = T->getAs<PointerType>()) {
3087         isConstant = T.isConstant(S.Context) &&
3088                      PT->getPointeeType().isConstant(S.Context);
3089       } else if (T->isObjCObjectPointerType()) {
3090         // In ObjC, there is usually no "const ObjectPointer" type,
3091         // so don't check if the pointee type is constant.
3092         isConstant = T.isConstant(S.Context);
3093       }
3094 
3095       if (isConstant) {
3096         if (const Expr *Init = VD->getAnyInitializer()) {
3097           // Look through initializers like const char c[] = { "foo" }
3098           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3099             if (InitList->isStringLiteralInit())
3100               Init = InitList->getInit(0)->IgnoreParenImpCasts();
3101           }
3102           return checkFormatStringExpr(S, Init, Args,
3103                                        HasVAListArg, format_idx,
3104                                        firstDataArg, Type, CallType,
3105                                        /*InFunctionCall*/false, CheckedVarArgs);
3106         }
3107       }
3108 
3109       // For vprintf* functions (i.e., HasVAListArg==true), we add a
3110       // special check to see if the format string is a function parameter
3111       // of the function calling the printf function.  If the function
3112       // has an attribute indicating it is a printf-like function, then we
3113       // should suppress warnings concerning non-literals being used in a call
3114       // to a vprintf function.  For example:
3115       //
3116       // void
3117       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
3118       //      va_list ap;
3119       //      va_start(ap, fmt);
3120       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
3121       //      ...
3122       // }
3123       if (HasVAListArg) {
3124         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
3125           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
3126             int PVIndex = PV->getFunctionScopeIndex() + 1;
3127             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
3128               // adjust for implicit parameter
3129               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
3130                 if (MD->isInstance())
3131                   ++PVIndex;
3132               // We also check if the formats are compatible.
3133               // We can't pass a 'scanf' string to a 'printf' function.
3134               if (PVIndex == PVFormat->getFormatIdx() &&
3135                   Type == S.GetFormatStringType(PVFormat))
3136                 return SLCT_UncheckedLiteral;
3137             }
3138           }
3139         }
3140       }
3141     }
3142 
3143     return SLCT_NotALiteral;
3144   }
3145 
3146   case Stmt::CallExprClass:
3147   case Stmt::CXXMemberCallExprClass: {
3148     const CallExpr *CE = cast<CallExpr>(E);
3149     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
3150       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
3151         unsigned ArgIndex = FA->getFormatIdx();
3152         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
3153           if (MD->isInstance())
3154             --ArgIndex;
3155         const Expr *Arg = CE->getArg(ArgIndex - 1);
3156 
3157         return checkFormatStringExpr(S, Arg, Args,
3158                                      HasVAListArg, format_idx, firstDataArg,
3159                                      Type, CallType, InFunctionCall,
3160                                      CheckedVarArgs);
3161       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
3162         unsigned BuiltinID = FD->getBuiltinID();
3163         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
3164             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
3165           const Expr *Arg = CE->getArg(0);
3166           return checkFormatStringExpr(S, Arg, Args,
3167                                        HasVAListArg, format_idx,
3168                                        firstDataArg, Type, CallType,
3169                                        InFunctionCall, CheckedVarArgs);
3170         }
3171       }
3172     }
3173 
3174     return SLCT_NotALiteral;
3175   }
3176   case Stmt::ObjCStringLiteralClass:
3177   case Stmt::StringLiteralClass: {
3178     const StringLiteral *StrE = nullptr;
3179 
3180     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
3181       StrE = ObjCFExpr->getString();
3182     else
3183       StrE = cast<StringLiteral>(E);
3184 
3185     if (StrE) {
3186       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
3187                           Type, InFunctionCall, CallType, CheckedVarArgs);
3188       return SLCT_CheckedLiteral;
3189     }
3190 
3191     return SLCT_NotALiteral;
3192   }
3193 
3194   default:
3195     return SLCT_NotALiteral;
3196   }
3197 }
3198 
GetFormatStringType(const FormatAttr * Format)3199 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
3200   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
3201   .Case("scanf", FST_Scanf)
3202   .Cases("printf", "printf0", FST_Printf)
3203   .Cases("NSString", "CFString", FST_NSString)
3204   .Case("strftime", FST_Strftime)
3205   .Case("strfmon", FST_Strfmon)
3206   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
3207   .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
3208   .Case("os_trace", FST_OSTrace)
3209   .Default(FST_Unknown);
3210 }
3211 
3212 /// CheckFormatArguments - Check calls to printf and scanf (and similar
3213 /// functions) for correct use of format strings.
3214 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)3215 bool Sema::CheckFormatArguments(const FormatAttr *Format,
3216                                 ArrayRef<const Expr *> Args,
3217                                 bool IsCXXMember,
3218                                 VariadicCallType CallType,
3219                                 SourceLocation Loc, SourceRange Range,
3220                                 llvm::SmallBitVector &CheckedVarArgs) {
3221   FormatStringInfo FSI;
3222   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
3223     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
3224                                 FSI.FirstDataArg, GetFormatStringType(Format),
3225                                 CallType, Loc, Range, CheckedVarArgs);
3226   return false;
3227 }
3228 
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)3229 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
3230                                 bool HasVAListArg, unsigned format_idx,
3231                                 unsigned firstDataArg, FormatStringType Type,
3232                                 VariadicCallType CallType,
3233                                 SourceLocation Loc, SourceRange Range,
3234                                 llvm::SmallBitVector &CheckedVarArgs) {
3235   // CHECK: printf/scanf-like function is called with no format string.
3236   if (format_idx >= Args.size()) {
3237     Diag(Loc, diag::warn_missing_format_string) << Range;
3238     return false;
3239   }
3240 
3241   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
3242 
3243   // CHECK: format string is not a string literal.
3244   //
3245   // Dynamically generated format strings are difficult to
3246   // automatically vet at compile time.  Requiring that format strings
3247   // are string literals: (1) permits the checking of format strings by
3248   // the compiler and thereby (2) can practically remove the source of
3249   // many format string exploits.
3250 
3251   // Format string can be either ObjC string (e.g. @"%d") or
3252   // C string (e.g. "%d")
3253   // ObjC string uses the same format specifiers as C string, so we can use
3254   // the same format string checking logic for both ObjC and C strings.
3255   StringLiteralCheckType CT =
3256       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
3257                             format_idx, firstDataArg, Type, CallType,
3258                             /*IsFunctionCall*/true, CheckedVarArgs);
3259   if (CT != SLCT_NotALiteral)
3260     // Literal format string found, check done!
3261     return CT == SLCT_CheckedLiteral;
3262 
3263   // Strftime is particular as it always uses a single 'time' argument,
3264   // so it is safe to pass a non-literal string.
3265   if (Type == FST_Strftime)
3266     return false;
3267 
3268   // Do not emit diag when the string param is a macro expansion and the
3269   // format is either NSString or CFString. This is a hack to prevent
3270   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
3271   // which are usually used in place of NS and CF string literals.
3272   if (Type == FST_NSString &&
3273       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
3274     return false;
3275 
3276   // If there are no arguments specified, warn with -Wformat-security, otherwise
3277   // warn only with -Wformat-nonliteral.
3278   if (Args.size() == firstDataArg)
3279     Diag(Args[format_idx]->getLocStart(),
3280          diag::warn_format_nonliteral_noargs)
3281       << OrigFormatExpr->getSourceRange();
3282   else
3283     Diag(Args[format_idx]->getLocStart(),
3284          diag::warn_format_nonliteral)
3285            << OrigFormatExpr->getSourceRange();
3286   return false;
3287 }
3288 
3289 namespace {
3290 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
3291 protected:
3292   Sema &S;
3293   const StringLiteral *FExpr;
3294   const Expr *OrigFormatExpr;
3295   const unsigned FirstDataArg;
3296   const unsigned NumDataArgs;
3297   const char *Beg; // Start of format string.
3298   const bool HasVAListArg;
3299   ArrayRef<const Expr *> Args;
3300   unsigned FormatIdx;
3301   llvm::SmallBitVector CoveredArgs;
3302   bool usesPositionalArgs;
3303   bool atFirstArg;
3304   bool inFunctionCall;
3305   Sema::VariadicCallType CallType;
3306   llvm::SmallBitVector &CheckedVarArgs;
3307 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs)3308   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
3309                      const Expr *origFormatExpr, unsigned firstDataArg,
3310                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
3311                      ArrayRef<const Expr *> Args,
3312                      unsigned formatIdx, bool inFunctionCall,
3313                      Sema::VariadicCallType callType,
3314                      llvm::SmallBitVector &CheckedVarArgs)
3315     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
3316       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
3317       Beg(beg), HasVAListArg(hasVAListArg),
3318       Args(Args), FormatIdx(formatIdx),
3319       usesPositionalArgs(false), atFirstArg(true),
3320       inFunctionCall(inFunctionCall), CallType(callType),
3321       CheckedVarArgs(CheckedVarArgs) {
3322     CoveredArgs.resize(numDataArgs);
3323     CoveredArgs.reset();
3324   }
3325 
3326   void DoneProcessing();
3327 
3328   void HandleIncompleteSpecifier(const char *startSpecifier,
3329                                  unsigned specifierLen) override;
3330 
3331   void HandleInvalidLengthModifier(
3332                            const analyze_format_string::FormatSpecifier &FS,
3333                            const analyze_format_string::ConversionSpecifier &CS,
3334                            const char *startSpecifier, unsigned specifierLen,
3335                            unsigned DiagID);
3336 
3337   void HandleNonStandardLengthModifier(
3338                     const analyze_format_string::FormatSpecifier &FS,
3339                     const char *startSpecifier, unsigned specifierLen);
3340 
3341   void HandleNonStandardConversionSpecifier(
3342                     const analyze_format_string::ConversionSpecifier &CS,
3343                     const char *startSpecifier, unsigned specifierLen);
3344 
3345   void HandlePosition(const char *startPos, unsigned posLen) override;
3346 
3347   void HandleInvalidPosition(const char *startSpecifier,
3348                              unsigned specifierLen,
3349                              analyze_format_string::PositionContext p) override;
3350 
3351   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
3352 
3353   void HandleNullChar(const char *nullCharacter) override;
3354 
3355   template <typename Range>
3356   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
3357                                    const Expr *ArgumentExpr,
3358                                    PartialDiagnostic PDiag,
3359                                    SourceLocation StringLoc,
3360                                    bool IsStringLocation, Range StringRange,
3361                                    ArrayRef<FixItHint> Fixit = None);
3362 
3363 protected:
3364   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
3365                                         const char *startSpec,
3366                                         unsigned specifierLen,
3367                                         const char *csStart, unsigned csLen);
3368 
3369   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
3370                                          const char *startSpec,
3371                                          unsigned specifierLen);
3372 
3373   SourceRange getFormatStringRange();
3374   CharSourceRange getSpecifierRange(const char *startSpecifier,
3375                                     unsigned specifierLen);
3376   SourceLocation getLocationOfByte(const char *x);
3377 
3378   const Expr *getDataArg(unsigned i) const;
3379 
3380   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
3381                     const analyze_format_string::ConversionSpecifier &CS,
3382                     const char *startSpecifier, unsigned specifierLen,
3383                     unsigned argIndex);
3384 
3385   template <typename Range>
3386   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
3387                             bool IsStringLocation, Range StringRange,
3388                             ArrayRef<FixItHint> Fixit = None);
3389 };
3390 }
3391 
getFormatStringRange()3392 SourceRange CheckFormatHandler::getFormatStringRange() {
3393   return OrigFormatExpr->getSourceRange();
3394 }
3395 
3396 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)3397 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
3398   SourceLocation Start = getLocationOfByte(startSpecifier);
3399   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
3400 
3401   // Advance the end SourceLocation by one due to half-open ranges.
3402   End = End.getLocWithOffset(1);
3403 
3404   return CharSourceRange::getCharRange(Start, End);
3405 }
3406 
getLocationOfByte(const char * x)3407 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
3408   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
3409 }
3410 
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)3411 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
3412                                                    unsigned specifierLen){
3413   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
3414                        getLocationOfByte(startSpecifier),
3415                        /*IsStringLocation*/true,
3416                        getSpecifierRange(startSpecifier, specifierLen));
3417 }
3418 
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)3419 void CheckFormatHandler::HandleInvalidLengthModifier(
3420     const analyze_format_string::FormatSpecifier &FS,
3421     const analyze_format_string::ConversionSpecifier &CS,
3422     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
3423   using namespace analyze_format_string;
3424 
3425   const LengthModifier &LM = FS.getLengthModifier();
3426   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
3427 
3428   // See if we know how to fix this length modifier.
3429   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
3430   if (FixedLM) {
3431     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
3432                          getLocationOfByte(LM.getStart()),
3433                          /*IsStringLocation*/true,
3434                          getSpecifierRange(startSpecifier, specifierLen));
3435 
3436     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
3437       << FixedLM->toString()
3438       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
3439 
3440   } else {
3441     FixItHint Hint;
3442     if (DiagID == diag::warn_format_nonsensical_length)
3443       Hint = FixItHint::CreateRemoval(LMRange);
3444 
3445     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
3446                          getLocationOfByte(LM.getStart()),
3447                          /*IsStringLocation*/true,
3448                          getSpecifierRange(startSpecifier, specifierLen),
3449                          Hint);
3450   }
3451 }
3452 
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3453 void CheckFormatHandler::HandleNonStandardLengthModifier(
3454     const analyze_format_string::FormatSpecifier &FS,
3455     const char *startSpecifier, unsigned specifierLen) {
3456   using namespace analyze_format_string;
3457 
3458   const LengthModifier &LM = FS.getLengthModifier();
3459   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
3460 
3461   // See if we know how to fix this length modifier.
3462   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
3463   if (FixedLM) {
3464     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3465                            << LM.toString() << 0,
3466                          getLocationOfByte(LM.getStart()),
3467                          /*IsStringLocation*/true,
3468                          getSpecifierRange(startSpecifier, specifierLen));
3469 
3470     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
3471       << FixedLM->toString()
3472       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
3473 
3474   } else {
3475     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3476                            << LM.toString() << 0,
3477                          getLocationOfByte(LM.getStart()),
3478                          /*IsStringLocation*/true,
3479                          getSpecifierRange(startSpecifier, specifierLen));
3480   }
3481 }
3482 
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)3483 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
3484     const analyze_format_string::ConversionSpecifier &CS,
3485     const char *startSpecifier, unsigned specifierLen) {
3486   using namespace analyze_format_string;
3487 
3488   // See if we know how to fix this conversion specifier.
3489   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
3490   if (FixedCS) {
3491     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3492                           << CS.toString() << /*conversion specifier*/1,
3493                          getLocationOfByte(CS.getStart()),
3494                          /*IsStringLocation*/true,
3495                          getSpecifierRange(startSpecifier, specifierLen));
3496 
3497     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
3498     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
3499       << FixedCS->toString()
3500       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
3501   } else {
3502     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3503                           << CS.toString() << /*conversion specifier*/1,
3504                          getLocationOfByte(CS.getStart()),
3505                          /*IsStringLocation*/true,
3506                          getSpecifierRange(startSpecifier, specifierLen));
3507   }
3508 }
3509 
HandlePosition(const char * startPos,unsigned posLen)3510 void CheckFormatHandler::HandlePosition(const char *startPos,
3511                                         unsigned posLen) {
3512   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
3513                                getLocationOfByte(startPos),
3514                                /*IsStringLocation*/true,
3515                                getSpecifierRange(startPos, posLen));
3516 }
3517 
3518 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)3519 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
3520                                      analyze_format_string::PositionContext p) {
3521   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
3522                          << (unsigned) p,
3523                        getLocationOfByte(startPos), /*IsStringLocation*/true,
3524                        getSpecifierRange(startPos, posLen));
3525 }
3526 
HandleZeroPosition(const char * startPos,unsigned posLen)3527 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
3528                                             unsigned posLen) {
3529   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
3530                                getLocationOfByte(startPos),
3531                                /*IsStringLocation*/true,
3532                                getSpecifierRange(startPos, posLen));
3533 }
3534 
HandleNullChar(const char * nullCharacter)3535 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
3536   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
3537     // The presence of a null character is likely an error.
3538     EmitFormatDiagnostic(
3539       S.PDiag(diag::warn_printf_format_string_contains_null_char),
3540       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
3541       getFormatStringRange());
3542   }
3543 }
3544 
3545 // Note that this may return NULL if there was an error parsing or building
3546 // one of the argument expressions.
getDataArg(unsigned i) const3547 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
3548   return Args[FirstDataArg + i];
3549 }
3550 
DoneProcessing()3551 void CheckFormatHandler::DoneProcessing() {
3552     // Does the number of data arguments exceed the number of
3553     // format conversions in the format string?
3554   if (!HasVAListArg) {
3555       // Find any arguments that weren't covered.
3556     CoveredArgs.flip();
3557     signed notCoveredArg = CoveredArgs.find_first();
3558     if (notCoveredArg >= 0) {
3559       assert((unsigned)notCoveredArg < NumDataArgs);
3560       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
3561         SourceLocation Loc = E->getLocStart();
3562         if (!S.getSourceManager().isInSystemMacro(Loc)) {
3563           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
3564                                Loc, /*IsStringLocation*/false,
3565                                getFormatStringRange());
3566         }
3567       }
3568     }
3569   }
3570 }
3571 
3572 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)3573 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
3574                                                      SourceLocation Loc,
3575                                                      const char *startSpec,
3576                                                      unsigned specifierLen,
3577                                                      const char *csStart,
3578                                                      unsigned csLen) {
3579 
3580   bool keepGoing = true;
3581   if (argIndex < NumDataArgs) {
3582     // Consider the argument coverered, even though the specifier doesn't
3583     // make sense.
3584     CoveredArgs.set(argIndex);
3585   }
3586   else {
3587     // If argIndex exceeds the number of data arguments we
3588     // don't issue a warning because that is just a cascade of warnings (and
3589     // they may have intended '%%' anyway). We don't want to continue processing
3590     // the format string after this point, however, as we will like just get
3591     // gibberish when trying to match arguments.
3592     keepGoing = false;
3593   }
3594 
3595   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
3596                          << StringRef(csStart, csLen),
3597                        Loc, /*IsStringLocation*/true,
3598                        getSpecifierRange(startSpec, specifierLen));
3599 
3600   return keepGoing;
3601 }
3602 
3603 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)3604 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
3605                                                       const char *startSpec,
3606                                                       unsigned specifierLen) {
3607   EmitFormatDiagnostic(
3608     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
3609     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
3610 }
3611 
3612 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)3613 CheckFormatHandler::CheckNumArgs(
3614   const analyze_format_string::FormatSpecifier &FS,
3615   const analyze_format_string::ConversionSpecifier &CS,
3616   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
3617 
3618   if (argIndex >= NumDataArgs) {
3619     PartialDiagnostic PDiag = FS.usesPositionalArg()
3620       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
3621            << (argIndex+1) << NumDataArgs)
3622       : S.PDiag(diag::warn_printf_insufficient_data_args);
3623     EmitFormatDiagnostic(
3624       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
3625       getSpecifierRange(startSpecifier, specifierLen));
3626     return false;
3627   }
3628   return true;
3629 }
3630 
3631 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)3632 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
3633                                               SourceLocation Loc,
3634                                               bool IsStringLocation,
3635                                               Range StringRange,
3636                                               ArrayRef<FixItHint> FixIt) {
3637   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
3638                        Loc, IsStringLocation, StringRange, FixIt);
3639 }
3640 
3641 /// \brief If the format string is not within the funcion call, emit a note
3642 /// so that the function call and string are in diagnostic messages.
3643 ///
3644 /// \param InFunctionCall if true, the format string is within the function
3645 /// call and only one diagnostic message will be produced.  Otherwise, an
3646 /// extra note will be emitted pointing to location of the format string.
3647 ///
3648 /// \param ArgumentExpr the expression that is passed as the format string
3649 /// argument in the function call.  Used for getting locations when two
3650 /// diagnostics are emitted.
3651 ///
3652 /// \param PDiag the callee should already have provided any strings for the
3653 /// diagnostic message.  This function only adds locations and fixits
3654 /// to diagnostics.
3655 ///
3656 /// \param Loc primary location for diagnostic.  If two diagnostics are
3657 /// required, one will be at Loc and a new SourceLocation will be created for
3658 /// the other one.
3659 ///
3660 /// \param IsStringLocation if true, Loc points to the format string should be
3661 /// used for the note.  Otherwise, Loc points to the argument list and will
3662 /// be used with PDiag.
3663 ///
3664 /// \param StringRange some or all of the string to highlight.  This is
3665 /// templated so it can accept either a CharSourceRange or a SourceRange.
3666 ///
3667 /// \param FixIt optional fix it hint for the format string.
3668 template<typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)3669 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
3670                                               const Expr *ArgumentExpr,
3671                                               PartialDiagnostic PDiag,
3672                                               SourceLocation Loc,
3673                                               bool IsStringLocation,
3674                                               Range StringRange,
3675                                               ArrayRef<FixItHint> FixIt) {
3676   if (InFunctionCall) {
3677     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
3678     D << StringRange;
3679     D << FixIt;
3680   } else {
3681     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
3682       << ArgumentExpr->getSourceRange();
3683 
3684     const Sema::SemaDiagnosticBuilder &Note =
3685       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
3686              diag::note_format_string_defined);
3687 
3688     Note << StringRange;
3689     Note << FixIt;
3690   }
3691 }
3692 
3693 //===--- CHECK: Printf format string checking ------------------------------===//
3694 
3695 namespace {
3696 class CheckPrintfHandler : public CheckFormatHandler {
3697   bool ObjCContext;
3698 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)3699   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
3700                      const Expr *origFormatExpr, unsigned firstDataArg,
3701                      unsigned numDataArgs, bool isObjC,
3702                      const char *beg, bool hasVAListArg,
3703                      ArrayRef<const Expr *> Args,
3704                      unsigned formatIdx, bool inFunctionCall,
3705                      Sema::VariadicCallType CallType,
3706                      llvm::SmallBitVector &CheckedVarArgs)
3707     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3708                          numDataArgs, beg, hasVAListArg, Args,
3709                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
3710       ObjCContext(isObjC)
3711   {}
3712 
3713 
3714   bool HandleInvalidPrintfConversionSpecifier(
3715                                       const analyze_printf::PrintfSpecifier &FS,
3716                                       const char *startSpecifier,
3717                                       unsigned specifierLen) override;
3718 
3719   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
3720                              const char *startSpecifier,
3721                              unsigned specifierLen) override;
3722   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3723                        const char *StartSpecifier,
3724                        unsigned SpecifierLen,
3725                        const Expr *E);
3726 
3727   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
3728                     const char *startSpecifier, unsigned specifierLen);
3729   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
3730                            const analyze_printf::OptionalAmount &Amt,
3731                            unsigned type,
3732                            const char *startSpecifier, unsigned specifierLen);
3733   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3734                   const analyze_printf::OptionalFlag &flag,
3735                   const char *startSpecifier, unsigned specifierLen);
3736   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
3737                          const analyze_printf::OptionalFlag &ignoredFlag,
3738                          const analyze_printf::OptionalFlag &flag,
3739                          const char *startSpecifier, unsigned specifierLen);
3740   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
3741                            const Expr *E);
3742 
3743   void HandleEmptyObjCModifierFlag(const char *startFlag,
3744                                    unsigned flagLen) override;
3745 
3746   void HandleInvalidObjCModifierFlag(const char *startFlag,
3747                                             unsigned flagLen) override;
3748 
3749   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
3750                                            const char *flagsEnd,
3751                                            const char *conversionPosition)
3752                                              override;
3753 };
3754 }
3755 
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3756 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
3757                                       const analyze_printf::PrintfSpecifier &FS,
3758                                       const char *startSpecifier,
3759                                       unsigned specifierLen) {
3760   const analyze_printf::PrintfConversionSpecifier &CS =
3761     FS.getConversionSpecifier();
3762 
3763   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3764                                           getLocationOfByte(CS.getStart()),
3765                                           startSpecifier, specifierLen,
3766                                           CS.getStart(), CS.getLength());
3767 }
3768 
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)3769 bool CheckPrintfHandler::HandleAmount(
3770                                const analyze_format_string::OptionalAmount &Amt,
3771                                unsigned k, const char *startSpecifier,
3772                                unsigned specifierLen) {
3773 
3774   if (Amt.hasDataArgument()) {
3775     if (!HasVAListArg) {
3776       unsigned argIndex = Amt.getArgIndex();
3777       if (argIndex >= NumDataArgs) {
3778         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
3779                                << k,
3780                              getLocationOfByte(Amt.getStart()),
3781                              /*IsStringLocation*/true,
3782                              getSpecifierRange(startSpecifier, specifierLen));
3783         // Don't do any more checking.  We will just emit
3784         // spurious errors.
3785         return false;
3786       }
3787 
3788       // Type check the data argument.  It should be an 'int'.
3789       // Although not in conformance with C99, we also allow the argument to be
3790       // an 'unsigned int' as that is a reasonably safe case.  GCC also
3791       // doesn't emit a warning for that case.
3792       CoveredArgs.set(argIndex);
3793       const Expr *Arg = getDataArg(argIndex);
3794       if (!Arg)
3795         return false;
3796 
3797       QualType T = Arg->getType();
3798 
3799       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
3800       assert(AT.isValid());
3801 
3802       if (!AT.matchesType(S.Context, T)) {
3803         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
3804                                << k << AT.getRepresentativeTypeName(S.Context)
3805                                << T << Arg->getSourceRange(),
3806                              getLocationOfByte(Amt.getStart()),
3807                              /*IsStringLocation*/true,
3808                              getSpecifierRange(startSpecifier, specifierLen));
3809         // Don't do any more checking.  We will just emit
3810         // spurious errors.
3811         return false;
3812       }
3813     }
3814   }
3815   return true;
3816 }
3817 
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)3818 void CheckPrintfHandler::HandleInvalidAmount(
3819                                       const analyze_printf::PrintfSpecifier &FS,
3820                                       const analyze_printf::OptionalAmount &Amt,
3821                                       unsigned type,
3822                                       const char *startSpecifier,
3823                                       unsigned specifierLen) {
3824   const analyze_printf::PrintfConversionSpecifier &CS =
3825     FS.getConversionSpecifier();
3826 
3827   FixItHint fixit =
3828     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
3829       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
3830                                  Amt.getConstantLength()))
3831       : FixItHint();
3832 
3833   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
3834                          << type << CS.toString(),
3835                        getLocationOfByte(Amt.getStart()),
3836                        /*IsStringLocation*/true,
3837                        getSpecifierRange(startSpecifier, specifierLen),
3838                        fixit);
3839 }
3840 
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)3841 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3842                                     const analyze_printf::OptionalFlag &flag,
3843                                     const char *startSpecifier,
3844                                     unsigned specifierLen) {
3845   // Warn about pointless flag with a fixit removal.
3846   const analyze_printf::PrintfConversionSpecifier &CS =
3847     FS.getConversionSpecifier();
3848   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
3849                          << flag.toString() << CS.toString(),
3850                        getLocationOfByte(flag.getPosition()),
3851                        /*IsStringLocation*/true,
3852                        getSpecifierRange(startSpecifier, specifierLen),
3853                        FixItHint::CreateRemoval(
3854                          getSpecifierRange(flag.getPosition(), 1)));
3855 }
3856 
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)3857 void CheckPrintfHandler::HandleIgnoredFlag(
3858                                 const analyze_printf::PrintfSpecifier &FS,
3859                                 const analyze_printf::OptionalFlag &ignoredFlag,
3860                                 const analyze_printf::OptionalFlag &flag,
3861                                 const char *startSpecifier,
3862                                 unsigned specifierLen) {
3863   // Warn about ignored flag with a fixit removal.
3864   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
3865                          << ignoredFlag.toString() << flag.toString(),
3866                        getLocationOfByte(ignoredFlag.getPosition()),
3867                        /*IsStringLocation*/true,
3868                        getSpecifierRange(startSpecifier, specifierLen),
3869                        FixItHint::CreateRemoval(
3870                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
3871 }
3872 
3873 //  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
3874 //                            bool IsStringLocation, Range StringRange,
3875 //                            ArrayRef<FixItHint> Fixit = None);
3876 
HandleEmptyObjCModifierFlag(const char * startFlag,unsigned flagLen)3877 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
3878                                                      unsigned flagLen) {
3879   // Warn about an empty flag.
