1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/Sema.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include <algorithm>
27
28 namespace clang {
29 using namespace sema;
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10,
56 /// \brief Within template argument deduction from overload resolution per
57 /// C++ [over.over] allow matching function types that are compatible in
58 /// terms of noreturn and default calling convention adjustments.
59 TDF_InOverloadResolution = 0x20
60 };
61 }
62
63 using namespace clang;
64
65 /// \brief Compare two APSInts, extending and switching the sign as
66 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68 if (Y.getBitWidth() > X.getBitWidth())
69 X = X.extend(Y.getBitWidth());
70 else if (Y.getBitWidth() < X.getBitWidth())
71 Y = Y.extend(X.getBitWidth());
72
73 // If there is a signedness mismatch, correct it.
74 if (X.isSigned() != Y.isSigned()) {
75 // If the signed value is negative, then the values cannot be the same.
76 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77 return false;
78
79 Y.setIsSigned(true);
80 X.setIsSigned(true);
81 }
82
83 return X == Y;
84 }
85
86 static Sema::TemplateDeductionResult
87 DeduceTemplateArguments(Sema &S,
88 TemplateParameterList *TemplateParams,
89 const TemplateArgument &Param,
90 TemplateArgument Arg,
91 TemplateDeductionInfo &Info,
92 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93
94 static Sema::TemplateDeductionResult
95 DeduceTemplateArgumentsByTypeMatch(Sema &S,
96 TemplateParameterList *TemplateParams,
97 QualType Param,
98 QualType Arg,
99 TemplateDeductionInfo &Info,
100 SmallVectorImpl<DeducedTemplateArgument> &
101 Deduced,
102 unsigned TDF,
103 bool PartialOrdering = false);
104
105 static Sema::TemplateDeductionResult
106 DeduceTemplateArguments(Sema &S,
107 TemplateParameterList *TemplateParams,
108 const TemplateArgument *Params, unsigned NumParams,
109 const TemplateArgument *Args, unsigned NumArgs,
110 TemplateDeductionInfo &Info,
111 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
112
113 /// \brief If the given expression is of a form that permits the deduction
114 /// of a non-type template parameter, return the declaration of that
115 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)116 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
117 // If we are within an alias template, the expression may have undergone
118 // any number of parameter substitutions already.
119 while (1) {
120 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
121 E = IC->getSubExpr();
122 else if (SubstNonTypeTemplateParmExpr *Subst =
123 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
124 E = Subst->getReplacement();
125 else
126 break;
127 }
128
129 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
130 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
131
132 return nullptr;
133 }
134
135 /// \brief Determine whether two declaration pointers refer to the same
136 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)137 static bool isSameDeclaration(Decl *X, Decl *Y) {
138 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
139 X = NX->getUnderlyingDecl();
140 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
141 Y = NY->getUnderlyingDecl();
142
143 return X->getCanonicalDecl() == Y->getCanonicalDecl();
144 }
145
146 /// \brief Verify that the given, deduced template arguments are compatible.
147 ///
148 /// \returns The deduced template argument, or a NULL template argument if
149 /// the deduced template arguments were incompatible.
150 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)151 checkDeducedTemplateArguments(ASTContext &Context,
152 const DeducedTemplateArgument &X,
153 const DeducedTemplateArgument &Y) {
154 // We have no deduction for one or both of the arguments; they're compatible.
155 if (X.isNull())
156 return Y;
157 if (Y.isNull())
158 return X;
159
160 switch (X.getKind()) {
161 case TemplateArgument::Null:
162 llvm_unreachable("Non-deduced template arguments handled above");
163
164 case TemplateArgument::Type:
165 // If two template type arguments have the same type, they're compatible.
166 if (Y.getKind() == TemplateArgument::Type &&
167 Context.hasSameType(X.getAsType(), Y.getAsType()))
168 return X;
169
170 return DeducedTemplateArgument();
171
172 case TemplateArgument::Integral:
173 // If we deduced a constant in one case and either a dependent expression or
174 // declaration in another case, keep the integral constant.
175 // If both are integral constants with the same value, keep that value.
176 if (Y.getKind() == TemplateArgument::Expression ||
177 Y.getKind() == TemplateArgument::Declaration ||
178 (Y.getKind() == TemplateArgument::Integral &&
179 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
180 return DeducedTemplateArgument(X,
181 X.wasDeducedFromArrayBound() &&
182 Y.wasDeducedFromArrayBound());
183
184 // All other combinations are incompatible.
185 return DeducedTemplateArgument();
186
187 case TemplateArgument::Template:
188 if (Y.getKind() == TemplateArgument::Template &&
189 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
190 return X;
191
192 // All other combinations are incompatible.
