1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45 }
46
47 enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_Other
53 };
54
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60 ASTContext &Context) {
61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62 return SIF_Other;
63
64 // See if this is a string literal or @encode.
65 Init = Init->IgnoreParens();
66
67 // Handle @encode, which is a narrow string.
68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69 return SIF_None;
70
71 // Otherwise we can only handle string literals.
72 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73 if (!SL)
74 return SIF_Other;
75
76 const QualType ElemTy =
77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79 switch (SL->getKind()) {
80 case StringLiteral::Ascii:
81 case StringLiteral::UTF8:
82 // char array can be initialized with a narrow string.
83 // Only allow char x[] = "foo"; not char x[] = L"foo";
84 if (ElemTy->isCharType())
85 return SIF_None;
86 if (IsWideCharCompatible(ElemTy, Context))
87 return SIF_NarrowStringIntoWideChar;
88 return SIF_Other;
89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90 // "An array with element type compatible with a qualified or unqualified
91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92 // string literal with the corresponding encoding prefix (L, u, or U,
93 // respectively), optionally enclosed in braces.
94 case StringLiteral::UTF16:
95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96 return SIF_None;
97 if (ElemTy->isCharType())
98 return SIF_WideStringIntoChar;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_IncompatWideStringIntoWideChar;
101 return SIF_Other;
102 case StringLiteral::UTF32:
103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104 return SIF_None;
105 if (ElemTy->isCharType())
106 return SIF_WideStringIntoChar;
107 if (IsWideCharCompatible(ElemTy, Context))
108 return SIF_IncompatWideStringIntoWideChar;
109 return SIF_Other;
110 case StringLiteral::Wide:
111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112 return SIF_None;
113 if (ElemTy->isCharType())
114 return SIF_WideStringIntoChar;
115 if (IsWideCharCompatible(ElemTy, Context))
116 return SIF_IncompatWideStringIntoWideChar;
117 return SIF_Other;
118 }
119
120 llvm_unreachable("missed a StringLiteral kind?");
121 }
122
IsStringInit(Expr * init,QualType declType,ASTContext & Context)123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124 ASTContext &Context) {
125 const ArrayType *arrayType = Context.getAsArrayType(declType);
126 if (!arrayType)
127 return SIF_Other;
128 return IsStringInit(init, arrayType, Context);
129 }
130
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134 while (true) {
135 E->setType(Ty);
136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137 break;
138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139 E = PE->getSubExpr();
140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141 E = UO->getSubExpr();
142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143 E = GSE->getResultExpr();
144 else
145 llvm_unreachable("unexpected expr in string literal init");
146 }
147 }
148
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150 Sema &S) {
151 // Get the length of the string as parsed.
152 auto *ConstantArrayTy =
153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157 // C99 6.7.8p14. We have an array of character type with unknown size
158 // being initialized to a string literal.
159 llvm::APInt ConstVal(32, StrLength);
160 // Return a new array type (C99 6.7.8p22).
161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162 ConstVal,
163 ArrayType::Normal, 0);
164 updateStringLiteralType(Str, DeclT);
165 return;
166 }
167
168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170 // We have an array of character type with known size. However,
171 // the size may be smaller or larger than the string we are initializing.
172 // FIXME: Avoid truncation for 64-bit length strings.
173 if (S.getLangOpts().CPlusPlus) {
174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175 // For Pascal strings it's OK to strip off the terminating null character,
176 // so the example below is valid:
177 //
178 // unsigned char a[2] = "\pa";
179 if (SL->isPascal())
180 StrLength--;
181 }
182
183 // [dcl.init.string]p2
184 if (StrLength > CAT->getSize().getZExtValue())
185 S.Diag(Str->getLocStart(),
186 diag::err_initializer_string_for_char_array_too_long)
187 << Str->getSourceRange();
188 } else {
189 // C99 6.7.8p14.
190 if (StrLength-1 > CAT->getSize().getZExtValue())
191 S.Diag(Str->getLocStart(),
192 diag::ext_initializer_string_for_char_array_too_long)
193 << Str->getSourceRange();
194 }
195
196 // Set the type to the actual size that we are initializing. If we have
197 // something like:
198 // char x[1] = "foo";
199 // then this will set the string literal's type to char[1].
200 updateStringLiteralType(Str, DeclT);
201 }
202
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236 Sema &SemaRef;
237 bool hadError;
238 bool VerifyOnly; // no diagnostics, no structure building
239 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240 InitListExpr *FullyStructuredList;
241
242 void CheckImplicitInitList(const InitializedEntity &Entity,
243 InitListExpr *ParentIList, QualType T,
244 unsigned &Index, InitListExpr *StructuredList,
245 unsigned &StructuredIndex);
246 void CheckExplicitInitList(const InitializedEntity &Entity,
247 InitListExpr *IList, QualType &T,
248 InitListExpr *StructuredList,
249 bool TopLevelObject = false);
250 void CheckListElementTypes(const InitializedEntity &Entity,
251 InitListExpr *IList, QualType &DeclType,
252 bool SubobjectIsDesignatorContext,
253 unsigned &Index,
254 InitListExpr *StructuredList,
255 unsigned &StructuredIndex,
256 bool TopLevelObject = false);
257 void CheckSubElementType(const InitializedEntity &Entity,
258 InitListExpr *IList, QualType ElemType,
259 unsigned &Index,
260 InitListExpr *StructuredList,
261 unsigned &StructuredIndex);
262 void CheckComplexType(const InitializedEntity &Entity,
263 InitListExpr *IList, QualType DeclType,
264 unsigned &Index,
265 InitListExpr *StructuredList,
266 unsigned &StructuredIndex);
267 void CheckScalarType(const InitializedEntity &Entity,
268 InitListExpr *IList, QualType DeclType,
269 unsigned &Index,
270 InitListExpr *StructuredList,
271 unsigned &StructuredIndex);
272 void CheckReferenceType(const InitializedEntity &Entity,
273 InitListExpr *IList, QualType DeclType,
274 unsigned &Index,
275 InitListExpr *StructuredList,
276 unsigned &StructuredIndex);
277 void CheckVectorType(const InitializedEntity &Entity,
278 InitListExpr *IList, QualType DeclType, unsigned &Index,
279 InitListExpr *StructuredList,
280 unsigned &StructuredIndex);
281 void CheckStructUnionTypes(const InitializedEntity &Entity,
282 InitListExpr *IList, QualType DeclType,
283 RecordDecl::field_iterator Field,
284 bool SubobjectIsDesignatorContext, unsigned &Index,
285 InitListExpr *StructuredList,
286 unsigned &StructuredIndex,
287 bool TopLevelObject = false);
288 void CheckArrayType(const InitializedEntity &Entity,
289 InitListExpr *IList, QualType &DeclType,
290 llvm::APSInt elementIndex,
291 bool SubobjectIsDesignatorContext, unsigned &Index,
292 InitListExpr *StructuredList,
293 unsigned &StructuredIndex);
294 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295 InitListExpr *IList, DesignatedInitExpr *DIE,
296 unsigned DesigIdx,
297 QualType &CurrentObjectType,
298 RecordDecl::field_iterator *NextField,
299 llvm::APSInt *NextElementIndex,
300 unsigned &Index,
301 InitListExpr *StructuredList,
302 unsigned &StructuredIndex,
303 bool FinishSubobjectInit,
304 bool TopLevelObject);
305 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306 QualType CurrentObjectType,
307 InitListExpr *StructuredList,
308 unsigned StructuredIndex,
309 SourceRange InitRange,
310 bool IsFullyOverwritten = false);
311 void UpdateStructuredListElement(InitListExpr *StructuredList,
312 unsigned &StructuredIndex,
313 Expr *expr);
314 int numArrayElements(QualType DeclType);
315 int numStructUnionElements(QualType DeclType);
316
317 static ExprResult PerformEmptyInit(Sema &SemaRef,
318 SourceLocation Loc,
319 const InitializedEntity &Entity,
320 bool VerifyOnly);
321
322 // Explanation on the "FillWithNoInit" mode:
323 //
324 // Assume we have the following definitions (Case#1):
325 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
326 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
327 //
328 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
329 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
330 //
331 // But if we have (Case#2):
332 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
333 //
334 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
335 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
336 //
337 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
338 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
339 // initializers but with special "NoInitExpr" place holders, which tells the
340 // CodeGen not to generate any initializers for these parts.
341 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
342 const InitializedEntity &ParentEntity,
343 InitListExpr *ILE, bool &RequiresSecondPass,
344 bool FillWithNoInit = false);
345 void FillInEmptyInitializations(const InitializedEntity &Entity,
346 InitListExpr *ILE, bool &RequiresSecondPass,
347 bool FillWithNoInit = false);
348 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
349 Expr *InitExpr, FieldDecl *Field,
350 bool TopLevelObject);
351 void CheckEmptyInitializable(const InitializedEntity &Entity,
352 SourceLocation Loc);
353
354 public:
355 InitListChecker(Sema &S, const InitializedEntity &Entity,
356 InitListExpr *IL, QualType &T, bool VerifyOnly);
HadError()357 bool HadError() { return hadError; }
358
359 // @brief Retrieves the fully-structured initializer list used for
360 // semantic analysis and code generation.
getFullyStructuredList() const361 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
362 };
363 } // end anonymous namespace
364
PerformEmptyInit(Sema & SemaRef,SourceLocation Loc,const InitializedEntity & Entity,bool VerifyOnly)365 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
366 SourceLocation Loc,
367 const InitializedEntity &Entity,
368 bool VerifyOnly) {
369 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
370 true);
371 MultiExprArg SubInit;
372 Expr *InitExpr;
373 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
374
375 // C++ [dcl.init.aggr]p7:
376 // If there are fewer initializer-clauses in the list than there are
377 // members in the aggregate, then each member not explicitly initialized
378 // ...
379 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
380 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
381 if (EmptyInitList) {
382 // C++1y / DR1070:
383 // shall be initialized [...] from an empty initializer list.
384 //
385 // We apply the resolution of this DR to C++11 but not C++98, since C++98
386 // does not have useful semantics for initialization from an init list.
387 // We treat this as copy-initialization, because aggregate initialization
388 // always performs copy-initialization on its elements.
389 //
390 // Only do this if we're initializing a class type, to avoid filling in
391 // the initializer list where possible.
392 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
393 InitListExpr(SemaRef.Context, Loc, None, Loc);
394 InitExpr->setType(SemaRef.Context.VoidTy);
395 SubInit = InitExpr;
396 Kind = InitializationKind::CreateCopy(Loc, Loc);
397 } else {
398 // C++03:
399 // shall be value-initialized.
400 }
401
402 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
403 // libstdc++4.6 marks the vector default constructor as explicit in
404 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
405 // stlport does so too. Look for std::__debug for libstdc++, and for
406 // std:: for stlport. This is effectively a compiler-side implementation of
407 // LWG2193.
408 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
409 InitializationSequence::FK_ExplicitConstructor) {
410 OverloadCandidateSet::iterator Best;
411 OverloadingResult O =
412 InitSeq.getFailedCandidateSet()
413 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
414 (void)O;
415 assert(O == OR_Success && "Inconsistent overload resolution");
416 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
417 CXXRecordDecl *R = CtorDecl->getParent();
418
419 if (CtorDecl->getMinRequiredArguments() == 0 &&
420 CtorDecl->isExplicit() && R->getDeclName() &&
421 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
422
423
424 bool IsInStd = false;
425 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
426 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
427 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
428 IsInStd = true;
429 }
430
431 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
432 .Cases("basic_string", "deque", "forward_list", true)
433 .Cases("list", "map", "multimap", "multiset", true)
434 .Cases("priority_queue", "queue", "set", "stack", true)
435 .Cases("unordered_map", "unordered_set", "vector", true)
436 .Default(false)) {
437 InitSeq.InitializeFrom(
438 SemaRef, Entity,
439 InitializationKind::CreateValue(Loc, Loc, Loc, true),
440 MultiExprArg(), /*TopLevelOfInitList=*/false);
441 // Emit a warning for this. System header warnings aren't shown
442 // by default, but people working on system headers should see it.
443 if (!VerifyOnly) {
444 SemaRef.Diag(CtorDecl->getLocation(),
445 diag::warn_invalid_initializer_from_system_header);
446 if (Entity.getKind() == InitializedEntity::EK_Member)
447 SemaRef.Diag(Entity.getDecl()->getLocation(),
448 diag::note_used_in_initialization_here);
449 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
450 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
451 }
452 }
453 }
454 }
455 if (!InitSeq) {
456 if (!VerifyOnly) {
457 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
458 if (Entity.getKind() == InitializedEntity::EK_Member)
459 SemaRef.Diag(Entity.getDecl()->getLocation(),
460 diag::note_in_omitted_aggregate_initializer)
461 << /*field*/1 << Entity.getDecl();
462 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
463 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
464 << /*array element*/0 << Entity.getElementIndex();
465 }
466 return ExprError();
467 }
468
469 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
470 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
471 }
472
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)473 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
474 SourceLocation Loc) {
475 assert(VerifyOnly &&
476 "CheckEmptyInitializable is only inteded for verification mode.");
477 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
478 hadError = true;
479 }
480
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)481 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
482 const InitializedEntity &ParentEntity,
483 InitListExpr *ILE,
484 bool &RequiresSecondPass,
485 bool FillWithNoInit) {
486 SourceLocation Loc = ILE->getLocEnd();
487 unsigned NumInits = ILE->getNumInits();
488 InitializedEntity MemberEntity
489 = InitializedEntity::InitializeMember(Field, &ParentEntity);
490
491 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
492 if (!RType->getDecl()->isUnion())
493 assert(Init < NumInits && "This ILE should have been expanded");
494
495 if (Init >= NumInits || !ILE->getInit(Init)) {
496 if (FillWithNoInit) {
497 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
498 if (Init < NumInits)
499 ILE->setInit(Init, Filler);
500 else
501 ILE->updateInit(SemaRef.Context, Init, Filler);
502 return;
503 }
504 // C++1y [dcl.init.aggr]p7:
505 // If there are fewer initializer-clauses in the list than there are
506 // members in the aggregate, then each member not explicitly initialized
507 // shall be initialized from its brace-or-equal-initializer [...]
508 if (Field->hasInClassInitializer()) {
509 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
510 if (DIE.isInvalid()) {
511 hadError = true;
512 return;
513 }
514 if (Init < NumInits)
515 ILE->setInit(Init, DIE.get());
516 else {
517 ILE->updateInit(SemaRef.Context, Init, DIE.get());
518 RequiresSecondPass = true;
519 }
520 return;
521 }
522
523 if (Field->getType()->isReferenceType()) {
524 // C++ [dcl.init.aggr]p9:
525 // If an incomplete or empty initializer-list leaves a
526 // member of reference type uninitialized, the program is
527 // ill-formed.
528 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
529 << Field->getType()
530 << ILE->getSyntacticForm()->getSourceRange();
531 SemaRef.Diag(Field->getLocation(),
532 diag::note_uninit_reference_member);
533 hadError = true;
534 return;
535 }
536
537 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
538 /*VerifyOnly*/false);
539 if (MemberInit.isInvalid()) {
540 hadError = true;
541 return;
542 }
543
544 if (hadError) {
545 // Do nothing
546 } else if (Init < NumInits) {
547 ILE->setInit(Init, MemberInit.getAs<Expr>());
548 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
549 // Empty initialization requires a constructor call, so
550 // extend the initializer list to include the constructor
551 // call and make a note that we'll need to take another pass
552 // through the initializer list.
553 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
554 RequiresSecondPass = true;
555 }
556 } else if (InitListExpr *InnerILE
557 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
558 FillInEmptyInitializations(MemberEntity, InnerILE,
559 RequiresSecondPass, FillWithNoInit);
560 else if (DesignatedInitUpdateExpr *InnerDIUE
561 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
562 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
563 RequiresSecondPass, /*FillWithNoInit =*/ true);
564 }
565
566 /// Recursively replaces NULL values within the given initializer list
567 /// with expressions that perform value-initialization of the
568 /// appropriate type.
569 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)570 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
571 InitListExpr *ILE,
572 bool &RequiresSecondPass,
573 bool FillWithNoInit) {
574 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
575 "Should not have void type");
576
577 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
578 const RecordDecl *RDecl = RType->getDecl();
579 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
580 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
581 Entity, ILE, RequiresSecondPass, FillWithNoInit);
582 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
583 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
584 for (auto *Field : RDecl->fields()) {
585 if (Field->hasInClassInitializer()) {
586 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
587 FillWithNoInit);
588 break;
589 }
590 }
591 } else {
592 // The fields beyond ILE->getNumInits() are default initialized, so in
593 // order to leave them uninitialized, the ILE is expanded and the extra
594 // fields are then filled with NoInitExpr.
595 unsigned NumFields = 0;
596 for (auto *Field : RDecl->fields())
597 if (!Field->isUnnamedBitfield())
598 ++NumFields;
599 if (ILE->getNumInits() < NumFields)
600 ILE->resizeInits(SemaRef.Context, NumFields);
601
602 unsigned Init = 0;
603 for (auto *Field : RDecl->fields()) {
604 if (Field->isUnnamedBitfield())
605 continue;
606
607 if (hadError)
608 return;
609
610 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
611 FillWithNoInit);
612 if (hadError)
613 return;
614
615 ++Init;
616
617 // Only look at the first initialization of a union.
618 if (RDecl->isUnion())
619 break;
620 }
621 }
622
623 return;
624 }
625
626 QualType ElementType;
627
628 InitializedEntity ElementEntity = Entity;
629 unsigned NumInits = ILE->getNumInits();
630 unsigned NumElements = NumInits;
631 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
632 ElementType = AType->getElementType();
633 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
634 NumElements = CAType->getSize().getZExtValue();
635 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
636 0, Entity);
637 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
638 ElementType = VType->getElementType();
639 NumElements = VType->getNumElements();
640 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
641 0, Entity);
642 } else
643 ElementType = ILE->getType();
644
645 for (unsigned Init = 0; Init != NumElements; ++Init) {
646 if (hadError)
647 return;
648
649 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
650 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
651 ElementEntity.setElementIndex(Init);
652
653 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
654 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
655 ILE->setInit(Init, ILE->getArrayFiller());
656 else if (!InitExpr && !ILE->hasArrayFiller()) {
657 Expr *Filler = nullptr;
658
659 if (FillWithNoInit)
660 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
661 else {
662 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
663 ElementEntity,
664 /*VerifyOnly*/false);
665 if (ElementInit.isInvalid()) {
666 hadError = true;
667 return;
668 }
669
670 Filler = ElementInit.getAs<Expr>();
671 }
672
673 if (hadError) {
674 // Do nothing
675 } else if (Init < NumInits) {
676 // For arrays, just set the expression used for value-initialization
677 // of the "holes" in the array.
678 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
679 ILE->setArrayFiller(Filler);
680 else
681 ILE->setInit(Init, Filler);
682 } else {
683 // For arrays, just set the expression used for value-initialization
684 // of the rest of elements and exit.
685 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
686 ILE->setArrayFiller(Filler);
687 return;
688 }
689
690 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
691 // Empty initialization requires a constructor call, so
692 // extend the initializer list to include the constructor
693 // call and make a note that we'll need to take another pass
694 // through the initializer list.
695 ILE->updateInit(SemaRef.Context, Init, Filler);
696 RequiresSecondPass = true;
697 }
698 }
699 } else if (InitListExpr *InnerILE
700 = dyn_cast_or_null<InitListExpr>(InitExpr))
701 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
702 FillWithNoInit);
703 else if (DesignatedInitUpdateExpr *InnerDIUE
704 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
705 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
706 RequiresSecondPass, /*FillWithNoInit =*/ true);
707 }
708 }
709
710
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly)711 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
712 InitListExpr *IL, QualType &T,
713 bool VerifyOnly)
714 : SemaRef(S), VerifyOnly(VerifyOnly) {
715 // FIXME: Check that IL isn't already the semantic form of some other
716 // InitListExpr. If it is, we'd create a broken AST.
717
718 hadError = false;
719
720 FullyStructuredList =
721 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
722 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
723 /*TopLevelObject=*/true);
724
725 if (!hadError && !VerifyOnly) {
726 bool RequiresSecondPass = false;
727 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
728 if (RequiresSecondPass && !hadError)
729 FillInEmptyInitializations(Entity, FullyStructuredList,
730 RequiresSecondPass);
731 }
732 }
733
numArrayElements(QualType DeclType)734 int InitListChecker::numArrayElements(QualType DeclType) {
735 // FIXME: use a proper constant
736 int maxElements = 0x7FFFFFFF;
737 if (const ConstantArrayType *CAT =
738 SemaRef.Context.getAsConstantArrayType(DeclType)) {
739 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
740 }
741 return maxElements;
742 }
743
numStructUnionElements(QualType DeclType)744 int InitListChecker::numStructUnionElements(QualType DeclType) {
745 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
746 int InitializableMembers = 0;
747 for (const auto *Field : structDecl->fields())
748 if (!Field->isUnnamedBitfield())
749 ++InitializableMembers;
750
751 if (structDecl->isUnion())
752 return std::min(InitializableMembers, 1);
753 return InitializableMembers - structDecl->hasFlexibleArrayMember();
754 }
755
756 /// Check whether the range of the initializer \p ParentIList from element
757 /// \p Index onwards can be used to initialize an object of type \p T. Update
758 /// \p Index to indicate how many elements of the list were consumed.
759 ///
760 /// This also fills in \p StructuredList, from element \p StructuredIndex
761 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)762 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
763 InitListExpr *ParentIList,
764 QualType T, unsigned &Index,
765 InitListExpr *StructuredList,
766 unsigned &StructuredIndex) {
767 int maxElements = 0;
768
769 if (T->isArrayType())
770 maxElements = numArrayElements(T);
771 else if (T->isRecordType())
772 maxElements = numStructUnionElements(T);
773 else if (T->isVectorType())
774 maxElements = T->getAs<VectorType>()->getNumElements();
775 else
776 llvm_unreachable("CheckImplicitInitList(): Illegal type");
777
778 if (maxElements == 0) {
779 if (!VerifyOnly)
780 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
781 diag::err_implicit_empty_initializer);
782 ++Index;
783 hadError = true;
784 return;
785 }
786
787 // Build a structured initializer list corresponding to this subobject.
788 InitListExpr *StructuredSubobjectInitList
789 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
790 StructuredIndex,
791 SourceRange(ParentIList->getInit(Index)->getLocStart(),
792 ParentIList->getSourceRange().getEnd()));
793 unsigned StructuredSubobjectInitIndex = 0;
794
795 // Check the element types and build the structural subobject.
796 unsigned StartIndex = Index;
797 CheckListElementTypes(Entity, ParentIList, T,
798 /*SubobjectIsDesignatorContext=*/false, Index,
799 StructuredSubobjectInitList,
800 StructuredSubobjectInitIndex);
801
802 if (!VerifyOnly) {
803 StructuredSubobjectInitList->setType(T);
804
805 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
806 // Update the structured sub-object initializer so that it's ending
807 // range corresponds with the end of the last initializer it used.
808 if (EndIndex < ParentIList->getNumInits() &&
809 ParentIList->getInit(EndIndex)) {
810 SourceLocation EndLoc
811 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
812 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
813 }
814
815 // Complain about missing braces.
816 if (T->isArrayType() || T->isRecordType()) {
817 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
818 diag::warn_missing_braces)
819 << StructuredSubobjectInitList->getSourceRange()
820 << FixItHint::CreateInsertion(
821 StructuredSubobjectInitList->getLocStart(), "{")
822 << FixItHint::CreateInsertion(
823 SemaRef.getLocForEndOfToken(
824 StructuredSubobjectInitList->getLocEnd()),
825 "}");
826 }
827 }
828 }
829
830 /// Warn that \p Entity was of scalar type and was initialized by a
831 /// single-element braced initializer list.
warnBracedScalarInit(Sema & S,const InitializedEntity & Entity,SourceRange Braces)832 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
833 SourceRange Braces) {
834 // Don't warn during template instantiation. If the initialization was
835 // non-dependent, we warned during the initial parse; otherwise, the
836 // type might not be scalar in some uses of the template.
837 if (!S.ActiveTemplateInstantiations.empty())
838 return;
839
840 unsigned DiagID = 0;
841
842 switch (Entity.getKind()) {
843 case InitializedEntity::EK_VectorElement:
844 case InitializedEntity::EK_ComplexElement:
845 case InitializedEntity::EK_ArrayElement:
846 case InitializedEntity::EK_Parameter:
847 case InitializedEntity::EK_Parameter_CF_Audited:
848 case InitializedEntity::EK_Result:
849 // Extra braces here are suspicious.
850 DiagID = diag::warn_braces_around_scalar_init;
851 break;
852
853 case InitializedEntity::EK_Member:
854 // Warn on aggregate initialization but not on ctor init list or
855 // default member initializer.
856 if (Entity.getParent())
857 DiagID = diag::warn_braces_around_scalar_init;
858 break;
859
860 case InitializedEntity::EK_Variable:
861 case InitializedEntity::EK_LambdaCapture:
862 // No warning, might be direct-list-initialization.
863 // FIXME: Should we warn for copy-list-initialization in these cases?
864 break;
865
866 case InitializedEntity::EK_New:
867 case InitializedEntity::EK_Temporary:
868 case InitializedEntity::EK_CompoundLiteralInit:
869 // No warning, braces are part of the syntax of the underlying construct.
870 break;
871
872 case InitializedEntity::EK_RelatedResult:
873 // No warning, we already warned when initializing the result.
874 break;
875
876 case InitializedEntity::EK_Exception:
877 case InitializedEntity::EK_Base:
878 case InitializedEntity::EK_Delegating:
879 case InitializedEntity::EK_BlockElement:
880 llvm_unreachable("unexpected braced scalar init");
881 }
882
883 if (DiagID) {
884 S.Diag(Braces.getBegin(), DiagID)
885 << Braces
886 << FixItHint::CreateRemoval(Braces.getBegin())
887 << FixItHint::CreateRemoval(Braces.getEnd());
888 }
889 }
890
891
892 /// Check whether the initializer \p IList (that was written with explicit
893 /// braces) can be used to initialize an object of type \p T.
894 ///
895 /// This also fills in \p StructuredList with the fully-braced, desugared
896 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)897 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
898 InitListExpr *IList, QualType &T,
899 InitListExpr *StructuredList,
900 bool TopLevelObject) {
901 if (!VerifyOnly) {
902 SyntacticToSemantic[IList] = StructuredList;
903 StructuredList->setSyntacticForm(IList);
904 }
905
906 unsigned Index = 0, StructuredIndex = 0;
907 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
908 Index, StructuredList, StructuredIndex, TopLevelObject);
909 if (!VerifyOnly) {
910 QualType ExprTy = T;
911 if (!ExprTy->isArrayType())
912 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
913 IList->setType(ExprTy);
914 StructuredList->setType(ExprTy);
915 }
916 if (hadError)
917 return;
918
919 if (Index < IList->getNumInits()) {
920 // We have leftover initializers
921 if (VerifyOnly) {
922 if (SemaRef.getLangOpts().CPlusPlus ||
923 (SemaRef.getLangOpts().OpenCL &&
924 IList->getType()->isVectorType())) {
925 hadError = true;
926 }
927 return;
928 }
929
930 if (StructuredIndex == 1 &&
931 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
932 SIF_None) {
933 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
934 if (SemaRef.getLangOpts().CPlusPlus) {
935 DK = diag::err_excess_initializers_in_char_array_initializer;
936 hadError = true;
937 }
938 // Special-case
939 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
940 << IList->getInit(Index)->getSourceRange();
941 } else if (!T->isIncompleteType()) {
942 // Don't complain for incomplete types, since we'll get an error
943 // elsewhere
944 QualType CurrentObjectType = StructuredList->getType();
945 int initKind =
946 CurrentObjectType->isArrayType()? 0 :
947 CurrentObjectType->isVectorType()? 1 :
948 CurrentObjectType->isScalarType()? 2 :
949 CurrentObjectType->isUnionType()? 3 :
950 4;
951
952 unsigned DK = diag::ext_excess_initializers;
953 if (SemaRef.getLangOpts().CPlusPlus) {
954 DK = diag::err_excess_initializers;
955 hadError = true;
956 }
957 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
958 DK = diag::err_excess_initializers;
959 hadError = true;
960 }
961
962 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
963 << initKind << IList->getInit(Index)->getSourceRange();
964 }
965 }
966
967 if (!VerifyOnly && T->isScalarType() &&
968 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
969 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
970 }
971
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)972 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
973 InitListExpr *IList,
974 QualType &DeclType,
975 bool SubobjectIsDesignatorContext,
976 unsigned &Index,
977 InitListExpr *StructuredList,
978 unsigned &StructuredIndex,
979 bool TopLevelObject) {
980 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
981 // Explicitly braced initializer for complex type can be real+imaginary
982 // parts.
983 CheckComplexType(Entity, IList, DeclType, Index,
984 StructuredList, StructuredIndex);
985 } else if (DeclType->isScalarType()) {
986 CheckScalarType(Entity, IList, DeclType, Index,
987 StructuredList, StructuredIndex);
988 } else if (DeclType->isVectorType()) {
989 CheckVectorType(Entity, IList, DeclType, Index,
990 StructuredList, StructuredIndex);
991 } else if (DeclType->isRecordType()) {
992 assert(DeclType->isAggregateType() &&
993 "non-aggregate records should be handed in CheckSubElementType");
994 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
995 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
996 SubobjectIsDesignatorContext, Index,
997 StructuredList, StructuredIndex,
998 TopLevelObject);
999 } else if (DeclType->isArrayType()) {
1000 llvm::APSInt Zero(
1001 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1002 false);
1003 CheckArrayType(Entity, IList, DeclType, Zero,
1004 SubobjectIsDesignatorContext, Index,
1005 StructuredList, StructuredIndex);
1006 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1007 // This type is invalid, issue a diagnostic.
1008 ++Index;
1009 if (!VerifyOnly)
1010 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1011 << DeclType;
1012 hadError = true;
1013 } else if (DeclType->isReferenceType()) {
1014 CheckReferenceType(Entity, IList, DeclType, Index,
1015 StructuredList, StructuredIndex);
1016 } else if (DeclType->isObjCObjectType()) {
1017 if (!VerifyOnly)
1018 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1019 << DeclType;
1020 hadError = true;
1021 } else {
1022 if (!VerifyOnly)
1023 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1024 << DeclType;
1025 hadError = true;
1026 }
1027 }
1028
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1029 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1030 InitListExpr *IList,
1031 QualType ElemType,
1032 unsigned &Index,
1033 InitListExpr *StructuredList,
1034 unsigned &StructuredIndex) {
1035 Expr *expr = IList->getInit(Index);
1036
1037 if (ElemType->isReferenceType())
1038 return CheckReferenceType(Entity, IList, ElemType, Index,
1039 StructuredList, StructuredIndex);
1040
1041 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1042 if (SubInitList->getNumInits() == 1 &&
1043 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1044 SIF_None) {
1045 expr = SubInitList->getInit(0);
1046 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1047 InitListExpr *InnerStructuredList
1048 = getStructuredSubobjectInit(IList, Index, ElemType,
1049 StructuredList, StructuredIndex,
1050 SubInitList->getSourceRange(), true);
1051 CheckExplicitInitList(Entity, SubInitList, ElemType,
1052 InnerStructuredList);
1053
1054 if (!hadError && !VerifyOnly) {
1055 bool RequiresSecondPass = false;
1056 FillInEmptyInitializations(Entity, InnerStructuredList,
1057 RequiresSecondPass);
1058 if (RequiresSecondPass && !hadError)
1059 FillInEmptyInitializations(Entity, InnerStructuredList,
1060 RequiresSecondPass);
1061 }
1062 ++StructuredIndex;
1063 ++Index;
1064 return;
1065 }
1066 // C++ initialization is handled later.