3880   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
3881                        getLocationOfByte(startFlag),
3882                        /*IsStringLocation*/true,
3883                        getSpecifierRange(startFlag, flagLen));
3884 }
3885 
HandleInvalidObjCModifierFlag(const char * startFlag,unsigned flagLen)3886 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
3887                                                        unsigned flagLen) {
3888   // Warn about an invalid flag.
3889   auto Range = getSpecifierRange(startFlag, flagLen);
3890   StringRef flag(startFlag, flagLen);
3891   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
3892                       getLocationOfByte(startFlag),
3893                       /*IsStringLocation*/true,
3894                       Range, FixItHint::CreateRemoval(Range));
3895 }
3896 
HandleObjCFlagsWithNonObjCConversion(const char * flagsStart,const char * flagsEnd,const char * conversionPosition)3897 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
3898     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
3899     // Warn about using '[...]' without a '@' conversion.
3900     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
3901     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
3902     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
3903                          getLocationOfByte(conversionPosition),
3904                          /*IsStringLocation*/true,
3905                          Range, FixItHint::CreateRemoval(Range));
3906 }
3907 
3908 // Determines if the specified is a C++ class or struct containing
3909 // a member with the specified name and kind (e.g. a CXXMethodDecl named
3910 // "c_str()").
3911 template<typename MemberKind>
3912 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)3913 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
3914   const RecordType *RT = Ty->getAs<RecordType>();
3915   llvm::SmallPtrSet<MemberKind*, 1> Results;
3916 
3917   if (!RT)
3918     return Results;
3919   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3920   if (!RD || !RD->getDefinition())
3921     return Results;
3922 
3923   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
3924                  Sema::LookupMemberName);
3925   R.suppressDiagnostics();
3926 
3927   // We just need to include all members of the right kind turned up by the
3928   // filter, at this point.
3929   if (S.LookupQualifiedName(R, RT->getDecl()))
3930     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3931       NamedDecl *decl = (*I)->getUnderlyingDecl();
3932       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
3933         Results.insert(FK);
3934     }
3935   return Results;
3936 }
3937 
3938 /// Check if we could call '.c_str()' on an object.
3939 ///
3940 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
3941 /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)3942 bool Sema::hasCStrMethod(const Expr *E) {
3943   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3944   MethodSet Results =
3945       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
3946   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3947        MI != ME; ++MI)
3948     if ((*MI)->getMinRequiredArguments() == 0)
3949       return true;
3950   return false;
3951 }
3952 
3953 // Check if a (w)string was passed when a (w)char* was needed, and offer a
3954 // better diagnostic if so. AT is assumed to be valid.
3955 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)3956 bool CheckPrintfHandler::checkForCStrMembers(
3957     const analyze_printf::ArgType &AT, const Expr *E) {
3958   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3959 
3960   MethodSet Results =
3961       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
3962 
3963   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3964        MI != ME; ++MI) {
3965     const CXXMethodDecl *Method = *MI;
3966     if (Method->getMinRequiredArguments() == 0 &&
3967         AT.matchesType(S.Context, Method->getReturnType())) {
3968       // FIXME: Suggest parens if the expression needs them.
3969       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
3970       S.Diag(E->getLocStart(), diag::note_printf_c_str)
3971           << "c_str()"
3972           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
3973       return true;
3974     }
3975   }
3976 
3977   return false;
3978 }
3979 
3980 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3981 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
3982                                             &FS,
3983                                           const char *startSpecifier,
3984                                           unsigned specifierLen) {
3985 
3986   using namespace analyze_format_string;
3987   using namespace analyze_printf;
3988   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
3989 
3990   if (FS.consumesDataArgument()) {
3991     if (atFirstArg) {
3992         atFirstArg = false;
3993         usesPositionalArgs = FS.usesPositionalArg();
3994     }
3995     else if (usesPositionalArgs != FS.usesPositionalArg()) {
3996       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3997                                         startSpecifier, specifierLen);
3998       return false;
3999     }
4000   }
4001 
4002   // First check if the field width, precision, and conversion specifier
4003   // have matching data arguments.
4004   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
4005                     startSpecifier, specifierLen)) {
4006     return false;
4007   }
4008 
4009   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
4010                     startSpecifier, specifierLen)) {
4011     return false;
4012   }
4013 
4014   if (!CS.consumesDataArgument()) {
4015     // FIXME: Technically specifying a precision or field width here
4016     // makes no sense.  Worth issuing a warning at some point.
4017     return true;
4018   }
4019 
4020   // Consume the argument.
4021   unsigned argIndex = FS.getArgIndex();
4022   if (argIndex < NumDataArgs) {
4023     // The check to see if the argIndex is valid will come later.
4024     // We set the bit here because we may exit early from this
4025     // function if we encounter some other error.
4026     CoveredArgs.set(argIndex);
4027   }
4028 
4029   // FreeBSD kernel extensions.
4030   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
4031       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
4032     // We need at least two arguments.
4033     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
4034       return false;
4035 
4036     // Claim the second argument.
4037     CoveredArgs.set(argIndex + 1);
4038 
4039     // Type check the first argument (int for %b, pointer for %D)
4040     const Expr *Ex = getDataArg(argIndex);
4041     const analyze_printf::ArgType &AT =
4042       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
4043         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
4044     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
4045       EmitFormatDiagnostic(
4046         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4047         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
4048         << false << Ex->getSourceRange(),
4049         Ex->getLocStart(), /*IsStringLocation*/false,
4050         getSpecifierRange(startSpecifier, specifierLen));
4051 
4052     // Type check the second argument (char * for both %b and %D)
4053     Ex = getDataArg(argIndex + 1);
4054     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
4055     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
4056       EmitFormatDiagnostic(
4057         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4058         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
4059         << false << Ex->getSourceRange(),
4060         Ex->getLocStart(), /*IsStringLocation*/false,
4061         getSpecifierRange(startSpecifier, specifierLen));
4062 
4063      return true;
4064   }
4065 
4066   // Check for using an Objective-C specific conversion specifier
4067   // in a non-ObjC literal.
4068   if (!ObjCContext && CS.isObjCArg()) {
4069     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
4070                                                   specifierLen);
4071   }
4072 
4073   // Check for invalid use of field width
4074   if (!FS.hasValidFieldWidth()) {
4075     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
4076         startSpecifier, specifierLen);
4077   }
4078 
4079   // Check for invalid use of precision
4080   if (!FS.hasValidPrecision()) {
4081     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
4082         startSpecifier, specifierLen);
4083   }
4084 
4085   // Check each flag does not conflict with any other component.
4086   if (!FS.hasValidThousandsGroupingPrefix())
4087     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
4088   if (!FS.hasValidLeadingZeros())
4089     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
4090   if (!FS.hasValidPlusPrefix())
4091     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
4092   if (!FS.hasValidSpacePrefix())
4093     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
4094   if (!FS.hasValidAlternativeForm())
4095     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
4096   if (!FS.hasValidLeftJustified())
4097     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
4098 
4099   // Check that flags are not ignored by another flag
4100   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
4101     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
4102         startSpecifier, specifierLen);
4103   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
4104     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
4105             startSpecifier, specifierLen);
4106 
4107   // Check the length modifier is valid with the given conversion specifier.
4108   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
4109     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4110                                 diag::warn_format_nonsensical_length);
4111   else if (!FS.hasStandardLengthModifier())
4112     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
4113   else if (!FS.hasStandardLengthConversionCombination())
4114     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4115                                 diag::warn_format_non_standard_conversion_spec);
4116 
4117   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
4118     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
4119 
4120   // The remaining checks depend on the data arguments.
4121   if (HasVAListArg)
4122     return true;
4123 
4124   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
4125     return false;
4126 
4127   const Expr *Arg = getDataArg(argIndex);
4128   if (!Arg)
4129     return true;
4130 
4131   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
4132 }
4133 
requiresParensToAddCast(const Expr * E)4134 static bool requiresParensToAddCast(const Expr *E) {
4135   // FIXME: We should have a general way to reason about operator
4136   // precedence and whether parens are actually needed here.
4137   // Take care of a few common cases where they aren't.
4138   const Expr *Inside = E->IgnoreImpCasts();
4139   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
4140     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
4141 
4142   switch (Inside->getStmtClass()) {
4143   case Stmt::ArraySubscriptExprClass:
4144   case Stmt::CallExprClass:
4145   case Stmt::CharacterLiteralClass:
4146   case Stmt::CXXBoolLiteralExprClass:
4147   case Stmt::DeclRefExprClass:
4148   case Stmt::FloatingLiteralClass:
4149   case Stmt::IntegerLiteralClass:
4150   case Stmt::MemberExprClass:
4151   case Stmt::ObjCArrayLiteralClass:
4152   case Stmt::ObjCBoolLiteralExprClass:
4153   case Stmt::ObjCBoxedExprClass:
4154   case Stmt::ObjCDictionaryLiteralClass:
4155   case Stmt::ObjCEncodeExprClass:
4156   case Stmt::ObjCIvarRefExprClass:
4157   case Stmt::ObjCMessageExprClass:
4158   case Stmt::ObjCPropertyRefExprClass:
4159   case Stmt::ObjCStringLiteralClass:
4160   case Stmt::ObjCSubscriptRefExprClass:
4161   case Stmt::ParenExprClass:
4162   case Stmt::StringLiteralClass:
4163   case Stmt::UnaryOperatorClass:
4164     return false;
4165   default:
4166     return true;
4167   }
4168 }
4169 
4170 static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)4171 shouldNotPrintDirectly(const ASTContext &Context,
4172                        QualType IntendedTy,
4173                        const Expr *E) {
4174   // Use a 'while' to peel off layers of typedefs.
4175   QualType TyTy = IntendedTy;
4176   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
4177     StringRef Name = UserTy->getDecl()->getName();
4178     QualType CastTy = llvm::StringSwitch<QualType>(Name)
4179       .Case("NSInteger", Context.LongTy)
4180       .Case("NSUInteger", Context.UnsignedLongTy)
4181       .Case("SInt32", Context.IntTy)
4182       .Case("UInt32", Context.UnsignedIntTy)
4183       .Default(QualType());
4184 
4185     if (!CastTy.isNull())
4186       return std::make_pair(CastTy, Name);
4187 
4188     TyTy = UserTy->desugar();
4189   }
4190 
4191   // Strip parens if necessary.
4192   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
4193     return shouldNotPrintDirectly(Context,
4194                                   PE->getSubExpr()->getType(),
4195                                   PE->getSubExpr());
4196 
4197   // If this is a conditional expression, then its result type is constructed
4198   // via usual arithmetic conversions and thus there might be no necessary
4199   // typedef sugar there.  Recurse to operands to check for NSInteger &
4200   // Co. usage condition.
4201   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4202     QualType TrueTy, FalseTy;
4203     StringRef TrueName, FalseName;
4204 
4205     std::tie(TrueTy, TrueName) =
4206       shouldNotPrintDirectly(Context,
4207                              CO->getTrueExpr()->getType(),
4208                              CO->getTrueExpr());
4209     std::tie(FalseTy, FalseName) =
4210       shouldNotPrintDirectly(Context,
4211                              CO->getFalseExpr()->getType(),
4212                              CO->getFalseExpr());
4213 
4214     if (TrueTy == FalseTy)
4215       return std::make_pair(TrueTy, TrueName);
4216     else if (TrueTy.isNull())
4217       return std::make_pair(FalseTy, FalseName);
4218     else if (FalseTy.isNull())
4219       return std::make_pair(TrueTy, TrueName);
4220   }
4221 
4222   return std::make_pair(QualType(), StringRef());
4223 }
4224 
4225 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)4226 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
4227                                     const char *StartSpecifier,
4228                                     unsigned SpecifierLen,
4229                                     const Expr *E) {
4230   using namespace analyze_format_string;
4231   using namespace analyze_printf;
4232   // Now type check the data expression that matches the
4233   // format specifier.
4234   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
4235                                                     ObjCContext);
4236   if (!AT.isValid())
4237     return true;
4238 
4239   QualType ExprTy = E->getType();
4240   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
4241     ExprTy = TET->getUnderlyingExpr()->getType();
4242   }
4243 
4244   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
4245 
4246   if (match == analyze_printf::ArgType::Match) {
4247     return true;
4248   }
4249 
4250   // Look through argument promotions for our error message's reported type.
4251   // This includes the integral and floating promotions, but excludes array
4252   // and function pointer decay; seeing that an argument intended to be a
4253   // string has type 'char [6]' is probably more confusing than 'char *'.
4254   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4255     if (ICE->getCastKind() == CK_IntegralCast ||
4256         ICE->getCastKind() == CK_FloatingCast) {
4257       E = ICE->getSubExpr();
4258       ExprTy = E->getType();
4259 
4260       // Check if we didn't match because of an implicit cast from a 'char'
4261       // or 'short' to an 'int'.  This is done because printf is a varargs
4262       // function.
4263       if (ICE->getType() == S.Context.IntTy ||
4264           ICE->getType() == S.Context.UnsignedIntTy) {
4265         // All further checking is done on the subexpression.
4266         if (AT.matchesType(S.Context, ExprTy))
4267           return true;
4268       }
4269     }
4270   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
4271     // Special case for 'a', which has type 'int' in C.
4272     // Note, however, that we do /not/ want to treat multibyte constants like
4273     // 'MooV' as characters! This form is deprecated but still exists.
4274     if (ExprTy == S.Context.IntTy)
4275       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
4276         ExprTy = S.Context.CharTy;
4277   }
4278 
4279   // Look through enums to their underlying type.
4280   bool IsEnum = false;
4281   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
4282     ExprTy = EnumTy->getDecl()->getIntegerType();
4283     IsEnum = true;
4284   }
4285 
4286   // %C in an Objective-C context prints a unichar, not a wchar_t.
4287   // If the argument is an integer of some kind, believe the %C and suggest
4288   // a cast instead of changing the conversion specifier.
4289   QualType IntendedTy = ExprTy;
4290   if (ObjCContext &&
4291       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
4292     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
4293         !ExprTy->isCharType()) {
4294       // 'unichar' is defined as a typedef of unsigned short, but we should
4295       // prefer using the typedef if it is visible.
4296       IntendedTy = S.Context.UnsignedShortTy;
4297 
4298       // While we are here, check if the value is an IntegerLiteral that happens
4299       // to be within the valid range.
4300       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
4301         const llvm::APInt &V = IL->getValue();
4302         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
4303           return true;
4304       }
4305 
4306       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
4307                           Sema::LookupOrdinaryName);
4308       if (S.LookupName(Result, S.getCurScope())) {
4309         NamedDecl *ND = Result.getFoundDecl();
4310         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4311           if (TD->getUnderlyingType() == IntendedTy)
4312             IntendedTy = S.Context.getTypedefType(TD);
4313       }
4314     }
4315   }
4316 
4317   // Special-case some of Darwin's platform-independence types by suggesting
4318   // casts to primitive types that are known to be large enough.
4319   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
4320   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
4321     QualType CastTy;
4322     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
4323     if (!CastTy.isNull()) {
4324       IntendedTy = CastTy;
4325       ShouldNotPrintDirectly = true;
4326     }
4327   }
4328 
4329   // We may be able to offer a FixItHint if it is a supported type.
4330   PrintfSpecifier fixedFS = FS;
4331   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
4332                                  S.Context, ObjCContext);
4333 
4334   if (success) {
4335     // Get the fix string from the fixed format specifier
4336     SmallString<16> buf;
4337     llvm::raw_svector_ostream os(buf);
4338     fixedFS.toString(os);
4339 
4340     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
4341 
4342     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
4343       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4344       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
4345         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4346       }
4347       // In this case, the specifier is wrong and should be changed to match
4348       // the argument.
4349       EmitFormatDiagnostic(S.PDiag(diag)
4350                                << AT.getRepresentativeTypeName(S.Context)
4351                                << IntendedTy << IsEnum << E->getSourceRange(),
4352                            E->getLocStart(),
4353                            /*IsStringLocation*/ false, SpecRange,
4354                            FixItHint::CreateReplacement(SpecRange, os.str()));
4355 
4356     } else {
4357       // The canonical type for formatting this value is different from the
4358       // actual type of the expression. (This occurs, for example, with Darwin's
4359       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
4360       // should be printed as 'long' for 64-bit compatibility.)
4361       // Rather than emitting a normal format/argument mismatch, we want to
4362       // add a cast to the recommended type (and correct the format string
4363       // if necessary).
4364       SmallString<16> CastBuf;
4365       llvm::raw_svector_ostream CastFix(CastBuf);
4366       CastFix << "(";
4367       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
4368       CastFix << ")";
4369 
4370       SmallVector<FixItHint,4> Hints;
4371       if (!AT.matchesType(S.Context, IntendedTy))
4372         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
4373 
4374       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
4375         // If there's already a cast present, just replace it.
4376         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
4377         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
4378 
4379       } else if (!requiresParensToAddCast(E)) {
4380         // If the expression has high enough precedence,
4381         // just write the C-style cast.
4382         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
4383                                                    CastFix.str()));
4384       } else {
4385         // Otherwise, add parens around the expression as well as the cast.
4386         CastFix << "(";
4387         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
4388                                                    CastFix.str()));
4389 
4390         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
4391         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
4392       }
4393 
4394       if (ShouldNotPrintDirectly) {
4395         // The expression has a type that should not be printed directly.
4396         // We extract the name from the typedef because we don't want to show
4397         // the underlying type in the diagnostic.
4398         StringRef Name;
4399         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
4400           Name = TypedefTy->getDecl()->getName();
4401         else
4402           Name = CastTyName;
4403         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
4404                                << Name << IntendedTy << IsEnum
4405                                << E->getSourceRange(),
4406                              E->getLocStart(), /*IsStringLocation=*/false,
4407                              SpecRange, Hints);
4408       } else {
4409         // In this case, the expression could be printed using a different
4410         // specifier, but we've decided that the specifier is probably correct
4411         // and we should cast instead. Just use the normal warning message.
4412         EmitFormatDiagnostic(
4413           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4414             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
4415             << E->getSourceRange(),
4416           E->getLocStart(), /*IsStringLocation*/false,
4417           SpecRange, Hints);
4418       }
4419     }
4420   } else {
4421     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
4422                                                    SpecifierLen);
4423     // Since the warning for passing non-POD types to variadic functions
4424     // was deferred until now, we emit a warning for non-POD
4425     // arguments here.
4426     switch (S.isValidVarArgType(ExprTy)) {
4427     case Sema::VAK_Valid:
4428     case Sema::VAK_ValidInCXX11: {
4429       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4430       if (match == analyze_printf::ArgType::NoMatchPedantic) {
4431         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4432       }
4433 
4434       EmitFormatDiagnostic(
4435           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
4436                         << IsEnum << CSR << E->getSourceRange(),
4437           E->getLocStart(), /*IsStringLocation*/ false, CSR);
4438       break;
4439     }
4440     case Sema::VAK_Undefined:
4441     case Sema::VAK_MSVCUndefined:
4442       EmitFormatDiagnostic(
4443         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
4444           << S.getLangOpts().CPlusPlus11
4445           << ExprTy
4446           << CallType
4447           << AT.getRepresentativeTypeName(S.Context)
4448           << CSR
4449           << E->getSourceRange(),
4450         E->getLocStart(), /*IsStringLocation*/false, CSR);
4451       checkForCStrMembers(AT, E);
4452       break;
4453 
4454     case Sema::VAK_Invalid:
4455       if (ExprTy->isObjCObjectType())
4456         EmitFormatDiagnostic(
4457           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
4458             << S.getLangOpts().CPlusPlus11
4459             << ExprTy
4460             << CallType
4461             << AT.getRepresentativeTypeName(S.Context)
4462             << CSR
4463             << E->getSourceRange(),
4464           E->getLocStart(), /*IsStringLocation*/false, CSR);
4465       else
4466         // FIXME: If this is an initializer list, suggest removing the braces
4467         // or inserting a cast to the target type.
4468         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
4469           << isa<InitListExpr>(E) << ExprTy << CallType
4470           << AT.getRepresentativeTypeName(S.Context)
4471           << E->getSourceRange();
4472       break;
4473     }
4474 
4475     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
4476            "format string specifier index out of range");
4477     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
4478   }
4479 
4480   return true;
4481 }
4482 
4483 //===--- CHECK: Scanf format string checking ------------------------------===//
4484 
4485 namespace {
4486 class CheckScanfHandler : public CheckFormatHandler {
4487 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)4488   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
4489                     const Expr *origFormatExpr, unsigned firstDataArg,
4490                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
4491                     ArrayRef<const Expr *> Args,
4492                     unsigned formatIdx, bool inFunctionCall,
4493                     Sema::VariadicCallType CallType,
4494                     llvm::SmallBitVector &CheckedVarArgs)
4495     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
4496                          numDataArgs, beg, hasVAListArg,
4497                          Args, formatIdx, inFunctionCall, CallType,
4498                          CheckedVarArgs)
4499   {}
4500 
4501   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
4502                             const char *startSpecifier,
4503                             unsigned specifierLen) override;
4504 
4505   bool HandleInvalidScanfConversionSpecifier(
4506           const analyze_scanf::ScanfSpecifier &FS,
4507           const char *startSpecifier,
4508           unsigned specifierLen) override;
4509 
4510   void HandleIncompleteScanList(const char *start, const char *end) override;
4511 };
4512 }
4513 
HandleIncompleteScanList(const char * start,const char * end)4514 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
4515                                                  const char *end) {
4516   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
4517                        getLocationOfByte(end), /*IsStringLocation*/true,
4518                        getSpecifierRange(start, end - start));
4519 }
4520 
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4521 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
4522                                         const analyze_scanf::ScanfSpecifier &FS,
4523                                         const char *startSpecifier,
4524                                         unsigned specifierLen) {
4525 
4526   const analyze_scanf::ScanfConversionSpecifier &CS =
4527     FS.getConversionSpecifier();
4528 
4529   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
4530                                           getLocationOfByte(CS.getStart()),
4531                                           startSpecifier, specifierLen,
4532                                           CS.getStart(), CS.getLength());
4533 }
4534 
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4535 bool CheckScanfHandler::HandleScanfSpecifier(
4536                                        const analyze_scanf::ScanfSpecifier &FS,
4537                                        const char *startSpecifier,
4538                                        unsigned specifierLen) {
4539 
4540   using namespace analyze_scanf;
4541   using namespace analyze_format_string;
4542 
4543   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
4544 
4545   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
4546   // be used to decide if we are using positional arguments consistently.
4547   if (FS.consumesDataArgument()) {
4548     if (atFirstArg) {
4549       atFirstArg = false;
4550       usesPositionalArgs = FS.usesPositionalArg();
4551     }
4552     else if (usesPositionalArgs != FS.usesPositionalArg()) {
4553       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
4554                                         startSpecifier, specifierLen);
4555       return false;
4556     }
4557   }
4558 
4559   // Check if the field with is non-zero.
4560   const OptionalAmount &Amt = FS.getFieldWidth();
4561   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
4562     if (Amt.getConstantAmount() == 0) {
4563       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
4564                                                    Amt.getConstantLength());
4565       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
4566                            getLocationOfByte(Amt.getStart()),
4567                            /*IsStringLocation*/true, R,
4568                            FixItHint::CreateRemoval(R));
4569     }
4570   }
4571 
4572   if (!FS.consumesDataArgument()) {
4573     // FIXME: Technically specifying a precision or field width here
4574     // makes no sense.  Worth issuing a warning at some point.
4575     return true;
4576   }
4577 
4578   // Consume the argument.
4579   unsigned argIndex = FS.getArgIndex();
4580   if (argIndex < NumDataArgs) {
4581       // The check to see if the argIndex is valid will come later.
4582       // We set the bit here because we may exit early from this
4583       // function if we encounter some other error.
4584     CoveredArgs.set(argIndex);
4585   }
4586 
4587   // Check the length modifier is valid with the given conversion specifier.
4588   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
4589     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4590                                 diag::warn_format_nonsensical_length);
4591   else if (!FS.hasStandardLengthModifier())
4592     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
4593   else if (!FS.hasStandardLengthConversionCombination())
4594     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4595                                 diag::warn_format_non_standard_conversion_spec);
4596 
4597   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
4598     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
4599 
4600   // The remaining checks depend on the data arguments.
4601   if (HasVAListArg)
4602     return true;
4603 
4604   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
4605     return false;
4606 
4607   // Check that the argument type matches the format specifier.
4608   const Expr *Ex = getDataArg(argIndex);
4609   if (!Ex)
4610     return true;
4611 
4612   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
4613 
4614   if (!AT.isValid()) {
4615     return true;
4616   }
4617 
4618   analyze_format_string::ArgType::MatchKind match =
4619       AT.matchesType(S.Context, Ex->getType());
4620   if (match == analyze_format_string::ArgType::Match) {
4621     return true;
4622   }
4623 
4624   ScanfSpecifier fixedFS = FS;
4625   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
4626                                  S.getLangOpts(), S.Context);
4627 
4628   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4629   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
4630     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4631   }
4632 
4633   if (success) {
4634     // Get the fix string from the fixed format specifier.
4635     SmallString<128> buf;
4636     llvm::raw_svector_ostream os(buf);
4637     fixedFS.toString(os);
4638 
4639     EmitFormatDiagnostic(
4640         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
4641                       << Ex->getType() << false << Ex->getSourceRange(),
4642         Ex->getLocStart(),
4643         /*IsStringLocation*/ false,
4644         getSpecifierRange(startSpecifier, specifierLen),
4645         FixItHint::CreateReplacement(
4646             getSpecifierRange(startSpecifier, specifierLen), os.str()));
4647   } else {
4648     EmitFormatDiagnostic(S.PDiag(diag)
4649                              << AT.getRepresentativeTypeName(S.Context)
4650                              << Ex->getType() << false << Ex->getSourceRange(),
4651                          Ex->getLocStart(),
4652                          /*IsStringLocation*/ false,
4653                          getSpecifierRange(startSpecifier, specifierLen));
4654   }
4655 
4656   return true;
4657 }
4658 
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,bool inFunctionCall,VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)4659 void Sema::CheckFormatString(const StringLiteral *FExpr,
4660                              const Expr *OrigFormatExpr,
4661                              ArrayRef<const Expr *> Args,
4662                              bool HasVAListArg, unsigned format_idx,
4663                              unsigned firstDataArg, FormatStringType Type,
4664                              bool inFunctionCall, VariadicCallType CallType,
4665                              llvm::SmallBitVector &CheckedVarArgs) {
4666 
4667   // CHECK: is the format string a wide literal?
4668   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
4669     CheckFormatHandler::EmitFormatDiagnostic(
4670       *this, inFunctionCall, Args[format_idx],
4671       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
4672       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4673     return;
4674   }
4675 
4676   // Str - The format string.  NOTE: this is NOT null-terminated!
4677   StringRef StrRef = FExpr->getString();
4678   const char *Str = StrRef.data();
4679   // Account for cases where the string literal is truncated in a declaration.
4680   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4681   assert(T && "String literal not of constant array type!");
4682   size_t TypeSize = T->getSize().getZExtValue();
4683   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4684   const unsigned numDataArgs = Args.size() - firstDataArg;
4685 
4686   // Emit a warning if the string literal is truncated and does not contain an
4687   // embedded null character.
4688   if (TypeSize <= StrRef.size() &&
4689       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
4690     CheckFormatHandler::EmitFormatDiagnostic(
4691         *this, inFunctionCall, Args[format_idx],
4692         PDiag(diag::warn_printf_format_string_not_null_terminated),
4693         FExpr->getLocStart(),
4694         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
4695     return;
4696   }
4697 
4698   // CHECK: empty format string?