193 return DeducedTemplateArgument();
194
195 case TemplateArgument::TemplateExpansion:
196 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
197 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
198 Y.getAsTemplateOrTemplatePattern()))
199 return X;
200
201 // All other combinations are incompatible.
202 return DeducedTemplateArgument();
203
204 case TemplateArgument::Expression:
205 // If we deduced a dependent expression in one case and either an integral
206 // constant or a declaration in another case, keep the integral constant
207 // or declaration.
208 if (Y.getKind() == TemplateArgument::Integral ||
209 Y.getKind() == TemplateArgument::Declaration)
210 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
211 Y.wasDeducedFromArrayBound());
212
213 if (Y.getKind() == TemplateArgument::Expression) {
214 // Compare the expressions for equality
215 llvm::FoldingSetNodeID ID1, ID2;
216 X.getAsExpr()->Profile(ID1, Context, true);
217 Y.getAsExpr()->Profile(ID2, Context, true);
218 if (ID1 == ID2)
219 return X;
220 }
221
222 // All other combinations are incompatible.
223 return DeducedTemplateArgument();
224
225 case TemplateArgument::Declaration:
226 // If we deduced a declaration and a dependent expression, keep the
227 // declaration.
228 if (Y.getKind() == TemplateArgument::Expression)
229 return X;
230
231 // If we deduced a declaration and an integral constant, keep the
232 // integral constant.
233 if (Y.getKind() == TemplateArgument::Integral)
234 return Y;
235
236 // If we deduced two declarations, make sure they they refer to the
237 // same declaration.
238 if (Y.getKind() == TemplateArgument::Declaration &&
239 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
240 return X;
241
242 // All other combinations are incompatible.
243 return DeducedTemplateArgument();
244
245 case TemplateArgument::NullPtr:
246 // If we deduced a null pointer and a dependent expression, keep the
247 // null pointer.
248 if (Y.getKind() == TemplateArgument::Expression)
249 return X;
250
251 // If we deduced a null pointer and an integral constant, keep the
252 // integral constant.
253 if (Y.getKind() == TemplateArgument::Integral)
254 return Y;
255
256 // If we deduced two null pointers, make sure they have the same type.
257 if (Y.getKind() == TemplateArgument::NullPtr &&
258 Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
259 return X;
260
261 // All other combinations are incompatible.
262 return DeducedTemplateArgument();
263
264 case TemplateArgument::Pack:
265 if (Y.getKind() != TemplateArgument::Pack ||
266 X.pack_size() != Y.pack_size())
267 return DeducedTemplateArgument();
268
269 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
270 XAEnd = X.pack_end(),
271 YA = Y.pack_begin();
272 XA != XAEnd; ++XA, ++YA) {
273 // FIXME: Do we need to merge the results together here?
274 if (checkDeducedTemplateArguments(Context,
275 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
276 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
277 .isNull())
278 return DeducedTemplateArgument();
279 }
280
281 return X;
282 }
283
284 llvm_unreachable("Invalid TemplateArgument Kind!");
285 }
286
287 /// \brief Deduce the value of the given non-type template parameter
288 /// from the given constant.
289 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)290 DeduceNonTypeTemplateArgument(Sema &S,
291 NonTypeTemplateParmDecl *NTTP,
292 llvm::APSInt Value, QualType ValueType,
293 bool DeducedFromArrayBound,
294 TemplateDeductionInfo &Info,
295 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
296 assert(NTTP->getDepth() == 0 &&
297 "Cannot deduce non-type template argument with depth > 0");
298
299 DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
300 DeducedFromArrayBound);
301 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
302 Deduced[NTTP->getIndex()],
303 NewDeduced);
304 if (Result.isNull()) {
305 Info.Param = NTTP;
306 Info.FirstArg = Deduced[NTTP->getIndex()];
307 Info.SecondArg = NewDeduced;
308 return Sema::TDK_Inconsistent;
309 }
310
311 Deduced[NTTP->getIndex()] = Result;
312 return Sema::TDK_Success;
313 }
314
315 /// \brief Deduce the value of the given non-type template parameter
316 /// from the given type- or value-dependent expression.
317 ///
318 /// \returns true if deduction succeeded, false otherwise.
319 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)320 DeduceNonTypeTemplateArgument(Sema &S,
321 NonTypeTemplateParmDecl *NTTP,
322 Expr *Value,
323 TemplateDeductionInfo &Info,
324 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
325 assert(NTTP->getDepth() == 0 &&
326 "Cannot deduce non-type template argument with depth > 0");
327 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
328 "Expression template argument must be type- or value-dependent.");
329
330 DeducedTemplateArgument NewDeduced(Value);
331 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
332 Deduced[NTTP->getIndex()],
333 NewDeduced);
334
335 if (Result.isNull()) {
336 Info.Param = NTTP;
337 Info.FirstArg = Deduced[NTTP->getIndex()];
338 Info.SecondArg = NewDeduced;
339 return Sema::TDK_Inconsistent;
340 }
341
342 Deduced[NTTP->getIndex()] = Result;
343 return Sema::TDK_Success;
344 }
345
346 /// \brief Deduce the value of the given non-type template parameter
347 /// from the given declaration.