1067 } else if (isa<ImplicitValueInitExpr>(expr)) {
1068 // This happens during template instantiation when we see an InitListExpr
1069 // that we've already checked once.
1070 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1071 "found implicit initialization for the wrong type");
1072 if (!VerifyOnly)
1073 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1074 ++Index;
1075 return;
1076 }
1077
1078 if (SemaRef.getLangOpts().CPlusPlus) {
1079 // C++ [dcl.init.aggr]p2:
1080 // Each member is copy-initialized from the corresponding
1081 // initializer-clause.
1082
1083 // FIXME: Better EqualLoc?
1084 InitializationKind Kind =
1085 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1086 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1087 /*TopLevelOfInitList*/ true);
1088
1089 // C++14 [dcl.init.aggr]p13:
1090 // If the assignment-expression can initialize a member, the member is
1091 // initialized. Otherwise [...] brace elision is assumed
1092 //
1093 // Brace elision is never performed if the element is not an
1094 // assignment-expression.
1095 if (Seq || isa<InitListExpr>(expr)) {
1096 if (!VerifyOnly) {
1097 ExprResult Result =
1098 Seq.Perform(SemaRef, Entity, Kind, expr);
1099 if (Result.isInvalid())
1100 hadError = true;
1101
1102 UpdateStructuredListElement(StructuredList, StructuredIndex,
1103 Result.getAs<Expr>());
1104 } else if (!Seq)
1105 hadError = true;
1106 ++Index;
1107 return;
1108 }
1109
1110 // Fall through for subaggregate initialization
1111 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1112 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1113 return CheckScalarType(Entity, IList, ElemType, Index,
1114 StructuredList, StructuredIndex);
1115 } else if (const ArrayType *arrayType =
1116 SemaRef.Context.getAsArrayType(ElemType)) {
1117 // arrayType can be incomplete if we're initializing a flexible
1118 // array member. There's nothing we can do with the completed
1119 // type here, though.
1120
1121 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1122 if (!VerifyOnly) {
1123 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1124 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1125 }
1126 ++Index;
1127 return;
1128 }
1129
1130 // Fall through for subaggregate initialization.
1131
1132 } else {
1133 assert((ElemType->isRecordType() || ElemType->isVectorType()) &&
1134 "Unexpected type");
1135
1136 // C99 6.7.8p13:
1137 //
1138 // The initializer for a structure or union object that has
1139 // automatic storage duration shall be either an initializer
1140 // list as described below, or a single expression that has
1141 // compatible structure or union type. In the latter case, the
1142 // initial value of the object, including unnamed members, is
1143 // that of the expression.
1144 ExprResult ExprRes = expr;
1145 if (SemaRef.CheckSingleAssignmentConstraints(
1146 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1147 if (ExprRes.isInvalid())
1148 hadError = true;
1149 else {
1150 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1151 if (ExprRes.isInvalid())
1152 hadError = true;
1153 }
1154 UpdateStructuredListElement(StructuredList, StructuredIndex,
1155 ExprRes.getAs<Expr>());
1156 ++Index;
1157 return;
1158 }
1159 ExprRes.get();
1160 // Fall through for subaggregate initialization
1161 }
1162
1163 // C++ [dcl.init.aggr]p12:
1164 //
1165 // [...] Otherwise, if the member is itself a non-empty
1166 // subaggregate, brace elision is assumed and the initializer is
1167 // considered for the initialization of the first member of
1168 // the subaggregate.
1169 if (!SemaRef.getLangOpts().OpenCL &&
1170 (ElemType->isAggregateType() || ElemType->isVectorType())) {
1171 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1172 StructuredIndex);
1173 ++StructuredIndex;
1174 } else {
1175 if (!VerifyOnly) {
1176 // We cannot initialize this element, so let
1177 // PerformCopyInitialization produce the appropriate diagnostic.
1178 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1179 /*TopLevelOfInitList=*/true);
1180 }
1181 hadError = true;
1182 ++Index;
1183 ++StructuredIndex;
1184 }
1185 }
1186
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1187 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1188 InitListExpr *IList, QualType DeclType,
1189 unsigned &Index,
1190 InitListExpr *StructuredList,
1191 unsigned &StructuredIndex) {
1192 assert(Index == 0 && "Index in explicit init list must be zero");
1193
1194 // As an extension, clang supports complex initializers, which initialize
1195 // a complex number component-wise. When an explicit initializer list for
1196 // a complex number contains two two initializers, this extension kicks in:
1197 // it exepcts the initializer list to contain two elements convertible to
1198 // the element type of the complex type. The first element initializes
1199 // the real part, and the second element intitializes the imaginary part.
1200
1201 if (IList->getNumInits() != 2)
1202 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1203 StructuredIndex);
1204
1205 // This is an extension in C. (The builtin _Complex type does not exist
1206 // in the C++ standard.)
1207 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1208 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1209 << IList->getSourceRange();
1210
1211 // Initialize the complex number.
1212 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1213 InitializedEntity ElementEntity =
1214 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1215
1216 for (unsigned i = 0; i < 2; ++i) {
1217 ElementEntity.setElementIndex(Index);
1218 CheckSubElementType(ElementEntity, IList, elementType, Index,
1219 StructuredList, StructuredIndex);
1220 }
1221 }
1222
1223
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1224 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1225 InitListExpr *IList, QualType DeclType,
1226 unsigned &Index,
1227 InitListExpr *StructuredList,
1228 unsigned &StructuredIndex) {
1229 if (Index >= IList->getNumInits()) {
1230 if (!VerifyOnly)
1231 SemaRef.Diag(IList->getLocStart(),
1232 SemaRef.getLangOpts().CPlusPlus11 ?
1233 diag::warn_cxx98_compat_empty_scalar_initializer :
1234 diag::err_empty_scalar_initializer)
1235 << IList->getSourceRange();
1236 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1237 ++Index;
1238 ++StructuredIndex;
1239 return;
1240 }
1241
1242 Expr *expr = IList->getInit(Index);
1243 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1244 // FIXME: This is invalid, and accepting it causes overload resolution
1245 // to pick the wrong overload in some corner cases.
1246 if (!VerifyOnly)
1247 SemaRef.Diag(SubIList->getLocStart(),
1248 diag::ext_many_braces_around_scalar_init)
1249 << SubIList->getSourceRange();
1250
1251 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1252 StructuredIndex);
1253 return;
1254 } else if (isa<DesignatedInitExpr>(expr)) {
1255 if (!VerifyOnly)
1256 SemaRef.Diag(expr->getLocStart(),
1257 diag::err_designator_for_scalar_init)
1258 << DeclType << expr->getSourceRange();
1259 hadError = true;
1260 ++Index;
1261 ++StructuredIndex;
1262 return;
1263 }
1264
1265 if (VerifyOnly) {
1266 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1267 hadError = true;
1268 ++Index;
1269 return;
1270 }
1271
1272 ExprResult Result =
1273 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1274 /*TopLevelOfInitList=*/true);
1275
1276 Expr *ResultExpr = nullptr;
1277
1278 if (Result.isInvalid())
1279 hadError = true; // types weren't compatible.
1280 else {
1281 ResultExpr = Result.getAs<Expr>();
1282
1283 if (ResultExpr != expr) {
1284 // The type was promoted, update initializer list.
1285 IList->setInit(Index, ResultExpr);
1286 }
1287 }
1288 if (hadError)
1289 ++StructuredIndex;
1290 else
1291 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1292 ++Index;
1293 }
1294
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1295 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1296 InitListExpr *IList, QualType DeclType,
1297 unsigned &Index,
1298 InitListExpr *StructuredList,
1299 unsigned &StructuredIndex) {
1300 if (Index >= IList->getNumInits()) {
1301 // FIXME: It would be wonderful if we could point at the actual member. In
1302 // general, it would be useful to pass location information down the stack,
1303 // so that we know the location (or decl) of the "current object" being
1304 // initialized.
1305 if (!VerifyOnly)
1306 SemaRef.Diag(IList->getLocStart(),
1307 diag::err_init_reference_member_uninitialized)
1308 << DeclType
1309 << IList->getSourceRange();
1310 hadError = true;
1311 ++Index;
1312 ++StructuredIndex;
1313 return;
1314 }
1315
1316 Expr *expr = IList->getInit(Index);
1317 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1318 if (!VerifyOnly)
1319 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1320 << DeclType << IList->getSourceRange();
1321 hadError = true;
1322 ++Index;
1323 ++StructuredIndex;
1324 return;
1325 }
1326
1327 if (VerifyOnly) {
1328 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1329 hadError = true;
1330 ++Index;
1331 return;
1332 }
1333
1334 ExprResult Result =
1335 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1336 /*TopLevelOfInitList=*/true);
1337
1338 if (Result.isInvalid())
1339 hadError = true;
1340
1341 expr = Result.getAs<Expr>();
1342 IList->setInit(Index, expr);
1343
1344 if (hadError)
1345 ++StructuredIndex;
1346 else
1347 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1348 ++Index;
1349 }
1350
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1351 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1352 InitListExpr *IList, QualType DeclType,
1353 unsigned &Index,
1354 InitListExpr *StructuredList,
1355 unsigned &StructuredIndex) {
1356 const VectorType *VT = DeclType->getAs<VectorType>();
1357 unsigned maxElements = VT->getNumElements();
1358 unsigned numEltsInit = 0;
1359 QualType elementType = VT->getElementType();
1360
1361 if (Index >= IList->getNumInits()) {
1362 // Make sure the element type can be value-initialized.
1363 if (VerifyOnly)
1364 CheckEmptyInitializable(
1365 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1366 IList->getLocEnd());
1367 return;
1368 }
1369
1370 if (!SemaRef.getLangOpts().OpenCL) {
1371 // If the initializing element is a vector, try to copy-initialize
1372 // instead of breaking it apart (which is doomed to failure anyway).
1373 Expr *Init = IList->getInit(Index);
1374 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1375 if (VerifyOnly) {
1376 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1377 hadError = true;
1378 ++Index;
1379 return;
1380 }
1381
1382 ExprResult Result =
1383 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1384 /*TopLevelOfInitList=*/true);
1385
1386 Expr *ResultExpr = nullptr;
1387 if (Result.isInvalid())
1388 hadError = true; // types weren't compatible.
1389 else {
1390 ResultExpr = Result.getAs<Expr>();
1391
1392 if (ResultExpr != Init) {
1393 // The type was promoted, update initializer list.
1394 IList->setInit(Index, ResultExpr);
1395 }
1396 }
1397 if (hadError)
1398 ++StructuredIndex;
1399 else
1400 UpdateStructuredListElement(StructuredList, StructuredIndex,
1401 ResultExpr);
1402 ++Index;
1403 return;
1404 }
1405
1406 InitializedEntity ElementEntity =
1407 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1408
1409 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1410 // Don't attempt to go past the end of the init list
1411 if (Index >= IList->getNumInits()) {
1412 if (VerifyOnly)
1413 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1414 break;
1415 }
1416
1417 ElementEntity.setElementIndex(Index);
1418 CheckSubElementType(ElementEntity, IList, elementType, Index,
1419 StructuredList, StructuredIndex);
1420 }
1421
1422 if (VerifyOnly)
1423 return;
1424
1425 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1426 const VectorType *T = Entity.getType()->getAs<VectorType>();
1427 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1428 T->getVectorKind() == VectorType::NeonPolyVector)) {
1429 // The ability to use vector initializer lists is a GNU vector extension
1430 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1431 // endian machines it works fine, however on big endian machines it
1432 // exhibits surprising behaviour:
1433 //
1434 // uint32x2_t x = {42, 64};
1435 // return vget_lane_u32(x, 0); // Will return 64.
1436 //
1437 // Because of this, explicitly call out that it is non-portable.
1438 //
1439 SemaRef.Diag(IList->getLocStart(),
1440 diag::warn_neon_vector_initializer_non_portable);
1441
1442 const char *typeCode;
1443 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1444
1445 if (elementType->isFloatingType())
1446 typeCode = "f";
1447 else if (elementType->isSignedIntegerType())
1448 typeCode = "s";
1449 else if (elementType->isUnsignedIntegerType())
1450 typeCode = "u";
1451 else
1452 llvm_unreachable("Invalid element type!");
1453
1454 SemaRef.Diag(IList->getLocStart(),
1455 SemaRef.Context.getTypeSize(VT) > 64 ?
1456 diag::note_neon_vector_initializer_non_portable_q :
1457 diag::note_neon_vector_initializer_non_portable)
1458 << typeCode << typeSize;
1459 }
1460
1461 return;
1462 }
1463
1464 InitializedEntity ElementEntity =
1465 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1466
1467 // OpenCL initializers allows vectors to be constructed from vectors.
1468 for (unsigned i = 0; i < maxElements; ++i) {
1469 // Don't attempt to go past the end of the init list
1470 if (Index >= IList->getNumInits())
1471 break;
1472
1473 ElementEntity.setElementIndex(Index);
1474
1475 QualType IType = IList->getInit(Index)->getType();
1476 if (!IType->isVectorType()) {
1477 CheckSubElementType(ElementEntity, IList, elementType, Index,
1478 StructuredList, StructuredIndex);
1479 ++numEltsInit;
1480 } else {
1481 QualType VecType;
1482 const VectorType *IVT = IType->getAs<VectorType>();
1483 unsigned numIElts = IVT->getNumElements();
1484
1485 if (IType->isExtVectorType())
1486 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1487 else
1488 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1489 IVT->getVectorKind());
1490 CheckSubElementType(ElementEntity, IList, VecType, Index,
1491 StructuredList, StructuredIndex);
1492 numEltsInit += numIElts;
1493 }
1494 }
1495
1496 // OpenCL requires all elements to be initialized.
1497 if (numEltsInit != maxElements) {
1498 if (!VerifyOnly)
1499 SemaRef.Diag(IList->getLocStart(),
1500 diag::err_vector_incorrect_num_initializers)
1501 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1502 hadError = true;
1503 }
1504 }
1505
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1506 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1507 InitListExpr *IList, QualType &DeclType,
1508 llvm::APSInt elementIndex,
1509 bool SubobjectIsDesignatorContext,
1510 unsigned &Index,
1511 InitListExpr *StructuredList,
1512 unsigned &StructuredIndex) {
1513 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1514
1515 // Check for the special-case of initializing an array with a string.
1516 if (Index < IList->getNumInits()) {
1517 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1518 SIF_None) {
1519 // We place the string literal directly into the resulting
1520 // initializer list. This is the only place where the structure
1521 // of the structured initializer list doesn't match exactly,
1522 // because doing so would involve allocating one character
1523 // constant for each string.
1524 if (!VerifyOnly) {
1525 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1526 UpdateStructuredListElement(StructuredList, StructuredIndex,
1527 IList->getInit(Index));
1528 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1529 }
1530 ++Index;
1531 return;
1532 }
1533 }
1534 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1535 // Check for VLAs; in standard C it would be possible to check this
1536 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1537 // them in all sorts of strange places).
1538 if (!VerifyOnly)
1539 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1540 diag::err_variable_object_no_init)
1541 << VAT->getSizeExpr()->getSourceRange();
1542 hadError = true;
1543 ++Index;
1544 ++StructuredIndex;
1545 return;
1546 }
1547
1548 // We might know the maximum number of elements in advance.
1549 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1550 elementIndex.isUnsigned());
1551 bool maxElementsKnown = false;
1552 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1553 maxElements = CAT->getSize();
1554 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1555 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1556 maxElementsKnown = true;
1557 }
1558
1559 QualType elementType = arrayType->getElementType();
1560 while (Index < IList->getNumInits()) {
1561 Expr *Init = IList->getInit(Index);
1562 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1563 // If we're not the subobject that matches up with the '{' for
1564 // the designator, we shouldn't be handling the
1565 // designator. Return immediately.
1566 if (!SubobjectIsDesignatorContext)
1567 return;
1568
1569 // Handle this designated initializer. elementIndex will be
1570 // updated to be the next array element we'll initialize.
1571 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1572 DeclType, nullptr, &elementIndex, Index,
1573 StructuredList, StructuredIndex, true,
1574 false)) {
1575 hadError = true;
1576 continue;
1577 }
1578
1579 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1580 maxElements = maxElements.extend(elementIndex.getBitWidth());
1581 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1582 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1583 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1584
1585 // If the array is of incomplete type, keep track of the number of
1586 // elements in the initializer.
1587 if (!maxElementsKnown && elementIndex > maxElements)
1588 maxElements = elementIndex;
1589
1590 continue;
1591 }
1592
1593 // If we know the maximum number of elements, and we've already
1594 // hit it, stop consuming elements in the initializer list.
1595 if (maxElementsKnown && elementIndex == maxElements)
1596 break;
1597
1598 InitializedEntity ElementEntity =
1599 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1600 Entity);
1601 // Check this element.
1602 CheckSubElementType(ElementEntity, IList, elementType, Index,
1603 StructuredList, StructuredIndex);
1604 ++elementIndex;
1605
1606 // If the array is of incomplete type, keep track of the number of
1607 // elements in the initializer.
1608 if (!maxElementsKnown && elementIndex > maxElements)
1609 maxElements = elementIndex;
1610 }
1611 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1612 // If this is an incomplete array type, the actual type needs to
1613 // be calculated here.
1614 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1615 if (maxElements == Zero) {
1616 // Sizing an array implicitly to zero is not allowed by ISO C,
1617 // but is supported by GNU.
1618 SemaRef.Diag(IList->getLocStart(),
1619 diag::ext_typecheck_zero_array_size);
1620 }
1621
1622 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1623 ArrayType::Normal, 0);
1624 }
1625 if (!hadError && VerifyOnly) {
1626 // Check if there are any members of the array that get value-initialized.
1627 // If so, check if doing that is possible.
1628 // FIXME: This needs to detect holes left by designated initializers too.
1629 if (maxElementsKnown && elementIndex < maxElements)
1630 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1631 SemaRef.Context, 0, Entity),
1632 IList->getLocEnd());
1633 }
1634 }
1635
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1636 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1637 Expr *InitExpr,
1638 FieldDecl *Field,
1639 bool TopLevelObject) {
1640 // Handle GNU flexible array initializers.
1641 unsigned FlexArrayDiag;
1642 if (isa<InitListExpr>(InitExpr) &&
1643 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1644 // Empty flexible array init always allowed as an extension
1645 FlexArrayDiag = diag::ext_flexible_array_init;
1646 } else if (SemaRef.getLangOpts().CPlusPlus) {
1647 // Disallow flexible array init in C++; it is not required for gcc
1648 // compatibility, and it needs work to IRGen correctly in general.
1649 FlexArrayDiag = diag::err_flexible_array_init;
1650 } else if (!TopLevelObject) {
1651 // Disallow flexible array init on non-top-level object
1652 FlexArrayDiag = diag::err_flexible_array_init;
1653 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1654 // Disallow flexible array init on anything which is not a variable.
1655 FlexArrayDiag = diag::err_flexible_array_init;
1656 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1657 // Disallow flexible array init on local variables.
1658 FlexArrayDiag = diag::err_flexible_array_init;
1659 } else {
1660 // Allow other cases.
1661 FlexArrayDiag = diag::ext_flexible_array_init;
1662 }
1663
1664 if (!VerifyOnly) {
1665 SemaRef.Diag(InitExpr->getLocStart(),
1666 FlexArrayDiag)
1667 << InitExpr->getLocStart();
1668 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1669 << Field;
1670 }
1671
1672 return FlexArrayDiag != diag::ext_flexible_array_init;
1673 }
1674
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1675 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1676 InitListExpr *IList,
1677 QualType DeclType,
1678 RecordDecl::field_iterator Field,
1679 bool SubobjectIsDesignatorContext,
1680 unsigned &Index,
1681 InitListExpr *StructuredList,
1682 unsigned &StructuredIndex,
1683 bool TopLevelObject) {
1684 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1685
1686 // If the record is invalid, some of it's members are invalid. To avoid
1687 // confusion, we forgo checking the intializer for the entire record.
1688 if (structDecl->isInvalidDecl()) {
1689 // Assume it was supposed to consume a single initializer.
1690 ++Index;
1691 hadError = true;
1692 return;
1693 }
1694
1695 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1696 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1697
1698 // If there's a default initializer, use it.
1699 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1700 if (VerifyOnly)
1701 return;
1702 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1703 Field != FieldEnd; ++Field) {
1704 if (Field->hasInClassInitializer()) {
1705 StructuredList->setInitializedFieldInUnion(*Field);
1706 // FIXME: Actually build a CXXDefaultInitExpr?
1707 return;
1708 }
1709 }
1710 }
1711
1712 // Value-initialize the first member of the union that isn't an unnamed
1713 // bitfield.
1714 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1715 Field != FieldEnd; ++Field) {
1716 if (!Field->isUnnamedBitfield()) {
1717 if (VerifyOnly)
1718 CheckEmptyInitializable(
1719 InitializedEntity::InitializeMember(*Field, &Entity),
1720 IList->getLocEnd());
1721 else
1722 StructuredList->setInitializedFieldInUnion(*Field);
1723 break;
1724 }
1725 }
1726 return;
1727 }
1728
1729 // If structDecl is a forward declaration, this loop won't do
1730 // anything except look at designated initializers; That's okay,
1731 // because an error should get printed out elsewhere. It might be
1732 // worthwhile to skip over the rest of the initializer, though.
1733 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1734 RecordDecl::field_iterator FieldEnd = RD->field_end();
1735 bool InitializedSomething = false;
1736 bool CheckForMissingFields = true;
1737 while (Index < IList->getNumInits()) {
1738 Expr *Init = IList->getInit(Index);
1739
1740 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1741 // If we're not the subobject that matches up with the '{' for
1742 // the designator, we shouldn't be handling the
1743 // designator. Return immediately.
1744 if (!SubobjectIsDesignatorContext)
1745 return;
1746
1747 // Handle this designated initializer. Field will be updated to
1748 // the next field that we'll be initializing.
1749 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1750 DeclType, &Field, nullptr, Index,
1751 StructuredList, StructuredIndex,
1752 true, TopLevelObject))
1753 hadError = true;
1754
1755 InitializedSomething = true;
1756
1757 // Disable check for missing fields when designators are used.
1758 // This matches gcc behaviour.
1759 CheckForMissingFields = false;
1760 continue;
1761 }
1762
1763 if (Field == FieldEnd) {
1764 // We've run out of fields. We're done.
1765 break;
1766 }
1767
1768 // We've already initialized a member of a union. We're done.
1769 if (InitializedSomething && DeclType->isUnionType())
1770 break;
1771
1772 // If we've hit the flexible array member at the end, we're done.
1773 if (Field->getType()->isIncompleteArrayType())
1774 break;
1775
1776 if (Field->isUnnamedBitfield()) {
1777 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1778 ++Field;
1779 continue;
1780 }
1781
1782 // Make sure we can use this declaration.
1783 bool InvalidUse;
1784 if (VerifyOnly)
1785 InvalidUse = !SemaRef.CanUseDecl(*Field);
1786 else
1787 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1788 IList->getInit(Index)->getLocStart());
1789 if (InvalidUse) {
1790 ++Index;
1791 ++Field;
1792 hadError = true;
1793 continue;
1794 }
1795
1796 InitializedEntity MemberEntity =
1797 InitializedEntity::InitializeMember(*Field, &Entity);
1798 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1799 StructuredList, StructuredIndex);
1800 InitializedSomething = true;
1801
1802 if (DeclType->isUnionType() && !VerifyOnly) {
1803 // Initialize the first field within the union.
1804 StructuredList->setInitializedFieldInUnion(*Field);
1805 }
1806
1807 ++Field;
1808 }
1809
1810 // Emit warnings for missing struct field initializers.
1811 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1812 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1813 !DeclType->isUnionType()) {
1814 // It is possible we have one or more unnamed bitfields remaining.
1815 // Find first (if any) named field and emit warning.
1816 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1817 it != end; ++it) {
1818 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1819 SemaRef.Diag(IList->getSourceRange().getEnd(),
1820 diag::warn_missing_field_initializers) << *it;
1821 break;
1822 }
1823 }
1824 }
1825
1826 // Check that any remaining fields can be value-initialized.
1827 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1828 !Field->getType()->isIncompleteArrayType()) {
1829 // FIXME: Should check for holes left by designated initializers too.
1830 for (; Field != FieldEnd && !hadError; ++Field) {
1831 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1832 CheckEmptyInitializable(
1833 InitializedEntity::InitializeMember(*Field, &Entity),
1834 IList->getLocEnd());
1835 }
1836 }
1837
1838 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1839 Index >= IList->getNumInits())
1840 return;
1841
1842 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1843 TopLevelObject)) {
1844 hadError = true;
1845 ++Index;
1846 return;
1847 }
1848
1849 InitializedEntity MemberEntity =
1850 InitializedEntity::InitializeMember(*Field, &Entity);
1851
1852 if (isa<InitListExpr>(IList->getInit(Index)))
1853 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1854 StructuredList, StructuredIndex);
1855 else
1856 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1857 StructuredList, StructuredIndex);
1858 }
1859
1860 /// \brief Expand a field designator that refers to a member of an
1861 /// anonymous struct or union into a series of field designators that
1862 /// refers to the field within the appropriate subobject.
1863 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1864 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1865 DesignatedInitExpr *DIE,
1866 unsigned DesigIdx,
1867 IndirectFieldDecl *IndirectField) {
1868 typedef DesignatedInitExpr::Designator Designator;
1869
1870 // Build the replacement designators.
1871 SmallVector<Designator, 4> Replacements;
1872 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1873 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1874 if (PI + 1 == PE)
1875 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1876 DIE->getDesignator(DesigIdx)->getDotLoc(),
1877 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1878 else
1879 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1880 SourceLocation(), SourceLocation()));
1881 assert(isa<FieldDecl>(*PI));
1882 Replacements.back().setField(cast<FieldDecl>(*PI));
1883 }
1884
1885 // Expand the current designator into the set of replacement
1886 // designators, so we have a full subobject path down to where the
1887 // member of the anonymous struct/union is actually stored.
1888 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1889 &Replacements[0] + Replacements.size());
1890 }
1891
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1892 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1893 DesignatedInitExpr *DIE) {
1894 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1895 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1896 for (unsigned I = 0; I < NumIndexExprs; ++I)
1897 IndexExprs[I] = DIE->getSubExpr(I + 1);
1898 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1899 DIE->size(), IndexExprs,
1900 DIE->getEqualOrColonLoc(),
1901 DIE->usesGNUSyntax(), DIE->getInit());
1902 }
1903
1904 namespace {
1905
1906 // Callback to only accept typo corrections that are for field members of
1907 // the given struct or union.
1908 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1909 public:
FieldInitializerValidatorCCC(RecordDecl * RD)1910 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1911 : Record(RD) {}
1912
ValidateCandidate(const TypoCorrection & candidate)1913 bool ValidateCandidate(const TypoCorrection &candidate) override {
1914 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1915 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1916 }
1917
1918 private:
1919 RecordDecl *Record;
1920 };
1921
1922 }
1923
1924 /// @brief Check the well-formedness of a C99 designated initializer.
1925 ///
1926 /// Determines whether the designated initializer @p DIE, which
1927 /// resides at the given @p Index within the initializer list @p
1928 /// IList, is well-formed for a current object of type @p DeclType
1929 /// (C99 6.7.8). The actual subobject that this designator refers to
1930 /// within the current subobject is returned in either
1931 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1932 ///
1933 /// @param IList The initializer list in which this designated
1934 /// initializer occurs.
1935 ///
1936 /// @param DIE The designated initializer expression.
1937 ///
1938 /// @param DesigIdx The index of the current designator.
1939 ///
1940 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1941 /// into which the designation in @p DIE should refer.
1942 ///
1943 /// @param NextField If non-NULL and the first designator in @p DIE is
1944 /// a field, this will be set to the field declaration corresponding
1945 /// to the field named by the designator.
1946 ///
1947 /// @param NextElementIndex If non-NULL and the first designator in @p
1948 /// DIE is an array designator or GNU array-range designator, this
1949 /// will be set to the last index initialized by this designator.
1950 ///
1951 /// @param Index Index into @p IList where the designated initializer
1952 /// @p DIE occurs.
1953 ///
1954 /// @param StructuredList The initializer list expression that
1955 /// describes all of the subobject initializers in the order they'll
1956 /// actually be initialized.
1957 ///
1958 /// @returns true if there was an error, false otherwise.
1959 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1960 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1961 InitListExpr *IList,
1962 DesignatedInitExpr *DIE,
1963 unsigned DesigIdx,
1964 QualType &CurrentObjectType,
1965 RecordDecl::field_iterator *NextField,
1966 llvm::APSInt *NextElementIndex,
1967 unsigned &Index,
1968 InitListExpr *StructuredList,
1969 unsigned &StructuredIndex,
1970 bool FinishSubobjectInit,
1971 bool TopLevelObject) {
1972 if (DesigIdx == DIE->size()) {
1973 // Check the actual initialization for the designated object type.
1974 bool prevHadError = hadError;
1975
1976 // Temporarily remove the designator expression from the
1977 // initializer list that the child calls see, so that we don't try
1978 // to re-process the designator.
1979 unsigned OldIndex = Index;
1980 IList->setInit(OldIndex, DIE->getInit());
1981
1982 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1983 StructuredList, StructuredIndex);
1984
1985 // Restore the designated initializer expression in the syntactic
1986 // form of the initializer list.
1987 if (IList->getInit(OldIndex) != DIE->getInit())
1988 DIE->setInit(IList->getInit(OldIndex));
1989 IList->setInit(OldIndex, DIE);
1990
1991 return hadError && !prevHadError;
1992 }
1993
1994 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1995 bool IsFirstDesignator = (DesigIdx == 0);
1996 if (!VerifyOnly) {
1997 assert((IsFirstDesignator || StructuredList) &&
1998 "Need a non-designated initializer list to start from");
1999
2000 // Determine the structural initializer list that corresponds to the
2001 // current subobject.
2002 if (IsFirstDesignator)
2003 StructuredList = SyntacticToSemantic.lookup(IList);
2004 else {
2005 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2006 StructuredList->getInit(StructuredIndex) : nullptr;
2007 if (!ExistingInit && StructuredList->hasArrayFiller())
2008 ExistingInit = StructuredList->getArrayFiller();
2009
2010 if (!ExistingInit)
2011 StructuredList =
2012 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2013 StructuredList, StructuredIndex,
2014 SourceRange(D->getLocStart(),
2015 DIE->getLocEnd()));
2016 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2017 StructuredList = Result;
2018 else {
2019 if (DesignatedInitUpdateExpr *E =
2020 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2021 StructuredList = E->getUpdater();
2022 else {
2023 DesignatedInitUpdateExpr *DIUE =
2024 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2025 D->getLocStart(), ExistingInit,
2026 DIE->getLocEnd());
2027 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2028 StructuredList = DIUE->getUpdater();
2029 }
2030
2031 // We need to check on source range validity because the previous
2032 // initializer does not have to be an explicit initializer. e.g.,
2033 //
2034 // struct P { int a, b; };
2035 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2036 //
2037 // There is an overwrite taking place because the first braced initializer
2038 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2039 if (ExistingInit->getSourceRange().isValid()) {
2040 // We are creating an initializer list that initializes the
2041 // subobjects of the current object, but there was already an
2042 // initialization that completely initialized the current
2043 // subobject, e.g., by a compound literal:
2044 //
2045 // struct X { int a, b; };
2046 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2047 //
2048 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2049 // designated initializer re-initializes the whole
2050 // subobject [0], overwriting previous initializers.