4699   if (StrLen == 0 && numDataArgs > 0) {
4700     CheckFormatHandler::EmitFormatDiagnostic(
4701       *this, inFunctionCall, Args[format_idx],
4702       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
4703       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4704     return;
4705   }
4706 
4707   if (Type == FST_Printf || Type == FST_NSString ||
4708       Type == FST_FreeBSDKPrintf || Type == FST_OSTrace) {
4709     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
4710                          numDataArgs, (Type == FST_NSString || Type == FST_OSTrace),
4711                          Str, HasVAListArg, Args, format_idx,
4712                          inFunctionCall, CallType, CheckedVarArgs);
4713 
4714     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
4715                                                   getLangOpts(),
4716                                                   Context.getTargetInfo(),
4717                                                   Type == FST_FreeBSDKPrintf))
4718       H.DoneProcessing();
4719   } else if (Type == FST_Scanf) {
4720     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
4721                         Str, HasVAListArg, Args, format_idx,
4722                         inFunctionCall, CallType, CheckedVarArgs);
4723 
4724     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
4725                                                  getLangOpts(),
4726                                                  Context.getTargetInfo()))
4727       H.DoneProcessing();
4728   } // TODO: handle other formats
4729 }
4730 
FormatStringHasSArg(const StringLiteral * FExpr)4731 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
4732   // Str - The format string.  NOTE: this is NOT null-terminated!
4733   StringRef StrRef = FExpr->getString();
4734   const char *Str = StrRef.data();
4735   // Account for cases where the string literal is truncated in a declaration.
4736   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4737   assert(T && "String literal not of constant array type!");
4738   size_t TypeSize = T->getSize().getZExtValue();
4739   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4740   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
4741                                                          getLangOpts(),
4742                                                          Context.getTargetInfo());
4743 }
4744 
4745 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
4746 
4747 // Returns the related absolute value function that is larger, of 0 if one
4748 // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)4749 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
4750   switch (AbsFunction) {
4751   default:
4752     return 0;
4753 
4754   case Builtin::BI__builtin_abs:
4755     return Builtin::BI__builtin_labs;
4756   case Builtin::BI__builtin_labs:
4757     return Builtin::BI__builtin_llabs;
4758   case Builtin::BI__builtin_llabs:
4759     return 0;
4760 
4761   case Builtin::BI__builtin_fabsf:
4762     return Builtin::BI__builtin_fabs;
4763   case Builtin::BI__builtin_fabs:
4764     return Builtin::BI__builtin_fabsl;
4765   case Builtin::BI__builtin_fabsl:
4766     return 0;
4767 
4768   case Builtin::BI__builtin_cabsf:
4769     return Builtin::BI__builtin_cabs;
4770   case Builtin::BI__builtin_cabs:
4771     return Builtin::BI__builtin_cabsl;
4772   case Builtin::BI__builtin_cabsl:
4773     return 0;
4774 
4775   case Builtin::BIabs:
4776     return Builtin::BIlabs;
4777   case Builtin::BIlabs:
4778     return Builtin::BIllabs;
4779   case Builtin::BIllabs:
4780     return 0;
4781 
4782   case Builtin::BIfabsf:
4783     return Builtin::BIfabs;
4784   case Builtin::BIfabs:
4785     return Builtin::BIfabsl;
4786   case Builtin::BIfabsl:
4787     return 0;
4788 
4789   case Builtin::BIcabsf:
4790    return Builtin::BIcabs;
4791   case Builtin::BIcabs:
4792     return Builtin::BIcabsl;
4793   case Builtin::BIcabsl:
4794     return 0;
4795   }
4796 }
4797 
4798 // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)4799 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
4800                                              unsigned AbsType) {
4801   if (AbsType == 0)
4802     return QualType();
4803 
4804   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
4805   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
4806   if (Error != ASTContext::GE_None)
4807     return QualType();
4808 
4809   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
4810   if (!FT)
4811     return QualType();
4812 
4813   if (FT->getNumParams() != 1)
4814     return QualType();
4815 
4816   return FT->getParamType(0);
4817 }
4818 
4819 // Returns the best absolute value function, or zero, based on type and
4820 // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)4821 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
4822                                    unsigned AbsFunctionKind) {
4823   unsigned BestKind = 0;
4824   uint64_t ArgSize = Context.getTypeSize(ArgType);
4825   for (unsigned Kind = AbsFunctionKind; Kind != 0;
4826        Kind = getLargerAbsoluteValueFunction(Kind)) {
4827     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
4828     if (Context.getTypeSize(ParamType) >= ArgSize) {
4829       if (BestKind == 0)
4830         BestKind = Kind;
4831       else if (Context.hasSameType(ParamType, ArgType)) {
4832         BestKind = Kind;
4833         break;
4834       }
4835     }
4836   }
4837   return BestKind;
4838 }
4839 
4840 enum AbsoluteValueKind {
4841   AVK_Integer,
4842   AVK_Floating,
4843   AVK_Complex
4844 };
4845 
getAbsoluteValueKind(QualType T)4846 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
4847   if (T->isIntegralOrEnumerationType())
4848     return AVK_Integer;
4849   if (T->isRealFloatingType())
4850     return AVK_Floating;
4851   if (T->isAnyComplexType())
4852     return AVK_Complex;
4853 
4854   llvm_unreachable("Type not integer, floating, or complex");
4855 }
4856 
4857 // Changes the absolute value function to a different type.  Preserves whether
4858 // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)4859 static unsigned changeAbsFunction(unsigned AbsKind,
4860                                   AbsoluteValueKind ValueKind) {
4861   switch (ValueKind) {
4862   case AVK_Integer:
4863     switch (AbsKind) {
4864     default:
4865       return 0;
4866     case Builtin::BI__builtin_fabsf:
4867     case Builtin::BI__builtin_fabs:
4868     case Builtin::BI__builtin_fabsl:
4869     case Builtin::BI__builtin_cabsf:
4870     case Builtin::BI__builtin_cabs:
4871     case Builtin::BI__builtin_cabsl:
4872       return Builtin::BI__builtin_abs;
4873     case Builtin::BIfabsf:
4874     case Builtin::BIfabs:
4875     case Builtin::BIfabsl:
4876     case Builtin::BIcabsf:
4877     case Builtin::BIcabs:
4878     case Builtin::BIcabsl:
4879       return Builtin::BIabs;
4880     }
4881   case AVK_Floating:
4882     switch (AbsKind) {
4883     default:
4884       return 0;
4885     case Builtin::BI__builtin_abs:
4886     case Builtin::BI__builtin_labs:
4887     case Builtin::BI__builtin_llabs:
4888     case Builtin::BI__builtin_cabsf:
4889     case Builtin::BI__builtin_cabs:
4890     case Builtin::BI__builtin_cabsl:
4891       return Builtin::BI__builtin_fabsf;
4892     case Builtin::BIabs:
4893     case Builtin::BIlabs:
4894     case Builtin::BIllabs:
4895     case Builtin::BIcabsf:
4896     case Builtin::BIcabs:
4897     case Builtin::BIcabsl:
4898       return Builtin::BIfabsf;
4899     }
4900   case AVK_Complex:
4901     switch (AbsKind) {
4902     default:
4903       return 0;
4904     case Builtin::BI__builtin_abs:
4905     case Builtin::BI__builtin_labs:
4906     case Builtin::BI__builtin_llabs:
4907     case Builtin::BI__builtin_fabsf:
4908     case Builtin::BI__builtin_fabs:
4909     case Builtin::BI__builtin_fabsl:
4910       return Builtin::BI__builtin_cabsf;
4911     case Builtin::BIabs:
4912     case Builtin::BIlabs:
4913     case Builtin::BIllabs:
4914     case Builtin::BIfabsf:
4915     case Builtin::BIfabs:
4916     case Builtin::BIfabsl:
4917       return Builtin::BIcabsf;
4918     }
4919   }
4920   llvm_unreachable("Unable to convert function");
4921 }
4922 
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)4923 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
4924   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
4925   if (!FnInfo)
4926     return 0;
4927 
4928   switch (FDecl->getBuiltinID()) {
4929   default:
4930     return 0;
4931   case Builtin::BI__builtin_abs:
4932   case Builtin::BI__builtin_fabs:
4933   case Builtin::BI__builtin_fabsf:
4934   case Builtin::BI__builtin_fabsl:
4935   case Builtin::BI__builtin_labs:
4936   case Builtin::BI__builtin_llabs:
4937   case Builtin::BI__builtin_cabs:
4938   case Builtin::BI__builtin_cabsf:
4939   case Builtin::BI__builtin_cabsl:
4940   case Builtin::BIabs:
4941   case Builtin::BIlabs:
4942   case Builtin::BIllabs:
4943   case Builtin::BIfabs:
4944   case Builtin::BIfabsf:
4945   case Builtin::BIfabsl:
4946   case Builtin::BIcabs:
4947   case Builtin::BIcabsf:
4948   case Builtin::BIcabsl:
4949     return FDecl->getBuiltinID();
4950   }
4951   llvm_unreachable("Unknown Builtin type");
4952 }
4953 
4954 // If the replacement is valid, emit a note with replacement function.
4955 // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)4956 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
4957                             unsigned AbsKind, QualType ArgType) {
4958   bool EmitHeaderHint = true;
4959   const char *HeaderName = nullptr;
4960   const char *FunctionName = nullptr;
4961   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
4962     FunctionName = "std::abs";
4963     if (ArgType->isIntegralOrEnumerationType()) {
4964       HeaderName = "cstdlib";
4965     } else if (ArgType->isRealFloatingType()) {
4966       HeaderName = "cmath";
4967     } else {
4968       llvm_unreachable("Invalid Type");
4969     }
4970 
4971     // Lookup all std::abs
4972     if (NamespaceDecl *Std = S.getStdNamespace()) {
4973       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
4974       R.suppressDiagnostics();
4975       S.LookupQualifiedName(R, Std);
4976 
4977       for (const auto *I : R) {
4978         const FunctionDecl *FDecl = nullptr;
4979         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
4980           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
4981         } else {
4982           FDecl = dyn_cast<FunctionDecl>(I);
4983         }
4984         if (!FDecl)
4985           continue;
4986 
4987         // Found std::abs(), check that they are the right ones.
4988         if (FDecl->getNumParams() != 1)
4989           continue;
4990 
4991         // Check that the parameter type can handle the argument.
4992         QualType ParamType = FDecl->getParamDecl(0)->getType();
4993         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
4994             S.Context.getTypeSize(ArgType) <=
4995                 S.Context.getTypeSize(ParamType)) {
4996           // Found a function, don't need the header hint.
4997           EmitHeaderHint = false;
4998           break;
4999         }
5000       }
5001     }
5002   } else {
5003     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
5004     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
5005 
5006     if (HeaderName) {
5007       DeclarationName DN(&S.Context.Idents.get(FunctionName));
5008       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
5009       R.suppressDiagnostics();
5010       S.LookupName(R, S.getCurScope());
5011 
5012       if (R.isSingleResult()) {
5013         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
5014         if (FD && FD->getBuiltinID() == AbsKind) {
5015           EmitHeaderHint = false;
5016         } else {
5017           return;
5018         }
5019       } else if (!R.empty()) {
5020         return;
5021       }
5022     }
5023   }
5024 
5025   S.Diag(Loc, diag::note_replace_abs_function)
5026       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
5027 
5028   if (!HeaderName)
5029     return;
5030 
5031   if (!EmitHeaderHint)
5032     return;
5033 
5034   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
5035                                                     << FunctionName;
5036 }
5037 
IsFunctionStdAbs(const FunctionDecl * FDecl)5038 static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
5039   if (!FDecl)
5040     return false;
5041 
5042   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
5043     return false;
5044 
5045   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
5046 
5047   while (ND && ND->isInlineNamespace()) {
5048     ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
5049   }
5050 
5051   if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
5052     return false;
5053 
5054   if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
5055     return false;
5056 
5057   return true;
5058 }
5059 
5060 // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl,IdentifierInfo * FnInfo)5061 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
5062                                       const FunctionDecl *FDecl,
5063                                       IdentifierInfo *FnInfo) {
5064   if (Call->getNumArgs() != 1)
5065     return;
5066 
5067   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
5068   bool IsStdAbs = IsFunctionStdAbs(FDecl);
5069   if (AbsKind == 0 && !IsStdAbs)
5070     return;
5071 
5072   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
5073   QualType ParamType = Call->getArg(0)->getType();
5074 
5075   // Unsigned types cannot be negative.  Suggest removing the absolute value
5076   // function call.
5077   if (ArgType->isUnsignedIntegerType()) {
5078     const char *FunctionName =
5079         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
5080     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
5081     Diag(Call->getExprLoc(), diag::note_remove_abs)
5082         << FunctionName
5083         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
5084     return;
5085   }
5086 
5087   // Taking the absolute value of a pointer is very suspicious, they probably
5088   // wanted to index into an array, dereference a pointer, call a function, etc.
5089   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
5090     unsigned DiagType = 0;
5091     if (ArgType->isFunctionType())
5092       DiagType = 1;
5093     else if (ArgType->isArrayType())
5094       DiagType = 2;
5095 
5096     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
5097     return;
5098   }
5099 
5100   // std::abs has overloads which prevent most of the absolute value problems
5101   // from occurring.
5102   if (IsStdAbs)
5103     return;
5104 
5105   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
5106   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
5107 
5108   // The argument and parameter are the same kind.  Check if they are the right
5109   // size.
5110   if (ArgValueKind == ParamValueKind) {
5111     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
5112       return;
5113 
5114     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
5115     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
5116         << FDecl << ArgType << ParamType;
5117 
5118     if (NewAbsKind == 0)
5119       return;
5120 
5121     emitReplacement(*this, Call->getExprLoc(),
5122                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
5123     return;
5124   }
5125 
5126   // ArgValueKind != ParamValueKind
5127   // The wrong type of absolute value function was used.  Attempt to find the
5128   // proper one.
5129   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
5130   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
5131   if (NewAbsKind == 0)
5132     return;
5133 
5134   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
5135       << FDecl << ParamValueKind << ArgValueKind;
5136 
5137   emitReplacement(*this, Call->getExprLoc(),
5138                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
5139   return;
5140 }
5141 
5142 //===--- CHECK: Standard memory functions ---------------------------------===//
5143 
5144 /// \brief Takes the expression passed to the size_t parameter of functions
5145 /// such as memcmp, strncat, etc and warns if it's a comparison.
5146 ///
5147 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)5148 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
5149                                            IdentifierInfo *FnName,
5150                                            SourceLocation FnLoc,
5151                                            SourceLocation RParenLoc) {
5152   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
5153   if (!Size)
5154     return false;
5155 
5156   // if E is binop and op is >, <, >=, <=, ==, &&, ||:
5157   if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
5158     return false;
5159 
5160   SourceRange SizeRange = Size->getSourceRange();
5161   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
5162       << SizeRange << FnName;
5163   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
5164       << FnName << FixItHint::CreateInsertion(
5165                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
5166       << FixItHint::CreateRemoval(RParenLoc);
5167   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
5168       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
5169       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
5170                                     ")");
5171 
5172   return true;
5173 }
5174 
5175 /// \brief Determine whether the given type is or contains a dynamic class type
5176 /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)5177 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
5178                                                      bool &IsContained) {
5179   // Look through array types while ignoring qualifiers.
5180   const Type *Ty = T->getBaseElementTypeUnsafe();
5181   IsContained = false;
5182 
5183   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
5184   RD = RD ? RD->getDefinition() : nullptr;
5185   if (!RD)
5186     return nullptr;
5187 
5188   if (RD->isDynamicClass())
5189     return RD;
5190 
5191   // Check all the fields.  If any bases were dynamic, the class is dynamic.
5192   // It's impossible for a class to transitively contain itself by value, so
5193   // infinite recursion is impossible.
5194   for (auto *FD : RD->fields()) {
5195     bool SubContained;
5196     if (const CXXRecordDecl *ContainedRD =
5197             getContainedDynamicClass(FD->getType(), SubContained)) {
5198       IsContained = true;
5199       return ContainedRD;
5200     }
5201   }
5202 
5203   return nullptr;
5204 }
5205 
5206 /// \brief If E is a sizeof expression, returns its argument expression,
5207 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)5208 static const Expr *getSizeOfExprArg(const Expr *E) {
5209   if (const UnaryExprOrTypeTraitExpr *SizeOf =
5210       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
5211     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
5212       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
5213 
5214   return nullptr;
5215 }
5216 
5217 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)5218 static QualType getSizeOfArgType(const Expr *E) {
5219   if (const UnaryExprOrTypeTraitExpr *SizeOf =
5220       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
5221     if (SizeOf->getKind() == clang::UETT_SizeOf)
5222       return SizeOf->getTypeOfArgument();
5223 
5224   return QualType();
5225 }
5226 
5227 /// \brief Check for dangerous or invalid arguments to memset().
5228 ///
5229 /// This issues warnings on known problematic, dangerous or unspecified
5230 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
5231 /// function calls.
5232 ///
5233 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)5234 void Sema::CheckMemaccessArguments(const CallExpr *Call,
5235                                    unsigned BId,
5236                                    IdentifierInfo *FnName) {
5237   assert(BId != 0);
5238 
5239   // It is possible to have a non-standard definition of memset.  Validate
5240   // we have enough arguments, and if not, abort further checking.
5241   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
5242   if (Call->getNumArgs() < ExpectedNumArgs)
5243     return;
5244 
5245   unsigned LastArg = (BId == Builtin::BImemset ||
5246                       BId == Builtin::BIstrndup ? 1 : 2);
5247   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
5248   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
5249 
5250   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
5251                                      Call->getLocStart(), Call->getRParenLoc()))
5252     return;
5253 
5254   // We have special checking when the length is a sizeof expression.
5255   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
5256   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
5257   llvm::FoldingSetNodeID SizeOfArgID;
5258 
5259   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
5260     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
5261     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
5262 
5263     QualType DestTy = Dest->getType();
5264     QualType PointeeTy;
5265     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
5266       PointeeTy = DestPtrTy->getPointeeType();
5267 
5268       // Never warn about void type pointers. This can be used to suppress
5269       // false positives.
5270       if (PointeeTy->isVoidType())
5271         continue;
5272 
5273       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
5274       // actually comparing the expressions for equality. Because computing the
5275       // expression IDs can be expensive, we only do this if the diagnostic is
5276       // enabled.
5277       if (SizeOfArg &&
5278           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
5279                            SizeOfArg->getExprLoc())) {
5280         // We only compute IDs for expressions if the warning is enabled, and
5281         // cache the sizeof arg's ID.
5282         if (SizeOfArgID == llvm::FoldingSetNodeID())
5283           SizeOfArg->Profile(SizeOfArgID, Context, true);
5284         llvm::FoldingSetNodeID DestID;
5285         Dest->Profile(DestID, Context, true);
5286         if (DestID == SizeOfArgID) {
5287           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
5288           //       over sizeof(src) as well.
5289           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
5290           StringRef ReadableName = FnName->getName();
5291 
5292           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
5293             if (UnaryOp->getOpcode() == UO_AddrOf)
5294               ActionIdx = 1; // If its an address-of operator, just remove it.
5295           if (!PointeeTy->isIncompleteType() &&
5296               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
5297             ActionIdx = 2; // If the pointee's size is sizeof(char),
5298                            // suggest an explicit length.
5299 
5300           // If the function is defined as a builtin macro, do not show macro
5301           // expansion.
5302           SourceLocation SL = SizeOfArg->getExprLoc();
5303           SourceRange DSR = Dest->getSourceRange();
5304           SourceRange SSR = SizeOfArg->getSourceRange();
5305           SourceManager &SM = getSourceManager();
5306 
5307           if (SM.isMacroArgExpansion(SL)) {
5308             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
5309             SL = SM.getSpellingLoc(SL);
5310             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
5311                              SM.getSpellingLoc(DSR.getEnd()));
5312             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
5313                              SM.getSpellingLoc(SSR.getEnd()));
5314           }
5315 
5316           DiagRuntimeBehavior(SL, SizeOfArg,
5317                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
5318                                 << ReadableName
5319                                 << PointeeTy
5320                                 << DestTy
5321                                 << DSR
5322                                 << SSR);
5323           DiagRuntimeBehavior(SL, SizeOfArg,
5324                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
5325                                 << ActionIdx
5326                                 << SSR);
5327 
5328           break;
5329         }
5330       }
5331 
5332       // Also check for cases where the sizeof argument is the exact same
5333       // type as the memory argument, and where it points to a user-defined
5334       // record type.
5335       if (SizeOfArgTy != QualType()) {
5336         if (PointeeTy->isRecordType() &&
5337             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
5338           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
5339                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
5340                                 << FnName << SizeOfArgTy << ArgIdx
5341                                 << PointeeTy << Dest->getSourceRange()
5342                                 << LenExpr->getSourceRange());
5343           break;
5344         }
5345       }
5346     } else if (DestTy->isArrayType()) {
5347       PointeeTy = DestTy;
5348     }
5349 
5350     if (PointeeTy == QualType())
5351       continue;
5352 
5353     // Always complain about dynamic classes.
5354     bool IsContained;
5355     if (const CXXRecordDecl *ContainedRD =
5356             getContainedDynamicClass(PointeeTy, IsContained)) {
5357 
5358       unsigned OperationType = 0;
5359       // "overwritten" if we're warning about the destination for any call
5360       // but memcmp; otherwise a verb appropriate to the call.
5361       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
5362         if (BId == Builtin::BImemcpy)
5363           OperationType = 1;
5364         else if(BId == Builtin::BImemmove)
5365           OperationType = 2;
5366         else if (BId == Builtin::BImemcmp)
5367           OperationType = 3;
5368       }
5369 
5370       DiagRuntimeBehavior(
5371         Dest->getExprLoc(), Dest,
5372         PDiag(diag::warn_dyn_class_memaccess)
5373           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
5374           << FnName << IsContained << ContainedRD << OperationType
5375           << Call->getCallee()->getSourceRange());
5376     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
5377              BId != Builtin::BImemset)
5378       DiagRuntimeBehavior(
5379         Dest->getExprLoc(), Dest,
5380         PDiag(diag::warn_arc_object_memaccess)
5381           << ArgIdx << FnName << PointeeTy
5382           << Call->getCallee()->getSourceRange());
5383     else
5384       continue;
5385 
5386     DiagRuntimeBehavior(
5387       Dest->getExprLoc(), Dest,
5388       PDiag(diag::note_bad_memaccess_silence)
5389         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
5390     break;
5391   }
5392 
5393 }
5394 
5395 // A little helper routine: ignore addition and subtraction of integer literals.
5396 // This intentionally does not ignore all integer constant expressions because
5397 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)5398 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
5399   Ex = Ex->IgnoreParenCasts();
5400 
5401   for (;;) {
5402     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
5403     if (!BO || !BO->isAdditiveOp())
5404       break;
5405 
5406     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
5407     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
5408 
5409     if (isa<IntegerLiteral>(RHS))
5410       Ex = LHS;
5411     else if (isa<IntegerLiteral>(LHS))
5412       Ex = RHS;
5413     else
5414       break;
5415   }
5416 
5417   return Ex;
5418 }
5419 
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)5420 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
5421                                                       ASTContext &Context) {
5422   // Only handle constant-sized or VLAs, but not flexible members.
5423   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
5424     // Only issue the FIXIT for arrays of size > 1.
5425     if (CAT->getSize().getSExtValue() <= 1)
5426       return false;
5427   } else if (!Ty->isVariableArrayType()) {
5428     return false;
5429   }
5430   return true;
5431 }
5432 
5433 // Warn if the user has made the 'size' argument to strlcpy or strlcat
5434 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)5435 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
5436                                     IdentifierInfo *FnName) {
5437 
5438   // Don't crash if the user has the wrong number of arguments
5439   unsigned NumArgs = Call->getNumArgs();
5440   if ((NumArgs != 3) && (NumArgs != 4))
5441     return;
5442 
5443   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
5444   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
5445   const Expr *CompareWithSrc = nullptr;
5446 
5447   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
5448                                      Call->getLocStart(), Call->getRParenLoc()))
5449     return;
5450 
5451   // Look for 'strlcpy(dst, x, sizeof(x))'
5452   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
5453     CompareWithSrc = Ex;
5454   else {
5455     // Look for 'strlcpy(dst, x, strlen(x))'
5456     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
5457       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
5458           SizeCall->getNumArgs() == 1)
5459         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
5460     }
5461   }
5462 
5463   if (!CompareWithSrc)
5464     return;
5465 
5466   // Determine if the argument to sizeof/strlen is equal to the source
5467   // argument.  In principle there's all kinds of things you could do
5468   // here, for instance creating an == expression and evaluating it with
5469   // EvaluateAsBooleanCondition, but this uses a more direct technique:
5470   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
5471   if (!SrcArgDRE)
5472     return;
5473 
5474   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
5475   if (!CompareWithSrcDRE ||
5476       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
5477     return;
5478 
5479   const Expr *OriginalSizeArg = Call->getArg(2);
5480   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
5481     << OriginalSizeArg->getSourceRange() << FnName;
5482 
5483   // Output a FIXIT hint if the destination is an array (rather than a
5484   // pointer to an array).  This could be enhanced to handle some
5485   // pointers if we know the actual size, like if DstArg is 'array+2'
5486   // we could say 'sizeof(array)-2'.
5487   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
5488   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
5489     return;
5490 
5491   SmallString<128> sizeString;
5492   llvm::raw_svector_ostream OS(sizeString);
5493   OS << "sizeof(";
5494   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5495   OS << ")";
5496 
5497   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
5498     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
5499                                     OS.str());
5500 }
5501 
5502 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)5503 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
5504   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
5505     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
5506       return D1->getDecl() == D2->getDecl();
5507   return false;
5508 }
5509 
getStrlenExprArg(const Expr * E)5510 static const Expr *getStrlenExprArg(const Expr *E) {
5511   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
5512     const FunctionDecl *FD = CE->getDirectCallee();
5513     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
5514       return nullptr;
5515     return CE->getArg(0)->IgnoreParenCasts();
5516   }
5517   return nullptr;
5518 }
5519 
5520 // Warn on anti-patterns as the 'size' argument to strncat.
5521 // The correct size argument should look like following:
5522 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)5523 void Sema::CheckStrncatArguments(const CallExpr *CE,
5524                                  IdentifierInfo *FnName) {
5525   // Don't crash if the user has the wrong number of arguments.
5526   if (CE->getNumArgs() < 3)
5527     return;
5528   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
5529   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
5530   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
5531 
5532   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
5533                                      CE->getRParenLoc()))
5534     return;
5535 
5536   // Identify common expressions, which are wrongly used as the size argument
5537   // to strncat and may lead to buffer overflows.
5538   unsigned PatternType = 0;
5539   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
5540     // - sizeof(dst)
5541     if (referToTheSameDecl(SizeOfArg, DstArg))
5542       PatternType = 1;
5543     // - sizeof(src)
5544     else if (referToTheSameDecl(SizeOfArg, SrcArg))
5545       PatternType = 2;
5546   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
5547     if (BE->getOpcode() == BO_Sub) {
5548       const Expr *L = BE->getLHS()->IgnoreParenCasts();
5549       const Expr *R = BE->getRHS()->IgnoreParenCasts();
5550       // - sizeof(dst) - strlen(dst)
5551       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
5552           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
5553         PatternType = 1;
5554       // - sizeof(src) - (anything)
5555       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
5556         PatternType = 2;
5557     }
5558   }
5559 
5560   if (PatternType == 0)
5561     return;
5562 
5563   // Generate the diagnostic.
5564   SourceLocation SL = LenArg->getLocStart();
5565   SourceRange SR = LenArg->getSourceRange();
5566   SourceManager &SM = getSourceManager();
5567 
5568   // If the function is defined as a builtin macro, do not show macro expansion.
5569   if (SM.isMacroArgExpansion(SL)) {
5570     SL = SM.getSpellingLoc(SL);
5571     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
5572                      SM.getSpellingLoc(SR.getEnd()));
5573   }
5574 
5575   // Check if the destination is an array (rather than a pointer to an array).