348 ///
349 /// \returns true if deduction succeeded, false otherwise.
350 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,ValueDecl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)351 DeduceNonTypeTemplateArgument(Sema &S,
352 NonTypeTemplateParmDecl *NTTP,
353 ValueDecl *D,
354 TemplateDeductionInfo &Info,
355 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
356 assert(NTTP->getDepth() == 0 &&
357 "Cannot deduce non-type template argument with depth > 0");
358
359 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
360 TemplateArgument New(D, NTTP->getType());
361 DeducedTemplateArgument NewDeduced(New);
362 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
363 Deduced[NTTP->getIndex()],
364 NewDeduced);
365 if (Result.isNull()) {
366 Info.Param = NTTP;
367 Info.FirstArg = Deduced[NTTP->getIndex()];
368 Info.SecondArg = NewDeduced;
369 return Sema::TDK_Inconsistent;
370 }
371
372 Deduced[NTTP->getIndex()] = Result;
373 return Sema::TDK_Success;
374 }
375
376 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)377 DeduceTemplateArguments(Sema &S,
378 TemplateParameterList *TemplateParams,
379 TemplateName Param,
380 TemplateName Arg,
381 TemplateDeductionInfo &Info,
382 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
383 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
384 if (!ParamDecl) {
385 // The parameter type is dependent and is not a template template parameter,
386 // so there is nothing that we can deduce.
387 return Sema::TDK_Success;
388 }
389
390 if (TemplateTemplateParmDecl *TempParam
391 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
392 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
393 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
394 Deduced[TempParam->getIndex()],
395 NewDeduced);
396 if (Result.isNull()) {
397 Info.Param = TempParam;
398 Info.FirstArg = Deduced[TempParam->getIndex()];
399 Info.SecondArg = NewDeduced;
400 return Sema::TDK_Inconsistent;
401 }
402
403 Deduced[TempParam->getIndex()] = Result;
404 return Sema::TDK_Success;
405 }
406
407 // Verify that the two template names are equivalent.
408 if (S.Context.hasSameTemplateName(Param, Arg))
409 return Sema::TDK_Success;
410
411 // Mismatch of non-dependent template parameter to argument.
412 Info.FirstArg = TemplateArgument(Param);
413 Info.SecondArg = TemplateArgument(Arg);
414 return Sema::TDK_NonDeducedMismatch;
415 }
416
417 /// \brief Deduce the template arguments by comparing the template parameter
418 /// type (which is a template-id) with the template argument type.
419 ///
420 /// \param S the Sema
421 ///
422 /// \param TemplateParams the template parameters that we are deducing
423 ///
424 /// \param Param the parameter type
425 ///
426 /// \param Arg the argument type
427 ///
428 /// \param Info information about the template argument deduction itself
429 ///
430 /// \param Deduced the deduced template arguments
431 ///
432 /// \returns the result of template argument deduction so far. Note that a
433 /// "success" result means that template argument deduction has not yet failed,
434 /// but it may still fail, later, for other reasons.
435 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)436 DeduceTemplateArguments(Sema &S,
437 TemplateParameterList *TemplateParams,
438 const TemplateSpecializationType *Param,
439 QualType Arg,
440 TemplateDeductionInfo &Info,
441 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
442 assert(Arg.isCanonical() && "Argument type must be canonical");
443
444 // Check whether the template argument is a dependent template-id.
445 if (const TemplateSpecializationType *SpecArg
446 = dyn_cast<TemplateSpecializationType>(Arg)) {
447 // Perform template argument deduction for the template name.
448 if (Sema::TemplateDeductionResult Result
449 = DeduceTemplateArguments(S, TemplateParams,
450 Param->getTemplateName(),
451 SpecArg->getTemplateName(),
452 Info, Deduced))
453 return Result;
454
455
456 // Perform template argument deduction on each template
457 // argument. Ignore any missing/extra arguments, since they could be
458 // filled in by default arguments.
459 return DeduceTemplateArguments(S, TemplateParams,
460 Param->getArgs(), Param->getNumArgs(),
461 SpecArg->getArgs(), SpecArg->getNumArgs(),
462 Info, Deduced);
463 }
464
465 // If the argument type is a class template specialization, we
466 // perform template argument deduction using its template
467 // arguments.