2051 SemaRef.Diag(D->getLocStart(),
2052 diag::warn_subobject_initializer_overrides)
2053 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2054
2055 SemaRef.Diag(ExistingInit->getLocStart(),
2056 diag::note_previous_initializer)
2057 << /*FIXME:has side effects=*/0
2058 << ExistingInit->getSourceRange();
2059 }
2060 }
2061 }
2062 assert(StructuredList && "Expected a structured initializer list");
2063 }
2064
2065 if (D->isFieldDesignator()) {
2066 // C99 6.7.8p7:
2067 //
2068 // If a designator has the form
2069 //
2070 // . identifier
2071 //
2072 // then the current object (defined below) shall have
2073 // structure or union type and the identifier shall be the
2074 // name of a member of that type.
2075 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2076 if (!RT) {
2077 SourceLocation Loc = D->getDotLoc();
2078 if (Loc.isInvalid())
2079 Loc = D->getFieldLoc();
2080 if (!VerifyOnly)
2081 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2082 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2083 ++Index;
2084 return true;
2085 }
2086
2087 FieldDecl *KnownField = D->getField();
2088 if (!KnownField) {
2089 IdentifierInfo *FieldName = D->getFieldName();
2090 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2091 for (NamedDecl *ND : Lookup) {
2092 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2093 KnownField = FD;
2094 break;
2095 }
2096 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2097 // In verify mode, don't modify the original.
2098 if (VerifyOnly)
2099 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2100 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2101 D = DIE->getDesignator(DesigIdx);
2102 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2103 break;
2104 }
2105 }
2106 if (!KnownField) {
2107 if (VerifyOnly) {
2108 ++Index;
2109 return true; // No typo correction when just trying this out.
2110 }
2111
2112 // Name lookup found something, but it wasn't a field.
2113 if (!Lookup.empty()) {
2114 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2115 << FieldName;
2116 SemaRef.Diag(Lookup.front()->getLocation(),
2117 diag::note_field_designator_found);
2118 ++Index;
2119 return true;
2120 }
2121
2122 // Name lookup didn't find anything.
2123 // Determine whether this was a typo for another field name.
2124 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2125 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2126 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2127 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2128 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2129 SemaRef.diagnoseTypo(
2130 Corrected,
2131 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2132 << FieldName << CurrentObjectType);
2133 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2134 hadError = true;
2135 } else {
2136 // Typo correction didn't find anything.
2137 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2138 << FieldName << CurrentObjectType;
2139 ++Index;
2140 return true;
2141 }
2142 }
2143 }
2144
2145 unsigned FieldIndex = 0;
2146 for (auto *FI : RT->getDecl()->fields()) {
2147 if (FI->isUnnamedBitfield())
2148 continue;
2149 if (KnownField == FI)
2150 break;
2151 ++FieldIndex;
2152 }
2153
2154 RecordDecl::field_iterator Field =
2155 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2156
2157 // All of the fields of a union are located at the same place in
2158 // the initializer list.
2159 if (RT->getDecl()->isUnion()) {
2160 FieldIndex = 0;
2161 if (!VerifyOnly) {
2162 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2163 if (CurrentField && CurrentField != *Field) {
2164 assert(StructuredList->getNumInits() == 1
2165 && "A union should never have more than one initializer!");
2166
2167 // we're about to throw away an initializer, emit warning
2168 SemaRef.Diag(D->getFieldLoc(),
2169 diag::warn_initializer_overrides)
2170 << D->getSourceRange();
2171 Expr *ExistingInit = StructuredList->getInit(0);
2172 SemaRef.Diag(ExistingInit->getLocStart(),
2173 diag::note_previous_initializer)
2174 << /*FIXME:has side effects=*/0
2175 << ExistingInit->getSourceRange();
2176
2177 // remove existing initializer
2178 StructuredList->resizeInits(SemaRef.Context, 0);
2179 StructuredList->setInitializedFieldInUnion(nullptr);
2180 }
2181
2182 StructuredList->setInitializedFieldInUnion(*Field);
2183 }
2184 }
2185
2186 // Make sure we can use this declaration.
2187 bool InvalidUse;
2188 if (VerifyOnly)
2189 InvalidUse = !SemaRef.CanUseDecl(*Field);
2190 else
2191 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2192 if (InvalidUse) {
2193 ++Index;
2194 return true;
2195 }
2196
2197 if (!VerifyOnly) {
2198 // Update the designator with the field declaration.
2199 D->setField(*Field);
2200
2201 // Make sure that our non-designated initializer list has space
2202 // for a subobject corresponding to this field.
2203 if (FieldIndex >= StructuredList->getNumInits())
2204 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2205 }
2206
2207 // This designator names a flexible array member.
2208 if (Field->getType()->isIncompleteArrayType()) {
2209 bool Invalid = false;
2210 if ((DesigIdx + 1) != DIE->size()) {
2211 // We can't designate an object within the flexible array
2212 // member (because GCC doesn't allow it).
2213 if (!VerifyOnly) {
2214 DesignatedInitExpr::Designator *NextD
2215 = DIE->getDesignator(DesigIdx + 1);
2216 SemaRef.Diag(NextD->getLocStart(),
2217 diag::err_designator_into_flexible_array_member)
2218 << SourceRange(NextD->getLocStart(),
2219 DIE->getLocEnd());
2220 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2221 << *Field;
2222 }
2223 Invalid = true;
2224 }
2225
2226 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2227 !isa<StringLiteral>(DIE->getInit())) {
2228 // The initializer is not an initializer list.
2229 if (!VerifyOnly) {
2230 SemaRef.Diag(DIE->getInit()->getLocStart(),
2231 diag::err_flexible_array_init_needs_braces)
2232 << DIE->getInit()->getSourceRange();
2233 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2234 << *Field;
2235 }
2236 Invalid = true;
2237 }
2238
2239 // Check GNU flexible array initializer.
2240 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2241 TopLevelObject))
2242 Invalid = true;
2243
2244 if (Invalid) {
2245 ++Index;
2246 return true;
2247 }
2248
2249 // Initialize the array.
2250 bool prevHadError = hadError;
2251 unsigned newStructuredIndex = FieldIndex;
2252 unsigned OldIndex = Index;
2253 IList->setInit(Index, DIE->getInit());
2254
2255 InitializedEntity MemberEntity =
2256 InitializedEntity::InitializeMember(*Field, &Entity);
2257 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2258 StructuredList, newStructuredIndex);
2259
2260 IList->setInit(OldIndex, DIE);
2261 if (hadError && !prevHadError) {
2262 ++Field;
2263 ++FieldIndex;
2264 if (NextField)
2265 *NextField = Field;
2266 StructuredIndex = FieldIndex;
2267 return true;
2268 }
2269 } else {
2270 // Recurse to check later designated subobjects.
2271 QualType FieldType = Field->getType();
2272 unsigned newStructuredIndex = FieldIndex;
2273
2274 InitializedEntity MemberEntity =
2275 InitializedEntity::InitializeMember(*Field, &Entity);
2276 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2277 FieldType, nullptr, nullptr, Index,
2278 StructuredList, newStructuredIndex,
2279 true, false))
2280 return true;
2281 }
2282
2283 // Find the position of the next field to be initialized in this
2284 // subobject.
2285 ++Field;
2286 ++FieldIndex;
2287
2288 // If this the first designator, our caller will continue checking
2289 // the rest of this struct/class/union subobject.
2290 if (IsFirstDesignator) {
2291 if (NextField)
2292 *NextField = Field;
2293 StructuredIndex = FieldIndex;
2294 return false;
2295 }
2296
2297 if (!FinishSubobjectInit)
2298 return false;
2299
2300 // We've already initialized something in the union; we're done.
2301 if (RT->getDecl()->isUnion())
2302 return hadError;
2303
2304 // Check the remaining fields within this class/struct/union subobject.
2305 bool prevHadError = hadError;
2306
2307 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2308 StructuredList, FieldIndex);
2309 return hadError && !prevHadError;
2310 }
2311
2312 // C99 6.7.8p6:
2313 //
2314 // If a designator has the form
2315 //
2316 // [ constant-expression ]
2317 //
2318 // then the current object (defined below) shall have array
2319 // type and the expression shall be an integer constant
2320 // expression. If the array is of unknown size, any
2321 // nonnegative value is valid.
2322 //
2323 // Additionally, cope with the GNU extension that permits
2324 // designators of the form
2325 //
2326 // [ constant-expression ... constant-expression ]
2327 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2328 if (!AT) {
2329 if (!VerifyOnly)
2330 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2331 << CurrentObjectType;
2332 ++Index;
2333 return true;
2334 }
2335
2336 Expr *IndexExpr = nullptr;
2337 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2338 if (D->isArrayDesignator()) {
2339 IndexExpr = DIE->getArrayIndex(*D);
2340 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2341 DesignatedEndIndex = DesignatedStartIndex;
2342 } else {
2343 assert(D->isArrayRangeDesignator() && "Need array-range designator");
2344
2345 DesignatedStartIndex =
2346 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2347 DesignatedEndIndex =
2348 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2349 IndexExpr = DIE->getArrayRangeEnd(*D);
2350
2351 // Codegen can't handle evaluating array range designators that have side
2352 // effects, because we replicate the AST value for each initialized element.
2353 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2354 // elements with something that has a side effect, so codegen can emit an
2355 // "error unsupported" error instead of miscompiling the app.
2356 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2357 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2358 FullyStructuredList->sawArrayRangeDesignator();
2359 }
2360
2361 if (isa<ConstantArrayType>(AT)) {
2362 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2363 DesignatedStartIndex
2364 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2365 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2366 DesignatedEndIndex
2367 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2368 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2369 if (DesignatedEndIndex >= MaxElements) {
2370 if (!VerifyOnly)
2371 SemaRef.Diag(IndexExpr->getLocStart(),
2372 diag::err_array_designator_too_large)
2373 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2374 << IndexExpr->getSourceRange();
2375 ++Index;
2376 return true;
2377 }
2378 } else {
2379 unsigned DesignatedIndexBitWidth =
2380 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2381 DesignatedStartIndex =
2382 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2383 DesignatedEndIndex =
2384 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2385 DesignatedStartIndex.setIsUnsigned(true);
2386 DesignatedEndIndex.setIsUnsigned(true);
2387 }
2388
2389 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2390 // We're modifying a string literal init; we have to decompose the string
2391 // so we can modify the individual characters.
2392 ASTContext &Context = SemaRef.Context;
2393 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2394
2395 // Compute the character type
2396 QualType CharTy = AT->getElementType();
2397
2398 // Compute the type of the integer literals.
2399 QualType PromotedCharTy = CharTy;
2400 if (CharTy->isPromotableIntegerType())
2401 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2402 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2403
2404 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2405 // Get the length of the string.
2406 uint64_t StrLen = SL->getLength();
2407 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2408 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2409 StructuredList->resizeInits(Context, StrLen);
2410
2411 // Build a literal for each character in the string, and put them into
2412 // the init list.
2413 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2414 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2415 Expr *Init = new (Context) IntegerLiteral(
2416 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2417 if (CharTy != PromotedCharTy)
2418 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2419 Init, nullptr, VK_RValue);
2420 StructuredList->updateInit(Context, i, Init);
2421 }
2422 } else {
2423 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2424 std::string Str;
2425 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2426
2427 // Get the length of the string.
2428 uint64_t StrLen = Str.size();
2429 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2430 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2431 StructuredList->resizeInits(Context, StrLen);
2432
2433 // Build a literal for each character in the string, and put them into
2434 // the init list.
2435 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2436 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2437 Expr *Init = new (Context) IntegerLiteral(
2438 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2439 if (CharTy != PromotedCharTy)
2440 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2441 Init, nullptr, VK_RValue);
2442 StructuredList->updateInit(Context, i, Init);
2443 }
2444 }
2445 }
2446
2447 // Make sure that our non-designated initializer list has space
2448 // for a subobject corresponding to this array element.
2449 if (!VerifyOnly &&
2450 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2451 StructuredList->resizeInits(SemaRef.Context,
2452 DesignatedEndIndex.getZExtValue() + 1);
2453
2454 // Repeatedly perform subobject initializations in the range
2455 // [DesignatedStartIndex, DesignatedEndIndex].
2456
2457 // Move to the next designator
2458 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2459 unsigned OldIndex = Index;
2460
2461 InitializedEntity ElementEntity =
2462 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2463
2464 while (DesignatedStartIndex <= DesignatedEndIndex) {
2465 // Recurse to check later designated subobjects.
2466 QualType ElementType = AT->getElementType();
2467 Index = OldIndex;
2468
2469 ElementEntity.setElementIndex(ElementIndex);
2470 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2471 ElementType, nullptr, nullptr, Index,
2472 StructuredList, ElementIndex,
2473 (DesignatedStartIndex == DesignatedEndIndex),
2474 false))
2475 return true;
2476
2477 // Move to the next index in the array that we'll be initializing.
2478 ++DesignatedStartIndex;
2479 ElementIndex = DesignatedStartIndex.getZExtValue();
2480 }
2481
2482 // If this the first designator, our caller will continue checking
2483 // the rest of this array subobject.
2484 if (IsFirstDesignator) {
2485 if (NextElementIndex)
2486 *NextElementIndex = DesignatedStartIndex;
2487 StructuredIndex = ElementIndex;
2488 return false;
2489 }
2490
2491 if (!FinishSubobjectInit)
2492 return false;
2493
2494 // Check the remaining elements within this array subobject.
2495 bool prevHadError = hadError;
2496 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2497 /*SubobjectIsDesignatorContext=*/false, Index,
2498 StructuredList, ElementIndex);
2499 return hadError && !prevHadError;
2500 }
2501
2502 // Get the structured initializer list for a subobject of type
2503 // @p CurrentObjectType.
2504 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange,bool IsFullyOverwritten)2505 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2506 QualType CurrentObjectType,
2507 InitListExpr *StructuredList,
2508 unsigned StructuredIndex,
2509 SourceRange InitRange,
2510 bool IsFullyOverwritten) {
2511 if (VerifyOnly)
2512 return nullptr; // No structured list in verification-only mode.
2513 Expr *ExistingInit = nullptr;
2514 if (!StructuredList)
2515 ExistingInit = SyntacticToSemantic.lookup(IList);
2516 else if (StructuredIndex < StructuredList->getNumInits())
2517 ExistingInit = StructuredList->getInit(StructuredIndex);
2518
2519 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2520 // There might have already been initializers for subobjects of the current
2521 // object, but a subsequent initializer list will overwrite the entirety
2522 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2523 //
2524 // struct P { char x[6]; };
2525 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2526 //
2527 // The first designated initializer is ignored, and l.x is just "f".
2528 if (!IsFullyOverwritten)
2529 return Result;
2530
2531 if (ExistingInit) {
2532 // We are creating an initializer list that initializes the
2533 // subobjects of the current object, but there was already an
2534 // initialization that completely initialized the current
2535 // subobject, e.g., by a compound literal:
2536 //
2537 // struct X { int a, b; };
2538 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2539 //
2540 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2541 // designated initializer re-initializes the whole
2542 // subobject [0], overwriting previous initializers.
2543 SemaRef.Diag(InitRange.getBegin(),
2544 diag::warn_subobject_initializer_overrides)
2545 << InitRange;
2546 SemaRef.Diag(ExistingInit->getLocStart(),
2547 diag::note_previous_initializer)
2548 << /*FIXME:has side effects=*/0
2549 << ExistingInit->getSourceRange();
2550 }
2551
2552 InitListExpr *Result
2553 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2554 InitRange.getBegin(), None,
2555 InitRange.getEnd());
2556
2557 QualType ResultType = CurrentObjectType;
2558 if (!ResultType->isArrayType())
2559 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2560 Result->setType(ResultType);
2561
2562 // Pre-allocate storage for the structured initializer list.
2563 unsigned NumElements = 0;
2564 unsigned NumInits = 0;
2565 bool GotNumInits = false;
2566 if (!StructuredList) {
2567 NumInits = IList->getNumInits();
2568 GotNumInits = true;
2569 } else if (Index < IList->getNumInits()) {
2570 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2571 NumInits = SubList->getNumInits();
2572 GotNumInits = true;
2573 }
2574 }
2575
2576 if (const ArrayType *AType
2577 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2578 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2579 NumElements = CAType->getSize().getZExtValue();
2580 // Simple heuristic so that we don't allocate a very large
2581 // initializer with many empty entries at the end.
2582 if (GotNumInits && NumElements > NumInits)
2583 NumElements = 0;
2584 }
2585 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2586 NumElements = VType->getNumElements();
2587 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2588 RecordDecl *RDecl = RType->getDecl();
2589 if (RDecl->isUnion())
2590 NumElements = 1;
2591 else
2592 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2593 }
2594
2595 Result->reserveInits(SemaRef.Context, NumElements);
2596
2597 // Link this new initializer list into the structured initializer
2598 // lists.
2599 if (StructuredList)
2600 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2601 else {
2602 Result->setSyntacticForm(IList);
2603 SyntacticToSemantic[IList] = Result;
2604 }
2605
2606 return Result;
2607 }
2608
2609 /// Update the initializer at index @p StructuredIndex within the
2610 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2611 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2612 unsigned &StructuredIndex,
2613 Expr *expr) {
2614 // No structured initializer list to update
2615 if (!StructuredList)
2616 return;
2617
2618 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2619 StructuredIndex, expr)) {
2620 // This initializer overwrites a previous initializer. Warn.
2621 // We need to check on source range validity because the previous
2622 // initializer does not have to be an explicit initializer.
2623 // struct P { int a, b; };
2624 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2625 // There is an overwrite taking place because the first braced initializer
2626 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2627 if (PrevInit->getSourceRange().isValid()) {
2628 SemaRef.Diag(expr->getLocStart(),
2629 diag::warn_initializer_overrides)
2630 << expr->getSourceRange();
2631
2632 SemaRef.Diag(PrevInit->getLocStart(),
2633 diag::note_previous_initializer)
2634 << /*FIXME:has side effects=*/0
2635 << PrevInit->getSourceRange();
2636 }
2637 }
2638
2639 ++StructuredIndex;
2640 }
2641
2642 /// Check that the given Index expression is a valid array designator
2643 /// value. This is essentially just a wrapper around
2644 /// VerifyIntegerConstantExpression that also checks for negative values
2645 /// and produces a reasonable diagnostic if there is a
2646 /// failure. Returns the index expression, possibly with an implicit cast
2647 /// added, on success. If everything went okay, Value will receive the
2648 /// value of the constant expression.
2649 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2650 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2651 SourceLocation Loc = Index->getLocStart();
2652
2653 // Make sure this is an integer constant expression.
2654 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2655 if (Result.isInvalid())
2656 return Result;
2657
2658 if (Value.isSigned() && Value.isNegative())
2659 return S.Diag(Loc, diag::err_array_designator_negative)
2660 << Value.toString(10) << Index->getSourceRange();
2661
2662 Value.setIsUnsigned(true);
2663 return Result;
2664 }
2665
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2666 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2667 SourceLocation Loc,
2668 bool GNUSyntax,
2669 ExprResult Init) {
2670 typedef DesignatedInitExpr::Designator ASTDesignator;
2671
2672 bool Invalid = false;
2673 SmallVector<ASTDesignator, 32> Designators;
2674 SmallVector<Expr *, 32> InitExpressions;
2675
2676 // Build designators and check array designator expressions.
2677 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2678 const Designator &D = Desig.getDesignator(Idx);
2679 switch (D.getKind()) {
2680 case Designator::FieldDesignator:
2681 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2682 D.getFieldLoc()));
2683 break;
2684
2685 case Designator::ArrayDesignator: {
2686 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2687 llvm::APSInt IndexValue;
2688 if (!Index->isTypeDependent() && !Index->isValueDependent())
2689 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2690 if (!Index)
2691 Invalid = true;
2692 else {
2693 Designators.push_back(ASTDesignator(InitExpressions.size(),
2694 D.getLBracketLoc(),
2695 D.getRBracketLoc()));
2696 InitExpressions.push_back(Index);
2697 }
2698 break;
2699 }
2700
2701 case Designator::ArrayRangeDesignator: {
2702 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2703 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2704 llvm::APSInt StartValue;
2705 llvm::APSInt EndValue;
2706 bool StartDependent = StartIndex->isTypeDependent() ||
2707 StartIndex->isValueDependent();
2708 bool EndDependent = EndIndex->isTypeDependent() ||
2709 EndIndex->isValueDependent();
2710 if (!StartDependent)
2711 StartIndex =
2712 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2713 if (!EndDependent)
2714 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2715
2716 if (!StartIndex || !EndIndex)
2717 Invalid = true;
2718 else {
2719 // Make sure we're comparing values with the same bit width.
2720 if (StartDependent || EndDependent) {
2721 // Nothing to compute.
2722 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2723 EndValue = EndValue.extend(StartValue.getBitWidth());
2724 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2725 StartValue = StartValue.extend(EndValue.getBitWidth());
2726
2727 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2728 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2729 << StartValue.toString(10) << EndValue.toString(10)
2730 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2731 Invalid = true;
2732 } else {
2733 Designators.push_back(ASTDesignator(InitExpressions.size(),
2734 D.getLBracketLoc(),
2735 D.getEllipsisLoc(),
2736 D.getRBracketLoc()));
2737 InitExpressions.push_back(StartIndex);
2738 InitExpressions.push_back(EndIndex);
2739 }
2740 }
2741 break;
2742 }
2743 }
2744 }
2745
2746 if (Invalid || Init.isInvalid())
2747 return ExprError();
2748
2749 // Clear out the expressions within the designation.
2750 Desig.ClearExprs(*this);
2751
2752 DesignatedInitExpr *DIE
2753 = DesignatedInitExpr::Create(Context,
2754 Designators.data(), Designators.size(),
2755 InitExpressions, Loc, GNUSyntax,
2756 Init.getAs<Expr>());
2757
2758 if (!getLangOpts().C99)
2759 Diag(DIE->getLocStart(), diag::ext_designated_init)
2760 << DIE->getSourceRange();
2761
2762 return DIE;
2763 }
2764
2765 //===----------------------------------------------------------------------===//
2766 // Initialization entity
2767 //===----------------------------------------------------------------------===//
2768
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2769 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2770 const InitializedEntity &Parent)
2771 : Parent(&Parent), Index(Index)
2772 {
2773 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2774 Kind = EK_ArrayElement;
2775 Type = AT->getElementType();
2776 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2777 Kind = EK_VectorElement;
2778 Type = VT->getElementType();
2779 } else {
2780 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2781 assert(CT && "Unexpected type");
2782 Kind = EK_ComplexElement;
2783 Type = CT->getElementType();
2784 }
2785 }
2786
2787 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2788 InitializedEntity::InitializeBase(ASTContext &Context,
2789 const CXXBaseSpecifier *Base,
2790 bool IsInheritedVirtualBase) {
2791 InitializedEntity Result;
2792 Result.Kind = EK_Base;
2793 Result.Parent = nullptr;
2794 Result.Base = reinterpret_cast<uintptr_t>(Base);
2795 if (IsInheritedVirtualBase)
2796 Result.Base |= 0x01;
2797
2798 Result.Type = Base->getType();
2799 return Result;
2800 }
2801
getName() const2802 DeclarationName InitializedEntity::getName() const {
2803 switch (getKind()) {
2804 case EK_Parameter:
2805 case EK_Parameter_CF_Audited: {
2806 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2807 return (D ? D->getDeclName() : DeclarationName());
2808 }
2809
2810 case EK_Variable:
2811 case EK_Member:
2812 return VariableOrMember->getDeclName();
2813
2814 case EK_LambdaCapture:
2815 return DeclarationName(Capture.VarID);
2816
2817 case EK_Result:
2818 case EK_Exception:
2819 case EK_New:
2820 case EK_Temporary:
2821 case EK_Base:
2822 case EK_Delegating:
2823 case EK_ArrayElement:
2824 case EK_VectorElement:
2825 case EK_ComplexElement:
2826 case EK_BlockElement:
2827 case EK_CompoundLiteralInit:
2828 case EK_RelatedResult:
2829 return DeclarationName();
2830 }
2831
2832 llvm_unreachable("Invalid EntityKind!");
2833 }
2834
getDecl() const2835 DeclaratorDecl *InitializedEntity::getDecl() const {
2836 switch (getKind()) {
2837 case EK_Variable:
2838 case EK_Member:
2839 return VariableOrMember;
2840
2841 case EK_Parameter:
2842 case EK_Parameter_CF_Audited:
2843 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2844
2845 case EK_Result:
2846 case EK_Exception:
2847 case EK_New:
2848 case EK_Temporary:
2849 case EK_Base:
2850 case EK_Delegating:
2851 case EK_ArrayElement:
2852 case EK_VectorElement:
2853 case EK_ComplexElement:
2854 case EK_BlockElement:
2855 case EK_LambdaCapture:
2856 case EK_CompoundLiteralInit:
2857 case EK_RelatedResult:
2858 return nullptr;
2859 }
2860
2861 llvm_unreachable("Invalid EntityKind!");
2862 }
2863
allowsNRVO() const2864 bool InitializedEntity::allowsNRVO() const {
2865 switch (getKind()) {
2866 case EK_Result:
2867 case EK_Exception:
2868 return LocAndNRVO.NRVO;
2869
2870 case EK_Variable:
2871 case EK_Parameter:
2872 case EK_Parameter_CF_Audited:
2873 case EK_Member:
2874 case EK_New:
2875 case EK_Temporary:
2876 case EK_CompoundLiteralInit:
2877 case EK_Base:
2878 case EK_Delegating:
2879 case EK_ArrayElement:
2880 case EK_VectorElement:
2881 case EK_ComplexElement:
2882 case EK_BlockElement:
2883 case EK_LambdaCapture:
2884 case EK_RelatedResult:
2885 break;
2886 }
2887
2888 return false;
2889 }
2890
dumpImpl(raw_ostream & OS) const2891 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2892 assert(getParent() != this);
2893 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2894 for (unsigned I = 0; I != Depth; ++I)
2895 OS << "`-";
2896
2897 switch (getKind()) {
2898 case EK_Variable: OS << "Variable"; break;
2899 case EK_Parameter: OS << "Parameter"; break;
2900 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2901 break;
2902 case EK_Result: OS << "Result"; break;
2903 case EK_Exception: OS << "Exception"; break;
2904 case EK_Member: OS << "Member"; break;
2905 case EK_New: OS << "New"; break;
2906 case EK_Temporary: OS << "Temporary"; break;
2907 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2908 case EK_RelatedResult: OS << "RelatedResult"; break;
2909 case EK_Base: OS << "Base"; break;
2910 case EK_Delegating: OS << "Delegating"; break;
2911 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2912 case EK_VectorElement: OS << "VectorElement " << Index; break;
2913 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2914 case EK_BlockElement: OS << "Block"; break;
2915 case EK_LambdaCapture:
2916 OS << "LambdaCapture ";
2917 OS << DeclarationName(Capture.VarID);
2918 break;
2919 }
2920
2921 if (Decl *D = getDecl()) {
2922 OS << " ";
2923 cast<NamedDecl>(D)->printQualifiedName(OS);
2924 }
2925
2926 OS << " '" << getType().getAsString() << "'\n";
2927
2928 return Depth + 1;
2929 }
2930
dump() const2931 void InitializedEntity::dump() const {
2932 dumpImpl(llvm::errs());
2933 }
2934
2935 //===----------------------------------------------------------------------===//
2936 // Initialization sequence
2937 //===----------------------------------------------------------------------===//
2938
Destroy()2939 void InitializationSequence::Step::Destroy() {
2940 switch (Kind) {
2941 case SK_ResolveAddressOfOverloadedFunction:
2942 case SK_CastDerivedToBaseRValue:
2943 case SK_CastDerivedToBaseXValue:
2944 case SK_CastDerivedToBaseLValue:
2945 case SK_BindReference:
2946 case SK_BindReferenceToTemporary:
2947 case SK_ExtraneousCopyToTemporary:
2948 case SK_UserConversion:
2949 case SK_QualificationConversionRValue:
2950 case SK_QualificationConversionXValue:
2951 case SK_QualificationConversionLValue:
2952 case SK_AtomicConversion:
2953 case SK_LValueToRValue:
2954 case SK_ListInitialization:
2955 case SK_UnwrapInitList:
2956 case SK_RewrapInitList:
2957 case SK_ConstructorInitialization:
2958 case SK_ConstructorInitializationFromList:
2959 case SK_ZeroInitialization:
2960 case SK_CAssignment:
2961 case SK_StringInit:
2962 case SK_ObjCObjectConversion:
2963 case SK_ArrayInit:
2964 case SK_ParenthesizedArrayInit:
2965 case SK_PassByIndirectCopyRestore:
2966 case SK_PassByIndirectRestore:
2967 case SK_ProduceObjCObject:
2968 case SK_StdInitializerList:
2969 case SK_StdInitializerListConstructorCall:
2970 case SK_OCLSamplerInit:
2971 case SK_OCLZeroEvent:
2972 break;
2973
2974 case SK_ConversionSequence:
2975 case SK_ConversionSequenceNoNarrowing:
2976 delete ICS;
2977 }
2978 }
2979
isDirectReferenceBinding() const2980 bool InitializationSequence::isDirectReferenceBinding() const {
2981 return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2982 }
2983
isAmbiguous() const2984 bool InitializationSequence::isAmbiguous() const {
2985 if (!Failed())
2986 return false;
2987
2988 switch (getFailureKind()) {
2989 case FK_TooManyInitsForReference:
2990 case FK_ArrayNeedsInitList:
2991 case FK_ArrayNeedsInitListOrStringLiteral:
2992 case FK_ArrayNeedsInitListOrWideStringLiteral:
2993 case FK_NarrowStringIntoWideCharArray:
2994 case FK_WideStringIntoCharArray:
2995 case FK_IncompatWideStringIntoWideChar:
2996 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2997 case FK_NonConstLValueReferenceBindingToTemporary:
2998 case FK_NonConstLValueReferenceBindingToUnrelated:
2999 case FK_RValueReferenceBindingToLValue:
3000 case FK_ReferenceInitDropsQualifiers:
3001 case FK_ReferenceInitFailed:
3002 case FK_ConversionFailed:
3003 case FK_ConversionFromPropertyFailed:
3004 case FK_TooManyInitsForScalar:
3005 case FK_ReferenceBindingToInitList:
3006 case FK_InitListBadDestinationType:
3007 case FK_DefaultInitOfConst:
3008 case FK_Incomplete:
3009 case FK_ArrayTypeMismatch:
3010 case FK_NonConstantArrayInit:
3011 case FK_ListInitializationFailed:
3012 case FK_VariableLengthArrayHasInitializer:
3013 case FK_PlaceholderType:
3014 case FK_ExplicitConstructor:
3015 case FK_AddressOfUnaddressableFunction:
3016 return false;
3017
3018 case FK_ReferenceInitOverloadFailed:
3019 case FK_UserConversionOverloadFailed:
3020 case FK_ConstructorOverloadFailed:
3021 case FK_ListConstructorOverloadFailed:
3022 return FailedOverloadResult == OR_Ambiguous;
3023 }
3024
3025 llvm_unreachable("Invalid EntityKind!");
3026 }
3027
isConstructorInitialization() const3028 bool InitializationSequence::isConstructorInitialization() const {
3029 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3030 }
3031
3032 void
3033 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)3034 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3035 DeclAccessPair Found,
3036 bool HadMultipleCandidates) {
3037 Step S;
3038 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3039 S.Type = Function->getType();
3040 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3041 S.Function.Function = Function;
3042 S.Function.FoundDecl = Found;
3043 Steps.push_back(S);
3044 }
3045
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)3046 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3047 ExprValueKind VK) {
3048 Step S;
3049 switch (VK) {
3050 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3051 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3052 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3053 }
3054 S.Type = BaseType;
3055 Steps.push_back(S);
3056 }
3057
AddReferenceBindingStep(QualType T,bool BindingTemporary)3058 void InitializationSequence::AddReferenceBindingStep(QualType T,
3059 bool BindingTemporary) {
3060 Step S;
3061 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3062 S.Type = T;
3063 Steps.push_back(S);
3064 }
3065
AddExtraneousCopyToTemporary(QualType T)3066 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3067 Step S;
3068 S.Kind = SK_ExtraneousCopyToTemporary;
3069 S.Type = T;
3070 Steps.push_back(S);
3071 }
3072
3073 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)3074 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3075 DeclAccessPair FoundDecl,
3076 QualType T,
3077 bool HadMultipleCandidates) {
3078 Step S;
3079 S.Kind = SK_UserConversion;
3080 S.Type = T;
3081 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3082 S.Function.Function = Function;
3083 S.Function.FoundDecl = FoundDecl;
3084 Steps.push_back(S);
3085 }
3086
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)3087 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3088 ExprValueKind VK) {
3089 Step S;
3090 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3091 switch (VK) {
3092 case VK_RValue:
3093 S.Kind = SK_QualificationConversionRValue;
3094 break;
3095 case VK_XValue:
3096 S.Kind = SK_QualificationConversionXValue;
3097 break;
3098 case VK_LValue:
3099 S.Kind = SK_QualificationConversionLValue;
3100 break;
3101 }
3102 S.Type = Ty;
3103 Steps.push_back(S);
3104 }
3105
AddAtomicConversionStep(QualType Ty)3106 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3107 Step S;
3108 S.Kind = SK_AtomicConversion;
3109 S.Type = Ty;
3110 Steps.push_back(S);
3111 }
3112
AddLValueToRValueStep(QualType Ty)3113 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3114 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3115
3116 Step S;
3117 S.Kind = SK_LValueToRValue;
3118 S.Type = Ty;
3119 Steps.push_back(S);
3120 }
3121
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)3122 void InitializationSequence::AddConversionSequenceStep(
3123 const ImplicitConversionSequence &ICS, QualType T,
3124 bool TopLevelOfInitList) {
3125 Step S;
3126 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3127 : SK_ConversionSequence;
3128 S.Type = T;
3129 S.ICS = new ImplicitConversionSequence(ICS);
3130 Steps.push_back(S);
3131 }
3132
AddListInitializationStep(QualType T)3133 void InitializationSequence::AddListInitializationStep(QualType T) {
3134 Step S;
3135 S.Kind = SK_ListInitialization;
3136 S.Type = T;
3137 Steps.push_back(S);
3138 }
3139
3140 void
3141 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)3142 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
3143 AccessSpecifier Access,
3144 QualType T,
3145 bool HadMultipleCandidates,
3146 bool FromInitList, bool AsInitList) {
3147 Step S;
3148 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3149 : SK_ConstructorInitializationFromList
3150 : SK_ConstructorInitialization;
3151 S.Type = T;
3152 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3153 S.Function.Function = Constructor;
3154 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
3155 Steps.push_back(S);
3156 }
3157
AddZeroInitializationStep(QualType T)3158 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3159 Step S;
3160 S.Kind = SK_ZeroInitialization;
3161 S.Type = T;
3162 Steps.push_back(S);
3163 }
3164
AddCAssignmentStep(QualType T)3165 void InitializationSequence::AddCAssignmentStep(QualType T) {
3166 Step S;
3167 S.Kind = SK_CAssignment;
3168 S.Type = T;
3169 Steps.push_back(S);
3170 }
3171
AddStringInitStep(QualType T)3172 void InitializationSequence::AddStringInitStep(QualType T) {
3173 Step S;
3174 S.Kind = SK_StringInit;
3175 S.Type = T;
3176 Steps.push_back(S);
3177 }
3178
AddObjCObjectConversionStep(QualType T)3179 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3180 Step S;
3181 S.Kind = SK_ObjCObjectConversion;
3182 S.Type = T;
3183 Steps.push_back(S);
3184 }
3185
AddArrayInitStep(QualType T)3186 void InitializationSequence::AddArrayInitStep(QualType T) {
3187 Step S;
3188 S.Kind = SK_ArrayInit;
3189 S.Type = T;
3190 Steps.push_back(S);
3191 }
3192
AddParenthesizedArrayInitStep(QualType T)3193 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3194 Step S;
3195 S.Kind = SK_ParenthesizedArrayInit;
3196 S.Type = T;
3197 Steps.push_back(S);
3198 }
3199
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)3200 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3201 bool shouldCopy) {
3202 Step s;
3203 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3204 : SK_PassByIndirectRestore);
3205 s.Type = type;
3206 Steps.push_back(s);
3207 }
3208
AddProduceObjCObjectStep(QualType T)3209 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3210 Step S;
3211 S.Kind = SK_ProduceObjCObject;
3212 S.Type = T;
3213 Steps.push_back(S);
3214 }
3215
AddStdInitializerListConstructionStep(QualType T)3216 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3217 Step S;
3218 S.Kind = SK_StdInitializerList;
3219 S.Type = T;
3220 Steps.push_back(S);
3221 }
3222
AddOCLSamplerInitStep(QualType T)3223 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3224 Step S;
3225 S.Kind = SK_OCLSamplerInit;
3226 S.Type = T;
3227 Steps.push_back(S);
3228 }
3229
AddOCLZeroEventStep(QualType T)3230 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3231 Step S;
3232 S.Kind = SK_OCLZeroEvent;
3233 S.Type = T;
3234 Steps.push_back(S);
3235 }
3236
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3237 void InitializationSequence::RewrapReferenceInitList(QualType T,
3238 InitListExpr *Syntactic) {
3239 assert(Syntactic->getNumInits() == 1 &&
3240 "Can only rewrap trivial init lists.");
3241 Step S;
3242 S.Kind = SK_UnwrapInitList;
3243 S.Type = Syntactic->getInit(0)->getType();
3244 Steps.insert(Steps.begin(), S);
3245
3246 S.Kind = SK_RewrapInitList;
3247 S.Type = T;
3248 S.WrappingSyntacticList = Syntactic;
3249 Steps.push_back(S);
3250 }
3251
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3252 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3253 OverloadingResult Result) {
3254 setSequenceKind(FailedSequence);
3255 this->Failure = Failure;
3256 this->FailedOverloadResult = Result;
3257 }
3258
3259 //===----------------------------------------------------------------------===//
3260 // Attempt initialization
3261 //===----------------------------------------------------------------------===//
3262
3263 /// Tries to add a zero initializer. Returns true if that worked.