5576   QualType DstTy = DstArg->getType();
5577   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
5578                                                                     Context);
5579   if (!isKnownSizeArray) {
5580     if (PatternType == 1)
5581       Diag(SL, diag::warn_strncat_wrong_size) << SR;
5582     else
5583       Diag(SL, diag::warn_strncat_src_size) << SR;
5584     return;
5585   }
5586 
5587   if (PatternType == 1)
5588     Diag(SL, diag::warn_strncat_large_size) << SR;
5589   else
5590     Diag(SL, diag::warn_strncat_src_size) << SR;
5591 
5592   SmallString<128> sizeString;
5593   llvm::raw_svector_ostream OS(sizeString);
5594   OS << "sizeof(";
5595   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5596   OS << ") - ";
5597   OS << "strlen(";
5598   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5599   OS << ") - 1";
5600 
5601   Diag(SL, diag::note_strncat_wrong_size)
5602     << FixItHint::CreateReplacement(SR, OS.str());
5603 }
5604 
5605 //===--- CHECK: Return Address of Stack Variable --------------------------===//
5606 
5607 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5608                      Decl *ParentDecl);
5609 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
5610                       Decl *ParentDecl);
5611 
5612 /// CheckReturnStackAddr - Check if a return statement returns the address
5613 ///   of a stack variable.
5614 static void
CheckReturnStackAddr(Sema & S,Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)5615 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
5616                      SourceLocation ReturnLoc) {
5617 
5618   Expr *stackE = nullptr;
5619   SmallVector<DeclRefExpr *, 8> refVars;
5620 
5621   // Perform checking for returned stack addresses, local blocks,
5622   // label addresses or references to temporaries.
5623   if (lhsType->isPointerType() ||
5624       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
5625     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
5626   } else if (lhsType->isReferenceType()) {
5627     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
5628   }
5629 
5630   if (!stackE)
5631     return; // Nothing suspicious was found.
5632 
5633   SourceLocation diagLoc;
5634   SourceRange diagRange;
5635   if (refVars.empty()) {
5636     diagLoc = stackE->getLocStart();
5637     diagRange = stackE->getSourceRange();
5638   } else {
5639     // We followed through a reference variable. 'stackE' contains the
5640     // problematic expression but we will warn at the return statement pointing
5641     // at the reference variable. We will later display the "trail" of
5642     // reference variables using notes.
5643     diagLoc = refVars[0]->getLocStart();
5644     diagRange = refVars[0]->getSourceRange();
5645   }
5646 
5647   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
5648     S.Diag(diagLoc, diag::warn_ret_stack_addr_ref) << lhsType->isReferenceType()
5649      << DR->getDecl()->getDeclName() << diagRange;
5650   } else if (isa<BlockExpr>(stackE)) { // local block.
5651     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
5652   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
5653     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
5654   } else { // local temporary.
5655     S.Diag(diagLoc, diag::warn_ret_local_temp_addr_ref)
5656      << lhsType->isReferenceType() << diagRange;
5657   }
5658 
5659   // Display the "trail" of reference variables that we followed until we
5660   // found the problematic expression using notes.
5661   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
5662     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
5663     // If this var binds to another reference var, show the range of the next
5664     // var, otherwise the var binds to the problematic expression, in which case
5665     // show the range of the expression.
5666     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
5667                                   : stackE->getSourceRange();
5668     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
5669         << VD->getDeclName() << range;
5670   }
5671 }
5672 
5673 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
5674 ///  check if the expression in a return statement evaluates to an address
5675 ///  to a location on the stack, a local block, an address of a label, or a
5676 ///  reference to local temporary. The recursion is used to traverse the
5677 ///  AST of the return expression, with recursion backtracking when we
5678 ///  encounter a subexpression that (1) clearly does not lead to one of the
5679 ///  above problematic expressions (2) is something we cannot determine leads to
5680 ///  a problematic expression based on such local checking.
5681 ///
5682 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
5683 ///  the expression that they point to. Such variables are added to the
5684 ///  'refVars' vector so that we know what the reference variable "trail" was.
5685 ///
5686 ///  EvalAddr processes expressions that are pointers that are used as
5687 ///  references (and not L-values).  EvalVal handles all other values.
5688 ///  At the base case of the recursion is a check for the above problematic
5689 ///  expressions.
5690 ///
5691 ///  This implementation handles:
5692 ///
5693 ///   * pointer-to-pointer casts
5694 ///   * implicit conversions from array references to pointers
5695 ///   * taking the address of fields
5696 ///   * arbitrary interplay between "&" and "*" operators
5697 ///   * pointer arithmetic from an address of a stack variable
5698 ///   * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)5699 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5700                       Decl *ParentDecl) {
5701   if (E->isTypeDependent())
5702     return nullptr;
5703 
5704   // We should only be called for evaluating pointer expressions.
5705   assert((E->getType()->isAnyPointerType() ||
5706           E->getType()->isBlockPointerType() ||
5707           E->getType()->isObjCQualifiedIdType()) &&
5708          "EvalAddr only works on pointers");
5709 
5710   E = E->IgnoreParens();
5711 
5712   // Our "symbolic interpreter" is just a dispatch off the currently
5713   // viewed AST node.  We then recursively traverse the AST by calling
5714   // EvalAddr and EvalVal appropriately.
5715   switch (E->getStmtClass()) {
5716   case Stmt::DeclRefExprClass: {
5717     DeclRefExpr *DR = cast<DeclRefExpr>(E);
5718 
5719     // If we leave the immediate function, the lifetime isn't about to end.
5720     if (DR->refersToEnclosingVariableOrCapture())
5721       return nullptr;
5722 
5723     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
5724       // If this is a reference variable, follow through to the expression that
5725       // it points to.
5726       if (V->hasLocalStorage() &&
5727           V->getType()->isReferenceType() && V->hasInit()) {
5728         // Add the reference variable to the "trail".
5729         refVars.push_back(DR);
5730         return EvalAddr(V->getInit(), refVars, ParentDecl);
5731       }
5732 
5733     return nullptr;
5734   }
5735 
5736   case Stmt::UnaryOperatorClass: {
5737     // The only unary operator that make sense to handle here
5738     // is AddrOf.  All others don't make sense as pointers.
5739     UnaryOperator *U = cast<UnaryOperator>(E);
5740 
5741     if (U->getOpcode() == UO_AddrOf)
5742       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
5743     else
5744       return nullptr;
5745   }
5746 
5747   case Stmt::BinaryOperatorClass: {
5748     // Handle pointer arithmetic.  All other binary operators are not valid
5749     // in this context.
5750     BinaryOperator *B = cast<BinaryOperator>(E);
5751     BinaryOperatorKind op = B->getOpcode();
5752 
5753     if (op != BO_Add && op != BO_Sub)
5754       return nullptr;
5755 
5756     Expr *Base = B->getLHS();
5757 
5758     // Determine which argument is the real pointer base.  It could be
5759     // the RHS argument instead of the LHS.
5760     if (!Base->getType()->isPointerType()) Base = B->getRHS();
5761 
5762     assert (Base->getType()->isPointerType());
5763     return EvalAddr(Base, refVars, ParentDecl);
5764   }
5765 
5766   // For conditional operators we need to see if either the LHS or RHS are
5767   // valid DeclRefExpr*s.  If one of them is valid, we return it.
5768   case Stmt::ConditionalOperatorClass: {
5769     ConditionalOperator *C = cast<ConditionalOperator>(E);
5770 
5771     // Handle the GNU extension for missing LHS.
5772     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
5773     if (Expr *LHSExpr = C->getLHS()) {
5774       // In C++, we can have a throw-expression, which has 'void' type.
5775       if (!LHSExpr->getType()->isVoidType())
5776         if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
5777           return LHS;
5778     }
5779 
5780     // In C++, we can have a throw-expression, which has 'void' type.
5781     if (C->getRHS()->getType()->isVoidType())
5782       return nullptr;
5783 
5784     return EvalAddr(C->getRHS(), refVars, ParentDecl);
5785   }
5786 
5787   case Stmt::BlockExprClass:
5788     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
5789       return E; // local block.
5790     return nullptr;
5791 
5792   case Stmt::AddrLabelExprClass:
5793     return E; // address of label.
5794 
5795   case Stmt::ExprWithCleanupsClass:
5796     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
5797                     ParentDecl);
5798 
5799   // For casts, we need to handle conversions from arrays to
5800   // pointer values, and pointer-to-pointer conversions.
5801   case Stmt::ImplicitCastExprClass:
5802   case Stmt::CStyleCastExprClass:
5803   case Stmt::CXXFunctionalCastExprClass:
5804   case Stmt::ObjCBridgedCastExprClass:
5805   case Stmt::CXXStaticCastExprClass:
5806   case Stmt::CXXDynamicCastExprClass:
5807   case Stmt::CXXConstCastExprClass:
5808   case Stmt::CXXReinterpretCastExprClass: {
5809     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
5810     switch (cast<CastExpr>(E)->getCastKind()) {
5811     case CK_LValueToRValue:
5812     case CK_NoOp:
5813     case CK_BaseToDerived:
5814     case CK_DerivedToBase:
5815     case CK_UncheckedDerivedToBase:
5816     case CK_Dynamic:
5817     case CK_CPointerToObjCPointerCast:
5818     case CK_BlockPointerToObjCPointerCast:
5819     case CK_AnyPointerToBlockPointerCast:
5820       return EvalAddr(SubExpr, refVars, ParentDecl);
5821 
5822     case CK_ArrayToPointerDecay:
5823       return EvalVal(SubExpr, refVars, ParentDecl);
5824 
5825     case CK_BitCast:
5826       if (SubExpr->getType()->isAnyPointerType() ||
5827           SubExpr->getType()->isBlockPointerType() ||
5828           SubExpr->getType()->isObjCQualifiedIdType())
5829         return EvalAddr(SubExpr, refVars, ParentDecl);
5830       else
5831         return nullptr;
5832 
5833     default:
5834       return nullptr;
5835     }
5836   }
5837 
5838   case Stmt::MaterializeTemporaryExprClass:
5839     if (Expr *Result = EvalAddr(
5840                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5841                                 refVars, ParentDecl))
5842       return Result;
5843 
5844     return E;
5845 
5846   // Everything else: we simply don't reason about them.
5847   default:
5848     return nullptr;
5849   }
5850 }
5851 
5852 
5853 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
5854 ///   See the comments for EvalAddr for more details.
EvalVal(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)5855 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5856                      Decl *ParentDecl) {
5857 do {
5858   // We should only be called for evaluating non-pointer expressions, or
5859   // expressions with a pointer type that are not used as references but instead
5860   // are l-values (e.g., DeclRefExpr with a pointer type).
5861 
5862   // Our "symbolic interpreter" is just a dispatch off the currently
5863   // viewed AST node.  We then recursively traverse the AST by calling
5864   // EvalAddr and EvalVal appropriately.
5865 
5866   E = E->IgnoreParens();
5867   switch (E->getStmtClass()) {
5868   case Stmt::ImplicitCastExprClass: {
5869     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
5870     if (IE->getValueKind() == VK_LValue) {
5871       E = IE->getSubExpr();
5872       continue;
5873     }
5874     return nullptr;
5875   }
5876 
5877   case Stmt::ExprWithCleanupsClass:
5878     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
5879 
5880   case Stmt::DeclRefExprClass: {
5881     // When we hit a DeclRefExpr we are looking at code that refers to a
5882     // variable's name. If it's not a reference variable we check if it has
5883     // local storage within the function, and if so, return the expression.
5884     DeclRefExpr *DR = cast<DeclRefExpr>(E);
5885 
5886     // If we leave the immediate function, the lifetime isn't about to end.
5887     if (DR->refersToEnclosingVariableOrCapture())
5888       return nullptr;
5889 
5890     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
5891       // Check if it refers to itself, e.g. "int& i = i;".
5892       if (V == ParentDecl)
5893         return DR;
5894 
5895       if (V->hasLocalStorage()) {
5896         if (!V->getType()->isReferenceType())
5897           return DR;
5898 
5899         // Reference variable, follow through to the expression that
5900         // it points to.
5901         if (V->hasInit()) {
5902           // Add the reference variable to the "trail".
5903           refVars.push_back(DR);
5904           return EvalVal(V->getInit(), refVars, V);
5905         }
5906       }
5907     }
5908 
5909     return nullptr;
5910   }
5911 
5912   case Stmt::UnaryOperatorClass: {
5913     // The only unary operator that make sense to handle here
5914     // is Deref.  All others don't resolve to a "name."  This includes
5915     // handling all sorts of rvalues passed to a unary operator.
5916     UnaryOperator *U = cast<UnaryOperator>(E);
5917 
5918     if (U->getOpcode() == UO_Deref)
5919       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
5920 
5921     return nullptr;
5922   }
5923 
5924   case Stmt::ArraySubscriptExprClass: {
5925     // Array subscripts are potential references to data on the stack.  We
5926     // retrieve the DeclRefExpr* for the array variable if it indeed
5927     // has local storage.
5928     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
5929   }
5930 
5931   case Stmt::OMPArraySectionExprClass: {
5932     return EvalAddr(cast<OMPArraySectionExpr>(E)->getBase(), refVars,
5933                     ParentDecl);
5934   }
5935 
5936   case Stmt::ConditionalOperatorClass: {
5937     // For conditional operators we need to see if either the LHS or RHS are
5938     // non-NULL Expr's.  If one is non-NULL, we return it.
5939     ConditionalOperator *C = cast<ConditionalOperator>(E);
5940 
5941     // Handle the GNU extension for missing LHS.
5942     if (Expr *LHSExpr = C->getLHS()) {
5943       // In C++, we can have a throw-expression, which has 'void' type.
5944       if (!LHSExpr->getType()->isVoidType())
5945         if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
5946           return LHS;
5947     }
5948 
5949     // In C++, we can have a throw-expression, which has 'void' type.
5950     if (C->getRHS()->getType()->isVoidType())
5951       return nullptr;
5952 
5953     return EvalVal(C->getRHS(), refVars, ParentDecl);
5954   }
5955 
5956   // Accesses to members are potential references to data on the stack.
5957   case Stmt::MemberExprClass: {
5958     MemberExpr *M = cast<MemberExpr>(E);
5959 
5960     // Check for indirect access.  We only want direct field accesses.
5961     if (M->isArrow())
5962       return nullptr;
5963 
5964     // Check whether the member type is itself a reference, in which case
5965     // we're not going to refer to the member, but to what the member refers to.
5966     if (M->getMemberDecl()->getType()->isReferenceType())
5967       return nullptr;
5968 
5969     return EvalVal(M->getBase(), refVars, ParentDecl);
5970   }
5971 
5972   case Stmt::MaterializeTemporaryExprClass:
5973     if (Expr *Result = EvalVal(
5974                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5975                                refVars, ParentDecl))
5976       return Result;
5977 
5978     return E;
5979 
5980   default:
5981     // Check that we don't return or take the address of a reference to a
5982     // temporary. This is only useful in C++.
5983     if (!E->isTypeDependent() && E->isRValue())
5984       return E;
5985 
5986     // Everything else: we simply don't reason about them.
5987     return nullptr;
5988   }
5989 } while (true);
5990 }
5991 
5992 void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)5993 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
5994                          SourceLocation ReturnLoc,
5995                          bool isObjCMethod,
5996                          const AttrVec *Attrs,
5997                          const FunctionDecl *FD) {
5998   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
5999 
6000   // Check if the return value is null but should not be.
6001   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
6002        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
6003       CheckNonNullExpr(*this, RetValExp))
6004     Diag(ReturnLoc, diag::warn_null_ret)
6005       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
6006 
6007   // C++11 [basic.stc.dynamic.allocation]p4:
6008   //   If an allocation function declared with a non-throwing
6009   //   exception-specification fails to allocate storage, it shall return
6010   //   a null pointer. Any other allocation function that fails to allocate
6011   //   storage shall indicate failure only by throwing an exception [...]
6012   if (FD) {
6013     OverloadedOperatorKind Op = FD->getOverloadedOperator();
6014     if (Op == OO_New || Op == OO_Array_New) {
6015       const FunctionProtoType *Proto
6016         = FD->getType()->castAs<FunctionProtoType>();
6017       if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
6018           CheckNonNullExpr(*this, RetValExp))
6019         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
6020           << FD << getLangOpts().CPlusPlus11;
6021     }
6022   }
6023 }
6024 
6025 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
6026 
6027 /// Check for comparisons of floating point operands using != and ==.
6028 /// Issue a warning if these are no self-comparisons, as they are not likely
6029 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)6030 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
6031   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
6032   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
6033 
6034   // Special case: check for x == x (which is OK).
6035   // Do not emit warnings for such cases.
6036   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
6037     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
6038       if (DRL->getDecl() == DRR->getDecl())
6039         return;
6040 
6041 
6042   // Special case: check for comparisons against literals that can be exactly
6043   //  represented by APFloat.  In such cases, do not emit a warning.  This
6044   //  is a heuristic: often comparison against such literals are used to
6045   //  detect if a value in a variable has not changed.  This clearly can
6046   //  lead to false negatives.
6047   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
6048     if (FLL->isExact())
6049       return;
6050   } else
6051     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
6052       if (FLR->isExact())
6053         return;
6054 
6055   // Check for comparisons with builtin types.
6056   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
6057     if (CL->getBuiltinCallee())
6058       return;
6059 
6060   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
6061     if (CR->getBuiltinCallee())
6062       return;
6063 
6064   // Emit the diagnostic.
6065   Diag(Loc, diag::warn_floatingpoint_eq)
6066     << LHS->getSourceRange() << RHS->getSourceRange();
6067 }
6068 
6069 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
6070 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
6071 
6072 namespace {
6073 
6074 /// Structure recording the 'active' range of an integer-valued
6075 /// expression.
6076 struct IntRange {
6077   /// The number of bits active in the int.
6078   unsigned Width;
6079 
6080   /// True if the int is known not to have negative values.
6081   bool NonNegative;
6082 
IntRange__anon817ecb130711::IntRange6083   IntRange(unsigned Width, bool NonNegative)
6084     : Width(Width), NonNegative(NonNegative)
6085   {}
6086 
6087   /// Returns the range of the bool type.
forBoolType__anon817ecb130711::IntRange6088   static IntRange forBoolType() {
6089     return IntRange(1, true);
6090   }
6091 
6092   /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon817ecb130711::IntRange6093   static IntRange forValueOfType(ASTContext &C, QualType T) {
6094     return forValueOfCanonicalType(C,
6095                           T->getCanonicalTypeInternal().getTypePtr());
6096   }
6097 
6098   /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon817ecb130711::IntRange6099   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
6100     assert(T->isCanonicalUnqualified());
6101 
6102     if (const VectorType *VT = dyn_cast<VectorType>(T))
6103       T = VT->getElementType().getTypePtr();
6104     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
6105       T = CT->getElementType().getTypePtr();
6106     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
6107       T = AT->getValueType().getTypePtr();
6108 
6109     // For enum types, use the known bit width of the enumerators.
6110     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
6111       EnumDecl *Enum = ET->getDecl();
6112       if (!Enum->isCompleteDefinition())
6113         return IntRange(C.getIntWidth(QualType(T, 0)), false);
6114 
6115       unsigned NumPositive = Enum->getNumPositiveBits();
6116       unsigned NumNegative = Enum->getNumNegativeBits();
6117 
6118       if (NumNegative == 0)
6119         return IntRange(NumPositive, true/*NonNegative*/);
6120       else
6121         return IntRange(std::max(NumPositive + 1, NumNegative),
6122                         false/*NonNegative*/);
6123     }
6124 
6125     const BuiltinType *BT = cast<BuiltinType>(T);
6126     assert(BT->isInteger());
6127 
6128     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
6129   }
6130 
6131   /// Returns the "target" range of a canonical integral type, i.e.
6132   /// the range of values expressible in the type.
6133   ///
6134   /// This matches forValueOfCanonicalType except that enums have the
6135   /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon817ecb130711::IntRange6136   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
6137     assert(T->isCanonicalUnqualified());
6138 
6139     if (const VectorType *VT = dyn_cast<VectorType>(T))
6140       T = VT->getElementType().getTypePtr();
6141     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
6142       T = CT->getElementType().getTypePtr();
6143     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
6144       T = AT->getValueType().getTypePtr();
6145     if (const EnumType *ET = dyn_cast<EnumType>(T))
6146       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
6147 
6148     const BuiltinType *BT = cast<BuiltinType>(T);
6149     assert(BT->isInteger());
6150 
6151     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
6152   }
6153 
6154   /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon817ecb130711::IntRange6155   static IntRange join(IntRange L, IntRange R) {
6156     return IntRange(std::max(L.Width, R.Width),
6157                     L.NonNegative && R.NonNegative);
6158   }
6159 
6160   /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon817ecb130711::IntRange6161   static IntRange meet(IntRange L, IntRange R) {
6162     return IntRange(std::min(L.Width, R.Width),
6163                     L.NonNegative || R.NonNegative);
6164   }
6165 };
6166 
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)6167 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
6168                               unsigned MaxWidth) {
6169   if (value.isSigned() && value.isNegative())
6170     return IntRange(value.getMinSignedBits(), false);
6171 
6172   if (value.getBitWidth() > MaxWidth)
6173     value = value.trunc(MaxWidth);
6174 
6175   // isNonNegative() just checks the sign bit without considering
6176   // signedness.
6177   return IntRange(value.getActiveBits(), true);
6178 }
6179 
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)6180 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
6181                               unsigned MaxWidth) {
6182   if (result.isInt())
6183     return GetValueRange(C, result.getInt(), MaxWidth);
6184 
6185   if (result.isVector()) {
6186     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
6187     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
6188       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
6189       R = IntRange::join(R, El);
6190     }
6191     return R;
6192   }
6193 
6194   if (result.isComplexInt()) {
6195     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
6196     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
6197     return IntRange::join(R, I);
6198   }
6199 
6200   // This can happen with lossless casts to intptr_t of "based" lvalues.
6201   // Assume it might use arbitrary bits.
6202   // FIXME: The only reason we need to pass the type in here is to get
6203   // the sign right on this one case.  It would be nice if APValue
6204   // preserved this.
6205   assert(result.isLValue() || result.isAddrLabelDiff());
6206   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
6207 }
6208 
GetExprType(Expr * E)6209 static QualType GetExprType(Expr *E) {
6210   QualType Ty = E->getType();
6211   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
6212     Ty = AtomicRHS->getValueType();
6213   return Ty;
6214 }
6215 
6216 /// Pseudo-evaluate the given integer expression, estimating the
6217 /// range of values it might take.
6218 ///
6219 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)6220 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
6221   E = E->IgnoreParens();
6222 
6223   // Try a full evaluation first.
6224   Expr::EvalResult result;
6225   if (E->EvaluateAsRValue(result, C))
6226     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
6227 
6228   // I think we only want to look through implicit casts here; if the
6229   // user has an explicit widening cast, we should treat the value as
6230   // being of the new, wider type.
6231   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
6232     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
6233       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
6234 
6235     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
6236 
6237     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
6238 
6239     // Assume that non-integer casts can span the full range of the type.
6240     if (!isIntegerCast)
6241       return OutputTypeRange;
6242 
6243     IntRange SubRange
6244       = GetExprRange(C, CE->getSubExpr(),
6245                      std::min(MaxWidth, OutputTypeRange.Width));
6246 
6247     // Bail out if the subexpr's range is as wide as the cast type.
6248     if (SubRange.Width >= OutputTypeRange.Width)
6249       return OutputTypeRange;
6250 
6251     // Otherwise, we take the smaller width, and we're non-negative if
6252     // either the output type or the subexpr is.
6253     return IntRange(SubRange.Width,
6254                     SubRange.NonNegative || OutputTypeRange.NonNegative);
6255   }
6256 
6257   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6258     // If we can fold the condition, just take that operand.
6259     bool CondResult;
6260     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
6261       return GetExprRange(C, CondResult ? CO->getTrueExpr()
6262                                         : CO->getFalseExpr(),
6263                           MaxWidth);
6264 
6265     // Otherwise, conservatively merge.
6266     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
6267     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
6268     return IntRange::join(L, R);
6269   }
6270 
6271   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6272     switch (BO->getOpcode()) {
6273 
6274     // Boolean-valued operations are single-bit and positive.
6275     case BO_LAnd:
6276     case BO_LOr:
6277     case BO_LT:
6278     case BO_GT:
6279     case BO_LE:
6280     case BO_GE:
6281     case BO_EQ:
6282     case BO_NE:
6283       return IntRange::forBoolType();
6284 
6285     // The type of the assignments is the type of the LHS, so the RHS
6286     // is not necessarily the same type.
6287     case BO_MulAssign:
6288     case BO_DivAssign:
6289     case BO_RemAssign:
6290     case BO_AddAssign:
6291     case BO_SubAssign:
6292     case BO_XorAssign:
6293     case BO_OrAssign:
6294       // TODO: bitfields?
6295       return IntRange::forValueOfType(C, GetExprType(E));
6296 
6297     // Simple assignments just pass through the RHS, which will have
6298     // been coerced to the LHS type.
6299     case BO_Assign:
6300       // TODO: bitfields?
6301       return GetExprRange(C, BO->getRHS(), MaxWidth);
6302 
6303     // Operations with opaque sources are black-listed.
6304     case BO_PtrMemD:
6305     case BO_PtrMemI:
6306       return IntRange::forValueOfType(C, GetExprType(E));
6307 
6308     // Bitwise-and uses the *infinum* of the two source ranges.
6309     case BO_And:
6310     case BO_AndAssign:
6311       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
6312                             GetExprRange(C, BO->getRHS(), MaxWidth));
6313 
6314     // Left shift gets black-listed based on a judgement call.
6315     case BO_Shl:
6316       // ...except that we want to treat '1 << (blah)' as logically
6317       // positive.  It's an important idiom.
6318       if (IntegerLiteral *I
6319             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
6320         if (I->getValue() == 1) {
6321           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
6322           return IntRange(R.Width, /*NonNegative*/ true);
6323         }
6324       }
6325       // fallthrough
6326 
6327     case BO_ShlAssign:
6328       return IntRange::forValueOfType(C, GetExprType(E));
6329 
6330     // Right shift by a constant can narrow its left argument.
6331     case BO_Shr:
6332     case BO_ShrAssign: {
6333       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
6334 
6335       // If the shift amount is a positive constant, drop the width by
6336       // that much.
6337       llvm::APSInt shift;
6338       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
6339           shift.isNonNegative()) {
6340         unsigned zext = shift.getZExtValue();
6341         if (zext >= L.Width)
6342           L.Width = (L.NonNegative ? 0 : 1);
6343         else
6344           L.Width -= zext;
6345       }
6346 
6347       return L;
6348     }
6349 
6350     // Comma acts as its right operand.
6351     case BO_Comma:
6352       return GetExprRange(C, BO->getRHS(), MaxWidth);
6353 
6354     // Black-list pointer subtractions.
6355     case BO_Sub:
6356       if (BO->getLHS()->getType()->isPointerType())
6357         return IntRange::forValueOfType(C, GetExprType(E));
6358       break;
6359 
6360     // The width of a division result is mostly determined by the size
6361     // of the LHS.
6362     case BO_Div: {
6363       // Don't 'pre-truncate' the operands.
6364       unsigned opWidth = C.getIntWidth(GetExprType(E));
6365       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
6366 
6367       // If the divisor is constant, use that.
6368       llvm::APSInt divisor;
6369       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
6370         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
6371         if (log2 >= L.Width)
6372           L.Width = (L.NonNegative ? 0 : 1);
6373         else
6374           L.Width = std::min(L.Width - log2, MaxWidth);
6375         return L;
6376       }
6377 
6378       // Otherwise, just use the LHS's width.
6379       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
6380       return IntRange(L.Width, L.NonNegative && R.NonNegative);
6381     }
6382 
6383     // The result of a remainder can't be larger than the result of
6384     // either side.
6385     case BO_Rem: {
6386       // Don't 'pre-truncate' the operands.
6387       unsigned opWidth = C.getIntWidth(GetExprType(E));
6388       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
6389       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
6390 
6391       IntRange meet = IntRange::meet(L, R);
6392       meet.Width = std::min(meet.Width, MaxWidth);
6393       return meet;
6394     }
6395 
6396     // The default behavior is okay for these.
6397     case BO_Mul:
6398     case BO_Add:
6399     case BO_Xor:
6400     case BO_Or:
6401       break;
6402     }
6403 
6404     // The default case is to treat the operation as if it were closed
6405     // on the narrowest type that encompasses both operands.
6406     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
6407     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
6408     return IntRange::join(L, R);
6409   }
6410 
6411   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
6412     switch (UO->getOpcode()) {
6413     // Boolean-valued operations are white-listed.
6414     case UO_LNot:
6415       return IntRange::forBoolType();
6416 
6417     // Operations with opaque sources are black-listed.