468 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
469 if (!RecordArg) {
470 Info.FirstArg = TemplateArgument(QualType(Param, 0));
471 Info.SecondArg = TemplateArgument(Arg);
472 return Sema::TDK_NonDeducedMismatch;
473 }
474
475 ClassTemplateSpecializationDecl *SpecArg
476 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
477 if (!SpecArg) {
478 Info.FirstArg = TemplateArgument(QualType(Param, 0));
479 Info.SecondArg = TemplateArgument(Arg);
480 return Sema::TDK_NonDeducedMismatch;
481 }
482
483 // Perform template argument deduction for the template name.
484 if (Sema::TemplateDeductionResult Result
485 = DeduceTemplateArguments(S,
486 TemplateParams,
487 Param->getTemplateName(),
488 TemplateName(SpecArg->getSpecializedTemplate()),
489 Info, Deduced))
490 return Result;
491
492 // Perform template argument deduction for the template arguments.
493 return DeduceTemplateArguments(S, TemplateParams,
494 Param->getArgs(), Param->getNumArgs(),
495 SpecArg->getTemplateArgs().data(),
496 SpecArg->getTemplateArgs().size(),
497 Info, Deduced);
498 }
499
500 /// \brief Determines whether the given type is an opaque type that
501 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)502 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
503 switch (T->getTypeClass()) {
504 case Type::TypeOfExpr:
505 case Type::TypeOf:
506 case Type::DependentName:
507 case Type::Decltype:
508 case Type::UnresolvedUsing:
509 case Type::TemplateTypeParm:
510 return true;
511
512 case Type::ConstantArray:
513 case Type::IncompleteArray:
514 case Type::VariableArray:
515 case Type::DependentSizedArray:
516 return IsPossiblyOpaquelyQualifiedType(
517 cast<ArrayType>(T)->getElementType());
518
519 default:
520 return false;
521 }
522 }
523
524 /// \brief Retrieve the depth and index of a template parameter.
525 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)526 getDepthAndIndex(NamedDecl *ND) {
527 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
528 return std::make_pair(TTP->getDepth(), TTP->getIndex());
529
530 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
531 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
532
533 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
534 return std::make_pair(TTP->getDepth(), TTP->getIndex());
535 }
536
537 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
538 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)539 getDepthAndIndex(UnexpandedParameterPack UPP) {
540 if (const TemplateTypeParmType *TTP
541 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
542 return std::make_pair(TTP->getDepth(), TTP->getIndex());
543
544 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
545 }
546
547 /// \brief Helper function to build a TemplateParameter when we don't
548 /// know its type statically.
makeTemplateParameter(Decl * D)549 static TemplateParameter makeTemplateParameter(Decl *D) {
550 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
551 return TemplateParameter(TTP);
552 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
553 return TemplateParameter(NTTP);
554
555 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
556 }
557
558 /// A pack that we're currently deducing.
559 struct clang::DeducedPack {
DeducedPackclang::DeducedPack560 DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
561
562 // The index of the pack.
563 unsigned Index;
564
565 // The old value of the pack before we started deducing it.
566 DeducedTemplateArgument Saved;
567
568 // A deferred value of this pack from an inner deduction, that couldn't be
569 // deduced because this deduction hadn't happened yet.
570 DeducedTemplateArgument DeferredDeduction;
571
572 // The new value of the pack.
573 SmallVector<DeducedTemplateArgument, 4> New;
574
575 // The outer deduction for this pack, if any.
576 DeducedPack *Outer;
577 };
578
579 namespace {
580 /// A scope in which we're performing pack deduction.
581 class PackDeductionScope {
582 public:
PackDeductionScope(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,TemplateArgument Pattern)583 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
584 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
585 TemplateDeductionInfo &Info, TemplateArgument Pattern)
586 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
587 // Compute the set of template parameter indices that correspond to
588 // parameter packs expanded by the pack expansion.
589 {
590 llvm::SmallBitVector SawIndices(TemplateParams->size());
591 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
592 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
593 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
594 unsigned Depth, Index;
595 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
596 if (Depth == 0 && !SawIndices[Index]) {
597 SawIndices[Index] = true;
598
599 // Save the deduced template argument for the parameter pack expanded
600 // by this pack expansion, then clear out the deduction.
601 DeducedPack Pack(Index);
602 Pack.Saved = Deduced[Index];
603 Deduced[Index] = TemplateArgument();
604
605 Packs.push_back(Pack);
606 }
607 }
608 }
609 assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
610
611 for (auto &Pack : Packs) {
612 if (Info.PendingDeducedPacks.size() > Pack.Index)
613 Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
614 else
615 Info.PendingDeducedPacks.resize(Pack.Index + 1);
616 Info.PendingDeducedPacks[Pack.Index] = &Pack;
617
618 if (S.CurrentInstantiationScope) {
619 // If the template argument pack was explicitly specified, add that to
620 // the set of deduced arguments.