3264 static bool
maybeRecoverWithZeroInitialization(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3265 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3266 const InitializedEntity &Entity) {
3267 if (Entity.getKind() != InitializedEntity::EK_Variable)
3268 return false;
3269
3270 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3271 if (VD->getInit() || VD->getLocEnd().isMacroID())
3272 return false;
3273
3274 QualType VariableTy = VD->getType().getCanonicalType();
3275 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3276 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3277 if (!Init.empty()) {
3278 Sequence.AddZeroInitializationStep(Entity.getType());
3279 Sequence.SetZeroInitializationFixit(Init, Loc);
3280 return true;
3281 }
3282 return false;
3283 }
3284
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3285 static void MaybeProduceObjCObject(Sema &S,
3286 InitializationSequence &Sequence,
3287 const InitializedEntity &Entity) {
3288 if (!S.getLangOpts().ObjCAutoRefCount) return;
3289
3290 /// When initializing a parameter, produce the value if it's marked
3291 /// __attribute__((ns_consumed)).
3292 if (Entity.isParameterKind()) {
3293 if (!Entity.isParameterConsumed())
3294 return;
3295
3296 assert(Entity.getType()->isObjCRetainableType() &&
3297 "consuming an object of unretainable type?");
3298 Sequence.AddProduceObjCObjectStep(Entity.getType());
3299
3300 /// When initializing a return value, if the return type is a
3301 /// retainable type, then returns need to immediately retain the
3302 /// object. If an autorelease is required, it will be done at the
3303 /// last instant.
3304 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3305 if (!Entity.getType()->isObjCRetainableType())
3306 return;
3307
3308 Sequence.AddProduceObjCObjectStep(Entity.getType());
3309 }
3310 }
3311
3312 static void TryListInitialization(Sema &S,
3313 const InitializedEntity &Entity,
3314 const InitializationKind &Kind,
3315 InitListExpr *InitList,
3316 InitializationSequence &Sequence);
3317
3318 /// \brief When initializing from init list via constructor, handle
3319 /// initialization of an object of type std::initializer_list<T>.
3320 ///
3321 /// \return true if we have handled initialization of an object of type
3322 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)3323 static bool TryInitializerListConstruction(Sema &S,
3324 InitListExpr *List,
3325 QualType DestType,
3326 InitializationSequence &Sequence) {
3327 QualType E;
3328 if (!S.isStdInitializerList(DestType, &E))
3329 return false;
3330
3331 if (!S.isCompleteType(List->getExprLoc(), E)) {
3332 Sequence.setIncompleteTypeFailure(E);
3333 return true;
3334 }
3335
3336 // Try initializing a temporary array from the init list.
3337 QualType ArrayType = S.Context.getConstantArrayType(
3338 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3339 List->getNumInits()),
3340 clang::ArrayType::Normal, 0);
3341 InitializedEntity HiddenArray =
3342 InitializedEntity::InitializeTemporary(ArrayType);
3343 InitializationKind Kind =
3344 InitializationKind::CreateDirectList(List->getExprLoc());
3345 TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3346 if (Sequence)
3347 Sequence.AddStdInitializerListConstructionStep(DestType);
3348 return true;
3349 }
3350
3351 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,DeclContext::lookup_result Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool IsListInit)3352 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3353 MultiExprArg Args,
3354 OverloadCandidateSet &CandidateSet,
3355 DeclContext::lookup_result Ctors,
3356 OverloadCandidateSet::iterator &Best,
3357 bool CopyInitializing, bool AllowExplicit,
3358 bool OnlyListConstructors, bool IsListInit) {
3359 CandidateSet.clear();
3360
3361 for (NamedDecl *D : Ctors) {
3362 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3363 bool SuppressUserConversions = false;
3364
3365 // Find the constructor (which may be a template).
3366 CXXConstructorDecl *Constructor = nullptr;
3367 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3368 if (ConstructorTmpl)
3369 Constructor = cast<CXXConstructorDecl>(
3370 ConstructorTmpl->getTemplatedDecl());
3371 else {
3372 Constructor = cast<CXXConstructorDecl>(D);
3373
3374 // C++11 [over.best.ics]p4:
3375 // ... and the constructor or user-defined conversion function is a
3376 // candidate by
3377 // - 13.3.1.3, when the argument is the temporary in the second step
3378 // of a class copy-initialization, or
3379 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases),
3380 // user-defined conversion sequences are not considered.
3381 // FIXME: This breaks backward compatibility, e.g. PR12117. As a
3382 // temporary fix, let's re-instate the third bullet above until
3383 // there is a resolution in the standard, i.e.,
3384 // - 13.3.1.7 when the initializer list has exactly one element that is
3385 // itself an initializer list and a conversion to some class X or
3386 // reference to (possibly cv-qualified) X is considered for the first
3387 // parameter of a constructor of X.
3388 if ((CopyInitializing ||
3389 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3390 Constructor->isCopyOrMoveConstructor())
3391 SuppressUserConversions = true;
3392 }
3393
3394 if (!Constructor->isInvalidDecl() &&
3395 (AllowExplicit || !Constructor->isExplicit()) &&
3396 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3397 if (ConstructorTmpl)
3398 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3399 /*ExplicitArgs*/ nullptr, Args,
3400 CandidateSet, SuppressUserConversions);
3401 else {
3402 // C++ [over.match.copy]p1:
3403 // - When initializing a temporary to be bound to the first parameter
3404 // of a constructor that takes a reference to possibly cv-qualified
3405 // T as its first argument, called with a single argument in the
3406 // context of direct-initialization, explicit conversion functions
3407 // are also considered.
3408 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3409 Args.size() == 1 &&
3410 Constructor->isCopyOrMoveConstructor();
3411 S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3412 SuppressUserConversions,
3413 /*PartialOverloading=*/false,
3414 /*AllowExplicit=*/AllowExplicitConv);
3415 }
3416 }
3417 }
3418
3419 // Perform overload resolution and return the result.
3420 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3421 }
3422
3423 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3424 /// enumerates the constructors of the initialized entity and performs overload
3425 /// resolution to select the best.
3426 /// \param IsListInit Is this list-initialization?
3427 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3428 /// list-initialization from {x} where x is the same
3429 /// type as the entity?
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,InitializationSequence & Sequence,bool IsListInit=false,bool IsInitListCopy=false)3430 static void TryConstructorInitialization(Sema &S,
3431 const InitializedEntity &Entity,
3432 const InitializationKind &Kind,
3433 MultiExprArg Args, QualType DestType,
3434 InitializationSequence &Sequence,
3435 bool IsListInit = false,
3436 bool IsInitListCopy = false) {
3437 assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3438 "IsListInit must come with a single initializer list argument.");
3439
3440 // The type we're constructing needs to be complete.
3441 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3442 Sequence.setIncompleteTypeFailure(DestType);
3443 return;
3444 }
3445
3446 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3447 assert(DestRecordType && "Constructor initialization requires record type");
3448 CXXRecordDecl *DestRecordDecl
3449 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3450
3451 // Build the candidate set directly in the initialization sequence
3452 // structure, so that it will persist if we fail.
3453 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3454
3455 // Determine whether we are allowed to call explicit constructors or
3456 // explicit conversion operators.
3457 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3458 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3459
3460 // - Otherwise, if T is a class type, constructors are considered. The
3461 // applicable constructors are enumerated, and the best one is chosen
3462 // through overload resolution.
3463 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3464
3465 OverloadingResult Result = OR_No_Viable_Function;
3466 OverloadCandidateSet::iterator Best;
3467 bool AsInitializerList = false;
3468
3469 // C++11 [over.match.list]p1, per DR1467:
3470 // When objects of non-aggregate type T are list-initialized, such that
3471 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3472 // according to the rules in this section, overload resolution selects
3473 // the constructor in two phases:
3474 //
3475 // - Initially, the candidate functions are the initializer-list
3476 // constructors of the class T and the argument list consists of the
3477 // initializer list as a single argument.
3478 if (IsListInit) {
3479 InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3480 AsInitializerList = true;
3481
3482 // If the initializer list has no elements and T has a default constructor,
3483 // the first phase is omitted.
3484 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3485 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3486 CandidateSet, Ctors, Best,
3487 CopyInitialization, AllowExplicit,
3488 /*OnlyListConstructor=*/true,
3489 IsListInit);
3490
3491 // Time to unwrap the init list.
3492 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3493 }
3494
3495 // C++11 [over.match.list]p1:
3496 // - If no viable initializer-list constructor is found, overload resolution
3497 // is performed again, where the candidate functions are all the
3498 // constructors of the class T and the argument list consists of the
3499 // elements of the initializer list.
3500 if (Result == OR_No_Viable_Function) {
3501 AsInitializerList = false;
3502 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3503 CandidateSet, Ctors, Best,
3504 CopyInitialization, AllowExplicit,
3505 /*OnlyListConstructors=*/false,
3506 IsListInit);
3507 }
3508 if (Result) {
3509 Sequence.SetOverloadFailure(IsListInit ?
3510 InitializationSequence::FK_ListConstructorOverloadFailed :
3511 InitializationSequence::FK_ConstructorOverloadFailed,
3512 Result);
3513 return;
3514 }
3515
3516 // C++11 [dcl.init]p6:
3517 // If a program calls for the default initialization of an object
3518 // of a const-qualified type T, T shall be a class type with a
3519 // user-provided default constructor.
3520 if (Kind.getKind() == InitializationKind::IK_Default &&
3521 Entity.getType().isConstQualified() &&
3522 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3523 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3524 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3525 return;
3526 }
3527
3528 // C++11 [over.match.list]p1:
3529 // In copy-list-initialization, if an explicit constructor is chosen, the
3530 // initializer is ill-formed.
3531 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3532 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3533 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3534 return;
3535 }
3536
3537 // Add the constructor initialization step. Any cv-qualification conversion is
3538 // subsumed by the initialization.
3539 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3540 Sequence.AddConstructorInitializationStep(
3541 CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates,
3542 IsListInit | IsInitListCopy, AsInitializerList);
3543 }
3544
3545 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)3546 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3547 Expr *Initializer,
3548 QualType &SourceType,
3549 QualType &UnqualifiedSourceType,
3550 QualType UnqualifiedTargetType,
3551 InitializationSequence &Sequence) {
3552 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3553 S.Context.OverloadTy) {
3554 DeclAccessPair Found;
3555 bool HadMultipleCandidates = false;
3556 if (FunctionDecl *Fn
3557 = S.ResolveAddressOfOverloadedFunction(Initializer,
3558 UnqualifiedTargetType,
3559 false, Found,
3560 &HadMultipleCandidates)) {
3561 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3562 HadMultipleCandidates);
3563 SourceType = Fn->getType();
3564 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3565 } else if (!UnqualifiedTargetType->isRecordType()) {
3566 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3567 return true;
3568 }
3569 }
3570 return false;
3571 }
3572
3573 static void TryReferenceInitializationCore(Sema &S,
3574 const InitializedEntity &Entity,
3575 const InitializationKind &Kind,
3576 Expr *Initializer,
3577 QualType cv1T1, QualType T1,
3578 Qualifiers T1Quals,
3579 QualType cv2T2, QualType T2,
3580 Qualifiers T2Quals,
3581 InitializationSequence &Sequence);
3582
3583 static void TryValueInitialization(Sema &S,
3584 const InitializedEntity &Entity,
3585 const InitializationKind &Kind,
3586 InitializationSequence &Sequence,
3587 InitListExpr *InitList = nullptr);
3588
3589 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3590 static void TryReferenceListInitialization(Sema &S,
3591 const InitializedEntity &Entity,
3592 const InitializationKind &Kind,
3593 InitListExpr *InitList,
3594 InitializationSequence &Sequence) {
3595 // First, catch C++03 where this isn't possible.
3596 if (!S.getLangOpts().CPlusPlus11) {
3597 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3598 return;
3599 }
3600 // Can't reference initialize a compound literal.
3601 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3602 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3603 return;
3604 }
3605
3606 QualType DestType = Entity.getType();
3607 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3608 Qualifiers T1Quals;
3609 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3610
3611 // Reference initialization via an initializer list works thus:
3612 // If the initializer list consists of a single element that is
3613 // reference-related to the referenced type, bind directly to that element
3614 // (possibly creating temporaries).
3615 // Otherwise, initialize a temporary with the initializer list and
3616 // bind to that.
3617 if (InitList->getNumInits() == 1) {
3618 Expr *Initializer = InitList->getInit(0);
3619 QualType cv2T2 = Initializer->getType();
3620 Qualifiers T2Quals;
3621 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3622
3623 // If this fails, creating a temporary wouldn't work either.
3624 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3625 T1, Sequence))
3626 return;
3627
3628 SourceLocation DeclLoc = Initializer->getLocStart();
3629 bool dummy1, dummy2, dummy3;
3630 Sema::ReferenceCompareResult RefRelationship
3631 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3632 dummy2, dummy3);
3633 if (RefRelationship >= Sema::Ref_Related) {
3634 // Try to bind the reference here.
3635 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3636 T1Quals, cv2T2, T2, T2Quals, Sequence);
3637 if (Sequence)
3638 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3639 return;
3640 }
3641
3642 // Update the initializer if we've resolved an overloaded function.
3643 if (Sequence.step_begin() != Sequence.step_end())
3644 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3645 }
3646
3647 // Not reference-related. Create a temporary and bind to that.
3648 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3649
3650 TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3651 if (Sequence) {
3652 if (DestType->isRValueReferenceType() ||
3653 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3654 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3655 else
3656 Sequence.SetFailed(
3657 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3658 }
3659 }
3660
3661 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3662 static void TryListInitialization(Sema &S,
3663 const InitializedEntity &Entity,
3664 const InitializationKind &Kind,
3665 InitListExpr *InitList,
3666 InitializationSequence &Sequence) {
3667 QualType DestType = Entity.getType();
3668
3669 // C++ doesn't allow scalar initialization with more than one argument.
3670 // But C99 complex numbers are scalars and it makes sense there.
3671 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3672 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3673 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3674 return;
3675 }
3676 if (DestType->isReferenceType()) {
3677 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3678 return;
3679 }
3680
3681 if (DestType->isRecordType() &&
3682 !S.isCompleteType(InitList->getLocStart(), DestType)) {
3683 Sequence.setIncompleteTypeFailure(DestType);
3684 return;
3685 }
3686
3687 // C++11 [dcl.init.list]p3, per DR1467:
3688 // - If T is a class type and the initializer list has a single element of
3689 // type cv U, where U is T or a class derived from T, the object is
3690 // initialized from that element (by copy-initialization for
3691 // copy-list-initialization, or by direct-initialization for
3692 // direct-list-initialization).
3693 // - Otherwise, if T is a character array and the initializer list has a
3694 // single element that is an appropriately-typed string literal
3695 // (8.5.2 [dcl.init.string]), initialization is performed as described
3696 // in that section.
3697 // - Otherwise, if T is an aggregate, [...] (continue below).
3698 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3699 if (DestType->isRecordType()) {
3700 QualType InitType = InitList->getInit(0)->getType();
3701 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3702 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3703 Expr *InitAsExpr = InitList->getInit(0);
3704 TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType,
3705 Sequence, /*InitListSyntax*/ false,
3706 /*IsInitListCopy*/ true);
3707 return;
3708 }
3709 }
3710 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3711 Expr *SubInit[1] = {InitList->getInit(0)};
3712 if (!isa<VariableArrayType>(DestAT) &&
3713 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3714 InitializationKind SubKind =
3715 Kind.getKind() == InitializationKind::IK_DirectList
3716 ? InitializationKind::CreateDirect(Kind.getLocation(),
3717 InitList->getLBraceLoc(),
3718 InitList->getRBraceLoc())
3719 : Kind;
3720 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3721 /*TopLevelOfInitList*/ true);
3722
3723 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3724 // the element is not an appropriately-typed string literal, in which
3725 // case we should proceed as in C++11 (below).
3726 if (Sequence) {
3727 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3728 return;
3729 }
3730 }
3731 }
3732 }
3733
3734 // C++11 [dcl.init.list]p3:
3735 // - If T is an aggregate, aggregate initialization is performed.
3736 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3737 (S.getLangOpts().CPlusPlus11 &&
3738 S.isStdInitializerList(DestType, nullptr))) {
3739 if (S.getLangOpts().CPlusPlus11) {
3740 // - Otherwise, if the initializer list has no elements and T is a
3741 // class type with a default constructor, the object is
3742 // value-initialized.
3743 if (InitList->getNumInits() == 0) {
3744 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3745 if (RD->hasDefaultConstructor()) {
3746 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3747 return;
3748 }
3749 }
3750
3751 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3752 // an initializer_list object constructed [...]
3753 if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3754 return;
3755
3756 // - Otherwise, if T is a class type, constructors are considered.
3757 Expr *InitListAsExpr = InitList;
3758 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3759 Sequence, /*InitListSyntax*/ true);
3760 } else
3761 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3762 return;
3763 }
3764
3765 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3766 InitList->getNumInits() == 1 &&
3767 InitList->getInit(0)->getType()->isRecordType()) {
3768 // - Otherwise, if the initializer list has a single element of type E
3769 // [...references are handled above...], the object or reference is
3770 // initialized from that element (by copy-initialization for
3771 // copy-list-initialization, or by direct-initialization for
3772 // direct-list-initialization); if a narrowing conversion is required
3773 // to convert the element to T, the program is ill-formed.
3774 //
3775 // Per core-24034, this is direct-initialization if we were performing
3776 // direct-list-initialization and copy-initialization otherwise.
3777 // We can't use InitListChecker for this, because it always performs
3778 // copy-initialization. This only matters if we might use an 'explicit'
3779 // conversion operator, so we only need to handle the cases where the source
3780 // is of record type.
3781 InitializationKind SubKind =
3782 Kind.getKind() == InitializationKind::IK_DirectList
3783 ? InitializationKind::CreateDirect(Kind.getLocation(),
3784 InitList->getLBraceLoc(),
3785 InitList->getRBraceLoc())
3786 : Kind;
3787 Expr *SubInit[1] = { InitList->getInit(0) };
3788 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3789 /*TopLevelOfInitList*/true);
3790 if (Sequence)
3791 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3792 return;
3793 }
3794
3795 InitListChecker CheckInitList(S, Entity, InitList,
3796 DestType, /*VerifyOnly=*/true);
3797 if (CheckInitList.HadError()) {
3798 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3799 return;
3800 }
3801
3802 // Add the list initialization step with the built init list.
3803 Sequence.AddListInitializationStep(DestType);
3804 }
3805
3806 /// \brief Try a reference initialization that involves calling a conversion
3807 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3808 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3809 const InitializedEntity &Entity,
3810 const InitializationKind &Kind,
3811 Expr *Initializer,
3812 bool AllowRValues,
3813 InitializationSequence &Sequence) {
3814 QualType DestType = Entity.getType();
3815 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3816 QualType T1 = cv1T1.getUnqualifiedType();
3817 QualType cv2T2 = Initializer->getType();
3818 QualType T2 = cv2T2.getUnqualifiedType();
3819
3820 bool DerivedToBase;
3821 bool ObjCConversion;
3822 bool ObjCLifetimeConversion;
3823 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3824 T1, T2, DerivedToBase,
3825 ObjCConversion,
3826 ObjCLifetimeConversion) &&
3827 "Must have incompatible references when binding via conversion");
3828 (void)DerivedToBase;
3829 (void)ObjCConversion;
3830 (void)ObjCLifetimeConversion;
3831
3832 // Build the candidate set directly in the initialization sequence
3833 // structure, so that it will persist if we fail.
3834 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3835 CandidateSet.clear();
3836
3837 // Determine whether we are allowed to call explicit constructors or
3838 // explicit conversion operators.
3839 bool AllowExplicit = Kind.AllowExplicit();
3840 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3841
3842 const RecordType *T1RecordType = nullptr;
3843 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3844 S.isCompleteType(Kind.getLocation(), T1)) {
3845 // The type we're converting to is a class type. Enumerate its constructors
3846 // to see if there is a suitable conversion.
3847 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3848
3849 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
3850 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3851
3852 // Find the constructor (which may be a template).
3853 CXXConstructorDecl *Constructor = nullptr;
3854 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3855 if (ConstructorTmpl)
3856 Constructor = cast<CXXConstructorDecl>(
3857 ConstructorTmpl->getTemplatedDecl());
3858 else
3859 Constructor = cast<CXXConstructorDecl>(D);
3860
3861 if (!Constructor->isInvalidDecl() &&
3862 Constructor->isConvertingConstructor(AllowExplicit)) {
3863 if (ConstructorTmpl)
3864 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3865 /*ExplicitArgs*/ nullptr,
3866 Initializer, CandidateSet,
3867 /*SuppressUserConversions=*/true);
3868 else
3869 S.AddOverloadCandidate(Constructor, FoundDecl,
3870 Initializer, CandidateSet,
3871 /*SuppressUserConversions=*/true);
3872 }
3873 }
3874 }
3875 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3876 return OR_No_Viable_Function;
3877
3878 const RecordType *T2RecordType = nullptr;
3879 if ((T2RecordType = T2->getAs<RecordType>()) &&
3880 S.isCompleteType(Kind.getLocation(), T2)) {
3881 // The type we're converting from is a class type, enumerate its conversion
3882 // functions.
3883 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3884
3885 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
3886 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3887 NamedDecl *D = *I;
3888 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3889 if (isa<UsingShadowDecl>(D))
3890 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3891
3892 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3893 CXXConversionDecl *Conv;
3894 if (ConvTemplate)
3895 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3896 else
3897 Conv = cast<CXXConversionDecl>(D);
3898
3899 // If the conversion function doesn't return a reference type,
3900 // it can't be considered for this conversion unless we're allowed to
3901 // consider rvalues.
3902 // FIXME: Do we need to make sure that we only consider conversion
3903 // candidates with reference-compatible results? That might be needed to
3904 // break recursion.
3905 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3906 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3907 if (ConvTemplate)
3908 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3909 ActingDC, Initializer,
3910 DestType, CandidateSet,
3911 /*AllowObjCConversionOnExplicit=*/
3912 false);
3913 else
3914 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3915 Initializer, DestType, CandidateSet,
3916 /*AllowObjCConversionOnExplicit=*/false);
3917 }
3918 }
3919 }
3920 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3921 return OR_No_Viable_Function;
3922
3923 SourceLocation DeclLoc = Initializer->getLocStart();
3924
3925 // Perform overload resolution. If it fails, return the failed result.
3926 OverloadCandidateSet::iterator Best;
3927 if (OverloadingResult Result
3928 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3929 return Result;
3930
3931 FunctionDecl *Function = Best->Function;
3932 // This is the overload that will be used for this initialization step if we
3933 // use this initialization. Mark it as referenced.
3934 Function->setReferenced();
3935
3936 // Compute the returned type of the conversion.
3937 if (isa<CXXConversionDecl>(Function))
3938 T2 = Function->getReturnType();
3939 else
3940 T2 = cv1T1;
3941
3942 // Add the user-defined conversion step.
3943 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3944 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3945 T2.getNonLValueExprType(S.Context),
3946 HadMultipleCandidates);
3947
3948 // Determine whether we need to perform derived-to-base or
3949 // cv-qualification adjustments.