6418     case UO_Deref:
6419     case UO_AddrOf: // should be impossible
6420       return IntRange::forValueOfType(C, GetExprType(E));
6421 
6422     default:
6423       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
6424     }
6425   }
6426 
6427   if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
6428     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
6429 
6430   if (FieldDecl *BitField = E->getSourceBitField())
6431     return IntRange(BitField->getBitWidthValue(C),
6432                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
6433 
6434   return IntRange::forValueOfType(C, GetExprType(E));
6435 }
6436 
GetExprRange(ASTContext & C,Expr * E)6437 static IntRange GetExprRange(ASTContext &C, Expr *E) {
6438   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
6439 }
6440 
6441 /// Checks whether the given value, which currently has the given
6442 /// source semantics, has the same value when coerced through the
6443 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)6444 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
6445                                  const llvm::fltSemantics &Src,
6446                                  const llvm::fltSemantics &Tgt) {
6447   llvm::APFloat truncated = value;
6448 
6449   bool ignored;
6450   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
6451   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
6452 
6453   return truncated.bitwiseIsEqual(value);
6454 }
6455 
6456 /// Checks whether the given value, which currently has the given
6457 /// source semantics, has the same value when coerced through the
6458 /// target semantics.
6459 ///
6460 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)6461 static bool IsSameFloatAfterCast(const APValue &value,
6462                                  const llvm::fltSemantics &Src,
6463                                  const llvm::fltSemantics &Tgt) {
6464   if (value.isFloat())
6465     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
6466 
6467   if (value.isVector()) {
6468     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
6469       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
6470         return false;
6471     return true;
6472   }
6473 
6474   assert(value.isComplexFloat());
6475   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
6476           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
6477 }
6478 
6479 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
6480 
IsZero(Sema & S,Expr * E)6481 static bool IsZero(Sema &S, Expr *E) {
6482   // Suppress cases where we are comparing against an enum constant.
6483   if (const DeclRefExpr *DR =
6484       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
6485     if (isa<EnumConstantDecl>(DR->getDecl()))
6486       return false;
6487 
6488   // Suppress cases where the '0' value is expanded from a macro.
6489   if (E->getLocStart().isMacroID())
6490     return false;
6491 
6492   llvm::APSInt Value;
6493   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
6494 }
6495 
HasEnumType(Expr * E)6496 static bool HasEnumType(Expr *E) {
6497   // Strip off implicit integral promotions.
6498   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6499     if (ICE->getCastKind() != CK_IntegralCast &&
6500         ICE->getCastKind() != CK_NoOp)
6501       break;
6502     E = ICE->getSubExpr();
6503   }
6504 
6505   return E->getType()->isEnumeralType();
6506 }
6507 
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)6508 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
6509   // Disable warning in template instantiations.
6510   if (!S.ActiveTemplateInstantiations.empty())
6511     return;
6512 
6513   BinaryOperatorKind op = E->getOpcode();
6514   if (E->isValueDependent())
6515     return;
6516 
6517   if (op == BO_LT && IsZero(S, E->getRHS())) {
6518     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
6519       << "< 0" << "false" << HasEnumType(E->getLHS())
6520       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6521   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
6522     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
6523       << ">= 0" << "true" << HasEnumType(E->getLHS())
6524       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6525   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
6526     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
6527       << "0 >" << "false" << HasEnumType(E->getRHS())
6528       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6529   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
6530     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
6531       << "0 <=" << "true" << HasEnumType(E->getRHS())
6532       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6533   }
6534 }
6535 
DiagnoseOutOfRangeComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,llvm::APSInt Value,bool RhsConstant)6536 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
6537                                          Expr *Constant, Expr *Other,
6538                                          llvm::APSInt Value,
6539                                          bool RhsConstant) {
6540   // Disable warning in template instantiations.
6541   if (!S.ActiveTemplateInstantiations.empty())
6542     return;
6543 
6544   // TODO: Investigate using GetExprRange() to get tighter bounds
6545   // on the bit ranges.
6546   QualType OtherT = Other->getType();
6547   if (const auto *AT = OtherT->getAs<AtomicType>())
6548     OtherT = AT->getValueType();
6549   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
6550   unsigned OtherWidth = OtherRange.Width;
6551 
6552   bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
6553 
6554   // 0 values are handled later by CheckTrivialUnsignedComparison().
6555   if ((Value == 0) && (!OtherIsBooleanType))
6556     return;
6557 
6558   BinaryOperatorKind op = E->getOpcode();
6559   bool IsTrue = true;
6560 
6561   // Used for diagnostic printout.
6562   enum {
6563     LiteralConstant = 0,
6564     CXXBoolLiteralTrue,
6565     CXXBoolLiteralFalse
6566   } LiteralOrBoolConstant = LiteralConstant;
6567 
6568   if (!OtherIsBooleanType) {
6569     QualType ConstantT = Constant->getType();
6570     QualType CommonT = E->getLHS()->getType();
6571 
6572     if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
6573       return;
6574     assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
6575            "comparison with non-integer type");
6576 
6577     bool ConstantSigned = ConstantT->isSignedIntegerType();
6578     bool CommonSigned = CommonT->isSignedIntegerType();
6579 
6580     bool EqualityOnly = false;
6581 
6582     if (CommonSigned) {
6583       // The common type is signed, therefore no signed to unsigned conversion.
6584       if (!OtherRange.NonNegative) {
6585         // Check that the constant is representable in type OtherT.
6586         if (ConstantSigned) {
6587           if (OtherWidth >= Value.getMinSignedBits())
6588             return;
6589         } else { // !ConstantSigned
6590           if (OtherWidth >= Value.getActiveBits() + 1)
6591             return;
6592         }
6593       } else { // !OtherSigned
6594                // Check that the constant is representable in type OtherT.
6595         // Negative values are out of range.
6596         if (ConstantSigned) {
6597           if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
6598             return;
6599         } else { // !ConstantSigned
6600           if (OtherWidth >= Value.getActiveBits())
6601             return;
6602         }
6603       }
6604     } else { // !CommonSigned
6605       if (OtherRange.NonNegative) {
6606         if (OtherWidth >= Value.getActiveBits())
6607           return;
6608       } else { // OtherSigned
6609         assert(!ConstantSigned &&
6610                "Two signed types converted to unsigned types.");
6611         // Check to see if the constant is representable in OtherT.
6612         if (OtherWidth > Value.getActiveBits())
6613           return;
6614         // Check to see if the constant is equivalent to a negative value
6615         // cast to CommonT.
6616         if (S.Context.getIntWidth(ConstantT) ==
6617                 S.Context.getIntWidth(CommonT) &&
6618             Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
6619           return;
6620         // The constant value rests between values that OtherT can represent
6621         // after conversion.  Relational comparison still works, but equality
6622         // comparisons will be tautological.
6623         EqualityOnly = true;
6624       }
6625     }
6626 
6627     bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
6628 
6629     if (op == BO_EQ || op == BO_NE) {
6630       IsTrue = op == BO_NE;
6631     } else if (EqualityOnly) {
6632       return;
6633     } else if (RhsConstant) {
6634       if (op == BO_GT || op == BO_GE)
6635         IsTrue = !PositiveConstant;
6636       else // op == BO_LT || op == BO_LE
6637         IsTrue = PositiveConstant;
6638     } else {
6639       if (op == BO_LT || op == BO_LE)
6640         IsTrue = !PositiveConstant;
6641       else // op == BO_GT || op == BO_GE
6642         IsTrue = PositiveConstant;
6643     }
6644   } else {
6645     // Other isKnownToHaveBooleanValue
6646     enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
6647     enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
6648     enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
6649 
6650     static const struct LinkedConditions {
6651       CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
6652       CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
6653       CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
6654       CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
6655       CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
6656       CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
6657 
6658     } TruthTable = {
6659         // Constant on LHS.              | Constant on RHS.              |
6660         // LT_Zero| Zero  | One   |GT_One| LT_Zero| Zero  | One   |GT_One|
6661         { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
6662         { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
6663         { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
6664         { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
6665         { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
6666         { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
6667       };
6668 
6669     bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
6670 
6671     enum ConstantValue ConstVal = Zero;
6672     if (Value.isUnsigned() || Value.isNonNegative()) {
6673       if (Value == 0) {
6674         LiteralOrBoolConstant =
6675             ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
6676         ConstVal = Zero;
6677       } else if (Value == 1) {
6678         LiteralOrBoolConstant =
6679             ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
6680         ConstVal = One;
6681       } else {
6682         LiteralOrBoolConstant = LiteralConstant;
6683         ConstVal = GT_One;
6684       }
6685     } else {
6686       ConstVal = LT_Zero;
6687     }
6688 
6689     CompareBoolWithConstantResult CmpRes;
6690 
6691     switch (op) {
6692     case BO_LT:
6693       CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
6694       break;
6695     case BO_GT:
6696       CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
6697       break;
6698     case BO_LE:
6699       CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
6700       break;
6701     case BO_GE:
6702       CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
6703       break;
6704     case BO_EQ:
6705       CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
6706       break;
6707     case BO_NE:
6708       CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
6709       break;
6710     default:
6711       CmpRes = Unkwn;
6712       break;
6713     }
6714 
6715     if (CmpRes == AFals) {
6716       IsTrue = false;
6717     } else if (CmpRes == ATrue) {
6718       IsTrue = true;
6719     } else {
6720       return;
6721     }
6722   }
6723 
6724   // If this is a comparison to an enum constant, include that
6725   // constant in the diagnostic.
6726   const EnumConstantDecl *ED = nullptr;
6727   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
6728     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
6729 
6730   SmallString<64> PrettySourceValue;
6731   llvm::raw_svector_ostream OS(PrettySourceValue);
6732   if (ED)
6733     OS << '\'' << *ED << "' (" << Value << ")";
6734   else
6735     OS << Value;
6736 
6737   S.DiagRuntimeBehavior(
6738     E->getOperatorLoc(), E,
6739     S.PDiag(diag::warn_out_of_range_compare)
6740         << OS.str() << LiteralOrBoolConstant
6741         << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
6742         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
6743 }
6744 
6745 /// Analyze the operands of the given comparison.  Implements the
6746 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)6747 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
6748   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6749   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6750 }
6751 
6752 /// \brief Implements -Wsign-compare.
6753 ///
6754 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)6755 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
6756   // The type the comparison is being performed in.
6757   QualType T = E->getLHS()->getType();
6758 
6759   // Only analyze comparison operators where both sides have been converted to
6760   // the same type.
6761   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
6762     return AnalyzeImpConvsInComparison(S, E);
6763 
6764   // Don't analyze value-dependent comparisons directly.
6765   if (E->isValueDependent())
6766     return AnalyzeImpConvsInComparison(S, E);
6767 
6768   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
6769   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
6770 
6771   bool IsComparisonConstant = false;
6772 
6773   // Check whether an integer constant comparison results in a value
6774   // of 'true' or 'false'.
6775   if (T->isIntegralType(S.Context)) {
6776     llvm::APSInt RHSValue;
6777     bool IsRHSIntegralLiteral =
6778       RHS->isIntegerConstantExpr(RHSValue, S.Context);
6779     llvm::APSInt LHSValue;
6780     bool IsLHSIntegralLiteral =
6781       LHS->isIntegerConstantExpr(LHSValue, S.Context);
6782     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
6783         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
6784     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
6785       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
6786     else
6787       IsComparisonConstant =
6788         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
6789   } else if (!T->hasUnsignedIntegerRepresentation())
6790       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
6791 
6792   // We don't do anything special if this isn't an unsigned integral
6793   // comparison:  we're only interested in integral comparisons, and
6794   // signed comparisons only happen in cases we don't care to warn about.
6795   //
6796   // We also don't care about value-dependent expressions or expressions
6797   // whose result is a constant.
6798   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
6799     return AnalyzeImpConvsInComparison(S, E);
6800 
6801   // Check to see if one of the (unmodified) operands is of different
6802   // signedness.
6803   Expr *signedOperand, *unsignedOperand;
6804   if (LHS->getType()->hasSignedIntegerRepresentation()) {
6805     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
6806            "unsigned comparison between two signed integer expressions?");
6807     signedOperand = LHS;
6808     unsignedOperand = RHS;
6809   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
6810     signedOperand = RHS;
6811     unsignedOperand = LHS;
6812   } else {
6813     CheckTrivialUnsignedComparison(S, E);
6814     return AnalyzeImpConvsInComparison(S, E);
6815   }
6816 
6817   // Otherwise, calculate the effective range of the signed operand.
6818   IntRange signedRange = GetExprRange(S.Context, signedOperand);
6819 
6820   // Go ahead and analyze implicit conversions in the operands.  Note
6821   // that we skip the implicit conversions on both sides.
6822   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
6823   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
6824 
6825   // If the signed range is non-negative, -Wsign-compare won't fire,
6826   // but we should still check for comparisons which are always true
6827   // or false.
6828   if (signedRange.NonNegative)
6829     return CheckTrivialUnsignedComparison(S, E);
6830 
6831   // For (in)equality comparisons, if the unsigned operand is a
6832   // constant which cannot collide with a overflowed signed operand,
6833   // then reinterpreting the signed operand as unsigned will not
6834   // change the result of the comparison.
6835   if (E->isEqualityOp()) {
6836     unsigned comparisonWidth = S.Context.getIntWidth(T);
6837     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
6838 
6839     // We should never be unable to prove that the unsigned operand is
6840     // non-negative.
6841     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
6842 
6843     if (unsignedRange.Width < comparisonWidth)
6844       return;
6845   }
6846 
6847   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
6848     S.PDiag(diag::warn_mixed_sign_comparison)
6849       << LHS->getType() << RHS->getType()
6850       << LHS->getSourceRange() << RHS->getSourceRange());
6851 }
6852 
6853 /// Analyzes an attempt to assign the given value to a bitfield.
6854 ///
6855 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)6856 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
6857                                       SourceLocation InitLoc) {
6858   assert(Bitfield->isBitField());
6859   if (Bitfield->isInvalidDecl())
6860     return false;
6861 
6862   // White-list bool bitfields.
6863   if (Bitfield->getType()->isBooleanType())
6864     return false;
6865 
6866   // Ignore value- or type-dependent expressions.
6867   if (Bitfield->getBitWidth()->isValueDependent() ||
6868       Bitfield->getBitWidth()->isTypeDependent() ||
6869       Init->isValueDependent() ||
6870       Init->isTypeDependent())
6871     return false;
6872 
6873   Expr *OriginalInit = Init->IgnoreParenImpCasts();
6874 
6875   llvm::APSInt Value;
6876   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
6877     return false;
6878 
6879   unsigned OriginalWidth = Value.getBitWidth();
6880   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
6881 
6882   if (OriginalWidth <= FieldWidth)
6883     return false;
6884 
6885   // Compute the value which the bitfield will contain.
6886   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
6887   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
6888 
6889   // Check whether the stored value is equal to the original value.
6890   TruncatedValue = TruncatedValue.extend(OriginalWidth);
6891   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
6892     return false;
6893 
6894   // Special-case bitfields of width 1: booleans are naturally 0/1, and
6895   // therefore don't strictly fit into a signed bitfield of width 1.
6896   if (FieldWidth == 1 && Value == 1)
6897     return false;
6898 
6899   std::string PrettyValue = Value.toString(10);
6900   std::string PrettyTrunc = TruncatedValue.toString(10);
6901 
6902   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
6903     << PrettyValue << PrettyTrunc << OriginalInit->getType()
6904     << Init->getSourceRange();
6905 
6906   return true;
6907 }
6908 
6909 /// Analyze the given simple or compound assignment for warning-worthy
6910 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)6911 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
6912   // Just recurse on the LHS.
6913   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6914 
6915   // We want to recurse on the RHS as normal unless we're assigning to
6916   // a bitfield.
6917   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
6918     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
6919                                   E->getOperatorLoc())) {
6920       // Recurse, ignoring any implicit conversions on the RHS.
6921       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
6922                                         E->getOperatorLoc());
6923     }
6924   }
6925 
6926   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6927 }
6928 
6929 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)6930 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
6931                             SourceLocation CContext, unsigned diag,
6932                             bool pruneControlFlow = false) {
6933   if (pruneControlFlow) {
6934     S.DiagRuntimeBehavior(E->getExprLoc(), E,
6935                           S.PDiag(diag)
6936                             << SourceType << T << E->getSourceRange()
6937                             << SourceRange(CContext));
6938     return;
6939   }
6940   S.Diag(E->getExprLoc(), diag)
6941     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
6942 }
6943 
6944 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)6945 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
6946                             SourceLocation CContext, unsigned diag,
6947                             bool pruneControlFlow = false) {
6948   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
6949 }
6950 
6951 /// Diagnose an implicit cast from a literal expression. Does not warn when the
6952 /// cast wouldn't lose information.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)6953 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
6954                                     SourceLocation CContext) {
6955   // Try to convert the literal exactly to an integer. If we can, don't warn.
6956   bool isExact = false;
6957   const llvm::APFloat &Value = FL->getValue();
6958   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
6959                             T->hasUnsignedIntegerRepresentation());
6960   if (Value.convertToInteger(IntegerValue,
6961                              llvm::APFloat::rmTowardZero, &isExact)
6962       == llvm::APFloat::opOK && isExact)
6963     return;
6964 
6965   // FIXME: Force the precision of the source value down so we don't print
6966   // digits which are usually useless (we don't really care here if we
6967   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
6968   // would automatically print the shortest representation, but it's a bit
6969   // tricky to implement.
6970   SmallString<16> PrettySourceValue;
6971   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
6972   precision = (precision * 59 + 195) / 196;
6973   Value.toString(PrettySourceValue, precision);
6974 
6975   SmallString<16> PrettyTargetValue;
6976   if (T->isSpecificBuiltinType(BuiltinType::Bool))
6977     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
6978   else
6979     IntegerValue.toString(PrettyTargetValue);
6980 
6981   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
6982     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
6983     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
6984 }
6985 
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)6986 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
6987   if (!Range.Width) return "0";
6988 
6989   llvm::APSInt ValueInRange = Value;
6990   ValueInRange.setIsSigned(!Range.NonNegative);
6991   ValueInRange = ValueInRange.trunc(Range.Width);
6992   return ValueInRange.toString(10);
6993 }
6994 
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)6995 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
6996   if (!isa<ImplicitCastExpr>(Ex))
6997     return false;
6998 
6999   Expr *InnerE = Ex->IgnoreParenImpCasts();
7000   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
7001   const Type *Source =
7002     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
7003   if (Target->isDependentType())
7004     return false;
7005 
7006   const BuiltinType *FloatCandidateBT =
7007     dyn_cast<BuiltinType>(ToBool ? Source : Target);
7008   const Type *BoolCandidateType = ToBool ? Target : Source;
7009 
7010   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
7011           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
7012 }
7013 
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)7014 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
7015                                       SourceLocation CC) {
7016   unsigned NumArgs = TheCall->getNumArgs();
7017   for (unsigned i = 0; i < NumArgs; ++i) {
7018     Expr *CurrA = TheCall->getArg(i);
7019     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
7020       continue;
7021 
7022     bool IsSwapped = ((i > 0) &&
7023         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
7024     IsSwapped |= ((i < (NumArgs - 1)) &&
7025         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
7026     if (IsSwapped) {
7027       // Warn on this floating-point to bool conversion.
7028       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
7029                       CurrA->getType(), CC,
7030                       diag::warn_impcast_floating_point_to_bool);
7031     }
7032   }
7033 }
7034 
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)7035 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
7036                                    SourceLocation CC) {
7037   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
7038                         E->getExprLoc()))
7039     return;
7040 
7041   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
7042   const Expr::NullPointerConstantKind NullKind =
7043       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
7044   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
7045     return;
7046 
7047   // Return if target type is a safe conversion.
7048   if (T->isAnyPointerType() || T->isBlockPointerType() ||
7049       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
7050     return;
7051 
7052   SourceLocation Loc = E->getSourceRange().getBegin();
7053 
7054   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
7055   if (NullKind == Expr::NPCK_GNUNull) {
7056     if (Loc.isMacroID())
7057       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
7058   }
7059 
7060   // Only warn if the null and context location are in the same macro expansion.
7061   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
7062     return;
7063 
7064   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
7065       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
7066       << FixItHint::CreateReplacement(Loc,
7067                                       S.getFixItZeroLiteralForType(T, Loc));
7068 }
7069 
7070 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
7071                                   ObjCArrayLiteral *ArrayLiteral);
7072 static void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
7073                                        ObjCDictionaryLiteral *DictionaryLiteral);
7074 
7075 /// Check a single element within a collection literal against the
7076 /// target element type.
checkObjCCollectionLiteralElement(Sema & S,QualType TargetElementType,Expr * Element,unsigned ElementKind)7077 static void checkObjCCollectionLiteralElement(Sema &S,
7078                                               QualType TargetElementType,
7079                                               Expr *Element,
7080                                               unsigned ElementKind) {
7081   // Skip a bitcast to 'id' or qualified 'id'.
7082   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
7083     if (ICE->getCastKind() == CK_BitCast &&
7084         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
7085       Element = ICE->getSubExpr();
7086   }
7087 
7088   QualType ElementType = Element->getType();
7089   ExprResult ElementResult(Element);
7090   if (ElementType->getAs<ObjCObjectPointerType>() &&
7091       S.CheckSingleAssignmentConstraints(TargetElementType,
7092                                          ElementResult,
7093                                          false, false)
7094         != Sema::Compatible) {
7095     S.Diag(Element->getLocStart(),
7096            diag::warn_objc_collection_literal_element)
7097       << ElementType << ElementKind << TargetElementType
7098       << Element->getSourceRange();
7099   }
7100 
7101   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
7102     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
7103   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
7104     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
7105 }
7106 
7107 /// Check an Objective-C array literal being converted to the given
7108 /// target type.
checkObjCArrayLiteral(Sema & S,QualType TargetType,ObjCArrayLiteral * ArrayLiteral)7109 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
7110                                   ObjCArrayLiteral *ArrayLiteral) {
7111   if (!S.NSArrayDecl)
7112     return;
7113 
7114   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
7115   if (!TargetObjCPtr)
7116     return;
7117 
7118   if (TargetObjCPtr->isUnspecialized() ||
7119       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
7120         != S.NSArrayDecl->getCanonicalDecl())
7121     return;
7122 
7123   auto TypeArgs = TargetObjCPtr->getTypeArgs();
7124   if (TypeArgs.size() != 1)
7125     return;
7126 
7127   QualType TargetElementType = TypeArgs[0];
7128   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
7129     checkObjCCollectionLiteralElement(S, TargetElementType,
7130                                       ArrayLiteral->getElement(I),
7131                                       0);
7132   }
7133 }
7134 
7135 /// Check an Objective-C dictionary literal being converted to the given
7136 /// target type.
checkObjCDictionaryLiteral(Sema & S,QualType TargetType,ObjCDictionaryLiteral * DictionaryLiteral)7137 static void checkObjCDictionaryLiteral(
7138               Sema &S, QualType TargetType,
7139               ObjCDictionaryLiteral *DictionaryLiteral) {
7140   if (!S.NSDictionaryDecl)
7141     return;
7142 
7143   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
7144   if (!TargetObjCPtr)
7145     return;
7146 
7147   if (TargetObjCPtr->isUnspecialized() ||
7148       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
7149         != S.NSDictionaryDecl->getCanonicalDecl())
7150     return;
7151 
7152   auto TypeArgs = TargetObjCPtr->getTypeArgs();
7153   if (TypeArgs.size() != 2)
7154     return;
7155 
7156   QualType TargetKeyType = TypeArgs[0];
7157   QualType TargetObjectType = TypeArgs[1];
7158   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
7159     auto Element = DictionaryLiteral->getKeyValueElement(I);
7160     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
7161     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
7162   }
7163 }
7164 
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr)7165 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
7166                              SourceLocation CC, bool *ICContext = nullptr) {
7167   if (E->isTypeDependent() || E->isValueDependent()) return;
7168 
7169   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
7170   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
7171   if (Source == Target) return;
7172   if (Target->isDependentType()) return;
7173 
7174   // If the conversion context location is invalid don't complain. We also
7175   // don't want to emit a warning if the issue occurs from the expansion of
7176   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
7177   // delay this check as long as possible. Once we detect we are in that
7178   // scenario, we just return.
7179   if (CC.isInvalid())
7180     return;
7181 
7182   // Diagnose implicit casts to bool.
7183   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
7184     if (isa<StringLiteral>(E))
7185       // Warn on string literal to bool.  Checks for string literals in logical
7186       // and expressions, for instance, assert(0 && "error here"), are
7187       // prevented by a check in AnalyzeImplicitConversions().
7188       return DiagnoseImpCast(S, E, T, CC,
7189                              diag::warn_impcast_string_literal_to_bool);
7190     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
7191         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
7192       // This covers the literal expressions that evaluate to Objective-C
7193       // objects.
7194       return DiagnoseImpCast(S, E, T, CC,
7195                              diag::warn_impcast_objective_c_literal_to_bool);
7196     }
7197     if (Source->isPointerType() || Source->canDecayToPointerType()) {
7198       // Warn on pointer to bool conversion that is always true.
7199       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
7200                                      SourceRange(CC));
7201     }
7202   }
7203 
7204   // Check implicit casts from Objective-C collection literals to specialized
7205   // collection types, e.g., NSArray<NSString *> *.
7206   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
7207     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
7208   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
7209     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
7210 
7211   // Strip vector types.
7212   if (isa<VectorType>(Source)) {
7213     if (!isa<VectorType>(Target)) {
7214       if (S.SourceMgr.isInSystemMacro(CC))
7215         return;
7216       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
7217     }
7218 
7219     // If the vector cast is cast between two vectors of the same size, it is
7220     // a bitcast, not a conversion.
7221     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
7222       return;
7223 
7224     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
7225     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
7226   }
7227   if (auto VecTy = dyn_cast<VectorType>(Target))
7228     Target = VecTy->getElementType().getTypePtr();
7229 
7230   // Strip complex types.
7231   if (isa<ComplexType>(Source)) {
7232     if (!isa<ComplexType>(Target)) {
7233       if (S.SourceMgr.isInSystemMacro(CC))
7234         return;
7235 
7236       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
7237     }
7238 
7239     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
7240     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
7241   }
7242 
7243   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
7244   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
7245 
7246   // If the source is floating point...
7247   if (SourceBT && SourceBT->isFloatingPoint()) {
7248     // ...and the target is floating point...
7249     if (TargetBT && TargetBT->isFloatingPoint()) {
7250       // ...then warn if we're dropping FP rank.
7251 
7252       // Builtin FP kinds are ordered by increasing FP rank.
7253       if (SourceBT->getKind() > TargetBT->getKind()) {
7254         // Don't warn about float constants that are precisely
7255         // representable in the target type.
7256         Expr::EvalResult result;
7257         if (E->EvaluateAsRValue(result, S.Context)) {
7258           // Value might be a float, a float vector, or a float complex.
7259           if (IsSameFloatAfterCast(result.Val,
7260                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
7261                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
7262             return;
7263         }
7264 
7265         if (S.SourceMgr.isInSystemMacro(CC))
7266           return;
7267 
7268         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
7269 
7270       }
7271       // ... or possibly if we're increasing rank, too
7272       else if (TargetBT->getKind() > SourceBT->getKind()) {
7273         if (S.SourceMgr.isInSystemMacro(CC))
7274           return;
7275 
7276         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
7277       }
7278       return;
7279     }
7280 
7281     // If the target is integral, always warn.
7282     if (TargetBT && TargetBT->isInteger()) {
7283       if (S.SourceMgr.isInSystemMacro(CC))
7284         return;
7285 
7286       Expr *InnerE = E->IgnoreParenImpCasts();
7287       // We also want to warn on, e.g., "int i = -1.234"
7288       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
7289         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
7290           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
7291 
7292       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
7293         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
7294       } else {
7295         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
7296       }
7297     }
7298 
7299     // If the target is bool, warn if expr is a function or method call.
7300     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
7301         isa<CallExpr>(E)) {
7302       // Check last argument of function call to see if it is an
7303       // implicit cast from a type matching the type the result
7304       // is being cast to.