621 const TemplateArgument *ExplicitArgs;
622 unsigned NumExplicitArgs;
623 NamedDecl *PartiallySubstitutedPack =
624 S.CurrentInstantiationScope->getPartiallySubstitutedPack(
625 &ExplicitArgs, &NumExplicitArgs);
626 if (PartiallySubstitutedPack &&
627 getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
628 Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
629 }
630 }
631 }
632
~PackDeductionScope()633 ~PackDeductionScope() {
634 for (auto &Pack : Packs)
635 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
636 }
637
638 /// Move to deducing the next element in each pack that is being deduced.
nextPackElement()639 void nextPackElement() {
640 // Capture the deduced template arguments for each parameter pack expanded
641 // by this pack expansion, add them to the list of arguments we've deduced
642 // for that pack, then clear out the deduced argument.
643 for (auto &Pack : Packs) {
644 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
645 if (!DeducedArg.isNull()) {
646 Pack.New.push_back(DeducedArg);
647 DeducedArg = DeducedTemplateArgument();
648 }
649 }
650 }
651
652 /// \brief Finish template argument deduction for a set of argument packs,
653 /// producing the argument packs and checking for consistency with prior
654 /// deductions.
finish(bool HasAnyArguments)655 Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
656 // Build argument packs for each of the parameter packs expanded by this
657 // pack expansion.
658 for (auto &Pack : Packs) {
659 // Put back the old value for this pack.
660 Deduced[Pack.Index] = Pack.Saved;
661
662 // Build or find a new value for this pack.
663 DeducedTemplateArgument NewPack;
664 if (HasAnyArguments && Pack.New.empty()) {
665 if (Pack.DeferredDeduction.isNull()) {
666 // We were not able to deduce anything for this parameter pack
667 // (because it only appeared in non-deduced contexts), so just
668 // restore the saved argument pack.
669 continue;
670 }
671
672 NewPack = Pack.DeferredDeduction;
673 Pack.DeferredDeduction = TemplateArgument();
674 } else if (Pack.New.empty()) {
675 // If we deduced an empty argument pack, create it now.
676 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
677 } else {
678 TemplateArgument *ArgumentPack =
679 new (S.Context) TemplateArgument[Pack.New.size()];
680 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
681 NewPack = DeducedTemplateArgument(
682 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
683 Pack.New[0].wasDeducedFromArrayBound());
684 }
685
686 // Pick where we're going to put the merged pack.
687 DeducedTemplateArgument *Loc;
688 if (Pack.Outer) {
689 if (Pack.Outer->DeferredDeduction.isNull()) {
690 // Defer checking this pack until we have a complete pack to compare
691 // it against.
692 Pack.Outer->DeferredDeduction = NewPack;
693 continue;
694 }
695 Loc = &Pack.Outer->DeferredDeduction;
696 } else {
697 Loc = &Deduced[Pack.Index];
698 }
699
700 // Check the new pack matches any previous value.
701 DeducedTemplateArgument OldPack = *Loc;
702 DeducedTemplateArgument Result =
703 checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
704
705 // If we deferred a deduction of this pack, check that one now too.
706 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
707 OldPack = Result;
708 NewPack = Pack.DeferredDeduction;
709 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
710 }
711
712 if (Result.isNull()) {
713 Info.Param =
714 makeTemplateParameter(TemplateParams->getParam(Pack.Index));
715 Info.FirstArg = OldPack;
716 Info.SecondArg = NewPack;
717 return Sema::TDK_Inconsistent;
718 }
719
720 *Loc = Result;
721 }
722
723 return Sema::TDK_Success;
724 }
725
726 private:
727 Sema &S;
728 TemplateParameterList *TemplateParams;
729 SmallVectorImpl<DeducedTemplateArgument> &Deduced;
730 TemplateDeductionInfo &Info;
731
732 SmallVector<DeducedPack, 2> Packs;
733 };
734 } // namespace
735
736 /// \brief Deduce the template arguments by comparing the list of parameter
737 /// types to the list of argument types, as in the parameter-type-lists of
738 /// function types (C++ [temp.deduct.type]p10).
739 ///
740 /// \param S The semantic analysis object within which we are deducing
741 ///
742 /// \param TemplateParams The template parameters that we are deducing
743 ///
744 /// \param Params The list of parameter types
745 ///
746 /// \param NumParams The number of types in \c Params
747 ///
748 /// \param Args The list of argument types
749 ///
750 /// \param NumArgs The number of types in \c Args
751 ///
752 /// \param Info information about the template argument deduction itself
753 ///
754 /// \param Deduced the deduced template arguments
755 ///
756 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
757 /// how template argument deduction is performed.