3950 ExprValueKind VK = VK_RValue;
3951 if (T2->isLValueReferenceType())
3952 VK = VK_LValue;
3953 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3954 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3955
3956 bool NewDerivedToBase = false;
3957 bool NewObjCConversion = false;
3958 bool NewObjCLifetimeConversion = false;
3959 Sema::ReferenceCompareResult NewRefRelationship
3960 = S.CompareReferenceRelationship(DeclLoc, T1,
3961 T2.getNonLValueExprType(S.Context),
3962 NewDerivedToBase, NewObjCConversion,
3963 NewObjCLifetimeConversion);
3964 if (NewRefRelationship == Sema::Ref_Incompatible) {
3965 // If the type we've converted to is not reference-related to the
3966 // type we're looking for, then there is another conversion step
3967 // we need to perform to produce a temporary of the right type
3968 // that we'll be binding to.
3969 ImplicitConversionSequence ICS;
3970 ICS.setStandard();
3971 ICS.Standard = Best->FinalConversion;
3972 T2 = ICS.Standard.getToType(2);
3973 Sequence.AddConversionSequenceStep(ICS, T2);
3974 } else if (NewDerivedToBase)
3975 Sequence.AddDerivedToBaseCastStep(
3976 S.Context.getQualifiedType(T1,
3977 T2.getNonReferenceType().getQualifiers()),
3978 VK);
3979 else if (NewObjCConversion)
3980 Sequence.AddObjCObjectConversionStep(
3981 S.Context.getQualifiedType(T1,
3982 T2.getNonReferenceType().getQualifiers()));
3983
3984 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3985 Sequence.AddQualificationConversionStep(cv1T1, VK);
3986
3987 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3988 return OR_Success;
3989 }
3990
3991 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3992 const InitializedEntity &Entity,
3993 Expr *CurInitExpr);
3994
3995 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3996 static void TryReferenceInitialization(Sema &S,
3997 const InitializedEntity &Entity,
3998 const InitializationKind &Kind,
3999 Expr *Initializer,
4000 InitializationSequence &Sequence) {
4001 QualType DestType = Entity.getType();
4002 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4003 Qualifiers T1Quals;
4004 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4005 QualType cv2T2 = Initializer->getType();
4006 Qualifiers T2Quals;
4007 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4008
4009 // If the initializer is the address of an overloaded function, try
4010 // to resolve the overloaded function. If all goes well, T2 is the
4011 // type of the resulting function.
4012 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4013 T1, Sequence))
4014 return;
4015
4016 // Delegate everything else to a subfunction.
4017 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4018 T1Quals, cv2T2, T2, T2Quals, Sequence);
4019 }
4020
4021 /// Converts the target of reference initialization so that it has the
4022 /// appropriate qualifiers and value kind.
4023 ///
4024 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
4025 /// \code
4026 /// int x;
4027 /// const int &r = x;
4028 /// \endcode
4029 ///
4030 /// In this case the reference is binding to a bitfield lvalue, which isn't
4031 /// valid. Perform a load to create a lifetime-extended temporary instead.
4032 /// \code
4033 /// const int &r = someStruct.bitfield;
4034 /// \endcode
4035 static ExprValueKind
convertQualifiersAndValueKindIfNecessary(Sema & S,InitializationSequence & Sequence,Expr * Initializer,QualType cv1T1,Qualifiers T1Quals,Qualifiers T2Quals,bool IsLValueRef)4036 convertQualifiersAndValueKindIfNecessary(Sema &S,
4037 InitializationSequence &Sequence,
4038 Expr *Initializer,
4039 QualType cv1T1,
4040 Qualifiers T1Quals,
4041 Qualifiers T2Quals,
4042 bool IsLValueRef) {
4043 bool IsNonAddressableType = Initializer->refersToBitField() ||
4044 Initializer->refersToVectorElement();
4045
4046 if (IsNonAddressableType) {
4047 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
4048 // lvalue reference to a non-volatile const type, or the reference shall be
4049 // an rvalue reference.
4050 //
4051 // If not, we can't make a temporary and bind to that. Give up and allow the
4052 // error to be diagnosed later.
4053 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
4054 assert(Initializer->isGLValue());
4055 return Initializer->getValueKind();
4056 }
4057
4058 // Force a load so we can materialize a temporary.
4059 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
4060 return VK_RValue;
4061 }
4062
4063 if (T1Quals != T2Quals) {
4064 Sequence.AddQualificationConversionStep(cv1T1,
4065 Initializer->getValueKind());
4066 }
4067
4068 return Initializer->getValueKind();
4069 }
4070
4071
4072 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)4073 static void TryReferenceInitializationCore(Sema &S,
4074 const InitializedEntity &Entity,
4075 const InitializationKind &Kind,
4076 Expr *Initializer,
4077 QualType cv1T1, QualType T1,
4078 Qualifiers T1Quals,
4079 QualType cv2T2, QualType T2,
4080 Qualifiers T2Quals,
4081 InitializationSequence &Sequence) {
4082 QualType DestType = Entity.getType();
4083 SourceLocation DeclLoc = Initializer->getLocStart();
4084 // Compute some basic properties of the types and the initializer.
4085 bool isLValueRef = DestType->isLValueReferenceType();
4086 bool isRValueRef = !isLValueRef;
4087 bool DerivedToBase = false;
4088 bool ObjCConversion = false;
4089 bool ObjCLifetimeConversion = false;
4090 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4091 Sema::ReferenceCompareResult RefRelationship
4092 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4093 ObjCConversion, ObjCLifetimeConversion);
4094
4095 // C++0x [dcl.init.ref]p5:
4096 // A reference to type "cv1 T1" is initialized by an expression of type
4097 // "cv2 T2" as follows:
4098 //
4099 // - If the reference is an lvalue reference and the initializer
4100 // expression
4101 // Note the analogous bullet points for rvalue refs to functions. Because
4102 // there are no function rvalues in C++, rvalue refs to functions are treated
4103 // like lvalue refs.
4104 OverloadingResult ConvOvlResult = OR_Success;
4105 bool T1Function = T1->isFunctionType();
4106 if (isLValueRef || T1Function) {
4107 if (InitCategory.isLValue() &&
4108 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4109 (Kind.isCStyleOrFunctionalCast() &&
4110 RefRelationship == Sema::Ref_Related))) {
4111 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4112 // reference-compatible with "cv2 T2," or
4113 //
4114 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
4115 // bit-field when we're determining whether the reference initialization
4116 // can occur. However, we do pay attention to whether it is a bit-field
4117 // to decide whether we're actually binding to a temporary created from
4118 // the bit-field.
4119 if (DerivedToBase)
4120 Sequence.AddDerivedToBaseCastStep(
4121 S.Context.getQualifiedType(T1, T2Quals),
4122 VK_LValue);
4123 else if (ObjCConversion)
4124 Sequence.AddObjCObjectConversionStep(
4125 S.Context.getQualifiedType(T1, T2Quals));
4126
4127 ExprValueKind ValueKind =
4128 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
4129 cv1T1, T1Quals, T2Quals,
4130 isLValueRef);
4131 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4132 return;
4133 }
4134
4135 // - has a class type (i.e., T2 is a class type), where T1 is not
4136 // reference-related to T2, and can be implicitly converted to an
4137 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4138 // with "cv3 T3" (this conversion is selected by enumerating the
4139 // applicable conversion functions (13.3.1.6) and choosing the best
4140 // one through overload resolution (13.3)),
4141 // If we have an rvalue ref to function type here, the rhs must be
4142 // an rvalue. DR1287 removed the "implicitly" here.
4143 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4144 (isLValueRef || InitCategory.isRValue())) {
4145 ConvOvlResult = TryRefInitWithConversionFunction(
4146 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
4147 if (ConvOvlResult == OR_Success)
4148 return;
4149 if (ConvOvlResult != OR_No_Viable_Function)
4150 Sequence.SetOverloadFailure(
4151 InitializationSequence::FK_ReferenceInitOverloadFailed,
4152 ConvOvlResult);
4153 }
4154 }
4155
4156 // - Otherwise, the reference shall be an lvalue reference to a
4157 // non-volatile const type (i.e., cv1 shall be const), or the reference
4158 // shall be an rvalue reference.
4159 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4160 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4161 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4162 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4163 Sequence.SetOverloadFailure(
4164 InitializationSequence::FK_ReferenceInitOverloadFailed,
4165 ConvOvlResult);
4166 else
4167 Sequence.SetFailed(InitCategory.isLValue()
4168 ? (RefRelationship == Sema::Ref_Related
4169 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
4170 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
4171 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4172
4173 return;
4174 }
4175
4176 // - If the initializer expression
4177 // - is an xvalue, class prvalue, array prvalue, or function lvalue and
4178 // "cv1 T1" is reference-compatible with "cv2 T2"
4179 // Note: functions are handled below.
4180 if (!T1Function &&
4181 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4182 (Kind.isCStyleOrFunctionalCast() &&
4183 RefRelationship == Sema::Ref_Related)) &&
4184 (InitCategory.isXValue() ||
4185 (InitCategory.isPRValue() && T2->isRecordType()) ||
4186 (InitCategory.isPRValue() && T2->isArrayType()))) {
4187 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
4188 if (InitCategory.isPRValue() && T2->isRecordType()) {
4189 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4190 // compiler the freedom to perform a copy here or bind to the
4191 // object, while C++0x requires that we bind directly to the
4192 // object. Hence, we always bind to the object without making an
4193 // extra copy. However, in C++03 requires that we check for the
4194 // presence of a suitable copy constructor:
4195 //
4196 // The constructor that would be used to make the copy shall
4197 // be callable whether or not the copy is actually done.
4198 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4199 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4200 else if (S.getLangOpts().CPlusPlus11)
4201 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4202 }
4203
4204 if (DerivedToBase)
4205 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
4206 ValueKind);
4207 else if (ObjCConversion)
4208 Sequence.AddObjCObjectConversionStep(
4209 S.Context.getQualifiedType(T1, T2Quals));
4210
4211 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
4212 Initializer, cv1T1,
4213 T1Quals, T2Quals,
4214 isLValueRef);
4215
4216 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4217 return;
4218 }
4219
4220 // - has a class type (i.e., T2 is a class type), where T1 is not
4221 // reference-related to T2, and can be implicitly converted to an
4222 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4223 // where "cv1 T1" is reference-compatible with "cv3 T3",
4224 //
4225 // DR1287 removes the "implicitly" here.
4226 if (T2->isRecordType()) {
4227 if (RefRelationship == Sema::Ref_Incompatible) {
4228 ConvOvlResult = TryRefInitWithConversionFunction(
4229 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
4230 if (ConvOvlResult)
4231 Sequence.SetOverloadFailure(
4232 InitializationSequence::FK_ReferenceInitOverloadFailed,
4233 ConvOvlResult);
4234
4235 return;
4236 }
4237
4238 if ((RefRelationship == Sema::Ref_Compatible ||
4239 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
4240 isRValueRef && InitCategory.isLValue()) {
4241 Sequence.SetFailed(
4242 InitializationSequence::FK_RValueReferenceBindingToLValue);
4243 return;
4244 }
4245
4246 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4247 return;
4248 }
4249
4250 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4251 // from the initializer expression using the rules for a non-reference
4252 // copy-initialization (8.5). The reference is then bound to the
4253 // temporary. [...]
4254
4255 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4256
4257 // FIXME: Why do we use an implicit conversion here rather than trying
4258 // copy-initialization?
4259 ImplicitConversionSequence ICS
4260 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4261 /*SuppressUserConversions=*/false,
4262 /*AllowExplicit=*/false,
4263 /*FIXME:InOverloadResolution=*/false,
4264 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4265 /*AllowObjCWritebackConversion=*/false);
4266
4267 if (ICS.isBad()) {
4268 // FIXME: Use the conversion function set stored in ICS to turn
4269 // this into an overloading ambiguity diagnostic. However, we need
4270 // to keep that set as an OverloadCandidateSet rather than as some
4271 // other kind of set.
4272 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4273 Sequence.SetOverloadFailure(
4274 InitializationSequence::FK_ReferenceInitOverloadFailed,
4275 ConvOvlResult);
4276 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4277 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4278 else
4279 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4280 return;
4281 } else {
4282 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4283 }
4284
4285 // [...] If T1 is reference-related to T2, cv1 must be the
4286 // same cv-qualification as, or greater cv-qualification
4287 // than, cv2; otherwise, the program is ill-formed.
4288 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4289 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4290 if (RefRelationship == Sema::Ref_Related &&
4291 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4292 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4293 return;
4294 }
4295
4296 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4297 // reference, the initializer expression shall not be an lvalue.
4298 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4299 InitCategory.isLValue()) {
4300 Sequence.SetFailed(
4301 InitializationSequence::FK_RValueReferenceBindingToLValue);
4302 return;
4303 }
4304
4305 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4306 return;
4307 }
4308
4309 /// \brief Attempt character array initialization from a string literal
4310 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4311 static void TryStringLiteralInitialization(Sema &S,
4312 const InitializedEntity &Entity,
4313 const InitializationKind &Kind,
4314 Expr *Initializer,
4315 InitializationSequence &Sequence) {
4316 Sequence.AddStringInitStep(Entity.getType());
4317 }
4318
4319 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)4320 static void TryValueInitialization(Sema &S,
4321 const InitializedEntity &Entity,
4322 const InitializationKind &Kind,
4323 InitializationSequence &Sequence,
4324 InitListExpr *InitList) {
4325 assert((!InitList || InitList->getNumInits() == 0) &&
4326 "Shouldn't use value-init for non-empty init lists");
4327
4328 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4329 //
4330 // To value-initialize an object of type T means:
4331 QualType T = Entity.getType();
4332
4333 // -- if T is an array type, then each element is value-initialized;
4334 T = S.Context.getBaseElementType(T);
4335
4336 if (const RecordType *RT = T->getAs<RecordType>()) {
4337 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4338 bool NeedZeroInitialization = true;
4339 if (!S.getLangOpts().CPlusPlus11) {
4340 // C++98:
4341 // -- if T is a class type (clause 9) with a user-declared constructor
4342 // (12.1), then the default constructor for T is called (and the
4343 // initialization is ill-formed if T has no accessible default
4344 // constructor);
4345 if (ClassDecl->hasUserDeclaredConstructor())
4346 NeedZeroInitialization = false;
4347 } else {
4348 // C++11:
4349 // -- if T is a class type (clause 9) with either no default constructor
4350 // (12.1 [class.ctor]) or a default constructor that is user-provided
4351 // or deleted, then the object is default-initialized;
4352 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4353 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4354 NeedZeroInitialization = false;
4355 }
4356
4357 // -- if T is a (possibly cv-qualified) non-union class type without a
4358 // user-provided or deleted default constructor, then the object is
4359 // zero-initialized and, if T has a non-trivial default constructor,
4360 // default-initialized;
4361 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4362 // constructor' part was removed by DR1507.
4363 if (NeedZeroInitialization)
4364 Sequence.AddZeroInitializationStep(Entity.getType());
4365
4366 // C++03:
4367 // -- if T is a non-union class type without a user-declared constructor,
4368 // then every non-static data member and base class component of T is
4369 // value-initialized;
4370 // [...] A program that calls for [...] value-initialization of an
4371 // entity of reference type is ill-formed.
4372 //
4373 // C++11 doesn't need this handling, because value-initialization does not
4374 // occur recursively there, and the implicit default constructor is
4375 // defined as deleted in the problematic cases.
4376 if (!S.getLangOpts().CPlusPlus11 &&
4377 ClassDecl->hasUninitializedReferenceMember()) {
4378 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4379 return;
4380 }
4381
4382 // If this is list-value-initialization, pass the empty init list on when
4383 // building the constructor call. This affects the semantics of a few
4384 // things (such as whether an explicit default constructor can be called).
4385 Expr *InitListAsExpr = InitList;
4386 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4387 bool InitListSyntax = InitList;
4388
4389 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4390 InitListSyntax);
4391 }
4392 }
4393
4394 Sequence.AddZeroInitializationStep(Entity.getType());
4395 }
4396
4397 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)4398 static void TryDefaultInitialization(Sema &S,
4399 const InitializedEntity &Entity,
4400 const InitializationKind &Kind,
4401 InitializationSequence &Sequence) {
4402 assert(Kind.getKind() == InitializationKind::IK_Default);
4403
4404 // C++ [dcl.init]p6:
4405 // To default-initialize an object of type T means:
4406 // - if T is an array type, each element is default-initialized;
4407 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4408
4409 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4410 // constructor for T is called (and the initialization is ill-formed if
4411 // T has no accessible default constructor);
4412 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4413 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4414 return;
4415 }
4416
4417 // - otherwise, no initialization is performed.
4418
4419 // If a program calls for the default initialization of an object of
4420 // a const-qualified type T, T shall be a class type with a user-provided
4421 // default constructor.
4422 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4423 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4424 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4425 return;
4426 }
4427
4428 // If the destination type has a lifetime property, zero-initialize it.
4429 if (DestType.getQualifiers().hasObjCLifetime()) {
4430 Sequence.AddZeroInitializationStep(Entity.getType());
4431 return;
4432 }
4433 }
4434
4435 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4436 /// which enumerates all conversion functions and performs overload resolution
4437 /// to select the best.
TryUserDefinedConversion(Sema & S,QualType DestType,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)4438 static void TryUserDefinedConversion(Sema &S,
4439 QualType DestType,
4440 const InitializationKind &Kind,
4441 Expr *Initializer,
4442 InitializationSequence &Sequence,
4443 bool TopLevelOfInitList) {
4444 assert(!DestType->isReferenceType() && "References are handled elsewhere");
4445 QualType SourceType = Initializer->getType();
4446 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4447 "Must have a class type to perform a user-defined conversion");
4448
4449 // Build the candidate set directly in the initialization sequence
4450 // structure, so that it will persist if we fail.
4451 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4452 CandidateSet.clear();
4453
4454 // Determine whether we are allowed to call explicit constructors or
4455 // explicit conversion operators.
4456 bool AllowExplicit = Kind.AllowExplicit();
4457
4458 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4459 // The type we're converting to is a class type. Enumerate its constructors
4460 // to see if there is a suitable conversion.
4461 CXXRecordDecl *DestRecordDecl
4462 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4463
4464 // Try to complete the type we're converting to.
4465 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4466 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4467 // The container holding the constructors can under certain conditions
4468 // be changed while iterating. To be safe we copy the lookup results
4469 // to a new container.
4470 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4471 for (SmallVectorImpl<NamedDecl *>::iterator
4472 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4473 Con != ConEnd; ++Con) {
4474 NamedDecl *D = *Con;
4475 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4476
4477 // Find the constructor (which may be a template).
4478 CXXConstructorDecl *Constructor = nullptr;
4479 FunctionTemplateDecl *ConstructorTmpl
4480 = dyn_cast<FunctionTemplateDecl>(D);
4481 if (ConstructorTmpl)
4482 Constructor = cast<CXXConstructorDecl>(
4483 ConstructorTmpl->getTemplatedDecl());
4484 else
4485 Constructor = cast<CXXConstructorDecl>(D);
4486
4487 if (!Constructor->isInvalidDecl() &&
4488 Constructor->isConvertingConstructor(AllowExplicit)) {
4489 if (ConstructorTmpl)
4490 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4491 /*ExplicitArgs*/ nullptr,
4492 Initializer, CandidateSet,
4493 /*SuppressUserConversions=*/true);
4494 else
4495 S.AddOverloadCandidate(Constructor, FoundDecl,
4496 Initializer, CandidateSet,
4497 /*SuppressUserConversions=*/true);
4498 }
4499 }
4500 }
4501 }
4502
4503 SourceLocation DeclLoc = Initializer->getLocStart();
4504
4505 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4506 // The type we're converting from is a class type, enumerate its conversion
4507 // functions.
4508
4509 // We can only enumerate the conversion functions for a complete type; if
4510 // the type isn't complete, simply skip this step.
4511 if (S.isCompleteType(DeclLoc, SourceType)) {
4512 CXXRecordDecl *SourceRecordDecl
4513 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4514
4515 const auto &Conversions =
4516 SourceRecordDecl->getVisibleConversionFunctions();
4517 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4518 NamedDecl *D = *I;
4519 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4520 if (isa<UsingShadowDecl>(D))
4521 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4522
4523 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4524 CXXConversionDecl *Conv;
4525 if (ConvTemplate)
4526 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4527 else
4528 Conv = cast<CXXConversionDecl>(D);
4529
4530 if (AllowExplicit || !Conv->isExplicit()) {
4531 if (ConvTemplate)
4532 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4533 ActingDC, Initializer, DestType,
4534 CandidateSet, AllowExplicit);
4535 else
4536 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4537 Initializer, DestType, CandidateSet,
4538 AllowExplicit);
4539 }
4540 }
4541 }
4542 }
4543
4544 // Perform overload resolution. If it fails, return the failed result.
4545 OverloadCandidateSet::iterator Best;
4546 if (OverloadingResult Result
4547 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4548 Sequence.SetOverloadFailure(
4549 InitializationSequence::FK_UserConversionOverloadFailed,
4550 Result);
4551 return;
4552 }
4553
4554 FunctionDecl *Function = Best->Function;
4555 Function->setReferenced();
4556 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4557
4558 if (isa<CXXConstructorDecl>(Function)) {
4559 // Add the user-defined conversion step. Any cv-qualification conversion is
4560 // subsumed by the initialization. Per DR5, the created temporary is of the
4561 // cv-unqualified type of the destination.
4562 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4563 DestType.getUnqualifiedType(),
4564 HadMultipleCandidates);
4565 return;
4566 }
4567
4568 // Add the user-defined conversion step that calls the conversion function.
4569 QualType ConvType = Function->getCallResultType();
4570 if (ConvType->getAs<RecordType>()) {
4571 // If we're converting to a class type, there may be an copy of
4572 // the resulting temporary object (possible to create an object of
4573 // a base class type). That copy is not a separate conversion, so
4574 // we just make a note of the actual destination type (possibly a
4575 // base class of the type returned by the conversion function) and
4576 // let the user-defined conversion step handle the conversion.
4577 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4578 HadMultipleCandidates);
4579 return;
4580 }
4581
4582 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4583 HadMultipleCandidates);
4584
4585 // If the conversion following the call to the conversion function
4586 // is interesting, add it as a separate step.
4587 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4588 Best->FinalConversion.Third) {
4589 ImplicitConversionSequence ICS;
4590 ICS.setStandard();
4591 ICS.Standard = Best->FinalConversion;
4592 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4593 }
4594 }
4595
4596 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4597 /// a function with a pointer return type contains a 'return false;' statement.
4598 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4599 /// code using that header.
4600 ///
4601 /// Work around this by treating 'return false;' as zero-initializing the result
4602 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)4603 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4604 const InitializedEntity &Entity,
4605 const Expr *Init) {
4606 return S.getLangOpts().CPlusPlus11 &&
4607 Entity.getKind() == InitializedEntity::EK_Result &&
4608 Entity.getType()->isPointerType() &&
4609 isa<CXXBoolLiteralExpr>(Init) &&
4610 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4611 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4612 }
4613
4614 /// The non-zero enum values here are indexes into diagnostic alternatives.
4615 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4616
4617 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)4618 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4619 bool isAddressOf, bool &isWeakAccess) {
4620 // Skip parens.
4621 e = e->IgnoreParens();
4622
4623 // Skip address-of nodes.
4624 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4625 if (op->getOpcode() == UO_AddrOf)
4626 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4627 isWeakAccess);
4628
4629 // Skip certain casts.
4630 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4631 switch (ce->getCastKind()) {
4632 case CK_Dependent:
4633 case CK_BitCast:
4634 case CK_LValueBitCast:
4635 case CK_NoOp:
4636 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4637
4638 case CK_ArrayToPointerDecay:
4639 return IIK_nonscalar;
4640
4641 case CK_NullToPointer:
4642 return IIK_okay;
4643
4644 default:
4645 break;
4646 }
4647
4648 // If we have a declaration reference, it had better be a local variable.
4649 } else if (isa<DeclRefExpr>(e)) {
4650 // set isWeakAccess to true, to mean that there will be an implicit
4651 // load which requires a cleanup.
4652 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4653 isWeakAccess = true;
4654
4655 if (!isAddressOf) return IIK_nonlocal;
4656
4657 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4658 if (!var) return IIK_nonlocal;
4659
4660 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4661
4662 // If we have a conditional operator, check both sides.
4663 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4664 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4665 isWeakAccess))
4666 return iik;
4667
4668 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4669
4670 // These are never scalar.
4671 } else if (isa<ArraySubscriptExpr>(e)) {
4672 return IIK_nonscalar;
4673
4674 // Otherwise, it needs to be a null pointer constant.
4675 } else {
4676 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4677 ? IIK_okay : IIK_nonlocal);
4678 }
4679
4680 return IIK_nonlocal;
4681 }
4682
4683 /// Check whether the given expression is a valid operand for an
4684 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)4685 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4686 assert(src->isRValue());
4687 bool isWeakAccess = false;
4688 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4689 // If isWeakAccess to true, there will be an implicit
4690 // load which requires a cleanup.
4691 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4692 S.ExprNeedsCleanups = true;
4693
4694 if (iik == IIK_okay) return;
4695
4696 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4697 << ((unsigned) iik - 1) // shift index into diagnostic explanations
4698 << src->getSourceRange();
4699 }
4700
4701 /// \brief Determine whether we have compatible array types for the
4702 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)4703 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4704 const ArrayType *Source) {
4705 // If the source and destination array types are equivalent, we're
4706 // done.
4707 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4708 return true;
4709
4710 // Make sure that the element types are the same.
4711 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4712 return false;
4713
4714 // The only mismatch we allow is when the destination is an
4715 // incomplete array type and the source is a constant array type.
4716 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4717 }
4718
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)4719 static bool tryObjCWritebackConversion(Sema &S,
4720 InitializationSequence &Sequence,
4721 const InitializedEntity &Entity,
4722 Expr *Initializer) {
4723 bool ArrayDecay = false;
4724 QualType ArgType = Initializer->getType();
4725 QualType ArgPointee;
4726 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4727 ArrayDecay = true;
4728 ArgPointee = ArgArrayType->getElementType();
4729 ArgType = S.Context.getPointerType(ArgPointee);
4730 }
4731
4732 // Handle write-back conversion.
4733 QualType ConvertedArgType;
4734 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4735 ConvertedArgType))
4736 return false;
4737
4738 // We should copy unless we're passing to an argument explicitly
4739 // marked 'out'.
4740 bool ShouldCopy = true;
4741 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4742 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4743
4744 // Do we need an lvalue conversion?
4745 if (ArrayDecay || Initializer->isGLValue()) {
4746 ImplicitConversionSequence ICS;
4747 ICS.setStandard();
4748 ICS.Standard.setAsIdentityConversion();
4749
4750 QualType ResultType;
4751 if (ArrayDecay) {
4752 ICS.Standard.First = ICK_Array_To_Pointer;
4753 ResultType = S.Context.getPointerType(ArgPointee);
4754 } else {
4755 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4756 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4757 }
4758
4759 Sequence.AddConversionSequenceStep(ICS, ResultType);
4760 }
4761
4762 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4763 return true;
4764 }
4765
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4766 static bool TryOCLSamplerInitialization(Sema &S,
4767 InitializationSequence &Sequence,
4768 QualType DestType,
4769 Expr *Initializer) {
4770 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4771 !Initializer->isIntegerConstantExpr(S.getASTContext()))
4772 return false;
4773
4774 Sequence.AddOCLSamplerInitStep(DestType);
4775 return true;
4776 }
4777
4778 //
4779 // OpenCL 1.2 spec, s6.12.10
4780 //
4781 // The event argument can also be used to associate the
4782 // async_work_group_copy with a previous async copy allowing
4783 // an event to be shared by multiple async copies; otherwise
4784 // event should be zero.
4785 //
TryOCLZeroEventInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4786 static bool TryOCLZeroEventInitialization(Sema &S,
4787 InitializationSequence &Sequence,
4788 QualType DestType,
4789 Expr *Initializer) {
4790 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4791 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4792 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4793 return false;
4794
4795 Sequence.AddOCLZeroEventStep(DestType);
4796 return true;
4797 }
4798
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList)4799 InitializationSequence::InitializationSequence(Sema &S,
4800 const InitializedEntity &Entity,
4801 const InitializationKind &Kind,
4802 MultiExprArg Args,
4803 bool TopLevelOfInitList)
4804 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4805 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4806 }
4807
4808 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
4809 /// address of that function, this returns true. Otherwise, it returns false.
isExprAnUnaddressableFunction(Sema & S,const Expr * E)4810 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
4811 auto *DRE = dyn_cast<DeclRefExpr>(E);
4812 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
4813 return false;
4814
4815 return !S.checkAddressOfFunctionIsAvailable(
4816 cast<FunctionDecl>(DRE->getDecl()));
4817 }
4818
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList)4819 void InitializationSequence::InitializeFrom(Sema &S,
4820 const InitializedEntity &Entity,
4821 const InitializationKind &Kind,
4822 MultiExprArg Args,
4823 bool TopLevelOfInitList) {
4824 ASTContext &Context = S.Context;
4825
4826 // Eliminate non-overload placeholder types in the arguments. We
4827 // need to do this before checking whether types are dependent
4828 // because lowering a pseudo-object expression might well give us
4829 // something of dependent type.
4830 for (unsigned I = 0, E = Args.size(); I != E; ++I)
4831 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4832 // FIXME: should we be doing this here?
4833 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4834 if (result.isInvalid()) {
4835 SetFailed(FK_PlaceholderType);
4836 return;
4837 }
4838 Args[I] = result.get();
4839 }
4840
4841 // C++0x [dcl.init]p16:
4842 // The semantics of initializers are as follows. The destination type is
4843 // the type of the object or reference being initialized and the source
4844 // type is the type of the initializer expression. The source type is not
4845 // defined when the initializer is a braced-init-list or when it is a
4846 // parenthesized list of expressions.
4847 QualType DestType = Entity.getType();
4848
4849 if (DestType->isDependentType() ||
4850 Expr::hasAnyTypeDependentArguments(Args)) {
4851 SequenceKind = DependentSequence;
4852 return;
4853 }
4854
4855 // Almost everything is a normal sequence.
4856 setSequenceKind(NormalSequence);
4857
4858 QualType SourceType;
4859 Expr *Initializer = nullptr;
4860 if (Args.size() == 1) {
4861 Initializer = Args[0];
4862 if (S.getLangOpts().ObjC1) {
4863 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4864 DestType, Initializer->getType(),
4865 Initializer) ||
4866 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4867 Args[0] = Initializer;
4868 }
4869 if (!isa<InitListExpr>(Initializer))
4870 SourceType = Initializer->getType();
4871 }
4872
4873 // - If the initializer is a (non-parenthesized) braced-init-list, the
4874 // object is list-initialized (8.5.4).
4875 if (Kind.getKind() != InitializationKind::IK_Direct) {
4876 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4877 TryListInitialization(S, Entity, Kind, InitList, *this);
4878 return;
4879 }
4880 }
4881
4882 // - If the destination type is a reference type, see 8.5.3.
4883 if (DestType->isReferenceType()) {
4884 // C++0x [dcl.init.ref]p1:
4885 // A variable declared to be a T& or T&&, that is, "reference to type T"
4886 // (8.3.2), shall be initialized by an object, or function, of type T or
4887 // by an object that can be converted into a T.
4888 // (Therefore, multiple arguments are not permitted.)
4889 if (Args.size() != 1)
4890 SetFailed(FK_TooManyInitsForReference);
4891 else
4892 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4893 return;
4894 }
4895
4896 // - If the initializer is (), the object is value-initialized.