7305       CallExpr *CEx = cast<CallExpr>(E);
7306       unsigned NumArgs = CEx->getNumArgs();
7307       if (NumArgs > 0) {
7308         Expr *LastA = CEx->getArg(NumArgs - 1);
7309         Expr *InnerE = LastA->IgnoreParenImpCasts();
7310         const Type *InnerType =
7311           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
7312         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
7313           // Warn on this floating-point to bool conversion
7314           DiagnoseImpCast(S, E, T, CC,
7315                           diag::warn_impcast_floating_point_to_bool);
7316         }
7317       }
7318     }
7319     return;
7320   }
7321 
7322   DiagnoseNullConversion(S, E, T, CC);
7323 
7324   if (!Source->isIntegerType() || !Target->isIntegerType())
7325     return;
7326 
7327   // TODO: remove this early return once the false positives for constant->bool
7328   // in templates, macros, etc, are reduced or removed.
7329   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
7330     return;
7331 
7332   IntRange SourceRange = GetExprRange(S.Context, E);
7333   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
7334 
7335   if (SourceRange.Width > TargetRange.Width) {
7336     // If the source is a constant, use a default-on diagnostic.
7337     // TODO: this should happen for bitfield stores, too.
7338     llvm::APSInt Value(32);
7339     if (E->isIntegerConstantExpr(Value, S.Context)) {
7340       if (S.SourceMgr.isInSystemMacro(CC))
7341         return;
7342 
7343       std::string PrettySourceValue = Value.toString(10);
7344       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
7345 
7346       S.DiagRuntimeBehavior(E->getExprLoc(), E,
7347         S.PDiag(diag::warn_impcast_integer_precision_constant)
7348             << PrettySourceValue << PrettyTargetValue
7349             << E->getType() << T << E->getSourceRange()
7350             << clang::SourceRange(CC));
7351       return;
7352     }
7353 
7354     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
7355     if (S.SourceMgr.isInSystemMacro(CC))
7356       return;
7357 
7358     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
7359       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
7360                              /* pruneControlFlow */ true);
7361     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
7362   }
7363 
7364   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
7365       (!TargetRange.NonNegative && SourceRange.NonNegative &&
7366        SourceRange.Width == TargetRange.Width)) {
7367 
7368     if (S.SourceMgr.isInSystemMacro(CC))
7369       return;
7370 
7371     unsigned DiagID = diag::warn_impcast_integer_sign;
7372 
7373     // Traditionally, gcc has warned about this under -Wsign-compare.
7374     // We also want to warn about it in -Wconversion.
7375     // So if -Wconversion is off, use a completely identical diagnostic
7376     // in the sign-compare group.
7377     // The conditional-checking code will
7378     if (ICContext) {
7379       DiagID = diag::warn_impcast_integer_sign_conditional;
7380       *ICContext = true;
7381     }
7382 
7383     return DiagnoseImpCast(S, E, T, CC, DiagID);
7384   }
7385 
7386   // Diagnose conversions between different enumeration types.
7387   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
7388   // type, to give us better diagnostics.
7389   QualType SourceType = E->getType();
7390   if (!S.getLangOpts().CPlusPlus) {
7391     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
7392       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
7393         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
7394         SourceType = S.Context.getTypeDeclType(Enum);
7395         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
7396       }
7397   }
7398 
7399   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
7400     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
7401       if (SourceEnum->getDecl()->hasNameForLinkage() &&
7402           TargetEnum->getDecl()->hasNameForLinkage() &&
7403           SourceEnum != TargetEnum) {
7404         if (S.SourceMgr.isInSystemMacro(CC))
7405           return;
7406 
7407         return DiagnoseImpCast(S, E, SourceType, T, CC,
7408                                diag::warn_impcast_different_enum_types);
7409       }
7410 
7411   return;
7412 }
7413 
7414 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
7415                               SourceLocation CC, QualType T);
7416 
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)7417 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
7418                              SourceLocation CC, bool &ICContext) {
7419   E = E->IgnoreParenImpCasts();
7420 
7421   if (isa<ConditionalOperator>(E))
7422     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
7423 
7424   AnalyzeImplicitConversions(S, E, CC);
7425   if (E->getType() != T)
7426     return CheckImplicitConversion(S, E, T, CC, &ICContext);
7427   return;
7428 }
7429 
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)7430 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
7431                               SourceLocation CC, QualType T) {
7432   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
7433 
7434   bool Suspicious = false;
7435   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
7436   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
7437 
7438   // If -Wconversion would have warned about either of the candidates
7439   // for a signedness conversion to the context type...
7440   if (!Suspicious) return;
7441 
7442   // ...but it's currently ignored...
7443   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
7444     return;
7445 
7446   // ...then check whether it would have warned about either of the
7447   // candidates for a signedness conversion to the condition type.
7448   if (E->getType() == T) return;
7449 
7450   Suspicious = false;
7451   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
7452                           E->getType(), CC, &Suspicious);
7453   if (!Suspicious)
7454     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
7455                             E->getType(), CC, &Suspicious);
7456 }
7457 
7458 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
7459 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)7460 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
7461   if (S.getLangOpts().Bool)
7462     return;
7463   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
7464 }
7465 
7466 /// AnalyzeImplicitConversions - Find and report any interesting
7467 /// implicit conversions in the given expression.  There are a couple
7468 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)7469 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
7470   QualType T = OrigE->getType();
7471   Expr *E = OrigE->IgnoreParenImpCasts();
7472 
7473   if (E->isTypeDependent() || E->isValueDependent())
7474     return;
7475 
7476   // For conditional operators, we analyze the arguments as if they
7477   // were being fed directly into the output.
7478   if (isa<ConditionalOperator>(E)) {
7479     ConditionalOperator *CO = cast<ConditionalOperator>(E);
7480     CheckConditionalOperator(S, CO, CC, T);
7481     return;
7482   }
7483 
7484   // Check implicit argument conversions for function calls.
7485   if (CallExpr *Call = dyn_cast<CallExpr>(E))
7486     CheckImplicitArgumentConversions(S, Call, CC);
7487 
7488   // Go ahead and check any implicit conversions we might have skipped.
7489   // The non-canonical typecheck is just an optimization;
7490   // CheckImplicitConversion will filter out dead implicit conversions.
7491   if (E->getType() != T)
7492     CheckImplicitConversion(S, E, T, CC);
7493 
7494   // Now continue drilling into this expression.
7495 
7496   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
7497     // The bound subexpressions in a PseudoObjectExpr are not reachable
7498     // as transitive children.
7499     // FIXME: Use a more uniform representation for this.
7500     for (auto *SE : POE->semantics())
7501       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
7502         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
7503   }
7504 
7505   // Skip past explicit casts.
7506   if (isa<ExplicitCastExpr>(E)) {
7507     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
7508     return AnalyzeImplicitConversions(S, E, CC);
7509   }
7510 
7511   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7512     // Do a somewhat different check with comparison operators.
7513     if (BO->isComparisonOp())
7514       return AnalyzeComparison(S, BO);
7515 
7516     // And with simple assignments.
7517     if (BO->getOpcode() == BO_Assign)
7518       return AnalyzeAssignment(S, BO);
7519   }
7520 
7521   // These break the otherwise-useful invariant below.  Fortunately,
7522   // we don't really need to recurse into them, because any internal
7523   // expressions should have been analyzed already when they were
7524   // built into statements.
7525   if (isa<StmtExpr>(E)) return;
7526 
7527   // Don't descend into unevaluated contexts.
7528   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
7529 
7530   // Now just recurse over the expression's children.
7531   CC = E->getExprLoc();
7532   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
7533   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
7534   for (Stmt *SubStmt : E->children()) {
7535     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
7536     if (!ChildExpr)
7537       continue;
7538 
7539     if (IsLogicalAndOperator &&
7540         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
7541       // Ignore checking string literals that are in logical and operators.
7542       // This is a common pattern for asserts.
7543       continue;
7544     AnalyzeImplicitConversions(S, ChildExpr, CC);
7545   }
7546 
7547   if (BO && BO->isLogicalOp()) {
7548     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
7549     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
7550       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
7551 
7552     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
7553     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
7554       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
7555   }
7556 
7557   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
7558     if (U->getOpcode() == UO_LNot)
7559       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
7560 }
7561 
7562 } // end anonymous namespace
7563 
7564 enum {
7565   AddressOf,
7566   FunctionPointer,
7567   ArrayPointer
7568 };
7569 
7570 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
7571 // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,PartialDiagnostic PD)7572 static bool CheckForReference(Sema &SemaRef, const Expr *E,
7573                               PartialDiagnostic PD) {
7574   E = E->IgnoreParenImpCasts();
7575 
7576   const FunctionDecl *FD = nullptr;
7577 
7578   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
7579     if (!DRE->getDecl()->getType()->isReferenceType())
7580       return false;
7581   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
7582     if (!M->getMemberDecl()->getType()->isReferenceType())
7583       return false;
7584   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
7585     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
7586       return false;
7587     FD = Call->getDirectCallee();
7588   } else {
7589     return false;
7590   }
7591 
7592   SemaRef.Diag(E->getExprLoc(), PD);
7593 
7594   // If possible, point to location of function.
7595   if (FD) {
7596     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
7597   }
7598 
7599   return true;
7600 }
7601 
7602 // Returns true if the SourceLocation is expanded from any macro body.
7603 // Returns false if the SourceLocation is invalid, is from not in a macro
7604 // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)7605 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
7606   if (Loc.isInvalid())
7607     return false;
7608 
7609   while (Loc.isMacroID()) {
7610     if (SM.isMacroBodyExpansion(Loc))
7611       return true;
7612     Loc = SM.getImmediateMacroCallerLoc(Loc);
7613   }
7614 
7615   return false;
7616 }
7617 
7618 /// \brief Diagnose pointers that are always non-null.
7619 /// \param E the expression containing the pointer
7620 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
7621 /// compared to a null pointer
7622 /// \param IsEqual True when the comparison is equal to a null pointer
7623 /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)7624 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
7625                                         Expr::NullPointerConstantKind NullKind,
7626                                         bool IsEqual, SourceRange Range) {
7627   if (!E)
7628     return;
7629 
7630   // Don't warn inside macros.
7631   if (E->getExprLoc().isMacroID()) {
7632     const SourceManager &SM = getSourceManager();
7633     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
7634         IsInAnyMacroBody(SM, Range.getBegin()))
7635       return;
7636   }
7637   E = E->IgnoreImpCasts();
7638 
7639   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
7640 
7641   if (isa<CXXThisExpr>(E)) {
7642     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
7643                                 : diag::warn_this_bool_conversion;
7644     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
7645     return;
7646   }
7647 
7648   bool IsAddressOf = false;
7649 
7650   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7651     if (UO->getOpcode() != UO_AddrOf)
7652       return;
7653     IsAddressOf = true;
7654     E = UO->getSubExpr();
7655   }
7656 
7657   if (IsAddressOf) {
7658     unsigned DiagID = IsCompare
7659                           ? diag::warn_address_of_reference_null_compare
7660                           : diag::warn_address_of_reference_bool_conversion;
7661     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
7662                                          << IsEqual;
7663     if (CheckForReference(*this, E, PD)) {
7664       return;
7665     }
7666   }
7667 
7668   auto ComplainAboutNonnullParamOrCall = [&](bool IsParam) {
7669     std::string Str;
7670     llvm::raw_string_ostream S(Str);
7671     E->printPretty(S, nullptr, getPrintingPolicy());
7672     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
7673                                 : diag::warn_cast_nonnull_to_bool;
7674     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
7675       << E->getSourceRange() << Range << IsEqual;
7676   };
7677 
7678   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
7679   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
7680     if (auto *Callee = Call->getDirectCallee()) {
7681       if (Callee->hasAttr<ReturnsNonNullAttr>()) {
7682         ComplainAboutNonnullParamOrCall(false);
7683         return;
7684       }
7685     }
7686   }
7687 
7688   // Expect to find a single Decl.  Skip anything more complicated.
7689   ValueDecl *D = nullptr;
7690   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
7691     D = R->getDecl();
7692   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
7693     D = M->getMemberDecl();
7694   }
7695 
7696   // Weak Decls can be null.
7697   if (!D || D->isWeak())
7698     return;
7699 
7700   // Check for parameter decl with nonnull attribute
7701   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
7702     if (getCurFunction() &&
7703         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
7704       if (PV->hasAttr<NonNullAttr>()) {
7705         ComplainAboutNonnullParamOrCall(true);
7706         return;
7707       }
7708 
7709       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
7710         auto ParamIter = std::find(FD->param_begin(), FD->param_end(), PV);
7711         assert(ParamIter != FD->param_end());
7712         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
7713 
7714         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
7715           if (!NonNull->args_size()) {
7716               ComplainAboutNonnullParamOrCall(true);
7717               return;
7718           }
7719 
7720           for (unsigned ArgNo : NonNull->args()) {
7721             if (ArgNo == ParamNo) {
7722               ComplainAboutNonnullParamOrCall(true);
7723               return;
7724             }
7725           }
7726         }
7727       }
7728     }
7729   }
7730 
7731   QualType T = D->getType();
7732   const bool IsArray = T->isArrayType();
7733   const bool IsFunction = T->isFunctionType();
7734 
7735   // Address of function is used to silence the function warning.
7736   if (IsAddressOf && IsFunction) {
7737     return;
7738   }
7739 
7740   // Found nothing.
7741   if (!IsAddressOf && !IsFunction && !IsArray)
7742     return;
7743 
7744   // Pretty print the expression for the diagnostic.
7745   std::string Str;
7746   llvm::raw_string_ostream S(Str);
7747   E->printPretty(S, nullptr, getPrintingPolicy());
7748 
7749   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
7750                               : diag::warn_impcast_pointer_to_bool;
7751   unsigned DiagType;
7752   if (IsAddressOf)
7753     DiagType = AddressOf;
7754   else if (IsFunction)
7755     DiagType = FunctionPointer;
7756   else if (IsArray)
7757     DiagType = ArrayPointer;
7758   else
7759     llvm_unreachable("Could not determine diagnostic.");
7760   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
7761                                 << Range << IsEqual;
7762 
7763   if (!IsFunction)
7764     return;
7765 
7766   // Suggest '&' to silence the function warning.
7767   Diag(E->getExprLoc(), diag::note_function_warning_silence)
7768       << FixItHint::CreateInsertion(E->getLocStart(), "&");
7769 
7770   // Check to see if '()' fixit should be emitted.
7771   QualType ReturnType;
7772   UnresolvedSet<4> NonTemplateOverloads;
7773   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
7774   if (ReturnType.isNull())
7775     return;
7776 
7777   if (IsCompare) {
7778     // There are two cases here.  If there is null constant, the only suggest
7779     // for a pointer return type.  If the null is 0, then suggest if the return
7780     // type is a pointer or an integer type.
7781     if (!ReturnType->isPointerType()) {
7782       if (NullKind == Expr::NPCK_ZeroExpression ||
7783           NullKind == Expr::NPCK_ZeroLiteral) {
7784         if (!ReturnType->isIntegerType())
7785           return;
7786       } else {
7787         return;
7788       }
7789     }
7790   } else { // !IsCompare
7791     // For function to bool, only suggest if the function pointer has bool
7792     // return type.
7793     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
7794       return;
7795   }
7796   Diag(E->getExprLoc(), diag::note_function_to_function_call)
7797       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
7798 }
7799 
7800 
7801 /// Diagnoses "dangerous" implicit conversions within the given
7802 /// expression (which is a full expression).  Implements -Wconversion
7803 /// and -Wsign-compare.
7804 ///
7805 /// \param CC the "context" location of the implicit conversion, i.e.
7806 ///   the most location of the syntactic entity requiring the implicit
7807 ///   conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)7808 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
7809   // Don't diagnose in unevaluated contexts.
7810   if (isUnevaluatedContext())
7811     return;
7812 
7813   // Don't diagnose for value- or type-dependent expressions.
7814   if (E->isTypeDependent() || E->isValueDependent())
7815     return;
7816 
7817   // Check for array bounds violations in cases where the check isn't triggered
7818   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
7819   // ArraySubscriptExpr is on the RHS of a variable initialization.
7820   CheckArrayAccess(E);
7821 
7822   // This is not the right CC for (e.g.) a variable initialization.
7823   AnalyzeImplicitConversions(*this, E, CC);
7824 }
7825 
7826 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
7827 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Expr * E,SourceLocation CC)7828 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
7829   ::CheckBoolLikeConversion(*this, E, CC);
7830 }
7831 
7832 /// Diagnose when expression is an integer constant expression and its evaluation
7833 /// results in integer overflow
CheckForIntOverflow(Expr * E)7834 void Sema::CheckForIntOverflow (Expr *E) {
7835   if (isa<BinaryOperator>(E->IgnoreParenCasts()))
7836     E->IgnoreParenCasts()->EvaluateForOverflow(Context);
7837 }
7838 
7839 namespace {
7840 /// \brief Visitor for expressions which looks for unsequenced operations on the
7841 /// same object.
7842 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
7843   typedef EvaluatedExprVisitor<SequenceChecker> Base;
7844 
7845   /// \brief A tree of sequenced regions within an expression. Two regions are
7846   /// unsequenced if one is an ancestor or a descendent of the other. When we
7847   /// finish processing an expression with sequencing, such as a comma
7848   /// expression, we fold its tree nodes into its parent, since they are
7849   /// unsequenced with respect to nodes we will visit later.
7850   class SequenceTree {
7851     struct Value {
Value__anon817ecb130b11::SequenceChecker::SequenceTree::Value7852       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
7853       unsigned Parent : 31;
7854       bool Merged : 1;
7855     };
7856     SmallVector<Value, 8> Values;
7857 
7858   public:
7859     /// \brief A region within an expression which may be sequenced with respect
7860     /// to some other region.
7861     class Seq {
Seq(unsigned N)7862       explicit Seq(unsigned N) : Index(N) {}
7863       unsigned Index;
7864       friend class SequenceTree;
7865     public:
Seq()7866       Seq() : Index(0) {}
7867     };
7868 
SequenceTree()7869     SequenceTree() { Values.push_back(Value(0)); }
root() const7870     Seq root() const { return Seq(0); }
7871 
7872     /// \brief Create a new sequence of operations, which is an unsequenced
7873     /// subset of \p Parent. This sequence of operations is sequenced with
7874     /// respect to other children of \p Parent.
allocate(Seq Parent)7875     Seq allocate(Seq Parent) {
7876       Values.push_back(Value(Parent.Index));
7877       return Seq(Values.size() - 1);
7878     }
7879 
7880     /// \brief Merge a sequence of operations into its parent.
merge(Seq S)7881     void merge(Seq S) {
7882       Values[S.Index].Merged = true;
7883     }
7884 
7885     /// \brief Determine whether two operations are unsequenced. This operation
7886     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
7887     /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)7888     bool isUnsequenced(Seq Cur, Seq Old) {
7889       unsigned C = representative(Cur.Index);
7890       unsigned Target = representative(Old.Index);
7891       while (C >= Target) {
7892         if (C == Target)
7893           return true;
7894         C = Values[C].Parent;
7895       }
7896       return false;
7897     }
7898 
7899   private:
7900     /// \brief Pick a representative for a sequence.
representative(unsigned K)7901     unsigned representative(unsigned K) {
7902       if (Values[K].Merged)
7903         // Perform path compression as we go.
7904         return Values[K].Parent = representative(Values[K].Parent);
7905       return K;
7906     }
7907   };
7908 
7909   /// An object for which we can track unsequenced uses.
7910   typedef NamedDecl *Object;
7911 
7912   /// Different flavors of object usage which we track. We only track the
7913   /// least-sequenced usage of each kind.
7914   enum UsageKind {
7915     /// A read of an object. Multiple unsequenced reads are OK.
7916     UK_Use,
7917     /// A modification of an object which is sequenced before the value
7918     /// computation of the expression, such as ++n in C++.
7919     UK_ModAsValue,
7920     /// A modification of an object which is not sequenced before the value
7921     /// computation of the expression, such as n++.
7922     UK_ModAsSideEffect,
7923 
7924     UK_Count = UK_ModAsSideEffect + 1
7925   };
7926 
7927   struct Usage {
Usage__anon817ecb130b11::SequenceChecker::Usage7928     Usage() : Use(nullptr), Seq() {}
7929     Expr *Use;
7930     SequenceTree::Seq Seq;
7931   };
7932 
7933   struct UsageInfo {
UsageInfo__anon817ecb130b11::SequenceChecker::UsageInfo7934     UsageInfo() : Diagnosed(false) {}
7935     Usage Uses[UK_Count];
7936     /// Have we issued a diagnostic for this variable already?
7937     bool Diagnosed;
7938   };
7939   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
7940 
7941   Sema &SemaRef;
7942   /// Sequenced regions within the expression.
7943   SequenceTree Tree;
7944   /// Declaration modifications and references which we have seen.
7945   UsageInfoMap UsageMap;
7946   /// The region we are currently within.
7947   SequenceTree::Seq Region;
7948   /// Filled in with declarations which were modified as a side-effect
7949   /// (that is, post-increment operations).
7950   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
7951   /// Expressions to check later. We defer checking these to reduce
7952   /// stack usage.
7953   SmallVectorImpl<Expr *> &WorkList;
7954 
7955   /// RAII object wrapping the visitation of a sequenced subexpression of an
7956   /// expression. At the end of this process, the side-effects of the evaluation
7957   /// become sequenced with respect to the value computation of the result, so
7958   /// we downgrade any UK_ModAsSideEffect within the evaluation to
7959   /// UK_ModAsValue.
7960   struct SequencedSubexpression {
SequencedSubexpression__anon817ecb130b11::SequenceChecker::SequencedSubexpression7961     SequencedSubexpression(SequenceChecker &Self)
7962       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
7963       Self.ModAsSideEffect = &ModAsSideEffect;
7964     }
~SequencedSubexpression__anon817ecb130b11::SequenceChecker::SequencedSubexpression7965     ~SequencedSubexpression() {
7966       for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
7967            MI != ME; ++MI) {
7968         UsageInfo &U = Self.UsageMap[MI->first];
7969         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
7970         Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
7971         SideEffectUsage = MI->second;
7972       }
7973       Self.ModAsSideEffect = OldModAsSideEffect;
7974     }
7975 
7976     SequenceChecker &Self;
7977     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
7978     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
7979   };
7980 
7981   /// RAII object wrapping the visitation of a subexpression which we might
7982   /// choose to evaluate as a constant. If any subexpression is evaluated and
7983   /// found to be non-constant, this allows us to suppress the evaluation of
7984   /// the outer expression.
7985   class EvaluationTracker {
7986   public:
EvaluationTracker(SequenceChecker & Self)7987     EvaluationTracker(SequenceChecker &Self)
7988         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
7989       Self.EvalTracker = this;
7990     }
~EvaluationTracker()7991     ~EvaluationTracker() {
7992       Self.EvalTracker = Prev;
7993       if (Prev)
7994         Prev->EvalOK &= EvalOK;
7995     }
7996 
evaluate(const Expr * E,bool & Result)7997     bool evaluate(const Expr *E, bool &Result) {
7998       if (!EvalOK || E->isValueDependent())
7999         return false;
8000       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
8001       return EvalOK;
8002     }
8003 
8004   private:
8005     SequenceChecker &Self;
8006     EvaluationTracker *Prev;
8007     bool EvalOK;
8008   } *EvalTracker;
8009 
8010   /// \brief Find the object which is produced by the specified expression,
8011   /// if any.
getObject(Expr * E,bool Mod) const8012   Object getObject(Expr *E, bool Mod) const {
8013     E = E->IgnoreParenCasts();
8014     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8015       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
8016         return getObject(UO->getSubExpr(), Mod);
8017     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8018       if (BO->getOpcode() == BO_Comma)
8019         return getObject(BO->getRHS(), Mod);
8020       if (Mod && BO->isAssignmentOp())
8021         return getObject(BO->getLHS(), Mod);
8022     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8023       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
8024       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
8025         return ME->getMemberDecl();
8026     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8027       // FIXME: If this is a reference, map through to its value.
8028       return DRE->getDecl();
8029     return nullptr;
8030   }
8031 
8032   /// \brief Note that an object was modified or used by an expression.
addUsage(UsageInfo & UI,Object O,Expr * Ref,UsageKind UK)8033   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
8034     Usage &U = UI.Uses[UK];
8035     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
8036       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
8037         ModAsSideEffect->push_back(std::make_pair(O, U));
8038       U.Use = Ref;
8039       U.Seq = Region;
8040     }
8041   }
8042   /// \brief Check whether a modification or use conflicts with a prior usage.
checkUsage(Object O,UsageInfo & UI,Expr * Ref,UsageKind OtherKind,bool IsModMod)8043   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
8044                   bool IsModMod) {
8045     if (UI.Diagnosed)
8046       return;
8047 
8048     const Usage &U = UI.Uses[OtherKind];
8049     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
8050       return;
8051 
8052     Expr *Mod = U.Use;
8053     Expr *ModOrUse = Ref;
8054     if (OtherKind == UK_Use)
8055       std::swap(Mod, ModOrUse);
8056 
8057     SemaRef.Diag(Mod->getExprLoc(),
8058                  IsModMod ? diag::warn_unsequenced_mod_mod
8059                           : diag::warn_unsequenced_mod_use)
8060       << O << SourceRange(ModOrUse->getExprLoc());
8061     UI.Diagnosed = true;
8062   }
8063 
notePreUse(Object O,Expr * Use)8064   void notePreUse(Object O, Expr *Use) {
8065     UsageInfo &U = UsageMap[O];
8066     // Uses conflict with other modifications.
8067     checkUsage(O, U, Use, UK_ModAsValue, false);
8068   }
notePostUse(Object O,Expr * Use)8069   void notePostUse(Object O, Expr *Use) {
8070     UsageInfo &U = UsageMap[O];
8071     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
8072     addUsage(U, O, Use, UK_Use);
8073   }
8074 
notePreMod(Object O,Expr * Mod)8075   void notePreMod(Object O, Expr *Mod) {
8076     UsageInfo &U = UsageMap[O];
8077     // Modifications conflict with other modifications and with uses.
8078     checkUsage(O, U, Mod, UK_ModAsValue, true);
8079     checkUsage(O, U, Mod, UK_Use, false);
8080   }
notePostMod(Object O,Expr * Use,UsageKind UK)8081   void notePostMod(Object O, Expr *Use, UsageKind UK) {
8082     UsageInfo &U = UsageMap[O];
8083     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
8084     addUsage(U, O, Use, UK);
8085   }
8086 
8087 public:
SequenceChecker(Sema & S,Expr * E,SmallVectorImpl<Expr * > & WorkList)8088   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
8089       : Base(S.Context), SemaRef(S), Region(Tree.root()),
8090         ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
8091     Visit(E);
8092   }
8093 
VisitStmt(Stmt * S)8094   void VisitStmt(Stmt *S) {
8095     // Skip all statements which aren't expressions for now.
8096   }
8097 
VisitExpr(Expr * E)8098   void VisitExpr(Expr *E) {
8099     // By default, just recurse to evaluated subexpressions.
8100     Base::VisitStmt(E);
8101   }
8102 
VisitCastExpr(CastExpr * E)8103   void VisitCastExpr(CastExpr *E) {
8104     Object O = Object();
8105     if (E->getCastKind() == CK_LValueToRValue)
8106       O = getObject(E->getSubExpr(), false);
8107 
8108     if (O)
8109       notePreUse(O, E);
8110     VisitExpr(E);
8111     if (O)
8112       notePostUse(O, E);
8113   }
8114 
VisitBinComma(BinaryOperator * BO)8115   void VisitBinComma(BinaryOperator *BO) {
8116     // C++11 [expr.comma]p1:
8117     //   Every value computation and side effect associated with the left
8118     //   expression is sequenced before every value computation and side
8119     //   effect associated with the right expression.
8120     SequenceTree::Seq LHS = Tree.allocate(Region);
8121     SequenceTree::Seq RHS = Tree.allocate(Region);
8122     SequenceTree::Seq OldRegion = Region;
8123 
8124     {
8125       SequencedSubexpression SeqLHS(*this);
8126       Region = LHS;
8127       Visit(BO->getLHS());
8128     }
8129 
8130     Region = RHS;
8131     Visit(BO->getRHS());
8132 
8133     Region = OldRegion;
8134 
8135     // Forget that LHS and RHS are sequenced. They are both unsequenced
8136     // with respect to other stuff.