758 ///
759 /// \param PartialOrdering If true, we are performing template argument
760 /// deduction for during partial ordering for a call
761 /// (C++0x [temp.deduct.partial]).
762 ///
763 /// \returns the result of template argument deduction so far. Note that a
764 /// "success" result means that template argument deduction has not yet failed,
765 /// but it may still fail, later, for other reasons.
766 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false)767 DeduceTemplateArguments(Sema &S,
768 TemplateParameterList *TemplateParams,
769 const QualType *Params, unsigned NumParams,
770 const QualType *Args, unsigned NumArgs,
771 TemplateDeductionInfo &Info,
772 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
773 unsigned TDF,
774 bool PartialOrdering = false) {
775 // Fast-path check to see if we have too many/too few arguments.
776 if (NumParams != NumArgs &&
777 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
778 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
779 return Sema::TDK_MiscellaneousDeductionFailure;
780
781 // C++0x [temp.deduct.type]p10:
782 // Similarly, if P has a form that contains (T), then each parameter type
783 // Pi of the respective parameter-type- list of P is compared with the
784 // corresponding parameter type Ai of the corresponding parameter-type-list
785 // of A. [...]
786 unsigned ArgIdx = 0, ParamIdx = 0;
787 for (; ParamIdx != NumParams; ++ParamIdx) {
788 // Check argument types.
789 const PackExpansionType *Expansion
790 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
791 if (!Expansion) {
792 // Simple case: compare the parameter and argument types at this point.
793
794 // Make sure we have an argument.
795 if (ArgIdx >= NumArgs)
796 return Sema::TDK_MiscellaneousDeductionFailure;
797
798 if (isa<PackExpansionType>(Args[ArgIdx])) {
799 // C++0x [temp.deduct.type]p22:
800 // If the original function parameter associated with A is a function
801 // parameter pack and the function parameter associated with P is not
802 // a function parameter pack, then template argument deduction fails.
803 return Sema::TDK_MiscellaneousDeductionFailure;
804 }
805
806 if (Sema::TemplateDeductionResult Result
807 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
808 Params[ParamIdx], Args[ArgIdx],
809 Info, Deduced, TDF,
810 PartialOrdering))
811 return Result;
812
813 ++ArgIdx;
814 continue;
815 }
816
817 // C++0x [temp.deduct.type]p5:
818 // The non-deduced contexts are:
819 // - A function parameter pack that does not occur at the end of the
820 // parameter-declaration-clause.
821 if (ParamIdx + 1 < NumParams)
822 return Sema::TDK_Success;
823
824 // C++0x [temp.deduct.type]p10:
825 // If the parameter-declaration corresponding to Pi is a function
826 // parameter pack, then the type of its declarator- id is compared with
827 // each remaining parameter type in the parameter-type-list of A. Each
828 // comparison deduces template arguments for subsequent positions in the
829 // template parameter packs expanded by the function parameter pack.
830
831 QualType Pattern = Expansion->getPattern();
832 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
833
834 bool HasAnyArguments = false;
835 for (; ArgIdx < NumArgs; ++ArgIdx) {
836 HasAnyArguments = true;
837
838 // Deduce template arguments from the pattern.
839 if (Sema::TemplateDeductionResult Result
840 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
841 Args[ArgIdx], Info, Deduced,
842 TDF, PartialOrdering))
843 return Result;
844
845 PackScope.nextPackElement();
846 }
847
848 // Build argument packs for each of the parameter packs expanded by this
849 // pack expansion.
850 if (auto Result = PackScope.finish(HasAnyArguments))
851 return Result;
852 }
853
854 // Make sure we don't have any extra arguments.
855 if (ArgIdx < NumArgs)
856 return Sema::TDK_MiscellaneousDeductionFailure;
857
858 return Sema::TDK_Success;
859 }
860
861 /// \brief Determine whether the parameter has qualifiers that are either
862 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)863 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
864 QualType ArgType) {
865 Qualifiers ParamQs = ParamType.getQualifiers();
866 Qualifiers ArgQs = ArgType.getQualifiers();
867
868 if (ParamQs == ArgQs)
869 return false;
870
871 // Mismatched (but not missing) Objective-C GC attributes.
872 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
873 ParamQs.hasObjCGCAttr())
874 return true;
875
876 // Mismatched (but not missing) address spaces.
877 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
878 ParamQs.hasAddressSpace())
879 return true;
880
881 // Mismatched (but not missing) Objective-C lifetime qualifiers.
882 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
883 ParamQs.hasObjCLifetime())
884 return true;
885
886 // CVR qualifier superset.
887 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
888 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
889 == ParamQs.getCVRQualifiers());
890 }
891
892 /// \brief Compare types for equality with respect to possibly compatible
893 /// function types (noreturn adjustment, implicit calling conventions). If any
894 /// of parameter and argument is not a function, just perform type comparison.