4897 if (Kind.getKind() == InitializationKind::IK_Value ||
4898 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4899 TryValueInitialization(S, Entity, Kind, *this);
4900 return;
4901 }
4902
4903 // Handle default initialization.
4904 if (Kind.getKind() == InitializationKind::IK_Default) {
4905 TryDefaultInitialization(S, Entity, Kind, *this);
4906 return;
4907 }
4908
4909 // - If the destination type is an array of characters, an array of
4910 // char16_t, an array of char32_t, or an array of wchar_t, and the
4911 // initializer is a string literal, see 8.5.2.
4912 // - Otherwise, if the destination type is an array, the program is
4913 // ill-formed.
4914 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4915 if (Initializer && isa<VariableArrayType>(DestAT)) {
4916 SetFailed(FK_VariableLengthArrayHasInitializer);
4917 return;
4918 }
4919
4920 if (Initializer) {
4921 switch (IsStringInit(Initializer, DestAT, Context)) {
4922 case SIF_None:
4923 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4924 return;
4925 case SIF_NarrowStringIntoWideChar:
4926 SetFailed(FK_NarrowStringIntoWideCharArray);
4927 return;
4928 case SIF_WideStringIntoChar:
4929 SetFailed(FK_WideStringIntoCharArray);
4930 return;
4931 case SIF_IncompatWideStringIntoWideChar:
4932 SetFailed(FK_IncompatWideStringIntoWideChar);
4933 return;
4934 case SIF_Other:
4935 break;
4936 }
4937 }
4938
4939 // Note: as an GNU C extension, we allow initialization of an
4940 // array from a compound literal that creates an array of the same
4941 // type, so long as the initializer has no side effects.
4942 if (!S.getLangOpts().CPlusPlus && Initializer &&
4943 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4944 Initializer->getType()->isArrayType()) {
4945 const ArrayType *SourceAT
4946 = Context.getAsArrayType(Initializer->getType());
4947 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4948 SetFailed(FK_ArrayTypeMismatch);
4949 else if (Initializer->HasSideEffects(S.Context))
4950 SetFailed(FK_NonConstantArrayInit);
4951 else {
4952 AddArrayInitStep(DestType);
4953 }
4954 }
4955 // Note: as a GNU C++ extension, we allow list-initialization of a
4956 // class member of array type from a parenthesized initializer list.
4957 else if (S.getLangOpts().CPlusPlus &&
4958 Entity.getKind() == InitializedEntity::EK_Member &&
4959 Initializer && isa<InitListExpr>(Initializer)) {
4960 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4961 *this);
4962 AddParenthesizedArrayInitStep(DestType);
4963 } else if (DestAT->getElementType()->isCharType())
4964 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4965 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4966 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4967 else
4968 SetFailed(FK_ArrayNeedsInitList);
4969
4970 return;
4971 }
4972
4973 // Determine whether we should consider writeback conversions for
4974 // Objective-C ARC.
4975 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4976 Entity.isParameterKind();
4977
4978 // We're at the end of the line for C: it's either a write-back conversion
4979 // or it's a C assignment. There's no need to check anything else.
4980 if (!S.getLangOpts().CPlusPlus) {
4981 // If allowed, check whether this is an Objective-C writeback conversion.
4982 if (allowObjCWritebackConversion &&
4983 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4984 return;
4985 }
4986
4987 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4988 return;
4989
4990 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4991 return;
4992
4993 // Handle initialization in C
4994 AddCAssignmentStep(DestType);
4995 MaybeProduceObjCObject(S, *this, Entity);
4996 return;
4997 }
4998
4999 assert(S.getLangOpts().CPlusPlus);
5000
5001 // - If the destination type is a (possibly cv-qualified) class type:
5002 if (DestType->isRecordType()) {
5003 // - If the initialization is direct-initialization, or if it is
5004 // copy-initialization where the cv-unqualified version of the
5005 // source type is the same class as, or a derived class of, the
5006 // class of the destination, constructors are considered. [...]
5007 if (Kind.getKind() == InitializationKind::IK_Direct ||
5008 (Kind.getKind() == InitializationKind::IK_Copy &&
5009 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5010 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5011 TryConstructorInitialization(S, Entity, Kind, Args,
5012 DestType, *this);
5013 // - Otherwise (i.e., for the remaining copy-initialization cases),
5014 // user-defined conversion sequences that can convert from the source
5015 // type to the destination type or (when a conversion function is
5016 // used) to a derived class thereof are enumerated as described in
5017 // 13.3.1.4, and the best one is chosen through overload resolution
5018 // (13.3).
5019 else
5020 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5021 TopLevelOfInitList);
5022 return;
5023 }
5024
5025 if (Args.size() > 1) {
5026 SetFailed(FK_TooManyInitsForScalar);
5027 return;
5028 }
5029 assert(Args.size() == 1 && "Zero-argument case handled above");
5030
5031 // - Otherwise, if the source type is a (possibly cv-qualified) class
5032 // type, conversion functions are considered.
5033 if (!SourceType.isNull() && SourceType->isRecordType()) {
5034 // For a conversion to _Atomic(T) from either T or a class type derived
5035 // from T, initialize the T object then convert to _Atomic type.
5036 bool NeedAtomicConversion = false;
5037 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5038 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5039 S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5040 Atomic->getValueType())) {
5041 DestType = Atomic->getValueType();
5042 NeedAtomicConversion = true;
5043 }
5044 }
5045
5046 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5047 TopLevelOfInitList);
5048 MaybeProduceObjCObject(S, *this, Entity);
5049 if (!Failed() && NeedAtomicConversion)
5050 AddAtomicConversionStep(Entity.getType());
5051 return;
5052 }
5053
5054 // - Otherwise, the initial value of the object being initialized is the
5055 // (possibly converted) value of the initializer expression. Standard
5056 // conversions (Clause 4) will be used, if necessary, to convert the
5057 // initializer expression to the cv-unqualified version of the
5058 // destination type; no user-defined conversions are considered.
5059
5060 ImplicitConversionSequence ICS
5061 = S.TryImplicitConversion(Initializer, DestType,
5062 /*SuppressUserConversions*/true,
5063 /*AllowExplicitConversions*/ false,
5064 /*InOverloadResolution*/ false,
5065 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5066 allowObjCWritebackConversion);
5067
5068 if (ICS.isStandard() &&
5069 ICS.Standard.Second == ICK_Writeback_Conversion) {
5070 // Objective-C ARC writeback conversion.
5071
5072 // We should copy unless we're passing to an argument explicitly
5073 // marked 'out'.
5074 bool ShouldCopy = true;
5075 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5076 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5077
5078 // If there was an lvalue adjustment, add it as a separate conversion.
5079 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5080 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5081 ImplicitConversionSequence LvalueICS;
5082 LvalueICS.setStandard();
5083 LvalueICS.Standard.setAsIdentityConversion();
5084 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5085 LvalueICS.Standard.First = ICS.Standard.First;
5086 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5087 }
5088
5089 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5090 } else if (ICS.isBad()) {
5091 DeclAccessPair dap;
5092 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5093 AddZeroInitializationStep(Entity.getType());
5094 } else if (Initializer->getType() == Context.OverloadTy &&
5095 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5096 false, dap))
5097 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5098 else if (Initializer->getType()->isFunctionType() &&
5099 isExprAnUnaddressableFunction(S, Initializer))
5100 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5101 else
5102 SetFailed(InitializationSequence::FK_ConversionFailed);
5103 } else {
5104 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5105
5106 MaybeProduceObjCObject(S, *this, Entity);
5107 }
5108 }
5109
~InitializationSequence()5110 InitializationSequence::~InitializationSequence() {
5111 for (auto &S : Steps)
5112 S.Destroy();
5113 }
5114
5115 //===----------------------------------------------------------------------===//
5116 // Perform initialization
5117 //===----------------------------------------------------------------------===//
5118 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)5119 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5120 switch(Entity.getKind()) {
5121 case InitializedEntity::EK_Variable:
5122 case InitializedEntity::EK_New:
5123 case InitializedEntity::EK_Exception:
5124 case InitializedEntity::EK_Base:
5125 case InitializedEntity::EK_Delegating:
5126 return Sema::AA_Initializing;
5127
5128 case InitializedEntity::EK_Parameter:
5129 if (Entity.getDecl() &&
5130 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5131 return Sema::AA_Sending;
5132
5133 return Sema::AA_Passing;
5134
5135 case InitializedEntity::EK_Parameter_CF_Audited:
5136 if (Entity.getDecl() &&
5137 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5138 return Sema::AA_Sending;
5139
5140 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5141
5142 case InitializedEntity::EK_Result:
5143 return Sema::AA_Returning;
5144
5145 case InitializedEntity::EK_Temporary:
5146 case InitializedEntity::EK_RelatedResult:
5147 // FIXME: Can we tell apart casting vs. converting?
5148 return Sema::AA_Casting;
5149
5150 case InitializedEntity::EK_Member:
5151 case InitializedEntity::EK_ArrayElement:
5152 case InitializedEntity::EK_VectorElement:
5153 case InitializedEntity::EK_ComplexElement:
5154 case InitializedEntity::EK_BlockElement:
5155 case InitializedEntity::EK_LambdaCapture:
5156 case InitializedEntity::EK_CompoundLiteralInit:
5157 return Sema::AA_Initializing;
5158 }
5159
5160 llvm_unreachable("Invalid EntityKind!");
5161 }
5162
5163 /// \brief Whether we should bind a created object as a temporary when
5164 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)5165 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5166 switch (Entity.getKind()) {
5167 case InitializedEntity::EK_ArrayElement:
5168 case InitializedEntity::EK_Member:
5169 case InitializedEntity::EK_Result:
5170 case InitializedEntity::EK_New:
5171 case InitializedEntity::EK_Variable:
5172 case InitializedEntity::EK_Base:
5173 case InitializedEntity::EK_Delegating:
5174 case InitializedEntity::EK_VectorElement:
5175 case InitializedEntity::EK_ComplexElement:
5176 case InitializedEntity::EK_Exception:
5177 case InitializedEntity::EK_BlockElement:
5178 case InitializedEntity::EK_LambdaCapture:
5179 case InitializedEntity::EK_CompoundLiteralInit:
5180 return false;
5181
5182 case InitializedEntity::EK_Parameter:
5183 case InitializedEntity::EK_Parameter_CF_Audited:
5184 case InitializedEntity::EK_Temporary:
5185 case InitializedEntity::EK_RelatedResult:
5186 return true;
5187 }
5188
5189 llvm_unreachable("missed an InitializedEntity kind?");
5190 }
5191
5192 /// \brief Whether the given entity, when initialized with an object
5193 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)5194 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
5195 switch (Entity.getKind()) {
5196 case InitializedEntity::EK_Result:
5197 case InitializedEntity::EK_New:
5198 case InitializedEntity::EK_Base:
5199 case InitializedEntity::EK_Delegating:
5200 case InitializedEntity::EK_VectorElement:
5201 case InitializedEntity::EK_ComplexElement:
5202 case InitializedEntity::EK_BlockElement:
5203 case InitializedEntity::EK_LambdaCapture:
5204 return false;
5205
5206 case InitializedEntity::EK_Member:
5207 case InitializedEntity::EK_Variable:
5208 case InitializedEntity::EK_Parameter:
5209 case InitializedEntity::EK_Parameter_CF_Audited:
5210 case InitializedEntity::EK_Temporary:
5211 case InitializedEntity::EK_ArrayElement:
5212 case InitializedEntity::EK_Exception:
5213 case InitializedEntity::EK_CompoundLiteralInit:
5214 case InitializedEntity::EK_RelatedResult:
5215 return true;
5216 }
5217
5218 llvm_unreachable("missed an InitializedEntity kind?");
5219 }
5220
5221 /// \brief Look for copy and move constructors and constructor templates, for
5222 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)5223 static void LookupCopyAndMoveConstructors(Sema &S,
5224 OverloadCandidateSet &CandidateSet,
5225 CXXRecordDecl *Class,
5226 Expr *CurInitExpr) {
5227 DeclContext::lookup_result R = S.LookupConstructors(Class);
5228 // The container holding the constructors can under certain conditions
5229 // be changed while iterating (e.g. because of deserialization).
5230 // To be safe we copy the lookup results to a new container.
5231 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
5232 for (SmallVectorImpl<NamedDecl *>::iterator
5233 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
5234 NamedDecl *D = *CI;
5235 CXXConstructorDecl *Constructor = nullptr;
5236
5237 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
5238 // Handle copy/moveconstructors, only.
5239 if (!Constructor || Constructor->isInvalidDecl() ||
5240 !Constructor->isCopyOrMoveConstructor() ||
5241 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5242 continue;
5243
5244 DeclAccessPair FoundDecl
5245 = DeclAccessPair::make(Constructor, Constructor->getAccess());
5246 S.AddOverloadCandidate(Constructor, FoundDecl,
5247 CurInitExpr, CandidateSet);
5248 continue;
5249 }
5250
5251 // Handle constructor templates.
5252 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
5253 if (ConstructorTmpl->isInvalidDecl())
5254 continue;
5255
5256 Constructor = cast<CXXConstructorDecl>(
5257 ConstructorTmpl->getTemplatedDecl());
5258 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5259 continue;
5260
5261 // FIXME: Do we need to limit this to copy-constructor-like
5262 // candidates?
5263 DeclAccessPair FoundDecl
5264 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
5265 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
5266 CurInitExpr, CandidateSet, true);
5267 }
5268 }
5269
5270 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)5271 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5272 Expr *Initializer) {
5273 switch (Entity.getKind()) {
5274 case InitializedEntity::EK_Result:
5275 return Entity.getReturnLoc();
5276
5277 case InitializedEntity::EK_Exception:
5278 return Entity.getThrowLoc();
5279
5280 case InitializedEntity::EK_Variable:
5281 return Entity.getDecl()->getLocation();
5282
5283 case InitializedEntity::EK_LambdaCapture:
5284 return Entity.getCaptureLoc();
5285
5286 case InitializedEntity::EK_ArrayElement:
5287 case InitializedEntity::EK_Member:
5288 case InitializedEntity::EK_Parameter:
5289 case InitializedEntity::EK_Parameter_CF_Audited:
5290 case InitializedEntity::EK_Temporary:
5291 case InitializedEntity::EK_New:
5292 case InitializedEntity::EK_Base:
5293 case InitializedEntity::EK_Delegating:
5294 case InitializedEntity::EK_VectorElement:
5295 case InitializedEntity::EK_ComplexElement:
5296 case InitializedEntity::EK_BlockElement:
5297 case InitializedEntity::EK_CompoundLiteralInit:
5298 case InitializedEntity::EK_RelatedResult:
5299 return Initializer->getLocStart();
5300 }
5301 llvm_unreachable("missed an InitializedEntity kind?");
5302 }
5303
5304 /// \brief Make a (potentially elidable) temporary copy of the object
5305 /// provided by the given initializer by calling the appropriate copy
5306 /// constructor.
5307 ///
5308 /// \param S The Sema object used for type-checking.
5309 ///
5310 /// \param T The type of the temporary object, which must either be
5311 /// the type of the initializer expression or a superclass thereof.
5312 ///
5313 /// \param Entity The entity being initialized.
5314 ///
5315 /// \param CurInit The initializer expression.
5316 ///
5317 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5318 /// is permitted in C++03 (but not C++0x) when binding a reference to
5319 /// an rvalue.
5320 ///
5321 /// \returns An expression that copies the initializer expression into
5322 /// a temporary object, or an error expression if a copy could not be
5323 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)5324 static ExprResult CopyObject(Sema &S,
5325 QualType T,
5326 const InitializedEntity &Entity,
5327 ExprResult CurInit,
5328 bool IsExtraneousCopy) {
5329 if (CurInit.isInvalid())
5330 return CurInit;
5331 // Determine which class type we're copying to.
5332 Expr *CurInitExpr = (Expr *)CurInit.get();
5333 CXXRecordDecl *Class = nullptr;
5334 if (const RecordType *Record = T->getAs<RecordType>())
5335 Class = cast<CXXRecordDecl>(Record->getDecl());
5336 if (!Class)
5337 return CurInit;
5338
5339 // C++0x [class.copy]p32:
5340 // When certain criteria are met, an implementation is allowed to
5341 // omit the copy/move construction of a class object, even if the
5342 // copy/move constructor and/or destructor for the object have
5343 // side effects. [...]
5344 // - when a temporary class object that has not been bound to a
5345 // reference (12.2) would be copied/moved to a class object
5346 // with the same cv-unqualified type, the copy/move operation
5347 // can be omitted by constructing the temporary object
5348 // directly into the target of the omitted copy/move
5349 //
5350 // Note that the other three bullets are handled elsewhere. Copy
5351 // elision for return statements and throw expressions are handled as part
5352 // of constructor initialization, while copy elision for exception handlers
5353 // is handled by the run-time.
5354 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5355 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5356
5357 // Make sure that the type we are copying is complete.
5358 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5359 return CurInit;
5360
5361 // Perform overload resolution using the class's copy/move constructors.
5362 // Only consider constructors and constructor templates. Per
5363 // C++0x [dcl.init]p16, second bullet to class types, this initialization
5364 // is direct-initialization.
5365 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5366 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5367
5368 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5369
5370 OverloadCandidateSet::iterator Best;
5371 switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5372 case OR_Success:
5373 break;
5374
5375 case OR_No_Viable_Function:
5376 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5377 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5378 : diag::err_temp_copy_no_viable)
5379 << (int)Entity.getKind() << CurInitExpr->getType()
5380 << CurInitExpr->getSourceRange();
5381 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5382 if (!IsExtraneousCopy || S.isSFINAEContext())
5383 return ExprError();
5384 return CurInit;
5385
5386 case OR_Ambiguous:
5387 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5388 << (int)Entity.getKind() << CurInitExpr->getType()
5389 << CurInitExpr->getSourceRange();
5390 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5391 return ExprError();
5392
5393 case OR_Deleted:
5394 S.Diag(Loc, diag::err_temp_copy_deleted)
5395 << (int)Entity.getKind() << CurInitExpr->getType()
5396 << CurInitExpr->getSourceRange();
5397 S.NoteDeletedFunction(Best->Function);
5398 return ExprError();
5399 }
5400
5401 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5402 SmallVector<Expr*, 8> ConstructorArgs;
5403 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5404
5405 S.CheckConstructorAccess(Loc, Constructor, Entity,
5406 Best->FoundDecl.getAccess(), IsExtraneousCopy);
5407
5408 if (IsExtraneousCopy) {
5409 // If this is a totally extraneous copy for C++03 reference
5410 // binding purposes, just return the original initialization
5411 // expression. We don't generate an (elided) copy operation here
5412 // because doing so would require us to pass down a flag to avoid
5413 // infinite recursion, where each step adds another extraneous,
5414 // elidable copy.
5415
5416 // Instantiate the default arguments of any extra parameters in
5417 // the selected copy constructor, as if we were going to create a
5418 // proper call to the copy constructor.
5419 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5420 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5421 if (S.RequireCompleteType(Loc, Parm->getType(),
5422 diag::err_call_incomplete_argument))
5423 break;
5424
5425 // Build the default argument expression; we don't actually care
5426 // if this succeeds or not, because this routine will complain
5427 // if there was a problem.
5428 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5429 }
5430
5431 return CurInitExpr;
5432 }
5433
5434 // Determine the arguments required to actually perform the
5435 // constructor call (we might have derived-to-base conversions, or
5436 // the copy constructor may have default arguments).
5437 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5438 return ExprError();
5439
5440 // Actually perform the constructor call.
5441 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5442 ConstructorArgs,
5443 HadMultipleCandidates,
5444 /*ListInit*/ false,
5445 /*StdInitListInit*/ false,
5446 /*ZeroInit*/ false,
5447 CXXConstructExpr::CK_Complete,
5448 SourceRange());
5449
5450 // If we're supposed to bind temporaries, do so.
5451 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5452 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5453 return CurInit;
5454 }
5455
5456 /// \brief Check whether elidable copy construction for binding a reference to
5457 /// a temporary would have succeeded if we were building in C++98 mode, for
5458 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)5459 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5460 const InitializedEntity &Entity,
5461 Expr *CurInitExpr) {
5462 assert(S.getLangOpts().CPlusPlus11);
5463
5464 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5465 if (!Record)
5466 return;
5467
5468 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5469 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5470 return;
5471
5472 // Find constructors which would have been considered.
5473 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5474 LookupCopyAndMoveConstructors(
5475 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5476
5477 // Perform overload resolution.
5478 OverloadCandidateSet::iterator Best;
5479 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5480
5481 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5482 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5483 << CurInitExpr->getSourceRange();
5484
5485 switch (OR) {
5486 case OR_Success:
5487 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5488 Entity, Best->FoundDecl.getAccess(), Diag);
5489 // FIXME: Check default arguments as far as that's possible.
5490 break;
5491
5492 case OR_No_Viable_Function:
5493 S.Diag(Loc, Diag);
5494 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5495 break;
5496
5497 case OR_Ambiguous:
5498 S.Diag(Loc, Diag);
5499 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5500 break;
5501
5502 case OR_Deleted:
5503 S.Diag(Loc, Diag);
5504 S.NoteDeletedFunction(Best->Function);
5505 break;
5506 }
5507 }
5508
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)5509 void InitializationSequence::PrintInitLocationNote(Sema &S,
5510 const InitializedEntity &Entity) {
5511 if (Entity.isParameterKind() && Entity.getDecl()) {
5512 if (Entity.getDecl()->getLocation().isInvalid())
5513 return;
5514
5515 if (Entity.getDecl()->getDeclName())
5516 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5517 << Entity.getDecl()->getDeclName();
5518 else
5519 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5520 }
5521 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5522 Entity.getMethodDecl())
5523 S.Diag(Entity.getMethodDecl()->getLocation(),
5524 diag::note_method_return_type_change)
5525 << Entity.getMethodDecl()->getDeclName();
5526 }
5527
isReferenceBinding(const InitializationSequence::Step & s)5528 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5529 return s.Kind == InitializationSequence::SK_BindReference ||
5530 s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5531 }
5532
5533 /// Returns true if the parameters describe a constructor initialization of
5534 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)5535 static bool isExplicitTemporary(const InitializedEntity &Entity,
5536 const InitializationKind &Kind,
5537 unsigned NumArgs) {
5538 switch (Entity.getKind()) {
5539 case InitializedEntity::EK_Temporary:
5540 case InitializedEntity::EK_CompoundLiteralInit:
5541 case InitializedEntity::EK_RelatedResult:
5542 break;
5543 default:
5544 return false;
5545 }
5546
5547 switch (Kind.getKind()) {
5548 case InitializationKind::IK_DirectList:
5549 return true;
5550 // FIXME: Hack to work around cast weirdness.
5551 case InitializationKind::IK_Direct:
5552 case InitializationKind::IK_Value:
5553 return NumArgs != 1;
5554 default:
5555 return false;
5556 }
5557 }
5558
5559 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,bool IsStdInitListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)5560 PerformConstructorInitialization(Sema &S,
5561 const InitializedEntity &Entity,
5562 const InitializationKind &Kind,
5563 MultiExprArg Args,
5564 const InitializationSequence::Step& Step,
5565 bool &ConstructorInitRequiresZeroInit,
5566 bool IsListInitialization,
5567 bool IsStdInitListInitialization,
5568 SourceLocation LBraceLoc,
5569 SourceLocation RBraceLoc) {
5570 unsigned NumArgs = Args.size();
5571 CXXConstructorDecl *Constructor
5572 = cast<CXXConstructorDecl>(Step.Function.Function);
5573 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5574
5575 // Build a call to the selected constructor.
5576 SmallVector<Expr*, 8> ConstructorArgs;
5577 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5578 ? Kind.getEqualLoc()
5579 : Kind.getLocation();
5580
5581 if (Kind.getKind() == InitializationKind::IK_Default) {
5582 // Force even a trivial, implicit default constructor to be
5583 // semantically checked. We do this explicitly because we don't build
5584 // the definition for completely trivial constructors.
5585 assert(Constructor->getParent() && "No parent class for constructor.");
5586 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5587 Constructor->isTrivial() && !Constructor->isUsed(false))
5588 S.DefineImplicitDefaultConstructor(Loc, Constructor);
5589 }
5590
5591 ExprResult CurInit((Expr *)nullptr);
5592
5593 // C++ [over.match.copy]p1:
5594 // - When initializing a temporary to be bound to the first parameter
5595 // of a constructor that takes a reference to possibly cv-qualified
5596 // T as its first argument, called with a single argument in the
5597 // context of direct-initialization, explicit conversion functions
5598 // are also considered.
5599 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5600 Args.size() == 1 &&
5601 Constructor->isCopyOrMoveConstructor();
5602
5603 // Determine the arguments required to actually perform the constructor
5604 // call.
5605 if (S.CompleteConstructorCall(Constructor, Args,
5606 Loc, ConstructorArgs,
5607 AllowExplicitConv,
5608 IsListInitialization))
5609 return ExprError();
5610
5611
5612 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5613 // An explicitly-constructed temporary, e.g., X(1, 2).
5614 S.MarkFunctionReferenced(Loc, Constructor);
5615 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5616 return ExprError();
5617
5618 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5619 if (!TSInfo)
5620 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5621 SourceRange ParenOrBraceRange =
5622 (Kind.getKind() == InitializationKind::IK_DirectList)
5623 ? SourceRange(LBraceLoc, RBraceLoc)
5624 : Kind.getParenRange();
5625
5626 CurInit = new (S.Context) CXXTemporaryObjectExpr(
5627 S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5628 HadMultipleCandidates, IsListInitialization,
5629 IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
5630 } else {
5631 CXXConstructExpr::ConstructionKind ConstructKind =
5632 CXXConstructExpr::CK_Complete;
5633
5634 if (Entity.getKind() == InitializedEntity::EK_Base) {
5635 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5636 CXXConstructExpr::CK_VirtualBase :
5637 CXXConstructExpr::CK_NonVirtualBase;
5638 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5639 ConstructKind = CXXConstructExpr::CK_Delegating;
5640 }
5641
5642 // Only get the parenthesis or brace range if it is a list initialization or
5643 // direct construction.
5644 SourceRange ParenOrBraceRange;
5645 if (IsListInitialization)
5646 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5647 else if (Kind.getKind() == InitializationKind::IK_Direct)
5648 ParenOrBraceRange = Kind.getParenRange();
5649
5650 // If the entity allows NRVO, mark the construction as elidable
5651 // unconditionally.
5652 if (Entity.allowsNRVO())
5653 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5654 Constructor, /*Elidable=*/true,
5655 ConstructorArgs,
5656 HadMultipleCandidates,
5657 IsListInitialization,
5658 IsStdInitListInitialization,
5659 ConstructorInitRequiresZeroInit,
5660 ConstructKind,
5661 ParenOrBraceRange);
5662 else
5663 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5664 Constructor,
5665 ConstructorArgs,
5666 HadMultipleCandidates,
5667 IsListInitialization,
5668 IsStdInitListInitialization,
5669 ConstructorInitRequiresZeroInit,
5670 ConstructKind,
5671 ParenOrBraceRange);
5672 }
5673 if (CurInit.isInvalid())
5674 return ExprError();
5675
5676 // Only check access if all of that succeeded.
5677 S.CheckConstructorAccess(Loc, Constructor, Entity,
5678 Step.Function.FoundDecl.getAccess());
5679 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5680 return ExprError();
5681
5682 if (shouldBindAsTemporary(Entity))
5683 CurInit = S.MaybeBindToTemporary(CurInit.get());
5684
5685 return CurInit;
5686 }
5687
5688 /// Determine whether the specified InitializedEntity definitely has a lifetime
5689 /// longer than the current full-expression. Conservatively returns false if
5690 /// it's unclear.
5691 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)5692 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5693 const InitializedEntity *Top = &Entity;
5694 while (Top->getParent())
5695 Top = Top->getParent();
5696
5697 switch (Top->getKind()) {
5698 case InitializedEntity::EK_Variable:
5699 case InitializedEntity::EK_Result:
5700 case InitializedEntity::EK_Exception:
5701 case InitializedEntity::EK_Member:
5702 case InitializedEntity::EK_New:
5703 case InitializedEntity::EK_Base:
5704 case InitializedEntity::EK_Delegating:
5705 return true;
5706
5707 case InitializedEntity::EK_ArrayElement:
5708 case InitializedEntity::EK_VectorElement:
5709 case InitializedEntity::EK_BlockElement:
5710 case InitializedEntity::EK_ComplexElement:
5711 // Could not determine what the full initialization is. Assume it might not
5712 // outlive the full-expression.
5713 return false;
5714
5715 case InitializedEntity::EK_Parameter:
5716 case InitializedEntity::EK_Parameter_CF_Audited:
5717 case InitializedEntity::EK_Temporary:
5718 case InitializedEntity::EK_LambdaCapture:
5719 case InitializedEntity::EK_CompoundLiteralInit:
5720 case InitializedEntity::EK_RelatedResult:
5721 // The entity being initialized might not outlive the full-expression.
5722 return false;
5723 }
5724
5725 llvm_unreachable("unknown entity kind");
5726 }
5727
5728 /// Determine the declaration which an initialized entity ultimately refers to,
5729 /// for the purpose of lifetime-extending a temporary bound to a reference in
5730 /// the initialization of \p Entity.
getEntityForTemporaryLifetimeExtension(const InitializedEntity * Entity,const InitializedEntity * FallbackDecl=nullptr)5731 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5732 const InitializedEntity *Entity,
5733 const InitializedEntity *FallbackDecl = nullptr) {
5734 // C++11 [class.temporary]p5:
5735 switch (Entity->getKind()) {
5736 case InitializedEntity::EK_Variable:
5737 // The temporary [...] persists for the lifetime of the reference
5738 return Entity;
5739
5740 case InitializedEntity::EK_Member:
5741 // For subobjects, we look at the complete object.
5742 if (Entity->getParent())
5743 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5744 Entity);
5745
5746 // except:
5747 // -- A temporary bound to a reference member in a constructor's
5748 // ctor-initializer persists until the constructor exits.
5749 return Entity;
5750
5751 case InitializedEntity::EK_Parameter:
5752 case InitializedEntity::EK_Parameter_CF_Audited:
5753 // -- A temporary bound to a reference parameter in a function call
5754 // persists until the completion of the full-expression containing
5755 // the call.
5756 case InitializedEntity::EK_Result:
5757 // -- The lifetime of a temporary bound to the returned value in a
5758 // function return statement is not extended; the temporary is
5759 // destroyed at the end of the full-expression in the return statement.
5760 case InitializedEntity::EK_New:
5761 // -- A temporary bound to a reference in a new-initializer persists
5762 // until the completion of the full-expression containing the
5763 // new-initializer.
5764 return nullptr;
5765
5766 case InitializedEntity::EK_Temporary:
5767 case InitializedEntity::EK_CompoundLiteralInit:
5768 case InitializedEntity::EK_RelatedResult:
5769 // We don't yet know the storage duration of the surrounding temporary.
5770 // Assume it's got full-expression duration for now, it will patch up our
5771 // storage duration if that's not correct.
5772 return nullptr;
5773
5774 case InitializedEntity::EK_ArrayElement:
5775 // For subobjects, we look at the complete object.