8137     Tree.merge(LHS);
8138     Tree.merge(RHS);
8139   }
8140 
VisitBinAssign(BinaryOperator * BO)8141   void VisitBinAssign(BinaryOperator *BO) {
8142     // The modification is sequenced after the value computation of the LHS
8143     // and RHS, so check it before inspecting the operands and update the
8144     // map afterwards.
8145     Object O = getObject(BO->getLHS(), true);
8146     if (!O)
8147       return VisitExpr(BO);
8148 
8149     notePreMod(O, BO);
8150 
8151     // C++11 [expr.ass]p7:
8152     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
8153     //   only once.
8154     //
8155     // Therefore, for a compound assignment operator, O is considered used
8156     // everywhere except within the evaluation of E1 itself.
8157     if (isa<CompoundAssignOperator>(BO))
8158       notePreUse(O, BO);
8159 
8160     Visit(BO->getLHS());
8161 
8162     if (isa<CompoundAssignOperator>(BO))
8163       notePostUse(O, BO);
8164 
8165     Visit(BO->getRHS());
8166 
8167     // C++11 [expr.ass]p1:
8168     //   the assignment is sequenced [...] before the value computation of the
8169     //   assignment expression.
8170     // C11 6.5.16/3 has no such rule.
8171     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
8172                                                        : UK_ModAsSideEffect);
8173   }
VisitCompoundAssignOperator(CompoundAssignOperator * CAO)8174   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
8175     VisitBinAssign(CAO);
8176   }
8177 
VisitUnaryPreInc(UnaryOperator * UO)8178   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(UnaryOperator * UO)8179   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(UnaryOperator * UO)8180   void VisitUnaryPreIncDec(UnaryOperator *UO) {
8181     Object O = getObject(UO->getSubExpr(), true);
8182     if (!O)
8183       return VisitExpr(UO);
8184 
8185     notePreMod(O, UO);
8186     Visit(UO->getSubExpr());
8187     // C++11 [expr.pre.incr]p1:
8188     //   the expression ++x is equivalent to x+=1
8189     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
8190                                                        : UK_ModAsSideEffect);
8191   }
8192 
VisitUnaryPostInc(UnaryOperator * UO)8193   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(UnaryOperator * UO)8194   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(UnaryOperator * UO)8195   void VisitUnaryPostIncDec(UnaryOperator *UO) {
8196     Object O = getObject(UO->getSubExpr(), true);
8197     if (!O)
8198       return VisitExpr(UO);
8199 
8200     notePreMod(O, UO);
8201     Visit(UO->getSubExpr());
8202     notePostMod(O, UO, UK_ModAsSideEffect);
8203   }
8204 
8205   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
VisitBinLOr(BinaryOperator * BO)8206   void VisitBinLOr(BinaryOperator *BO) {
8207     // The side-effects of the LHS of an '&&' are sequenced before the
8208     // value computation of the RHS, and hence before the value computation
8209     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
8210     // as if they were unconditionally sequenced.
8211     EvaluationTracker Eval(*this);
8212     {
8213       SequencedSubexpression Sequenced(*this);
8214       Visit(BO->getLHS());
8215     }
8216 
8217     bool Result;
8218     if (Eval.evaluate(BO->getLHS(), Result)) {
8219       if (!Result)
8220         Visit(BO->getRHS());
8221     } else {
8222       // Check for unsequenced operations in the RHS, treating it as an
8223       // entirely separate evaluation.
8224       //
8225       // FIXME: If there are operations in the RHS which are unsequenced
8226       // with respect to operations outside the RHS, and those operations
8227       // are unconditionally evaluated, diagnose them.
8228       WorkList.push_back(BO->getRHS());
8229     }
8230   }
VisitBinLAnd(BinaryOperator * BO)8231   void VisitBinLAnd(BinaryOperator *BO) {
8232     EvaluationTracker Eval(*this);
8233     {
8234       SequencedSubexpression Sequenced(*this);
8235       Visit(BO->getLHS());
8236     }
8237 
8238     bool Result;
8239     if (Eval.evaluate(BO->getLHS(), Result)) {
8240       if (Result)
8241         Visit(BO->getRHS());
8242     } else {
8243       WorkList.push_back(BO->getRHS());
8244     }
8245   }
8246 
8247   // Only visit the condition, unless we can be sure which subexpression will
8248   // be chosen.
VisitAbstractConditionalOperator(AbstractConditionalOperator * CO)8249   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
8250     EvaluationTracker Eval(*this);
8251     {
8252       SequencedSubexpression Sequenced(*this);
8253       Visit(CO->getCond());
8254     }
8255 
8256     bool Result;
8257     if (Eval.evaluate(CO->getCond(), Result))
8258       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
8259     else {
8260       WorkList.push_back(CO->getTrueExpr());
8261       WorkList.push_back(CO->getFalseExpr());
8262     }
8263   }
8264 
VisitCallExpr(CallExpr * CE)8265   void VisitCallExpr(CallExpr *CE) {
8266     // C++11 [intro.execution]p15:
8267     //   When calling a function [...], every value computation and side effect
8268     //   associated with any argument expression, or with the postfix expression
8269     //   designating the called function, is sequenced before execution of every
8270     //   expression or statement in the body of the function [and thus before
8271     //   the value computation of its result].
8272     SequencedSubexpression Sequenced(*this);
8273     Base::VisitCallExpr(CE);
8274 
8275     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
8276   }
8277 
VisitCXXConstructExpr(CXXConstructExpr * CCE)8278   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
8279     // This is a call, so all subexpressions are sequenced before the result.
8280     SequencedSubexpression Sequenced(*this);
8281 
8282     if (!CCE->isListInitialization())
8283       return VisitExpr(CCE);
8284 
8285     // In C++11, list initializations are sequenced.
8286     SmallVector<SequenceTree::Seq, 32> Elts;
8287     SequenceTree::Seq Parent = Region;
8288     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
8289                                         E = CCE->arg_end();
8290          I != E; ++I) {
8291       Region = Tree.allocate(Parent);
8292       Elts.push_back(Region);
8293       Visit(*I);
8294     }
8295 
8296     // Forget that the initializers are sequenced.
8297     Region = Parent;
8298     for (unsigned I = 0; I < Elts.size(); ++I)
8299       Tree.merge(Elts[I]);
8300   }
8301 
VisitInitListExpr(InitListExpr * ILE)8302   void VisitInitListExpr(InitListExpr *ILE) {
8303     if (!SemaRef.getLangOpts().CPlusPlus11)
8304       return VisitExpr(ILE);
8305 
8306     // In C++11, list initializations are sequenced.
8307     SmallVector<SequenceTree::Seq, 32> Elts;
8308     SequenceTree::Seq Parent = Region;
8309     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
8310       Expr *E = ILE->getInit(I);
8311       if (!E) continue;
8312       Region = Tree.allocate(Parent);
8313       Elts.push_back(Region);
8314       Visit(E);
8315     }
8316 
8317     // Forget that the initializers are sequenced.
8318     Region = Parent;
8319     for (unsigned I = 0; I < Elts.size(); ++I)
8320       Tree.merge(Elts[I]);
8321   }
8322 };
8323 }
8324 
CheckUnsequencedOperations(Expr * E)8325 void Sema::CheckUnsequencedOperations(Expr *E) {
8326   SmallVector<Expr *, 8> WorkList;
8327   WorkList.push_back(E);
8328   while (!WorkList.empty()) {
8329     Expr *Item = WorkList.pop_back_val();
8330     SequenceChecker(*this, Item, WorkList);
8331   }
8332 }
8333 
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)8334 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
8335                               bool IsConstexpr) {
8336   CheckImplicitConversions(E, CheckLoc);
8337   CheckUnsequencedOperations(E);
8338   if (!IsConstexpr && !E->isValueDependent())
8339     CheckForIntOverflow(E);
8340 }
8341 
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)8342 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
8343                                        FieldDecl *BitField,
8344                                        Expr *Init) {
8345   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
8346 }
8347 
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)8348 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
8349                                          SourceLocation Loc) {
8350   if (!PType->isVariablyModifiedType())
8351     return;
8352   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
8353     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
8354     return;
8355   }
8356   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
8357     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
8358     return;
8359   }
8360   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
8361     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
8362     return;
8363   }
8364 
8365   const ArrayType *AT = S.Context.getAsArrayType(PType);
8366   if (!AT)
8367     return;
8368 
8369   if (AT->getSizeModifier() != ArrayType::Star) {
8370     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
8371     return;
8372   }
8373 
8374   S.Diag(Loc, diag::err_array_star_in_function_definition);
8375 }
8376 
8377 /// CheckParmsForFunctionDef - Check that the parameters of the given
8378 /// function are appropriate for the definition of a function. This
8379 /// takes care of any checks that cannot be performed on the
8380 /// declaration itself, e.g., that the types of each of the function
8381 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl * const * P,ParmVarDecl * const * PEnd,bool CheckParameterNames)8382 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
8383                                     ParmVarDecl *const *PEnd,
8384                                     bool CheckParameterNames) {
8385   bool HasInvalidParm = false;
8386   for (; P != PEnd; ++P) {
8387     ParmVarDecl *Param = *P;
8388 
8389     // C99 6.7.5.3p4: the parameters in a parameter type list in a
8390     // function declarator that is part of a function definition of
8391     // that function shall not have incomplete type.
8392     //
8393     // This is also C++ [dcl.fct]p6.
8394     if (!Param->isInvalidDecl() &&
8395         RequireCompleteType(Param->getLocation(), Param->getType(),
8396                             diag::err_typecheck_decl_incomplete_type)) {
8397       Param->setInvalidDecl();
8398       HasInvalidParm = true;
8399     }
8400 
8401     // C99 6.9.1p5: If the declarator includes a parameter type list, the
8402     // declaration of each parameter shall include an identifier.
8403     if (CheckParameterNames &&
8404         Param->getIdentifier() == nullptr &&
8405         !Param->isImplicit() &&
8406         !getLangOpts().CPlusPlus)
8407       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8408 
8409     // C99 6.7.5.3p12:
8410     //   If the function declarator is not part of a definition of that
8411     //   function, parameters may have incomplete type and may use the [*]
8412     //   notation in their sequences of declarator specifiers to specify
8413     //   variable length array types.
8414     QualType PType = Param->getOriginalType();
8415     // FIXME: This diagnostic should point the '[*]' if source-location
8416     // information is added for it.
8417     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
8418 
8419     // MSVC destroys objects passed by value in the callee.  Therefore a
8420     // function definition which takes such a parameter must be able to call the
8421     // object's destructor.  However, we don't perform any direct access check
8422     // on the dtor.
8423     if (getLangOpts().CPlusPlus && Context.getTargetInfo()
8424                                        .getCXXABI()
8425                                        .areArgsDestroyedLeftToRightInCallee()) {
8426       if (!Param->isInvalidDecl()) {
8427         if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
8428           CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
8429           if (!ClassDecl->isInvalidDecl() &&
8430               !ClassDecl->hasIrrelevantDestructor() &&
8431               !ClassDecl->isDependentContext()) {
8432             CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8433             MarkFunctionReferenced(Param->getLocation(), Destructor);
8434             DiagnoseUseOfDecl(Destructor, Param->getLocation());
8435           }
8436         }
8437       }
8438     }
8439 
8440     // Parameters with the pass_object_size attribute only need to be marked
8441     // constant at function definitions. Because we lack information about
8442     // whether we're on a declaration or definition when we're instantiating the
8443     // attribute, we need to check for constness here.
8444     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
8445       if (!Param->getType().isConstQualified())
8446         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
8447             << Attr->getSpelling() << 1;
8448   }
8449 
8450   return HasInvalidParm;
8451 }
8452 
8453 /// CheckCastAlign - Implements -Wcast-align, which warns when a
8454 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)8455 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
8456   // This is actually a lot of work to potentially be doing on every
8457   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
8458   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
8459     return;
8460 
8461   // Ignore dependent types.
8462   if (T->isDependentType() || Op->getType()->isDependentType())
8463     return;
8464 
8465   // Require that the destination be a pointer type.
8466   const PointerType *DestPtr = T->getAs<PointerType>();
8467   if (!DestPtr) return;
8468 
8469   // If the destination has alignment 1, we're done.
8470   QualType DestPointee = DestPtr->getPointeeType();
8471   if (DestPointee->isIncompleteType()) return;
8472   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
8473   if (DestAlign.isOne()) return;
8474 
8475   // Require that the source be a pointer type.
8476   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
8477   if (!SrcPtr) return;
8478   QualType SrcPointee = SrcPtr->getPointeeType();
8479 
8480   // Whitelist casts from cv void*.  We already implicitly
8481   // whitelisted casts to cv void*, since they have alignment 1.
8482   // Also whitelist casts involving incomplete types, which implicitly
8483   // includes 'void'.
8484   if (SrcPointee->isIncompleteType()) return;
8485 
8486   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
8487   if (SrcAlign >= DestAlign) return;
8488 
8489   Diag(TRange.getBegin(), diag::warn_cast_align)
8490     << Op->getType() << T
8491     << static_cast<unsigned>(SrcAlign.getQuantity())
8492     << static_cast<unsigned>(DestAlign.getQuantity())
8493     << TRange << Op->getSourceRange();
8494 }
8495 
getElementType(const Expr * BaseExpr)8496 static const Type* getElementType(const Expr *BaseExpr) {
8497   const Type* EltType = BaseExpr->getType().getTypePtr();
8498   if (EltType->isAnyPointerType())
8499     return EltType->getPointeeType().getTypePtr();
8500   else if (EltType->isArrayType())
8501     return EltType->getBaseElementTypeUnsafe();
8502   return EltType;
8503 }
8504 
8505 /// \brief Check whether this array fits the idiom of a size-one tail padded
8506 /// array member of a struct.
8507 ///
8508 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
8509 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,llvm::APInt Size,const NamedDecl * ND)8510 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
8511                                     const NamedDecl *ND) {
8512   if (Size != 1 || !ND) return false;
8513 
8514   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
8515   if (!FD) return false;
8516 
8517   // Don't consider sizes resulting from macro expansions or template argument
8518   // substitution to form C89 tail-padded arrays.
8519 
8520   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
8521   while (TInfo) {
8522     TypeLoc TL = TInfo->getTypeLoc();
8523     // Look through typedefs.
8524     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
8525       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
8526       TInfo = TDL->getTypeSourceInfo();
8527       continue;
8528     }
8529     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
8530       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
8531       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
8532         return false;
8533     }
8534     break;
8535   }
8536 
8537   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
8538   if (!RD) return false;
8539   if (RD->isUnion()) return false;
8540   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8541     if (!CRD->isStandardLayout()) return false;
8542   }
8543 
8544   // See if this is the last field decl in the record.
8545   const Decl *D = FD;
8546   while ((D = D->getNextDeclInContext()))
8547     if (isa<FieldDecl>(D))
8548       return false;
8549   return true;
8550 }
8551 
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)8552 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
8553                             const ArraySubscriptExpr *ASE,
8554                             bool AllowOnePastEnd, bool IndexNegated) {
8555   IndexExpr = IndexExpr->IgnoreParenImpCasts();
8556   if (IndexExpr->isValueDependent())
8557     return;
8558 
8559   const Type *EffectiveType = getElementType(BaseExpr);
8560   BaseExpr = BaseExpr->IgnoreParenCasts();
8561   const ConstantArrayType *ArrayTy =
8562     Context.getAsConstantArrayType(BaseExpr->getType());
8563   if (!ArrayTy)
8564     return;
8565 
8566   llvm::APSInt index;
8567   if (!IndexExpr->EvaluateAsInt(index, Context, Expr::SE_AllowSideEffects))
8568     return;
8569   if (IndexNegated)
8570     index = -index;
8571 
8572   const NamedDecl *ND = nullptr;
8573   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
8574     ND = dyn_cast<NamedDecl>(DRE->getDecl());
8575   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
8576     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
8577 
8578   if (index.isUnsigned() || !index.isNegative()) {
8579     llvm::APInt size = ArrayTy->getSize();
8580     if (!size.isStrictlyPositive())
8581       return;
8582 
8583     const Type* BaseType = getElementType(BaseExpr);
8584     if (BaseType != EffectiveType) {
8585       // Make sure we're comparing apples to apples when comparing index to size
8586       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
8587       uint64_t array_typesize = Context.getTypeSize(BaseType);
8588       // Handle ptrarith_typesize being zero, such as when casting to void*
8589       if (!ptrarith_typesize) ptrarith_typesize = 1;
8590       if (ptrarith_typesize != array_typesize) {
8591         // There's a cast to a different size type involved
8592         uint64_t ratio = array_typesize / ptrarith_typesize;
8593         // TODO: Be smarter about handling cases where array_typesize is not a
8594         // multiple of ptrarith_typesize
8595         if (ptrarith_typesize * ratio == array_typesize)
8596           size *= llvm::APInt(size.getBitWidth(), ratio);
8597       }
8598     }
8599 
8600     if (size.getBitWidth() > index.getBitWidth())
8601       index = index.zext(size.getBitWidth());
8602     else if (size.getBitWidth() < index.getBitWidth())
8603       size = size.zext(index.getBitWidth());
8604 
8605     // For array subscripting the index must be less than size, but for pointer
8606     // arithmetic also allow the index (offset) to be equal to size since
8607     // computing the next address after the end of the array is legal and
8608     // commonly done e.g. in C++ iterators and range-based for loops.
8609     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
8610       return;
8611 
8612     // Also don't warn for arrays of size 1 which are members of some
8613     // structure. These are often used to approximate flexible arrays in C89
8614     // code.
8615     if (IsTailPaddedMemberArray(*this, size, ND))
8616       return;
8617 
8618     // Suppress the warning if the subscript expression (as identified by the
8619     // ']' location) and the index expression are both from macro expansions
8620     // within a system header.
8621     if (ASE) {
8622       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
8623           ASE->getRBracketLoc());
8624       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
8625         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
8626             IndexExpr->getLocStart());
8627         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
8628           return;
8629       }
8630     }
8631 
8632     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
8633     if (ASE)
8634       DiagID = diag::warn_array_index_exceeds_bounds;
8635 
8636     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
8637                         PDiag(DiagID) << index.toString(10, true)
8638                           << size.toString(10, true)
8639                           << (unsigned)size.getLimitedValue(~0U)
8640                           << IndexExpr->getSourceRange());
8641   } else {
8642     unsigned DiagID = diag::warn_array_index_precedes_bounds;
8643     if (!ASE) {
8644       DiagID = diag::warn_ptr_arith_precedes_bounds;
8645       if (index.isNegative()) index = -index;
8646     }
8647 
8648     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
8649                         PDiag(DiagID) << index.toString(10, true)
8650                           << IndexExpr->getSourceRange());
8651   }
8652 
8653   if (!ND) {
8654     // Try harder to find a NamedDecl to point at in the note.
8655     while (const ArraySubscriptExpr *ASE =
8656            dyn_cast<ArraySubscriptExpr>(BaseExpr))
8657       BaseExpr = ASE->getBase()->IgnoreParenCasts();
8658     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
8659       ND = dyn_cast<NamedDecl>(DRE->getDecl());
8660     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
8661       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
8662   }
8663 
8664   if (ND)
8665     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
8666                         PDiag(diag::note_array_index_out_of_bounds)
8667                           << ND->getDeclName());
8668 }
8669 
CheckArrayAccess(const Expr * expr)8670 void Sema::CheckArrayAccess(const Expr *expr) {
8671   int AllowOnePastEnd = 0;
8672   while (expr) {
8673     expr = expr->IgnoreParenImpCasts();
8674     switch (expr->getStmtClass()) {
8675       case Stmt::ArraySubscriptExprClass: {
8676         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
8677         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
8678                          AllowOnePastEnd > 0);
8679         return;
8680       }
8681       case Stmt::OMPArraySectionExprClass: {
8682         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
8683         if (ASE->getLowerBound())
8684           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
8685                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
8686         return;
8687       }
8688       case Stmt::UnaryOperatorClass: {
8689         // Only unwrap the * and & unary operators
8690         const UnaryOperator *UO = cast<UnaryOperator>(expr);
8691         expr = UO->getSubExpr();
8692         switch (UO->getOpcode()) {
8693           case UO_AddrOf:
8694             AllowOnePastEnd++;
8695             break;
8696           case UO_Deref:
8697             AllowOnePastEnd--;
8698             break;
8699           default:
8700             return;
8701         }
8702         break;
8703       }
8704       case Stmt::ConditionalOperatorClass: {
8705         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
8706         if (const Expr *lhs = cond->getLHS())
8707           CheckArrayAccess(lhs);
8708         if (const Expr *rhs = cond->getRHS())
8709           CheckArrayAccess(rhs);
8710         return;
8711       }
8712       default:
8713         return;
8714     }
8715   }
8716 }
8717 
8718 //===--- CHECK: Objective-C retain cycles ----------------------------------//
8719 
8720 namespace {
8721   struct RetainCycleOwner {
RetainCycleOwner__anon817ecb130c11::RetainCycleOwner8722     RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
8723     VarDecl *Variable;
8724     SourceRange Range;
8725     SourceLocation Loc;
8726     bool Indirect;
8727 
setLocsFrom__anon817ecb130c11::RetainCycleOwner8728     void setLocsFrom(Expr *e) {
8729       Loc = e->getExprLoc();
8730       Range = e->getSourceRange();
8731     }
8732   };
8733 }
8734 
8735 /// Consider whether capturing the given variable can possibly lead to
8736 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)8737 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
8738   // In ARC, it's captured strongly iff the variable has __strong
8739   // lifetime.  In MRR, it's captured strongly if the variable is
8740   // __block and has an appropriate type.
8741   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
8742     return false;
8743 
8744   owner.Variable = var;
8745   if (ref)
8746     owner.setLocsFrom(ref);
8747   return true;
8748 }
8749 
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)8750 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
8751   while (true) {
8752     e = e->IgnoreParens();
8753     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
8754       switch (cast->getCastKind()) {
8755       case CK_BitCast:
8756       case CK_LValueBitCast:
8757       case CK_LValueToRValue:
8758       case CK_ARCReclaimReturnedObject:
8759         e = cast->getSubExpr();
8760         continue;
8761 
8762       default:
8763         return false;
8764       }
8765     }
8766 
8767     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
8768       ObjCIvarDecl *ivar = ref->getDecl();
8769       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
8770         return false;
8771 
8772       // Try to find a retain cycle in the base.
8773       if (!findRetainCycleOwner(S, ref->getBase(), owner))
8774         return false;
8775 
8776       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
8777       owner.Indirect = true;
8778       return true;
8779     }
8780 
8781     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
8782       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
8783       if (!var) return false;
8784       return considerVariable(var, ref, owner);
8785     }
8786 
8787     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
8788       if (member->isArrow()) return false;
8789 
8790       // Don't count this as an indirect ownership.
8791       e = member->getBase();
8792       continue;
8793     }
8794 
8795     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
8796       // Only pay attention to pseudo-objects on property references.
8797       ObjCPropertyRefExpr *pre
8798         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
8799                                               ->IgnoreParens());
8800       if (!pre) return false;
8801       if (pre->isImplicitProperty()) return false;
8802       ObjCPropertyDecl *property = pre->getExplicitProperty();
8803       if (!property->isRetaining() &&
8804           !(property->getPropertyIvarDecl() &&
8805             property->getPropertyIvarDecl()->getType()
8806               .getObjCLifetime() == Qualifiers::OCL_Strong))
8807           return false;
8808 
8809       owner.Indirect = true;
8810       if (pre->isSuperReceiver()) {
8811         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
8812         if (!owner.Variable)
8813           return false;
8814         owner.Loc = pre->getLocation();
8815         owner.Range = pre->getSourceRange();
8816         return true;
8817       }
8818       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
8819                               ->getSourceExpr());
8820       continue;
8821     }
8822 
8823     // Array ivars?
8824 
8825     return false;
8826   }
8827 }
8828 
8829 namespace {
8830   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon817ecb130d11::FindCaptureVisitor8831     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
8832       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
8833         Context(Context), Variable(variable), Capturer(nullptr),
8834         VarWillBeReased(false) {}
8835     ASTContext &Context;
8836     VarDecl *Variable;
8837     Expr *Capturer;
8838     bool VarWillBeReased;
8839 
VisitDeclRefExpr__anon817ecb130d11::FindCaptureVisitor8840     void VisitDeclRefExpr(DeclRefExpr *ref) {
8841       if (ref->getDecl() == Variable && !Capturer)
8842         Capturer = ref;
8843     }
8844 
VisitObjCIvarRefExpr__anon817ecb130d11::FindCaptureVisitor8845     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
8846       if (Capturer) return;
8847       Visit(ref->getBase());
8848       if (Capturer && ref->isFreeIvar())
8849         Capturer = ref;
8850     }
8851 
VisitBlockExpr__anon817ecb130d11::FindCaptureVisitor8852     void VisitBlockExpr(BlockExpr *block) {
8853       // Look inside nested blocks
8854       if (block->getBlockDecl()->capturesVariable(Variable))
8855         Visit(block->getBlockDecl()->getBody());
8856     }
8857 
VisitOpaqueValueExpr__anon817ecb130d11::FindCaptureVisitor8858     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
8859       if (Capturer) return;
8860       if (OVE->getSourceExpr())
8861         Visit(OVE->getSourceExpr());
8862     }
VisitBinaryOperator__anon817ecb130d11::FindCaptureVisitor8863     void VisitBinaryOperator(BinaryOperator *BinOp) {
8864       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
8865         return;
8866       Expr *LHS = BinOp->getLHS();
8867       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
8868         if (DRE->getDecl() != Variable)
8869           return;
8870         if (Expr *RHS = BinOp->getRHS()) {
8871           RHS = RHS->IgnoreParenCasts();
8872           llvm::APSInt Value;
8873           VarWillBeReased =
8874             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
8875         }
8876       }
8877     }
8878   };
8879 }
8880 
8881 /// Check whether the given argument is a block which captures a
8882 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)8883 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
8884   assert(owner.Variable && owner.Loc.isValid());
8885 
8886   e = e->IgnoreParenCasts();
8887 
8888   // Look through [^{...} copy] and Block_copy(^{...}).
8889   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
8890     Selector Cmd = ME->getSelector();
8891     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
8892       e = ME->getInstanceReceiver();
8893       if (!e)
8894         return nullptr;
8895       e = e->IgnoreParenCasts();
8896     }
8897   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
8898     if (CE->getNumArgs() == 1) {
8899       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
8900       if (Fn) {
8901         const IdentifierInfo *FnI = Fn->getIdentifier();
8902         if (FnI && FnI->isStr("_Block_copy")) {
8903           e = CE->getArg(0)->IgnoreParenCasts();
8904         }
8905       }
8906     }
8907   }
8908 
8909   BlockExpr *block = dyn_cast<BlockExpr>(e);
8910   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
8911     return nullptr;
8912 
8913   FindCaptureVisitor visitor(S.Context, owner.Variable);
8914   visitor.Visit(block->getBlockDecl()->getBody());
8915   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
8916 }
8917 
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)8918 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
8919                                 RetainCycleOwner &owner) {
8920   assert(capturer);
8921   assert(owner.Variable && owner.Loc.isValid());
8922 
8923   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
8924     << owner.Variable << capturer->getSourceRange();
8925   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
8926     << owner.Indirect << owner.Range;
8927 }
8928 
8929 /// Check for a keyword selector that starts with the word 'add' or
8930 /// 'set'.
isSetterLikeSelector(Selector sel)8931 static bool isSetterLikeSelector(Selector sel) {
8932   if (sel.isUnarySelector()) return false;
8933 
8934   StringRef str = sel.getNameForSlot(0);
8935   while (!str.empty() && str.front() == '_') str = str.substr(1);
8936   if (str.startswith("set"))
8937     str = str.substr(3);
8938   else if (str.startswith("add")) {
8939     // Specially whitelist 'addOperationWithBlock:'.