895 ///
896 /// \param Param the template parameter type.
897 ///
898 /// \param Arg the argument type.
isSameOrCompatibleFunctionType(CanQualType Param,CanQualType Arg)899 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
900 CanQualType Arg) {
901 const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
902 *ArgFunction = Arg->getAs<FunctionType>();
903
904 // Just compare if not functions.
905 if (!ParamFunction || !ArgFunction)
906 return Param == Arg;
907
908 // Noreturn adjustment.
909 QualType AdjustedParam;
910 if (IsNoReturnConversion(Param, Arg, AdjustedParam))
911 return Arg == Context.getCanonicalType(AdjustedParam);
912
913 // FIXME: Compatible calling conventions.
914
915 return Param == Arg;
916 }
917
918 /// \brief Deduce the template arguments by comparing the parameter type and
919 /// the argument type (C++ [temp.deduct.type]).
920 ///
921 /// \param S the semantic analysis object within which we are deducing
922 ///
923 /// \param TemplateParams the template parameters that we are deducing
924 ///
925 /// \param ParamIn the parameter type
926 ///
927 /// \param ArgIn the argument type
928 ///
929 /// \param Info information about the template argument deduction itself
930 ///
931 /// \param Deduced the deduced template arguments
932 ///
933 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
934 /// how template argument deduction is performed.
935 ///
936 /// \param PartialOrdering Whether we're performing template argument deduction
937 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
938 ///
939 /// \returns the result of template argument deduction so far. Note that a
940 /// "success" result means that template argument deduction has not yet failed,
941 /// but it may still fail, later, for other reasons.
942 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering)943 DeduceTemplateArgumentsByTypeMatch(Sema &S,
944 TemplateParameterList *TemplateParams,
945 QualType ParamIn, QualType ArgIn,
946 TemplateDeductionInfo &Info,
947 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
948 unsigned TDF,
949 bool PartialOrdering) {
950 // We only want to look at the canonical types, since typedefs and
951 // sugar are not part of template argument deduction.
952 QualType Param = S.Context.getCanonicalType(ParamIn);
953 QualType Arg = S.Context.getCanonicalType(ArgIn);
954
955 // If the argument type is a pack expansion, look at its pattern.
956 // This isn't explicitly called out
957 if (const PackExpansionType *ArgExpansion
958 = dyn_cast<PackExpansionType>(Arg))
959 Arg = ArgExpansion->getPattern();
960
961 if (PartialOrdering) {
962 // C++11 [temp.deduct.partial]p5:
963 // Before the partial ordering is done, certain transformations are
964 // performed on the types used for partial ordering:
965 // - If P is a reference type, P is replaced by the type referred to.
966 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
967 if (ParamRef)
968 Param = ParamRef->getPointeeType();
969
970 // - If A is a reference type, A is replaced by the type referred to.
971 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
972 if (ArgRef)
973 Arg = ArgRef->getPointeeType();
974
975 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
976 // C++11 [temp.deduct.partial]p9:
977 // If, for a given type, deduction succeeds in both directions (i.e.,
978 // the types are identical after the transformations above) and both
979 // P and A were reference types [...]:
980 // - if [one type] was an lvalue reference and [the other type] was
981 // not, [the other type] is not considered to be at least as
982 // specialized as [the first type]
983 // - if [one type] is more cv-qualified than [the other type],
984 // [the other type] is not considered to be at least as specialized
985 // as [the first type]
986 // Objective-C ARC adds:
987 // - [one type] has non-trivial lifetime, [the other type] has
988 // __unsafe_unretained lifetime, and the types are otherwise
989 // identical
990 //
991 // A is "considered to be at least as specialized" as P iff deduction
992 // succeeds, so we model this as a deduction failure. Note that
993 // [the first type] is P and [the other type] is A here; the standard
994 // gets this backwards.
995 Qualifiers ParamQuals = Param.getQualifiers();
996 Qualifiers ArgQuals = Arg.getQualifiers();
997 if ((ParamRef->isLValueReferenceType() &&
998 !ArgRef->isLValueReferenceType()) ||
999 ParamQuals.isStrictSupersetOf(ArgQuals) ||
1000 (ParamQuals.hasNonTrivialObjCLifetime() &&
1001 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1002 ParamQuals.withoutObjCLifetime() ==
1003 ArgQuals.withoutObjCLifetime())) {
1004 Info.FirstArg = TemplateArgument(ParamIn);
1005 Info.SecondArg = TemplateArgument(ArgIn);
1006 return Sema::TDK_NonDeducedMismatch;
1007 }
1008 }
1009
1010 // C++11 [temp.deduct.partial]p7:
1011 // Remove any top-level cv-qualifiers:
1012 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
1013 // version of P.