5776 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5777 FallbackDecl);
5778
5779 case InitializedEntity::EK_Base:
5780 case InitializedEntity::EK_Delegating:
5781 // We can reach this case for aggregate initialization in a constructor:
5782 // struct A { int &&r; };
5783 // struct B : A { B() : A{0} {} };
5784 // In this case, use the innermost field decl as the context.
5785 return FallbackDecl;
5786
5787 case InitializedEntity::EK_BlockElement:
5788 case InitializedEntity::EK_LambdaCapture:
5789 case InitializedEntity::EK_Exception:
5790 case InitializedEntity::EK_VectorElement:
5791 case InitializedEntity::EK_ComplexElement:
5792 return nullptr;
5793 }
5794 llvm_unreachable("unknown entity kind");
5795 }
5796
5797 static void performLifetimeExtension(Expr *Init,
5798 const InitializedEntity *ExtendingEntity);
5799
5800 /// Update a glvalue expression that is used as the initializer of a reference
5801 /// to note that its lifetime is extended.
5802 /// \return \c true if any temporary had its lifetime extended.
5803 static bool
performReferenceExtension(Expr * Init,const InitializedEntity * ExtendingEntity)5804 performReferenceExtension(Expr *Init,
5805 const InitializedEntity *ExtendingEntity) {
5806 // Walk past any constructs which we can lifetime-extend across.
5807 Expr *Old;
5808 do {
5809 Old = Init;
5810
5811 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5812 if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5813 // This is just redundant braces around an initializer. Step over it.
5814 Init = ILE->getInit(0);
5815 }
5816 }
5817
5818 // Step over any subobject adjustments; we may have a materialized
5819 // temporary inside them.
5820 SmallVector<const Expr *, 2> CommaLHSs;
5821 SmallVector<SubobjectAdjustment, 2> Adjustments;
5822 Init = const_cast<Expr *>(
5823 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5824
5825 // Per current approach for DR1376, look through casts to reference type
5826 // when performing lifetime extension.
5827 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5828 if (CE->getSubExpr()->isGLValue())
5829 Init = CE->getSubExpr();
5830
5831 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5832 // It's unclear if binding a reference to that xvalue extends the array
5833 // temporary.
5834 } while (Init != Old);
5835
5836 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5837 // Update the storage duration of the materialized temporary.
5838 // FIXME: Rebuild the expression instead of mutating it.
5839 ME->setExtendingDecl(ExtendingEntity->getDecl(),
5840 ExtendingEntity->allocateManglingNumber());
5841 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5842 return true;
5843 }
5844
5845 return false;
5846 }
5847
5848 /// Update a prvalue expression that is going to be materialized as a
5849 /// lifetime-extended temporary.
performLifetimeExtension(Expr * Init,const InitializedEntity * ExtendingEntity)5850 static void performLifetimeExtension(Expr *Init,
5851 const InitializedEntity *ExtendingEntity) {
5852 // Dig out the expression which constructs the extended temporary.
5853 SmallVector<const Expr *, 2> CommaLHSs;
5854 SmallVector<SubobjectAdjustment, 2> Adjustments;
5855 Init = const_cast<Expr *>(
5856 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5857
5858 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5859 Init = BTE->getSubExpr();
5860
5861 if (CXXStdInitializerListExpr *ILE =
5862 dyn_cast<CXXStdInitializerListExpr>(Init)) {
5863 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5864 return;
5865 }
5866
5867 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5868 if (ILE->getType()->isArrayType()) {
5869 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5870 performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5871 return;
5872 }
5873
5874 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5875 assert(RD->isAggregate() && "aggregate init on non-aggregate");
5876
5877 // If we lifetime-extend a braced initializer which is initializing an
5878 // aggregate, and that aggregate contains reference members which are
5879 // bound to temporaries, those temporaries are also lifetime-extended.
5880 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5881 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5882 performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5883 else {
5884 unsigned Index = 0;
5885 for (const auto *I : RD->fields()) {
5886 if (Index >= ILE->getNumInits())
5887 break;
5888 if (I->isUnnamedBitfield())
5889 continue;
5890 Expr *SubInit = ILE->getInit(Index);
5891 if (I->getType()->isReferenceType())
5892 performReferenceExtension(SubInit, ExtendingEntity);
5893 else if (isa<InitListExpr>(SubInit) ||
5894 isa<CXXStdInitializerListExpr>(SubInit))
5895 // This may be either aggregate-initialization of a member or
5896 // initialization of a std::initializer_list object. Either way,
5897 // we should recursively lifetime-extend that initializer.
5898 performLifetimeExtension(SubInit, ExtendingEntity);
5899 ++Index;
5900 }
5901 }
5902 }
5903 }
5904 }
5905
warnOnLifetimeExtension(Sema & S,const InitializedEntity & Entity,const Expr * Init,bool IsInitializerList,const ValueDecl * ExtendingDecl)5906 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5907 const Expr *Init, bool IsInitializerList,
5908 const ValueDecl *ExtendingDecl) {
5909 // Warn if a field lifetime-extends a temporary.
5910 if (isa<FieldDecl>(ExtendingDecl)) {
5911 if (IsInitializerList) {
5912 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5913 << /*at end of constructor*/true;
5914 return;
5915 }
5916
5917 bool IsSubobjectMember = false;
5918 for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5919 Ent = Ent->getParent()) {
5920 if (Ent->getKind() != InitializedEntity::EK_Base) {
5921 IsSubobjectMember = true;
5922 break;
5923 }
5924 }
5925 S.Diag(Init->getExprLoc(),
5926 diag::warn_bind_ref_member_to_temporary)
5927 << ExtendingDecl << Init->getSourceRange()
5928 << IsSubobjectMember << IsInitializerList;
5929 if (IsSubobjectMember)
5930 S.Diag(ExtendingDecl->getLocation(),
5931 diag::note_ref_subobject_of_member_declared_here);
5932 else
5933 S.Diag(ExtendingDecl->getLocation(),
5934 diag::note_ref_or_ptr_member_declared_here)
5935 << /*is pointer*/false;
5936 }
5937 }
5938
5939 static void DiagnoseNarrowingInInitList(Sema &S,
5940 const ImplicitConversionSequence &ICS,
5941 QualType PreNarrowingType,
5942 QualType EntityType,
5943 const Expr *PostInit);
5944
5945 /// Provide warnings when std::move is used on construction.
CheckMoveOnConstruction(Sema & S,const Expr * InitExpr,bool IsReturnStmt)5946 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
5947 bool IsReturnStmt) {
5948 if (!InitExpr)
5949 return;
5950
5951 if (!S.ActiveTemplateInstantiations.empty())
5952 return;
5953
5954 QualType DestType = InitExpr->getType();
5955 if (!DestType->isRecordType())
5956 return;
5957
5958 unsigned DiagID = 0;
5959 if (IsReturnStmt) {
5960 const CXXConstructExpr *CCE =
5961 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
5962 if (!CCE || CCE->getNumArgs() != 1)
5963 return;
5964
5965 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
5966 return;
5967
5968 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
5969 }
5970
5971 // Find the std::move call and get the argument.
5972 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
5973 if (!CE || CE->getNumArgs() != 1)
5974 return;
5975
5976 const FunctionDecl *MoveFunction = CE->getDirectCallee();
5977 if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
5978 !MoveFunction->getIdentifier() ||
5979 !MoveFunction->getIdentifier()->isStr("move"))
5980 return;
5981
5982 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
5983
5984 if (IsReturnStmt) {
5985 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
5986 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
5987 return;
5988
5989 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
5990 if (!VD || !VD->hasLocalStorage())
5991 return;
5992
5993 QualType SourceType = VD->getType();
5994 if (!SourceType->isRecordType())
5995 return;
5996
5997 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
5998 return;
5999 }
6000
6001 // If we're returning a function parameter, copy elision
6002 // is not possible.
6003 if (isa<ParmVarDecl>(VD))
6004 DiagID = diag::warn_redundant_move_on_return;
6005 else
6006 DiagID = diag::warn_pessimizing_move_on_return;
6007 } else {
6008 DiagID = diag::warn_pessimizing_move_on_initialization;
6009 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6010 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6011 return;
6012 }
6013
6014 S.Diag(CE->getLocStart(), DiagID);
6015
6016 // Get all the locations for a fix-it. Don't emit the fix-it if any location
6017 // is within a macro.
6018 SourceLocation CallBegin = CE->getCallee()->getLocStart();
6019 if (CallBegin.isMacroID())
6020 return;
6021 SourceLocation RParen = CE->getRParenLoc();
6022 if (RParen.isMacroID())
6023 return;
6024 SourceLocation LParen;
6025 SourceLocation ArgLoc = Arg->getLocStart();
6026
6027 // Special testing for the argument location. Since the fix-it needs the
6028 // location right before the argument, the argument location can be in a
6029 // macro only if it is at the beginning of the macro.
6030 while (ArgLoc.isMacroID() &&
6031 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6032 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6033 }
6034
6035 if (LParen.isMacroID())
6036 return;
6037
6038 LParen = ArgLoc.getLocWithOffset(-1);
6039
6040 S.Diag(CE->getLocStart(), diag::note_remove_move)
6041 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6042 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6043 }
6044
6045 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)6046 InitializationSequence::Perform(Sema &S,
6047 const InitializedEntity &Entity,
6048 const InitializationKind &Kind,
6049 MultiExprArg Args,
6050 QualType *ResultType) {
6051 if (Failed()) {
6052 Diagnose(S, Entity, Kind, Args);
6053 return ExprError();
6054 }
6055 if (!ZeroInitializationFixit.empty()) {
6056 unsigned DiagID = diag::err_default_init_const;
6057 if (Decl *D = Entity.getDecl())
6058 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6059 DiagID = diag::ext_default_init_const;
6060
6061 // The initialization would have succeeded with this fixit. Since the fixit
6062 // is on the error, we need to build a valid AST in this case, so this isn't
6063 // handled in the Failed() branch above.
6064 QualType DestType = Entity.getType();
6065 S.Diag(Kind.getLocation(), DiagID)
6066 << DestType << (bool)DestType->getAs<RecordType>()
6067 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6068 ZeroInitializationFixit);
6069 }
6070
6071 if (getKind() == DependentSequence) {
6072 // If the declaration is a non-dependent, incomplete array type
6073 // that has an initializer, then its type will be completed once
6074 // the initializer is instantiated.
6075 if (ResultType && !Entity.getType()->isDependentType() &&
6076 Args.size() == 1) {
6077 QualType DeclType = Entity.getType();
6078 if (const IncompleteArrayType *ArrayT
6079 = S.Context.getAsIncompleteArrayType(DeclType)) {
6080 // FIXME: We don't currently have the ability to accurately
6081 // compute the length of an initializer list without
6082 // performing full type-checking of the initializer list
6083 // (since we have to determine where braces are implicitly
6084 // introduced and such). So, we fall back to making the array
6085 // type a dependently-sized array type with no specified
6086 // bound.
6087 if (isa<InitListExpr>((Expr *)Args[0])) {
6088 SourceRange Brackets;
6089
6090 // Scavange the location of the brackets from the entity, if we can.
6091 if (DeclaratorDecl *DD = Entity.getDecl()) {
6092 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6093 TypeLoc TL = TInfo->getTypeLoc();
6094 if (IncompleteArrayTypeLoc ArrayLoc =
6095 TL.getAs<IncompleteArrayTypeLoc>())
6096 Brackets = ArrayLoc.getBracketsRange();
6097 }
6098 }
6099
6100 *ResultType
6101 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6102 /*NumElts=*/nullptr,
6103 ArrayT->getSizeModifier(),
6104 ArrayT->getIndexTypeCVRQualifiers(),
6105 Brackets);
6106 }
6107
6108 }
6109 }
6110 if (Kind.getKind() == InitializationKind::IK_Direct &&
6111 !Kind.isExplicitCast()) {
6112 // Rebuild the ParenListExpr.
6113 SourceRange ParenRange = Kind.getParenRange();
6114 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6115 Args);
6116 }
6117 assert(Kind.getKind() == InitializationKind::IK_Copy ||
6118 Kind.isExplicitCast() ||
6119 Kind.getKind() == InitializationKind::IK_DirectList);
6120 return ExprResult(Args[0]);
6121 }
6122
6123 // No steps means no initialization.
6124 if (Steps.empty())
6125 return ExprResult((Expr *)nullptr);
6126
6127 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6128 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6129 !Entity.isParameterKind()) {
6130 // Produce a C++98 compatibility warning if we are initializing a reference
6131 // from an initializer list. For parameters, we produce a better warning
6132 // elsewhere.
6133 Expr *Init = Args[0];
6134 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6135 << Init->getSourceRange();
6136 }
6137
6138 // Diagnose cases where we initialize a pointer to an array temporary, and the
6139 // pointer obviously outlives the temporary.
6140 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6141 Entity.getType()->isPointerType() &&
6142 InitializedEntityOutlivesFullExpression(Entity)) {
6143 Expr *Init = Args[0];
6144 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6145 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6146 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6147 << Init->getSourceRange();
6148 }
6149
6150 QualType DestType = Entity.getType().getNonReferenceType();
6151 // FIXME: Ugly hack around the fact that Entity.getType() is not
6152 // the same as Entity.getDecl()->getType() in cases involving type merging,
6153 // and we want latter when it makes sense.
6154 if (ResultType)
6155 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6156 Entity.getType();
6157
6158 ExprResult CurInit((Expr *)nullptr);
6159
6160 // For initialization steps that start with a single initializer,
6161 // grab the only argument out the Args and place it into the "current"
6162 // initializer.
6163 switch (Steps.front().Kind) {
6164 case SK_ResolveAddressOfOverloadedFunction:
6165 case SK_CastDerivedToBaseRValue:
6166 case SK_CastDerivedToBaseXValue:
6167 case SK_CastDerivedToBaseLValue:
6168 case SK_BindReference:
6169 case SK_BindReferenceToTemporary:
6170 case SK_ExtraneousCopyToTemporary:
6171 case SK_UserConversion:
6172 case SK_QualificationConversionLValue:
6173 case SK_QualificationConversionXValue:
6174 case SK_QualificationConversionRValue:
6175 case SK_AtomicConversion:
6176 case SK_LValueToRValue:
6177 case SK_ConversionSequence:
6178 case SK_ConversionSequenceNoNarrowing:
6179 case SK_ListInitialization:
6180 case SK_UnwrapInitList:
6181 case SK_RewrapInitList:
6182 case SK_CAssignment:
6183 case SK_StringInit:
6184 case SK_ObjCObjectConversion:
6185 case SK_ArrayInit:
6186 case SK_ParenthesizedArrayInit:
6187 case SK_PassByIndirectCopyRestore:
6188 case SK_PassByIndirectRestore:
6189 case SK_ProduceObjCObject:
6190 case SK_StdInitializerList:
6191 case SK_OCLSamplerInit:
6192 case SK_OCLZeroEvent: {
6193 assert(Args.size() == 1);
6194 CurInit = Args[0];
6195 if (!CurInit.get()) return ExprError();
6196 break;
6197 }
6198
6199 case SK_ConstructorInitialization:
6200 case SK_ConstructorInitializationFromList:
6201 case SK_StdInitializerListConstructorCall:
6202 case SK_ZeroInitialization:
6203 break;
6204 }
6205
6206 // Walk through the computed steps for the initialization sequence,
6207 // performing the specified conversions along the way.
6208 bool ConstructorInitRequiresZeroInit = false;
6209 for (step_iterator Step = step_begin(), StepEnd = step_end();
6210 Step != StepEnd; ++Step) {
6211 if (CurInit.isInvalid())
6212 return ExprError();
6213
6214 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6215
6216 switch (Step->Kind) {
6217 case SK_ResolveAddressOfOverloadedFunction:
6218 // Overload resolution determined which function invoke; update the
6219 // initializer to reflect that choice.
6220 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6221 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6222 return ExprError();
6223 CurInit = S.FixOverloadedFunctionReference(CurInit,
6224 Step->Function.FoundDecl,
6225 Step->Function.Function);
6226 break;
6227
6228 case SK_CastDerivedToBaseRValue:
6229 case SK_CastDerivedToBaseXValue:
6230 case SK_CastDerivedToBaseLValue: {
6231 // We have a derived-to-base cast that produces either an rvalue or an
6232 // lvalue. Perform that cast.
6233
6234 CXXCastPath BasePath;
6235
6236 // Casts to inaccessible base classes are allowed with C-style casts.
6237 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6238 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6239 CurInit.get()->getLocStart(),
6240 CurInit.get()->getSourceRange(),
6241 &BasePath, IgnoreBaseAccess))
6242 return ExprError();
6243
6244 ExprValueKind VK =
6245 Step->Kind == SK_CastDerivedToBaseLValue ?
6246 VK_LValue :
6247 (Step->Kind == SK_CastDerivedToBaseXValue ?
6248 VK_XValue :
6249 VK_RValue);
6250 CurInit =
6251 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6252 CurInit.get(), &BasePath, VK);
6253 break;
6254 }
6255
6256 case SK_BindReference:
6257 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
6258 if (CurInit.get()->refersToBitField()) {
6259 // We don't necessarily have an unambiguous source bit-field.
6260 FieldDecl *BitField = CurInit.get()->getSourceBitField();
6261 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
6262 << Entity.getType().isVolatileQualified()
6263 << (BitField ? BitField->getDeclName() : DeclarationName())
6264 << (BitField != nullptr)
6265 << CurInit.get()->getSourceRange();
6266 if (BitField)
6267 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
6268
6269 return ExprError();
6270 }
6271
6272 if (CurInit.get()->refersToVectorElement()) {
6273 // References cannot bind to vector elements.
6274 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
6275 << Entity.getType().isVolatileQualified()
6276 << CurInit.get()->getSourceRange();
6277 PrintInitLocationNote(S, Entity);
6278 return ExprError();
6279 }
6280
6281 // Reference binding does not have any corresponding ASTs.
6282
6283 // Check exception specifications
6284 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6285 return ExprError();
6286
6287 // Even though we didn't materialize a temporary, the binding may still
6288 // extend the lifetime of a temporary. This happens if we bind a reference
6289 // to the result of a cast to reference type.
6290 if (const InitializedEntity *ExtendingEntity =
6291 getEntityForTemporaryLifetimeExtension(&Entity))
6292 if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6293 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6294 /*IsInitializerList=*/false,
6295 ExtendingEntity->getDecl());
6296
6297 break;
6298
6299 case SK_BindReferenceToTemporary: {
6300 // Make sure the "temporary" is actually an rvalue.
6301 assert(CurInit.get()->isRValue() && "not a temporary");
6302
6303 // Check exception specifications
6304 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6305 return ExprError();
6306
6307 // Materialize the temporary into memory.
6308 MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
6309 Entity.getType().getNonReferenceType(), CurInit.get(),
6310 Entity.getType()->isLValueReferenceType());
6311
6312 // Maybe lifetime-extend the temporary's subobjects to match the
6313 // entity's lifetime.
6314 if (const InitializedEntity *ExtendingEntity =
6315 getEntityForTemporaryLifetimeExtension(&Entity))
6316 if (performReferenceExtension(MTE, ExtendingEntity))
6317 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
6318 ExtendingEntity->getDecl());
6319
6320 // If we're binding to an Objective-C object that has lifetime, we
6321 // need cleanups. Likewise if we're extending this temporary to automatic
6322 // storage duration -- we need to register its cleanup during the
6323 // full-expression's cleanups.
6324 if ((S.getLangOpts().ObjCAutoRefCount &&
6325 MTE->getType()->isObjCLifetimeType()) ||
6326 (MTE->getStorageDuration() == SD_Automatic &&
6327 MTE->getType().isDestructedType()))
6328 S.ExprNeedsCleanups = true;
6329
6330 CurInit = MTE;
6331 break;
6332 }
6333
6334 case SK_ExtraneousCopyToTemporary:
6335 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6336 /*IsExtraneousCopy=*/true);
6337 break;
6338
6339 case SK_UserConversion: {
6340 // We have a user-defined conversion that invokes either a constructor
6341 // or a conversion function.
6342 CastKind CastKind;
6343 bool IsCopy = false;
6344 FunctionDecl *Fn = Step->Function.Function;
6345 DeclAccessPair FoundFn = Step->Function.FoundDecl;
6346 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6347 bool CreatedObject = false;
6348 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6349 // Build a call to the selected constructor.
6350 SmallVector<Expr*, 8> ConstructorArgs;
6351 SourceLocation Loc = CurInit.get()->getLocStart();
6352 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6353
6354 // Determine the arguments required to actually perform the constructor
6355 // call.
6356 Expr *Arg = CurInit.get();
6357 if (S.CompleteConstructorCall(Constructor,
6358 MultiExprArg(&Arg, 1),
6359 Loc, ConstructorArgs))
6360 return ExprError();
6361
6362 // Build an expression that constructs a temporary.
6363 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
6364 ConstructorArgs,
6365 HadMultipleCandidates,
6366 /*ListInit*/ false,
6367 /*StdInitListInit*/ false,
6368 /*ZeroInit*/ false,
6369 CXXConstructExpr::CK_Complete,
6370 SourceRange());
6371 if (CurInit.isInvalid())
6372 return ExprError();
6373
6374 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
6375 FoundFn.getAccess());
6376 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6377 return ExprError();
6378
6379 CastKind = CK_ConstructorConversion;
6380 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
6381 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
6382 S.IsDerivedFrom(Loc, SourceType, Class))
6383 IsCopy = true;
6384
6385 CreatedObject = true;
6386 } else {
6387 // Build a call to the conversion function.
6388 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6389 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6390 FoundFn);
6391 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6392 return ExprError();
6393
6394 // FIXME: Should we move this initialization into a separate
6395 // derived-to-base conversion? I believe the answer is "no", because
6396 // we don't want to turn off access control here for c-style casts.
6397 ExprResult CurInitExprRes =
6398 S.PerformObjectArgumentInitialization(CurInit.get(),
6399 /*Qualifier=*/nullptr,
6400 FoundFn, Conversion);
6401 if(CurInitExprRes.isInvalid())
6402 return ExprError();
6403 CurInit = CurInitExprRes;
6404
6405 // Build the actual call to the conversion function.
6406 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6407 HadMultipleCandidates);
6408 if (CurInit.isInvalid() || !CurInit.get())
6409 return ExprError();
6410
6411 CastKind = CK_UserDefinedConversion;
6412
6413 CreatedObject = Conversion->getReturnType()->isRecordType();
6414 }
6415
6416 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6417 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6418
6419 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6420 QualType T = CurInit.get()->getType();
6421 if (const RecordType *Record = T->getAs<RecordType>()) {
6422 CXXDestructorDecl *Destructor
6423 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6424 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6425 S.PDiag(diag::err_access_dtor_temp) << T);
6426 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6427 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6428 return ExprError();
6429 }
6430 }
6431
6432 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6433 CastKind, CurInit.get(), nullptr,
6434 CurInit.get()->getValueKind());
6435 if (MaybeBindToTemp)
6436 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6437 if (RequiresCopy)
6438 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6439 CurInit, /*IsExtraneousCopy=*/false);
6440 break;
6441 }
6442
6443 case SK_QualificationConversionLValue:
6444 case SK_QualificationConversionXValue:
6445 case SK_QualificationConversionRValue: {
6446 // Perform a qualification conversion; these can never go wrong.
6447 ExprValueKind VK =
6448 Step->Kind == SK_QualificationConversionLValue ?
6449 VK_LValue :
6450 (Step->Kind == SK_QualificationConversionXValue ?
6451 VK_XValue :
6452 VK_RValue);
6453 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6454 break;
6455 }
6456
6457 case SK_AtomicConversion: {
6458 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6459 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6460 CK_NonAtomicToAtomic, VK_RValue);
6461 break;
6462 }
6463
6464 case SK_LValueToRValue: {
6465 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6466 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6467 CK_LValueToRValue, CurInit.get(),
6468 /*BasePath=*/nullptr, VK_RValue);
6469 break;
6470 }
6471
6472 case SK_ConversionSequence:
6473 case SK_ConversionSequenceNoNarrowing: {
6474 Sema::CheckedConversionKind CCK
6475 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6476 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6477 : Kind.isExplicitCast()? Sema::CCK_OtherCast
6478 : Sema::CCK_ImplicitConversion;
6479 ExprResult CurInitExprRes =
6480 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6481 getAssignmentAction(Entity), CCK);
6482 if (CurInitExprRes.isInvalid())
6483 return ExprError();
6484 CurInit = CurInitExprRes;
6485
6486 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6487 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6488 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6489 CurInit.get());
6490 break;
6491 }
6492
6493 case SK_ListInitialization: {
6494 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6495 // If we're not initializing the top-level entity, we need to create an
6496 // InitializeTemporary entity for our target type.
6497 QualType Ty = Step->Type;
6498 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6499 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6500 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6501 InitListChecker PerformInitList(S, InitEntity,
6502 InitList, Ty, /*VerifyOnly=*/false);
6503 if (PerformInitList.HadError())
6504 return ExprError();
6505
6506 // Hack: We must update *ResultType if available in order to set the
6507 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6508 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6509 if (ResultType &&
6510 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6511 if ((*ResultType)->isRValueReferenceType())
6512 Ty = S.Context.getRValueReferenceType(Ty);
6513 else if ((*ResultType)->isLValueReferenceType())
6514 Ty = S.Context.getLValueReferenceType(Ty,
6515 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6516 *ResultType = Ty;
6517 }
6518
6519 InitListExpr *StructuredInitList =
6520 PerformInitList.getFullyStructuredList();
6521 CurInit.get();
6522 CurInit = shouldBindAsTemporary(InitEntity)
6523 ? S.MaybeBindToTemporary(StructuredInitList)
6524 : StructuredInitList;
6525 break;
6526 }
6527
6528 case SK_ConstructorInitializationFromList: {
6529 // When an initializer list is passed for a parameter of type "reference
6530 // to object", we don't get an EK_Temporary entity, but instead an
6531 // EK_Parameter entity with reference type.
6532 // FIXME: This is a hack. What we really should do is create a user
6533 // conversion step for this case, but this makes it considerably more
6534 // complicated. For now, this will do.
6535 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6536 Entity.getType().getNonReferenceType());
6537 bool UseTemporary = Entity.getType()->isReferenceType();
6538 assert(Args.size() == 1 && "expected a single argument for list init");
6539 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6540 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6541 << InitList->getSourceRange();
6542 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6543 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6544 Entity,
6545 Kind, Arg, *Step,
6546 ConstructorInitRequiresZeroInit,
6547 /*IsListInitialization*/true,
6548 /*IsStdInitListInit*/false,
6549 InitList->getLBraceLoc(),
6550 InitList->getRBraceLoc());
6551 break;
6552 }
6553
6554 case SK_UnwrapInitList:
6555 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6556 break;
6557
6558 case SK_RewrapInitList: {
6559 Expr *E = CurInit.get();
6560 InitListExpr *Syntactic = Step->WrappingSyntacticList;
6561 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6562 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6563 ILE->setSyntacticForm(Syntactic);
6564 ILE->setType(E->getType());
6565 ILE->setValueKind(E->getValueKind());
6566 CurInit = ILE;
6567 break;
6568 }
6569
6570 case SK_ConstructorInitialization:
6571 case SK_StdInitializerListConstructorCall: {
6572 // When an initializer list is passed for a parameter of type "reference
6573 // to object", we don't get an EK_Temporary entity, but instead an
6574 // EK_Parameter entity with reference type.
6575 // FIXME: This is a hack. What we really should do is create a user
6576 // conversion step for this case, but this makes it considerably more
6577 // complicated. For now, this will do.
6578 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6579 Entity.getType().getNonReferenceType());
6580 bool UseTemporary = Entity.getType()->isReferenceType();
6581 bool IsStdInitListInit =
6582 Step->Kind == SK_StdInitializerListConstructorCall;
6583 CurInit = PerformConstructorInitialization(
6584 S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
6585 ConstructorInitRequiresZeroInit,
6586 /*IsListInitialization*/IsStdInitListInit,
6587 /*IsStdInitListInitialization*/IsStdInitListInit,
6588 /*LBraceLoc*/SourceLocation(),
6589 /*RBraceLoc*/SourceLocation());
6590 break;
6591 }
6592
6593 case SK_ZeroInitialization: {
6594 step_iterator NextStep = Step;
6595 ++NextStep;
6596 if (NextStep != StepEnd &&
6597 (NextStep->Kind == SK_ConstructorInitialization ||
6598 NextStep->Kind == SK_ConstructorInitializationFromList)) {
6599 // The need for zero-initialization is recorded directly into
6600 // the call to the object's constructor within the next step.
6601 ConstructorInitRequiresZeroInit = true;
6602 } else if (Kind.getKind() == InitializationKind::IK_Value &&
6603 S.getLangOpts().CPlusPlus &&
6604 !Kind.isImplicitValueInit()) {
6605 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6606 if (!TSInfo)
6607 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6608 Kind.getRange().getBegin());
6609
6610 CurInit = new (S.Context) CXXScalarValueInitExpr(
6611 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6612 Kind.getRange().getEnd());
6613 } else {
6614 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6615 }
6616 break;
6617 }
6618
6619 case SK_CAssignment: {
6620 QualType SourceType = CurInit.get()->getType();
6621 // Save off the initial CurInit in case we need to emit a diagnostic
6622 ExprResult InitialCurInit = CurInit;
6623 ExprResult Result = CurInit;
6624 Sema::AssignConvertType ConvTy =
6625 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6626 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6627 if (Result.isInvalid())
6628 return ExprError();
6629 CurInit = Result;
6630
6631 // If this is a call, allow conversion to a transparent union.
6632 ExprResult CurInitExprRes = CurInit;
6633 if (ConvTy != Sema::Compatible &&
6634 Entity.isParameterKind() &&
6635 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6636 == Sema::Compatible)
6637 ConvTy = Sema::Compatible;
6638 if (CurInitExprRes.isInvalid())
6639 return ExprError();
6640 CurInit = CurInitExprRes;
6641
6642 bool Complained;
6643 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6644 Step->Type, SourceType,
6645 InitialCurInit.get(),
6646 getAssignmentAction(Entity, true),
6647 &Complained)) {
6648 PrintInitLocationNote(S, Entity);
6649 return ExprError();
6650 } else if (Complained)
6651 PrintInitLocationNote(S, Entity);
6652 break;
6653 }
6654
6655 case SK_StringInit: {
6656 QualType Ty = Step->Type;
6657 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6658 S.Context.getAsArrayType(Ty), S);
6659 break;
6660 }
6661
6662 case SK_ObjCObjectConversion:
6663 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6664 CK_ObjCObjectLValueCast,
6665 CurInit.get()->getValueKind());
6666 break;
6667
6668 case SK_ArrayInit:
6669 // Okay: we checked everything before creating this step. Note that
6670 // this is a GNU extension.
6671 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6672 << Step->Type << CurInit.get()->getType()
6673 << CurInit.get()->getSourceRange();
6674
6675 // If the destination type is an incomplete array type, update the
6676 // type accordingly.
6677 if (ResultType) {
6678 if (const IncompleteArrayType *IncompleteDest
6679 = S.Context.getAsIncompleteArrayType(Step->Type)) {
6680 if (const ConstantArrayType *ConstantSource
6681 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6682 *ResultType = S.Context.getConstantArrayType(
6683 IncompleteDest->getElementType(),
6684 ConstantSource->getSize(),
6685 ArrayType::Normal, 0);
6686 }
6687 }
6688 }
6689 break;
6690
6691 case SK_ParenthesizedArrayInit:
6692 // Okay: we checked everything before creating this step. Note that
6693 // this is a GNU extension.