8940     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
8941       return false;
8942     str = str.substr(3);
8943   }
8944   else
8945     return false;
8946 
8947   if (str.empty()) return true;
8948   return !isLowercase(str.front());
8949 }
8950 
GetNSMutableArrayArgumentIndex(Sema & S,ObjCMessageExpr * Message)8951 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
8952                                                     ObjCMessageExpr *Message) {
8953   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
8954                                                 Message->getReceiverInterface(),
8955                                                 NSAPI::ClassId_NSMutableArray);
8956   if (!IsMutableArray) {
8957     return None;
8958   }
8959 
8960   Selector Sel = Message->getSelector();
8961 
8962   Optional<NSAPI::NSArrayMethodKind> MKOpt =
8963     S.NSAPIObj->getNSArrayMethodKind(Sel);
8964   if (!MKOpt) {
8965     return None;
8966   }
8967 
8968   NSAPI::NSArrayMethodKind MK = *MKOpt;
8969 
8970   switch (MK) {
8971     case NSAPI::NSMutableArr_addObject:
8972     case NSAPI::NSMutableArr_insertObjectAtIndex:
8973     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
8974       return 0;
8975     case NSAPI::NSMutableArr_replaceObjectAtIndex:
8976       return 1;
8977 
8978     default:
8979       return None;
8980   }
8981 
8982   return None;
8983 }
8984 
8985 static
GetNSMutableDictionaryArgumentIndex(Sema & S,ObjCMessageExpr * Message)8986 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
8987                                                   ObjCMessageExpr *Message) {
8988   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
8989                                             Message->getReceiverInterface(),
8990                                             NSAPI::ClassId_NSMutableDictionary);
8991   if (!IsMutableDictionary) {
8992     return None;
8993   }
8994 
8995   Selector Sel = Message->getSelector();
8996 
8997   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
8998     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
8999   if (!MKOpt) {
9000     return None;
9001   }
9002 
9003   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
9004 
9005   switch (MK) {
9006     case NSAPI::NSMutableDict_setObjectForKey:
9007     case NSAPI::NSMutableDict_setValueForKey:
9008     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
9009       return 0;
9010 
9011     default:
9012       return None;
9013   }
9014 
9015   return None;
9016 }
9017 
GetNSSetArgumentIndex(Sema & S,ObjCMessageExpr * Message)9018 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
9019   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
9020                                                 Message->getReceiverInterface(),
9021                                                 NSAPI::ClassId_NSMutableSet);
9022 
9023   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
9024                                             Message->getReceiverInterface(),
9025                                             NSAPI::ClassId_NSMutableOrderedSet);
9026   if (!IsMutableSet && !IsMutableOrderedSet) {
9027     return None;
9028   }
9029 
9030   Selector Sel = Message->getSelector();
9031 
9032   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
9033   if (!MKOpt) {
9034     return None;
9035   }
9036 
9037   NSAPI::NSSetMethodKind MK = *MKOpt;
9038 
9039   switch (MK) {
9040     case NSAPI::NSMutableSet_addObject:
9041     case NSAPI::NSOrderedSet_setObjectAtIndex:
9042     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
9043     case NSAPI::NSOrderedSet_insertObjectAtIndex:
9044       return 0;
9045     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
9046       return 1;
9047   }
9048 
9049   return None;
9050 }
9051 
CheckObjCCircularContainer(ObjCMessageExpr * Message)9052 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
9053   if (!Message->isInstanceMessage()) {
9054     return;
9055   }
9056 
9057   Optional<int> ArgOpt;
9058 
9059   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
9060       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
9061       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
9062     return;
9063   }
9064 
9065   int ArgIndex = *ArgOpt;
9066 
9067   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
9068   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
9069     Arg = OE->getSourceExpr()->IgnoreImpCasts();
9070   }
9071 
9072   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
9073     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
9074       if (ArgRE->isObjCSelfExpr()) {
9075         Diag(Message->getSourceRange().getBegin(),
9076              diag::warn_objc_circular_container)
9077           << ArgRE->getDecl()->getName() << StringRef("super");
9078       }
9079     }
9080   } else {
9081     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
9082 
9083     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
9084       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
9085     }
9086 
9087     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
9088       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
9089         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
9090           ValueDecl *Decl = ReceiverRE->getDecl();
9091           Diag(Message->getSourceRange().getBegin(),
9092                diag::warn_objc_circular_container)
9093             << Decl->getName() << Decl->getName();
9094           if (!ArgRE->isObjCSelfExpr()) {
9095             Diag(Decl->getLocation(),
9096                  diag::note_objc_circular_container_declared_here)
9097               << Decl->getName();
9098           }
9099         }
9100       }
9101     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
9102       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
9103         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
9104           ObjCIvarDecl *Decl = IvarRE->getDecl();
9105           Diag(Message->getSourceRange().getBegin(),
9106                diag::warn_objc_circular_container)
9107             << Decl->getName() << Decl->getName();
9108           Diag(Decl->getLocation(),
9109                diag::note_objc_circular_container_declared_here)
9110             << Decl->getName();
9111         }
9112       }
9113     }
9114   }
9115 
9116 }
9117 
9118 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)9119 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
9120   // Only check instance methods whose selector looks like a setter.
9121   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
9122     return;
9123 
9124   // Try to find a variable that the receiver is strongly owned by.
9125   RetainCycleOwner owner;
9126   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
9127     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
9128       return;
9129   } else {
9130     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
9131     owner.Variable = getCurMethodDecl()->getSelfDecl();
9132     owner.Loc = msg->getSuperLoc();
9133     owner.Range = msg->getSuperLoc();
9134   }
9135 
9136   // Check whether the receiver is captured by any of the arguments.
9137   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
9138     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
9139       return diagnoseRetainCycle(*this, capturer, owner);
9140 }
9141 
9142 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)9143 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
9144   RetainCycleOwner owner;
9145   if (!findRetainCycleOwner(*this, receiver, owner))
9146     return;
9147 
9148   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
9149     diagnoseRetainCycle(*this, capturer, owner);
9150 }
9151 
checkRetainCycles(VarDecl * Var,Expr * Init)9152 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
9153   RetainCycleOwner Owner;
9154   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
9155     return;
9156 
9157   // Because we don't have an expression for the variable, we have to set the
9158   // location explicitly here.
9159   Owner.Loc = Var->getLocation();
9160   Owner.Range = Var->getSourceRange();
9161 
9162   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
9163     diagnoseRetainCycle(*this, Capturer, Owner);
9164 }
9165 
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)9166 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
9167                                      Expr *RHS, bool isProperty) {
9168   // Check if RHS is an Objective-C object literal, which also can get
9169   // immediately zapped in a weak reference.  Note that we explicitly
9170   // allow ObjCStringLiterals, since those are designed to never really die.
9171   RHS = RHS->IgnoreParenImpCasts();
9172 
9173   // This enum needs to match with the 'select' in
9174   // warn_objc_arc_literal_assign (off-by-1).
9175   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
9176   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
9177     return false;
9178 
9179   S.Diag(Loc, diag::warn_arc_literal_assign)
9180     << (unsigned) Kind
9181     << (isProperty ? 0 : 1)
9182     << RHS->getSourceRange();
9183 
9184   return true;
9185 }
9186 
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)9187 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
9188                                     Qualifiers::ObjCLifetime LT,
9189                                     Expr *RHS, bool isProperty) {
9190   // Strip off any implicit cast added to get to the one ARC-specific.
9191   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
9192     if (cast->getCastKind() == CK_ARCConsumeObject) {
9193       S.Diag(Loc, diag::warn_arc_retained_assign)
9194         << (LT == Qualifiers::OCL_ExplicitNone)
9195         << (isProperty ? 0 : 1)
9196         << RHS->getSourceRange();
9197       return true;
9198     }
9199     RHS = cast->getSubExpr();
9200   }
9201 
9202   if (LT == Qualifiers::OCL_Weak &&
9203       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
9204     return true;
9205 
9206   return false;
9207 }
9208 
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)9209 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
9210                               QualType LHS, Expr *RHS) {
9211   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
9212 
9213   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
9214     return false;
9215 
9216   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
9217     return true;
9218 
9219   return false;
9220 }
9221 
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)9222 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
9223                               Expr *LHS, Expr *RHS) {
9224   QualType LHSType;
9225   // PropertyRef on LHS type need be directly obtained from
9226   // its declaration as it has a PseudoType.
9227   ObjCPropertyRefExpr *PRE
9228     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
9229   if (PRE && !PRE->isImplicitProperty()) {
9230     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
9231     if (PD)
9232       LHSType = PD->getType();
9233   }
9234 
9235   if (LHSType.isNull())
9236     LHSType = LHS->getType();
9237 
9238   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
9239 
9240   if (LT == Qualifiers::OCL_Weak) {
9241     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
9242       getCurFunction()->markSafeWeakUse(LHS);
9243   }
9244 
9245   if (checkUnsafeAssigns(Loc, LHSType, RHS))
9246     return;
9247 
9248   // FIXME. Check for other life times.
9249   if (LT != Qualifiers::OCL_None)
9250     return;
9251 
9252   if (PRE) {
9253     if (PRE->isImplicitProperty())
9254       return;
9255     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
9256     if (!PD)
9257       return;
9258 
9259     unsigned Attributes = PD->getPropertyAttributes();
9260     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
9261       // when 'assign' attribute was not explicitly specified
9262       // by user, ignore it and rely on property type itself
9263       // for lifetime info.
9264       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
9265       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
9266           LHSType->isObjCRetainableType())
9267         return;
9268 
9269       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
9270         if (cast->getCastKind() == CK_ARCConsumeObject) {
9271           Diag(Loc, diag::warn_arc_retained_property_assign)
9272           << RHS->getSourceRange();
9273           return;
9274         }
9275         RHS = cast->getSubExpr();
9276       }
9277     }
9278     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
9279       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
9280         return;
9281     }
9282   }
9283 }
9284 
9285 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
9286 
9287 namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)9288 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
9289                                  SourceLocation StmtLoc,
9290                                  const NullStmt *Body) {
9291   // Do not warn if the body is a macro that expands to nothing, e.g:
9292   //
9293   // #define CALL(x)
9294   // if (condition)
9295   //   CALL(0);
9296   //
9297   if (Body->hasLeadingEmptyMacro())
9298     return false;
9299 
9300   // Get line numbers of statement and body.
9301   bool StmtLineInvalid;
9302   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
9303                                                       &StmtLineInvalid);
9304   if (StmtLineInvalid)
9305     return false;
9306 
9307   bool BodyLineInvalid;
9308   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
9309                                                       &BodyLineInvalid);
9310   if (BodyLineInvalid)
9311     return false;
9312 
9313   // Warn if null statement and body are on the same line.
9314   if (StmtLine != BodyLine)
9315     return false;
9316 
9317   return true;
9318 }
9319 } // Unnamed namespace
9320 
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)9321 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
9322                                  const Stmt *Body,
9323                                  unsigned DiagID) {
9324   // Since this is a syntactic check, don't emit diagnostic for template
9325   // instantiations, this just adds noise.
9326   if (CurrentInstantiationScope)
9327     return;
9328 
9329   // The body should be a null statement.
9330   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
9331   if (!NBody)
9332     return;
9333 
9334   // Do the usual checks.
9335   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
9336     return;
9337 
9338   Diag(NBody->getSemiLoc(), DiagID);
9339   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
9340 }
9341 
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)9342 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
9343                                  const Stmt *PossibleBody) {
9344   assert(!CurrentInstantiationScope); // Ensured by caller
9345 
9346   SourceLocation StmtLoc;
9347   const Stmt *Body;
9348   unsigned DiagID;
9349   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
9350     StmtLoc = FS->getRParenLoc();
9351     Body = FS->getBody();
9352     DiagID = diag::warn_empty_for_body;
9353   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
9354     StmtLoc = WS->getCond()->getSourceRange().getEnd();
9355     Body = WS->getBody();
9356     DiagID = diag::warn_empty_while_body;
9357   } else
9358     return; // Neither `for' nor `while'.
9359 
9360   // The body should be a null statement.
9361   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
9362   if (!NBody)
9363     return;
9364 
9365   // Skip expensive checks if diagnostic is disabled.
9366   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
9367     return;
9368 
9369   // Do the usual checks.
9370   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
9371     return;
9372 
9373   // `for(...);' and `while(...);' are popular idioms, so in order to keep
9374   // noise level low, emit diagnostics only if for/while is followed by a
9375   // CompoundStmt, e.g.:
9376   //    for (int i = 0; i < n; i++);
9377   //    {
9378   //      a(i);
9379   //    }
9380   // or if for/while is followed by a statement with more indentation
9381   // than for/while itself:
9382   //    for (int i = 0; i < n; i++);
9383   //      a(i);
9384   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
9385   if (!ProbableTypo) {
9386     bool BodyColInvalid;
9387     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
9388                              PossibleBody->getLocStart(),
9389                              &BodyColInvalid);
9390     if (BodyColInvalid)
9391       return;
9392 
9393     bool StmtColInvalid;
9394     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
9395                              S->getLocStart(),
9396                              &StmtColInvalid);
9397     if (StmtColInvalid)
9398       return;
9399 
9400     if (BodyCol > StmtCol)
9401       ProbableTypo = true;
9402   }
9403 
9404   if (ProbableTypo) {
9405     Diag(NBody->getSemiLoc(), DiagID);
9406     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
9407   }
9408 }
9409 
9410 //===--- CHECK: Warn on self move with std::move. -------------------------===//
9411 
9412 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)9413 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
9414                              SourceLocation OpLoc) {
9415 
9416   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
9417     return;
9418 
9419   if (!ActiveTemplateInstantiations.empty())
9420     return;
9421 
9422   // Strip parens and casts away.
9423   LHSExpr = LHSExpr->IgnoreParenImpCasts();
9424   RHSExpr = RHSExpr->IgnoreParenImpCasts();
9425 
9426   // Check for a call expression
9427   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
9428   if (!CE || CE->getNumArgs() != 1)
9429     return;
9430 
9431   // Check for a call to std::move
9432   const FunctionDecl *FD = CE->getDirectCallee();
9433   if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
9434       !FD->getIdentifier()->isStr("move"))
9435     return;
9436 
9437   // Get argument from std::move
9438   RHSExpr = CE->getArg(0);
9439 
9440   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
9441   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
9442 
9443   // Two DeclRefExpr's, check that the decls are the same.
9444   if (LHSDeclRef && RHSDeclRef) {
9445     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
9446       return;
9447     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
9448         RHSDeclRef->getDecl()->getCanonicalDecl())
9449       return;
9450 
9451     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
9452                                         << LHSExpr->getSourceRange()
9453                                         << RHSExpr->getSourceRange();
9454     return;
9455   }
9456 
9457   // Member variables require a different approach to check for self moves.
9458   // MemberExpr's are the same if every nested MemberExpr refers to the same
9459   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
9460   // the base Expr's are CXXThisExpr's.
9461   const Expr *LHSBase = LHSExpr;
9462   const Expr *RHSBase = RHSExpr;
9463   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
9464   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
9465   if (!LHSME || !RHSME)
9466     return;
9467 
9468   while (LHSME && RHSME) {
9469     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
9470         RHSME->getMemberDecl()->getCanonicalDecl())
9471       return;
9472 
9473     LHSBase = LHSME->getBase();
9474     RHSBase = RHSME->getBase();
9475     LHSME = dyn_cast<MemberExpr>(LHSBase);
9476     RHSME = dyn_cast<MemberExpr>(RHSBase);
9477   }
9478 
9479   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
9480   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
9481   if (LHSDeclRef && RHSDeclRef) {
9482     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
9483       return;
9484     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
9485         RHSDeclRef->getDecl()->getCanonicalDecl())
9486       return;
9487 
9488     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
9489                                         << LHSExpr->getSourceRange()
9490                                         << RHSExpr->getSourceRange();
9491     return;
9492   }
9493 
9494   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
9495     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
9496                                         << LHSExpr->getSourceRange()
9497                                         << RHSExpr->getSourceRange();
9498 }
9499 
9500 //===--- Layout compatibility ----------------------------------------------//
9501 
9502 namespace {
9503 
9504 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
9505 
9506 /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)9507 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
9508   // C++11 [dcl.enum] p8:
9509   // Two enumeration types are layout-compatible if they have the same
9510   // underlying type.
9511   return ED1->isComplete() && ED2->isComplete() &&
9512          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
9513 }
9514 
9515 /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)9516 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
9517   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
9518     return false;
9519 
9520   if (Field1->isBitField() != Field2->isBitField())
9521     return false;
9522 
9523   if (Field1->isBitField()) {
9524     // Make sure that the bit-fields are the same length.
9525     unsigned Bits1 = Field1->getBitWidthValue(C);
9526     unsigned Bits2 = Field2->getBitWidthValue(C);
9527 
9528     if (Bits1 != Bits2)
9529       return false;
9530   }
9531 
9532   return true;
9533 }
9534 
9535 /// \brief Check if two standard-layout structs are layout-compatible.
9536 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)9537 bool isLayoutCompatibleStruct(ASTContext &C,
9538                               RecordDecl *RD1,
9539                               RecordDecl *RD2) {
9540   // If both records are C++ classes, check that base classes match.
9541   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
9542     // If one of records is a CXXRecordDecl we are in C++ mode,
9543     // thus the other one is a CXXRecordDecl, too.
9544     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
9545     // Check number of base classes.
9546     if (D1CXX->getNumBases() != D2CXX->getNumBases())
9547       return false;
9548 
9549     // Check the base classes.
9550     for (CXXRecordDecl::base_class_const_iterator
9551                Base1 = D1CXX->bases_begin(),
9552            BaseEnd1 = D1CXX->bases_end(),
9553               Base2 = D2CXX->bases_begin();
9554          Base1 != BaseEnd1;
9555          ++Base1, ++Base2) {
9556       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
9557         return false;
9558     }
9559   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
9560     // If only RD2 is a C++ class, it should have zero base classes.
9561     if (D2CXX->getNumBases() > 0)
9562       return false;
9563   }
9564 
9565   // Check the fields.
9566   RecordDecl::field_iterator Field2 = RD2->field_begin(),
9567                              Field2End = RD2->field_end(),
9568                              Field1 = RD1->field_begin(),
9569                              Field1End = RD1->field_end();
9570   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
9571     if (!isLayoutCompatible(C, *Field1, *Field2))
9572       return false;
9573   }
9574   if (Field1 != Field1End || Field2 != Field2End)
9575     return false;
9576 
9577   return true;
9578 }
9579 
9580 /// \brief Check if two standard-layout unions are layout-compatible.
9581 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)9582 bool isLayoutCompatibleUnion(ASTContext &C,
9583                              RecordDecl *RD1,
9584                              RecordDecl *RD2) {
9585   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
9586   for (auto *Field2 : RD2->fields())
9587     UnmatchedFields.insert(Field2);
9588 
9589   for (auto *Field1 : RD1->fields()) {
9590     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
9591         I = UnmatchedFields.begin(),
9592         E = UnmatchedFields.end();
9593 
9594     for ( ; I != E; ++I) {
9595       if (isLayoutCompatible(C, Field1, *I)) {
9596         bool Result = UnmatchedFields.erase(*I);
9597         (void) Result;
9598         assert(Result);
9599         break;
9600       }
9601     }
9602     if (I == E)
9603       return false;
9604   }
9605 
9606   return UnmatchedFields.empty();
9607 }
9608 
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)9609 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
9610   if (RD1->isUnion() != RD2->isUnion())
9611     return false;
9612 
9613   if (RD1->isUnion())
9614     return isLayoutCompatibleUnion(C, RD1, RD2);
9615   else
9616     return isLayoutCompatibleStruct(C, RD1, RD2);
9617 }
9618 
9619 /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)9620 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
9621   if (T1.isNull() || T2.isNull())
9622     return false;
9623 
9624   // C++11 [basic.types] p11:
9625   // If two types T1 and T2 are the same type, then T1 and T2 are
9626   // layout-compatible types.
9627   if (C.hasSameType(T1, T2))
9628     return true;
9629 
9630   T1 = T1.getCanonicalType().getUnqualifiedType();
9631   T2 = T2.getCanonicalType().getUnqualifiedType();
9632 
9633   const Type::TypeClass TC1 = T1->getTypeClass();
9634   const Type::TypeClass TC2 = T2->getTypeClass();
9635 
9636   if (TC1 != TC2)
9637     return false;
9638 
9639   if (TC1 == Type::Enum) {
9640     return isLayoutCompatible(C,
9641                               cast<EnumType>(T1)->getDecl(),
9642                               cast<EnumType>(T2)->getDecl());
9643   } else if (TC1 == Type::Record) {
9644     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
9645       return false;
9646 
9647     return isLayoutCompatible(C,
9648                               cast<RecordType>(T1)->getDecl(),
9649                               cast<RecordType>(T2)->getDecl());
9650   }
9651 
9652   return false;
9653 }
9654 }
9655 
9656 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
9657 
9658 namespace {
9659 /// \brief Given a type tag expression find the type tag itself.
9660 ///
9661 /// \param TypeExpr Type tag expression, as it appears in user's code.
9662 ///
9663 /// \param VD Declaration of an identifier that appears in a type tag.
9664 ///
9665 /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)9666 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
9667                      const ValueDecl **VD, uint64_t *MagicValue) {
9668   while(true) {
9669     if (!TypeExpr)
9670       return false;
9671 
9672     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
9673 
9674     switch (TypeExpr->getStmtClass()) {
9675     case Stmt::UnaryOperatorClass: {
9676       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
9677       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
9678         TypeExpr = UO->getSubExpr();
9679         continue;
9680       }
9681       return false;
9682     }
9683 
9684     case Stmt::DeclRefExprClass: {
9685       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
9686       *VD = DRE->getDecl();
9687       return true;
9688     }
9689 
9690     case Stmt::IntegerLiteralClass: {
9691       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
9692       llvm::APInt MagicValueAPInt = IL->getValue();
9693       if (MagicValueAPInt.getActiveBits() <= 64) {
9694         *MagicValue = MagicValueAPInt.getZExtValue();
9695         return true;
9696       } else
9697         return false;
9698     }
9699 
9700     case Stmt::BinaryConditionalOperatorClass:
9701     case Stmt::ConditionalOperatorClass: {
9702       const AbstractConditionalOperator *ACO =
9703           cast<AbstractConditionalOperator>(TypeExpr);
9704       bool Result;
9705       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
9706         if (Result)
9707           TypeExpr = ACO->getTrueExpr();
9708         else
9709           TypeExpr = ACO->getFalseExpr();
9710         continue;
9711       }
9712       return false;
9713     }
9714 
9715     case Stmt::BinaryOperatorClass: {
9716       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
9717       if (BO->getOpcode() == BO_Comma) {
9718         TypeExpr = BO->getRHS();
9719         continue;
9720       }
9721       return false;
9722     }
9723 
9724     default:
9725       return false;
9726     }
9727   }
9728 }
9729 
9730 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
9731 ///
9732 /// \param TypeExpr Expression that specifies a type tag.
9733 ///
9734 /// \param MagicValues Registered magic values.
9735 ///
9736 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
9737 ///        kind.
9738 ///
9739 /// \param TypeInfo Information about the corresponding C type.
9740 ///
9741 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)9742 bool GetMatchingCType(
9743         const IdentifierInfo *ArgumentKind,
9744         const Expr *TypeExpr, const ASTContext &Ctx,
9745         const llvm::DenseMap<Sema::TypeTagMagicValue,
9746                              Sema::TypeTagData> *MagicValues,
9747         bool &FoundWrongKind,
9748         Sema::TypeTagData &TypeInfo) {
9749   FoundWrongKind = false;
9750 
9751   // Variable declaration that has type_tag_for_datatype attribute.
9752   const ValueDecl *VD = nullptr;
9753 
9754   uint64_t MagicValue;
9755 
9756   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
9757     return false;
9758 
9759   if (VD) {
9760     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
9761       if (I->getArgumentKind() != ArgumentKind) {
9762         FoundWrongKind = true;
9763         return false;
9764       }
9765       TypeInfo.Type = I->getMatchingCType();
9766       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
9767       TypeInfo.MustBeNull = I->getMustBeNull();
9768       return true;
9769     }
9770     return false;
9771   }
9772 
9773   if (!MagicValues)
9774     return false;
9775 
9776   llvm::DenseMap<Sema::TypeTagMagicValue,
9777                  Sema::TypeTagData>::const_iterator I =
9778       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
9779   if (I == MagicValues->end())
9780     return false;
9781 
9782   TypeInfo = I->second;
9783   return true;
9784 }
9785 } // unnamed namespace
9786 
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)9787 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
9788                                       uint64_t MagicValue, QualType Type,
9789                                       bool LayoutCompatible,
9790                                       bool MustBeNull) {
9791   if (!TypeTagForDatatypeMagicValues)
9792     TypeTagForDatatypeMagicValues.reset(
9793         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
9794 
9795   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
9796   (*TypeTagForDatatypeMagicValues)[Magic] =
9797       TypeTagData(Type, LayoutCompatible, MustBeNull);
9798 }
9799 
9800 namespace {
IsSameCharType(QualType T1,QualType T2)9801 bool IsSameCharType(QualType T1, QualType T2) {
9802   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
9803   if (!BT1)
9804     return false;
9805 
9806   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
9807   if (!BT2)
9808     return false;
9809 
9810   BuiltinType::Kind T1Kind = BT1->getKind();
9811   BuiltinType::Kind T2Kind = BT2->getKind();
9812 
9813   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
9814          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
9815          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
9816          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
9817 }
9818 } // unnamed namespace
9819 
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)9820 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
9821                                     const Expr * const *ExprArgs) {
9822   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
9823   bool IsPointerAttr = Attr->getIsPointer();
9824 
9825   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
9826   bool FoundWrongKind;
9827   TypeTagData TypeInfo;
9828   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
9829                         TypeTagForDatatypeMagicValues.get(),
9830                         FoundWrongKind, TypeInfo)) {
9831     if (FoundWrongKind)
9832       Diag(TypeTagExpr->getExprLoc(),
9833            diag::warn_type_tag_for_datatype_wrong_kind)
9834         << TypeTagExpr->getSourceRange();
9835     return;
9836   }
9837 
9838   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
9839   if (IsPointerAttr) {
9840     // Skip implicit cast of pointer to `void *' (as a function argument).
9841     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
9842       if (ICE->getType()->isVoidPointerType() &&
9843           ICE->getCastKind() == CK_BitCast)
9844         ArgumentExpr = ICE->getSubExpr();
9845   }
9846   QualType ArgumentType = ArgumentExpr->getType();
9847 
9848   // Passing a `void*' pointer shouldn't trigger a warning.
9849   if (IsPointerAttr && ArgumentType->isVoidPointerType())
9850     return;
9851 
9852   if (TypeInfo.MustBeNull) {
9853     // Type tag with matching void type requires a null pointer.
9854     if (!ArgumentExpr->isNullPointerConstant(Context,
9855                                              Expr::NPC_ValueDependentIsNotNull)) {
9856       Diag(ArgumentExpr->getExprLoc(),
9857            diag::warn_type_safety_null_pointer_required)
9858           << ArgumentKind->getName()
9859           << ArgumentExpr->getSourceRange()
9860           << TypeTagExpr->getSourceRange();
9861     }
9862     return;
9863   }
9864 
9865   QualType RequiredType = TypeInfo.Type;
9866   if (IsPointerAttr)
9867     RequiredType = Context.getPointerType(RequiredType);
9868 
9869   bool mismatch = false;
9870   if (!TypeInfo.LayoutCompatible) {
9871     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
9872 
9873     // C++11 [basic.fundamental] p1:
9874     // Plain char, signed char, and unsigned char are three distinct types.
9875     //
9876     // But we treat plain `char' as equivalent to `signed char' or `unsigned
9877     // char' depending on the current char signedness mode.
9878     if (mismatch)
9879       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
9880                                            RequiredType->getPointeeType())) ||
9881           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
9882         mismatch = false;
9883   } else
9884     if (IsPointerAttr)
9885       mismatch = !isLayoutCompatible(Context,
9886                                      ArgumentType->getPointeeType(),
9887                                      RequiredType->getPointeeType());
9888     else
9889       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
9890 
9891   if (mismatch)
9892     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
9893         << ArgumentType << ArgumentKind
9894         << TypeInfo.LayoutCompatible << RequiredType
9895         << ArgumentExpr->getSourceRange()
9896         << TypeTagExpr->getSourceRange();
9897 }
9898