6694 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6695 << CurInit.get()->getSourceRange();
6696 break;
6697
6698 case SK_PassByIndirectCopyRestore:
6699 case SK_PassByIndirectRestore:
6700 checkIndirectCopyRestoreSource(S, CurInit.get());
6701 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6702 CurInit.get(), Step->Type,
6703 Step->Kind == SK_PassByIndirectCopyRestore);
6704 break;
6705
6706 case SK_ProduceObjCObject:
6707 CurInit =
6708 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6709 CurInit.get(), nullptr, VK_RValue);
6710 break;
6711
6712 case SK_StdInitializerList: {
6713 S.Diag(CurInit.get()->getExprLoc(),
6714 diag::warn_cxx98_compat_initializer_list_init)
6715 << CurInit.get()->getSourceRange();
6716
6717 // Materialize the temporary into memory.
6718 MaterializeTemporaryExpr *MTE = new (S.Context)
6719 MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6720 /*BoundToLvalueReference=*/false);
6721
6722 // Maybe lifetime-extend the array temporary's subobjects to match the
6723 // entity's lifetime.
6724 if (const InitializedEntity *ExtendingEntity =
6725 getEntityForTemporaryLifetimeExtension(&Entity))
6726 if (performReferenceExtension(MTE, ExtendingEntity))
6727 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6728 /*IsInitializerList=*/true,
6729 ExtendingEntity->getDecl());
6730
6731 // Wrap it in a construction of a std::initializer_list<T>.
6732 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6733
6734 // Bind the result, in case the library has given initializer_list a
6735 // non-trivial destructor.
6736 if (shouldBindAsTemporary(Entity))
6737 CurInit = S.MaybeBindToTemporary(CurInit.get());
6738 break;
6739 }
6740
6741 case SK_OCLSamplerInit: {
6742 assert(Step->Type->isSamplerT() &&
6743 "Sampler initialization on non-sampler type.");
6744
6745 QualType SourceType = CurInit.get()->getType();
6746
6747 if (Entity.isParameterKind()) {
6748 if (!SourceType->isSamplerT())
6749 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6750 << SourceType;
6751 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6752 llvm_unreachable("Invalid EntityKind!");
6753 }
6754
6755 break;
6756 }
6757 case SK_OCLZeroEvent: {
6758 assert(Step->Type->isEventT() &&
6759 "Event initialization on non-event type.");
6760
6761 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6762 CK_ZeroToOCLEvent,
6763 CurInit.get()->getValueKind());
6764 break;
6765 }
6766 }
6767 }
6768
6769 // Diagnose non-fatal problems with the completed initialization.
6770 if (Entity.getKind() == InitializedEntity::EK_Member &&
6771 cast<FieldDecl>(Entity.getDecl())->isBitField())
6772 S.CheckBitFieldInitialization(Kind.getLocation(),
6773 cast<FieldDecl>(Entity.getDecl()),
6774 CurInit.get());
6775
6776 // Check for std::move on construction.
6777 if (const Expr *E = CurInit.get()) {
6778 CheckMoveOnConstruction(S, E,
6779 Entity.getKind() == InitializedEntity::EK_Result);
6780 }
6781
6782 return CurInit;
6783 }
6784
6785 /// Somewhere within T there is an uninitialized reference subobject.
6786 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)6787 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6788 QualType T) {
6789 if (T->isReferenceType()) {
6790 S.Diag(Loc, diag::err_reference_without_init)
6791 << T.getNonReferenceType();
6792 return true;
6793 }
6794
6795 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6796 if (!RD || !RD->hasUninitializedReferenceMember())
6797 return false;
6798
6799 for (const auto *FI : RD->fields()) {
6800 if (FI->isUnnamedBitfield())
6801 continue;
6802
6803 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6804 S.Diag(Loc, diag::note_value_initialization_here) << RD;
6805 return true;
6806 }
6807 }
6808
6809 for (const auto &BI : RD->bases()) {
6810 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6811 S.Diag(Loc, diag::note_value_initialization_here) << RD;
6812 return true;
6813 }
6814 }
6815
6816 return false;
6817 }
6818
6819
6820 //===----------------------------------------------------------------------===//
6821 // Diagnose initialization failures
6822 //===----------------------------------------------------------------------===//
6823
6824 /// Emit notes associated with an initialization that failed due to a
6825 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)6826 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6827 Expr *op) {
6828 QualType destType = entity.getType();
6829 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6830 op->getType()->isObjCObjectPointerType()) {
6831
6832 // Emit a possible note about the conversion failing because the
6833 // operand is a message send with a related result type.
6834 S.EmitRelatedResultTypeNote(op);
6835
6836 // Emit a possible note about a return failing because we're
6837 // expecting a related result type.
6838 if (entity.getKind() == InitializedEntity::EK_Result)
6839 S.EmitRelatedResultTypeNoteForReturn(destType);
6840 }
6841 }
6842
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)6843 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6844 InitListExpr *InitList) {
6845 QualType DestType = Entity.getType();
6846
6847 QualType E;
6848 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6849 QualType ArrayType = S.Context.getConstantArrayType(
6850 E.withConst(),
6851 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6852 InitList->getNumInits()),
6853 clang::ArrayType::Normal, 0);
6854 InitializedEntity HiddenArray =
6855 InitializedEntity::InitializeTemporary(ArrayType);
6856 return diagnoseListInit(S, HiddenArray, InitList);
6857 }
6858
6859 if (DestType->isReferenceType()) {
6860 // A list-initialization failure for a reference means that we tried to
6861 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
6862 // inner initialization failed.
6863 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
6864 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
6865 SourceLocation Loc = InitList->getLocStart();
6866 if (auto *D = Entity.getDecl())
6867 Loc = D->getLocation();
6868 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
6869 return;
6870 }
6871
6872 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6873 /*VerifyOnly=*/false);
6874 assert(DiagnoseInitList.HadError() &&
6875 "Inconsistent init list check result.");
6876 }
6877
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)6878 bool InitializationSequence::Diagnose(Sema &S,
6879 const InitializedEntity &Entity,
6880 const InitializationKind &Kind,
6881 ArrayRef<Expr *> Args) {
6882 if (!Failed())
6883 return false;
6884
6885 QualType DestType = Entity.getType();
6886 switch (Failure) {
6887 case FK_TooManyInitsForReference:
6888 // FIXME: Customize for the initialized entity?
6889 if (Args.empty()) {
6890 // Dig out the reference subobject which is uninitialized and diagnose it.
6891 // If this is value-initialization, this could be nested some way within
6892 // the target type.
6893 assert(Kind.getKind() == InitializationKind::IK_Value ||
6894 DestType->isReferenceType());
6895 bool Diagnosed =
6896 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6897 assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6898 (void)Diagnosed;
6899 } else // FIXME: diagnostic below could be better!
6900 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6901 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6902 break;
6903
6904 case FK_ArrayNeedsInitList:
6905 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6906 break;
6907 case FK_ArrayNeedsInitListOrStringLiteral:
6908 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6909 break;
6910 case FK_ArrayNeedsInitListOrWideStringLiteral:
6911 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6912 break;
6913 case FK_NarrowStringIntoWideCharArray:
6914 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6915 break;
6916 case FK_WideStringIntoCharArray:
6917 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6918 break;
6919 case FK_IncompatWideStringIntoWideChar:
6920 S.Diag(Kind.getLocation(),
6921 diag::err_array_init_incompat_wide_string_into_wchar);
6922 break;
6923 case FK_ArrayTypeMismatch:
6924 case FK_NonConstantArrayInit:
6925 S.Diag(Kind.getLocation(),
6926 (Failure == FK_ArrayTypeMismatch
6927 ? diag::err_array_init_different_type
6928 : diag::err_array_init_non_constant_array))
6929 << DestType.getNonReferenceType()
6930 << Args[0]->getType()
6931 << Args[0]->getSourceRange();
6932 break;
6933
6934 case FK_VariableLengthArrayHasInitializer:
6935 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6936 << Args[0]->getSourceRange();
6937 break;
6938
6939 case FK_AddressOfOverloadFailed: {
6940 DeclAccessPair Found;
6941 S.ResolveAddressOfOverloadedFunction(Args[0],
6942 DestType.getNonReferenceType(),
6943 true,
6944 Found);
6945 break;
6946 }
6947
6948 case FK_AddressOfUnaddressableFunction: {
6949 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
6950 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
6951 Args[0]->getLocStart());
6952 break;
6953 }
6954
6955 case FK_ReferenceInitOverloadFailed:
6956 case FK_UserConversionOverloadFailed:
6957 switch (FailedOverloadResult) {
6958 case OR_Ambiguous:
6959 if (Failure == FK_UserConversionOverloadFailed)
6960 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6961 << Args[0]->getType() << DestType
6962 << Args[0]->getSourceRange();
6963 else
6964 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6965 << DestType << Args[0]->getType()
6966 << Args[0]->getSourceRange();
6967
6968 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6969 break;
6970
6971 case OR_No_Viable_Function:
6972 if (!S.RequireCompleteType(Kind.getLocation(),
6973 DestType.getNonReferenceType(),
6974 diag::err_typecheck_nonviable_condition_incomplete,
6975 Args[0]->getType(), Args[0]->getSourceRange()))
6976 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6977 << (Entity.getKind() == InitializedEntity::EK_Result)
6978 << Args[0]->getType() << Args[0]->getSourceRange()
6979 << DestType.getNonReferenceType();
6980
6981 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6982 break;
6983
6984 case OR_Deleted: {
6985 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6986 << Args[0]->getType() << DestType.getNonReferenceType()
6987 << Args[0]->getSourceRange();
6988 OverloadCandidateSet::iterator Best;
6989 OverloadingResult Ovl
6990 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6991 true);
6992 if (Ovl == OR_Deleted) {
6993 S.NoteDeletedFunction(Best->Function);
6994 } else {
6995 llvm_unreachable("Inconsistent overload resolution?");
6996 }
6997 break;
6998 }
6999
7000 case OR_Success:
7001 llvm_unreachable("Conversion did not fail!");
7002 }
7003 break;
7004
7005 case FK_NonConstLValueReferenceBindingToTemporary:
7006 if (isa<InitListExpr>(Args[0])) {
7007 S.Diag(Kind.getLocation(),
7008 diag::err_lvalue_reference_bind_to_initlist)
7009 << DestType.getNonReferenceType().isVolatileQualified()
7010 << DestType.getNonReferenceType()
7011 << Args[0]->getSourceRange();
7012 break;
7013 }
7014 // Intentional fallthrough
7015
7016 case FK_NonConstLValueReferenceBindingToUnrelated:
7017 S.Diag(Kind.getLocation(),
7018 Failure == FK_NonConstLValueReferenceBindingToTemporary
7019 ? diag::err_lvalue_reference_bind_to_temporary
7020 : diag::err_lvalue_reference_bind_to_unrelated)
7021 << DestType.getNonReferenceType().isVolatileQualified()
7022 << DestType.getNonReferenceType()
7023 << Args[0]->getType()
7024 << Args[0]->getSourceRange();
7025 break;
7026
7027 case FK_RValueReferenceBindingToLValue:
7028 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7029 << DestType.getNonReferenceType() << Args[0]->getType()
7030 << Args[0]->getSourceRange();
7031 break;
7032
7033 case FK_ReferenceInitDropsQualifiers: {
7034 QualType SourceType = Args[0]->getType();
7035 QualType NonRefType = DestType.getNonReferenceType();
7036 Qualifiers DroppedQualifiers =
7037 SourceType.getQualifiers() - NonRefType.getQualifiers();
7038
7039 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7040 << SourceType
7041 << NonRefType
7042 << DroppedQualifiers.getCVRQualifiers()
7043 << Args[0]->getSourceRange();
7044 break;
7045 }
7046
7047 case FK_ReferenceInitFailed:
7048 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7049 << DestType.getNonReferenceType()
7050 << Args[0]->isLValue()
7051 << Args[0]->getType()
7052 << Args[0]->getSourceRange();
7053 emitBadConversionNotes(S, Entity, Args[0]);
7054 break;
7055
7056 case FK_ConversionFailed: {
7057 QualType FromType = Args[0]->getType();
7058 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7059 << (int)Entity.getKind()
7060 << DestType
7061 << Args[0]->isLValue()
7062 << FromType
7063 << Args[0]->getSourceRange();
7064 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7065 S.Diag(Kind.getLocation(), PDiag);
7066 emitBadConversionNotes(S, Entity, Args[0]);
7067 break;
7068 }
7069
7070 case FK_ConversionFromPropertyFailed:
7071 // No-op. This error has already been reported.
7072 break;
7073
7074 case FK_TooManyInitsForScalar: {
7075 SourceRange R;
7076
7077 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7078 if (InitList && InitList->getNumInits() >= 1) {
7079 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7080 } else {
7081 assert(Args.size() > 1 && "Expected multiple initializers!");
7082 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7083 }
7084
7085 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7086 if (Kind.isCStyleOrFunctionalCast())
7087 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7088 << R;
7089 else
7090 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7091 << /*scalar=*/2 << R;
7092 break;
7093 }
7094
7095 case FK_ReferenceBindingToInitList:
7096 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7097 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7098 break;
7099
7100 case FK_InitListBadDestinationType:
7101 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7102 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7103 break;
7104
7105 case FK_ListConstructorOverloadFailed:
7106 case FK_ConstructorOverloadFailed: {
7107 SourceRange ArgsRange;
7108 if (Args.size())
7109 ArgsRange = SourceRange(Args.front()->getLocStart(),
7110 Args.back()->getLocEnd());
7111
7112 if (Failure == FK_ListConstructorOverloadFailed) {
7113 assert(Args.size() == 1 &&
7114 "List construction from other than 1 argument.");
7115 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7116 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7117 }
7118
7119 // FIXME: Using "DestType" for the entity we're printing is probably
7120 // bad.
7121 switch (FailedOverloadResult) {
7122 case OR_Ambiguous:
7123 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7124 << DestType << ArgsRange;
7125 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7126 break;
7127
7128 case OR_No_Viable_Function:
7129 if (Kind.getKind() == InitializationKind::IK_Default &&
7130 (Entity.getKind() == InitializedEntity::EK_Base ||
7131 Entity.getKind() == InitializedEntity::EK_Member) &&
7132 isa<CXXConstructorDecl>(S.CurContext)) {
7133 // This is implicit default initialization of a member or
7134 // base within a constructor. If no viable function was
7135 // found, notify the user that she needs to explicitly
7136 // initialize this base/member.
7137 CXXConstructorDecl *Constructor
7138 = cast<CXXConstructorDecl>(S.CurContext);
7139 if (Entity.getKind() == InitializedEntity::EK_Base) {
7140 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7141 << (Constructor->getInheritedConstructor() ? 2 :
7142 Constructor->isImplicit() ? 1 : 0)
7143 << S.Context.getTypeDeclType(Constructor->getParent())
7144 << /*base=*/0
7145 << Entity.getType();
7146
7147 RecordDecl *BaseDecl
7148 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7149 ->getDecl();
7150 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7151 << S.Context.getTagDeclType(BaseDecl);
7152 } else {
7153 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7154 << (Constructor->getInheritedConstructor() ? 2 :
7155 Constructor->isImplicit() ? 1 : 0)
7156 << S.Context.getTypeDeclType(Constructor->getParent())
7157 << /*member=*/1
7158 << Entity.getName();
7159 S.Diag(Entity.getDecl()->getLocation(),
7160 diag::note_member_declared_at);
7161
7162 if (const RecordType *Record
7163 = Entity.getType()->getAs<RecordType>())
7164 S.Diag(Record->getDecl()->getLocation(),
7165 diag::note_previous_decl)
7166 << S.Context.getTagDeclType(Record->getDecl());
7167 }
7168 break;
7169 }
7170
7171 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7172 << DestType << ArgsRange;
7173 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7174 break;
7175
7176 case OR_Deleted: {
7177 OverloadCandidateSet::iterator Best;
7178 OverloadingResult Ovl
7179 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7180 if (Ovl != OR_Deleted) {
7181 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7182 << true << DestType << ArgsRange;
7183 llvm_unreachable("Inconsistent overload resolution?");
7184 break;
7185 }
7186
7187 // If this is a defaulted or implicitly-declared function, then
7188 // it was implicitly deleted. Make it clear that the deletion was
7189 // implicit.
7190 if (S.isImplicitlyDeleted(Best->Function))
7191 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7192 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7193 << DestType << ArgsRange;
7194 else
7195 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7196 << true << DestType << ArgsRange;
7197
7198 S.NoteDeletedFunction(Best->Function);
7199 break;
7200 }
7201
7202 case OR_Success:
7203 llvm_unreachable("Conversion did not fail!");
7204 }
7205 }
7206 break;
7207
7208 case FK_DefaultInitOfConst:
7209 if (Entity.getKind() == InitializedEntity::EK_Member &&
7210 isa<CXXConstructorDecl>(S.CurContext)) {
7211 // This is implicit default-initialization of a const member in
7212 // a constructor. Complain that it needs to be explicitly
7213 // initialized.
7214 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7215 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7216 << (Constructor->getInheritedConstructor() ? 2 :
7217 Constructor->isImplicit() ? 1 : 0)
7218 << S.Context.getTypeDeclType(Constructor->getParent())
7219 << /*const=*/1
7220 << Entity.getName();
7221 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7222 << Entity.getName();
7223 } else {
7224 S.Diag(Kind.getLocation(), diag::err_default_init_const)
7225 << DestType << (bool)DestType->getAs<RecordType>();
7226 }
7227 break;
7228
7229 case FK_Incomplete:
7230 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7231 diag::err_init_incomplete_type);
7232 break;
7233
7234 case FK_ListInitializationFailed: {
7235 // Run the init list checker again to emit diagnostics.
7236 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7237 diagnoseListInit(S, Entity, InitList);
7238 break;
7239 }
7240
7241 case FK_PlaceholderType: {
7242 // FIXME: Already diagnosed!
7243 break;
7244 }
7245
7246 case FK_ExplicitConstructor: {
7247 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7248 << Args[0]->getSourceRange();
7249 OverloadCandidateSet::iterator Best;
7250 OverloadingResult Ovl
7251 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7252 (void)Ovl;
7253 assert(Ovl == OR_Success && "Inconsistent overload resolution");
7254 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7255 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
7256 break;
7257 }
7258 }
7259
7260 PrintInitLocationNote(S, Entity);
7261 return true;
7262 }
7263
dump(raw_ostream & OS) const7264 void InitializationSequence::dump(raw_ostream &OS) const {
7265 switch (SequenceKind) {
7266 case FailedSequence: {
7267 OS << "Failed sequence: ";
7268 switch (Failure) {
7269 case FK_TooManyInitsForReference:
7270 OS << "too many initializers for reference";
7271 break;
7272
7273 case FK_ArrayNeedsInitList:
7274 OS << "array requires initializer list";
7275 break;
7276
7277 case FK_AddressOfUnaddressableFunction:
7278 OS << "address of unaddressable function was taken";
7279 break;
7280
7281 case FK_ArrayNeedsInitListOrStringLiteral:
7282 OS << "array requires initializer list or string literal";
7283 break;
7284
7285 case FK_ArrayNeedsInitListOrWideStringLiteral:
7286 OS << "array requires initializer list or wide string literal";
7287 break;
7288
7289 case FK_NarrowStringIntoWideCharArray:
7290 OS << "narrow string into wide char array";
7291 break;
7292
7293 case FK_WideStringIntoCharArray:
7294 OS << "wide string into char array";
7295 break;
7296
7297 case FK_IncompatWideStringIntoWideChar:
7298 OS << "incompatible wide string into wide char array";
7299 break;
7300
7301 case FK_ArrayTypeMismatch:
7302 OS << "array type mismatch";
7303 break;
7304
7305 case FK_NonConstantArrayInit:
7306 OS << "non-constant array initializer";
7307 break;
7308
7309 case FK_AddressOfOverloadFailed:
7310 OS << "address of overloaded function failed";
7311 break;
7312
7313 case FK_ReferenceInitOverloadFailed:
7314 OS << "overload resolution for reference initialization failed";
7315 break;
7316
7317 case FK_NonConstLValueReferenceBindingToTemporary:
7318 OS << "non-const lvalue reference bound to temporary";
7319 break;
7320
7321 case FK_NonConstLValueReferenceBindingToUnrelated:
7322 OS << "non-const lvalue reference bound to unrelated type";
7323 break;
7324
7325 case FK_RValueReferenceBindingToLValue:
7326 OS << "rvalue reference bound to an lvalue";
7327 break;
7328
7329 case FK_ReferenceInitDropsQualifiers:
7330 OS << "reference initialization drops qualifiers";
7331 break;
7332
7333 case FK_ReferenceInitFailed:
7334 OS << "reference initialization failed";
7335 break;
7336
7337 case FK_ConversionFailed:
7338 OS << "conversion failed";
7339 break;
7340
7341 case FK_ConversionFromPropertyFailed:
7342 OS << "conversion from property failed";
7343 break;
7344
7345 case FK_TooManyInitsForScalar:
7346 OS << "too many initializers for scalar";
7347 break;
7348
7349 case FK_ReferenceBindingToInitList:
7350 OS << "referencing binding to initializer list";
7351 break;
7352
7353 case FK_InitListBadDestinationType:
7354 OS << "initializer list for non-aggregate, non-scalar type";
7355 break;
7356
7357 case FK_UserConversionOverloadFailed:
7358 OS << "overloading failed for user-defined conversion";
7359 break;
7360
7361 case FK_ConstructorOverloadFailed:
7362 OS << "constructor overloading failed";
7363 break;
7364
7365 case FK_DefaultInitOfConst:
7366 OS << "default initialization of a const variable";
7367 break;
7368
7369 case FK_Incomplete:
7370 OS << "initialization of incomplete type";
7371 break;
7372
7373 case FK_ListInitializationFailed:
7374 OS << "list initialization checker failure";
7375 break;
7376
7377 case FK_VariableLengthArrayHasInitializer:
7378 OS << "variable length array has an initializer";
7379 break;
7380
7381 case FK_PlaceholderType:
7382 OS << "initializer expression isn't contextually valid";
7383 break;
7384
7385 case FK_ListConstructorOverloadFailed:
7386 OS << "list constructor overloading failed";
7387 break;
7388
7389 case FK_ExplicitConstructor:
7390 OS << "list copy initialization chose explicit constructor";
7391 break;
7392 }
7393 OS << '\n';
7394 return;
7395 }
7396
7397 case DependentSequence:
7398 OS << "Dependent sequence\n";
7399 return;
7400
7401 case NormalSequence:
7402 OS << "Normal sequence: ";
7403 break;
7404 }
7405
7406 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7407 if (S != step_begin()) {
7408 OS << " -> ";
7409 }
7410
7411 switch (S->Kind) {
7412 case SK_ResolveAddressOfOverloadedFunction:
7413 OS << "resolve address of overloaded function";
7414 break;
7415
7416 case SK_CastDerivedToBaseRValue:
7417 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
7418 break;
7419
7420 case SK_CastDerivedToBaseXValue:
7421 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
7422 break;
7423
7424 case SK_CastDerivedToBaseLValue:
7425 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
7426 break;
7427
7428 case SK_BindReference:
7429 OS << "bind reference to lvalue";
7430 break;
7431
7432 case SK_BindReferenceToTemporary:
7433 OS << "bind reference to a temporary";
7434 break;
7435
7436 case SK_ExtraneousCopyToTemporary:
7437 OS << "extraneous C++03 copy to temporary";
7438 break;
7439
7440 case SK_UserConversion:
7441 OS << "user-defined conversion via " << *S->Function.Function;
7442 break;
7443
7444 case SK_QualificationConversionRValue:
7445 OS << "qualification conversion (rvalue)";
7446 break;
7447
7448 case SK_QualificationConversionXValue:
7449 OS << "qualification conversion (xvalue)";
7450 break;
7451
7452 case SK_QualificationConversionLValue:
7453 OS << "qualification conversion (lvalue)";
7454 break;
7455
7456 case SK_AtomicConversion:
7457 OS << "non-atomic-to-atomic conversion";
7458 break;
7459
7460 case SK_LValueToRValue:
7461 OS << "load (lvalue to rvalue)";
7462 break;
7463
7464 case SK_ConversionSequence:
7465 OS << "implicit conversion sequence (";
7466 S->ICS->dump(); // FIXME: use OS
7467 OS << ")";
7468 break;
7469
7470 case SK_ConversionSequenceNoNarrowing:
7471 OS << "implicit conversion sequence with narrowing prohibited (";
7472 S->ICS->dump(); // FIXME: use OS
7473 OS << ")";
7474 break;
7475
7476 case SK_ListInitialization:
7477 OS << "list aggregate initialization";
7478 break;
7479
7480 case SK_UnwrapInitList:
7481 OS << "unwrap reference initializer list";
7482 break;
7483
7484 case SK_RewrapInitList:
7485 OS << "rewrap reference initializer list";
7486 break;
7487
7488 case SK_ConstructorInitialization:
7489 OS << "constructor initialization";
7490 break;
7491
7492 case SK_ConstructorInitializationFromList:
7493 OS << "list initialization via constructor";
7494 break;
7495
7496 case SK_ZeroInitialization:
7497 OS << "zero initialization";
7498 break;
7499
7500 case SK_CAssignment:
7501 OS << "C assignment";
7502 break;
7503
7504 case SK_StringInit:
7505 OS << "string initialization";
7506 break;
7507
7508 case SK_ObjCObjectConversion:
7509 OS << "Objective-C object conversion";
7510 break;
7511
7512 case SK_ArrayInit:
7513 OS << "array initialization";
7514 break;
7515
7516 case SK_ParenthesizedArrayInit:
7517 OS << "parenthesized array initialization";
7518 break;
7519
7520 case SK_PassByIndirectCopyRestore:
7521 OS << "pass by indirect copy and restore";
7522 break;
7523
7524 case SK_PassByIndirectRestore:
7525 OS << "pass by indirect restore";
7526 break;
7527
7528 case SK_ProduceObjCObject:
7529 OS << "Objective-C object retension";
7530 break;
7531
7532 case SK_StdInitializerList:
7533 OS << "std::initializer_list from initializer list";
7534 break;
7535
7536 case SK_StdInitializerListConstructorCall:
7537 OS << "list initialization from std::initializer_list";
7538 break;
7539
7540 case SK_OCLSamplerInit:
7541 OS << "OpenCL sampler_t from integer constant";
7542 break;
7543
7544 case SK_OCLZeroEvent:
7545 OS << "OpenCL event_t from zero";
7546 break;
7547 }
7548
7549 OS << " [" << S->Type.getAsString() << ']';
7550 }
7551
7552 OS << '\n';
7553 }
7554
dump() const7555 void InitializationSequence::dump() const {
7556 dump(llvm::errs());
7557 }
7558
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)7559 static void DiagnoseNarrowingInInitList(Sema &S,
7560 const ImplicitConversionSequence &ICS,
7561 QualType PreNarrowingType,
7562 QualType EntityType,
7563 const Expr *PostInit) {
7564 const StandardConversionSequence *SCS = nullptr;
7565 switch (ICS.getKind()) {
7566 case ImplicitConversionSequence::StandardConversion:
7567 SCS = &ICS.Standard;
7568 break;
7569 case ImplicitConversionSequence::UserDefinedConversion:
7570 SCS = &ICS.UserDefined.After;
7571 break;
7572 case ImplicitConversionSequence::AmbiguousConversion:
7573 case ImplicitConversionSequence::EllipsisConversion:
7574 case ImplicitConversionSequence::BadConversion:
7575 return;
7576 }
7577
7578 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7579 APValue ConstantValue;
7580 QualType ConstantType;
7581 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7582 ConstantType)) {
7583 case NK_Not_Narrowing:
7584 // No narrowing occurred.
7585 return;
7586
7587 case NK_Type_Narrowing:
7588 // This was a floating-to-integer conversion, which is always considered a
7589 // narrowing conversion even if the value is a constant and can be
7590 // represented exactly as an integer.
7591 S.Diag(PostInit->getLocStart(),
7592 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7593 ? diag::warn_init_list_type_narrowing
7594 : diag::ext_init_list_type_narrowing)
7595 << PostInit->getSourceRange()
7596 << PreNarrowingType.getLocalUnqualifiedType()
7597 << EntityType.getLocalUnqualifiedType();
7598 break;
7599
7600 case NK_Constant_Narrowing:
7601 // A constant value was narrowed.
7602 S.Diag(PostInit->getLocStart(),
7603 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7604 ? diag::warn_init_list_constant_narrowing
7605 : diag::ext_init_list_constant_narrowing)
7606 << PostInit->getSourceRange()
7607 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7608 << EntityType.getLocalUnqualifiedType();
7609 break;
7610
7611 case NK_Variable_Narrowing:
7612 // A variable's value may have been narrowed.
7613 S.Diag(PostInit->getLocStart(),
7614 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7615 ? diag::warn_init_list_variable_narrowing
7616 : diag::ext_init_list_variable_narrowing)
7617 << PostInit->getSourceRange()
7618 << PreNarrowingType.getLocalUnqualifiedType()
7619 << EntityType.getLocalUnqualifiedType();
7620 break;
7621 }
7622
7623 SmallString<128> StaticCast;
7624 llvm::raw_svector_ostream OS(StaticCast);
7625 OS << "static_cast<";
7626 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7627 // It's important to use the typedef's name if there is one so that the
7628 // fixit doesn't break code using types like int64_t.
7629 //
7630 // FIXME: This will break if the typedef requires qualification. But
7631 // getQualifiedNameAsString() includes non-machine-parsable components.
7632 OS << *TT->getDecl();
7633 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7634 OS << BT->getName(S.getLangOpts());
7635 else {
7636 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
7637 // with a broken cast.
7638 return;
7639 }
7640 OS << ">(";
7641 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7642 << PostInit->getSourceRange()
7643 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7644 << FixItHint::CreateInsertion(
7645 S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7646 }
7647
7648 //===----------------------------------------------------------------------===//
7649 // Initialization helper functions
7650 //===----------------------------------------------------------------------===//
7651 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)7652 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7653 ExprResult Init) {
7654 if (Init.isInvalid())
7655 return false;
7656
7657 Expr *InitE = Init.get();
7658 assert(InitE && "No initialization expression");
7659
7660 InitializationKind Kind
7661 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7662 InitializationSequence Seq(*this, Entity, Kind, InitE);
7663 return !Seq.Failed();
7664 }
7665
7666 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)7667 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7668 SourceLocation EqualLoc,
7669 ExprResult Init,
7670 bool TopLevelOfInitList,
7671 bool AllowExplicit) {
7672 if (Init.isInvalid())
7673 return ExprError();
7674
7675 Expr *InitE = Init.get();
7676 assert(InitE && "No initialization expression?");
7677
7678 if (EqualLoc.isInvalid())
7679 EqualLoc = InitE->getLocStart();
7680
7681 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7682 EqualLoc,
7683 AllowExplicit);
7684 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7685
7686 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7687
7688 return Result;
7689 }
7690