1014 Param = Param.getUnqualifiedType();
1015 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
1016 // version of A.
1017 Arg = Arg.getUnqualifiedType();
1018 } else {
1019 // C++0x [temp.deduct.call]p4 bullet 1:
1020 // - If the original P is a reference type, the deduced A (i.e., the type
1021 // referred to by the reference) can be more cv-qualified than the
1022 // transformed A.
1023 if (TDF & TDF_ParamWithReferenceType) {
1024 Qualifiers Quals;
1025 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1026 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1027 Arg.getCVRQualifiers());
1028 Param = S.Context.getQualifiedType(UnqualParam, Quals);
1029 }
1030
1031 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1032 // C++0x [temp.deduct.type]p10:
1033 // If P and A are function types that originated from deduction when
1034 // taking the address of a function template (14.8.2.2) or when deducing
1035 // template arguments from a function declaration (14.8.2.6) and Pi and
1036 // Ai are parameters of the top-level parameter-type-list of P and A,
1037 // respectively, Pi is adjusted if it is an rvalue reference to a
1038 // cv-unqualified template parameter and Ai is an lvalue reference, in
1039 // which case the type of Pi is changed to be the template parameter
1040 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
1041 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1042 // deduced as X&. - end note ]
1043 TDF &= ~TDF_TopLevelParameterTypeList;
1044
1045 if (const RValueReferenceType *ParamRef
1046 = Param->getAs<RValueReferenceType>()) {
1047 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1048 !ParamRef->getPointeeType().getQualifiers())
1049 if (Arg->isLValueReferenceType())
1050 Param = ParamRef->getPointeeType();
1051 }
1052 }
1053 }
1054
1055 // C++ [temp.deduct.type]p9:
1056 // A template type argument T, a template template argument TT or a
1057 // template non-type argument i can be deduced if P and A have one of
1058 // the following forms:
1059 //
1060 // T
1061 // cv-list T
1062 if (const TemplateTypeParmType *TemplateTypeParm
1063 = Param->getAs<TemplateTypeParmType>()) {
1064 // Just skip any attempts to deduce from a placeholder type.
1065 if (Arg->isPlaceholderType())
1066 return Sema::TDK_Success;
1067
1068 unsigned Index = TemplateTypeParm->getIndex();
1069 bool RecanonicalizeArg = false;
1070
1071 // If the argument type is an array type, move the qualifiers up to the
1072 // top level, so they can be matched with the qualifiers on the parameter.
1073 if (isa<ArrayType>(Arg)) {
1074 Qualifiers Quals;
1075 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1076 if (Quals) {
1077 Arg = S.Context.getQualifiedType(Arg, Quals);
1078 RecanonicalizeArg = true;
1079 }
1080 }
1081
1082 // The argument type can not be less qualified than the parameter
1083 // type.
1084 if (!(TDF & TDF_IgnoreQualifiers) &&
1085 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1086 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1087 Info.FirstArg = TemplateArgument(Param);
1088 Info.SecondArg = TemplateArgument(Arg);
1089 return Sema::TDK_Underqualified;
1090 }
1091
1092 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1093 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1094 QualType DeducedType = Arg;
1095
1096 // Remove any qualifiers on the parameter from the deduced type.
1097 // We checked the qualifiers for consistency above.
1098 Qualifiers DeducedQs = DeducedType.getQualifiers();
1099 Qualifiers ParamQs = Param.getQualifiers();
1100 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1101 if (ParamQs.hasObjCGCAttr())
1102 DeducedQs.removeObjCGCAttr();
1103 if (ParamQs.hasAddressSpace())
1104 DeducedQs.removeAddressSpace();
1105 if (ParamQs.hasObjCLifetime())
1106 DeducedQs.removeObjCLifetime();
1107
1108 // Objective-C ARC:
1109 // If template deduction would produce a lifetime qualifier on a type
1110 // that is not a lifetime type, template argument deduction fails.
1111 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1112 !DeducedType->isDependentType()) {
1113 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1114 Info.FirstArg = TemplateArgument(Param);
1115 Info.SecondArg = TemplateArgument(Arg);
1116 return Sema::TDK_Underqualified;
1117 }
1118
1119 // Objective-C ARC:
1120 // If template deduction would produce an argument type with lifetime type
1121 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1122 if (S.getLangOpts().ObjCAutoRefCount &&
1123 DeducedType->isObjCLifetimeType() &&
1124 !DeducedQs.hasObjCLifetime())
1125 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1126
1127 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1128 DeducedQs);
1129
1130 if (RecanonicalizeArg)
1131 DeducedType = S.Context.getCanonicalType(DeducedType);
1132
1133 DeducedTemplateArgument NewDeduced(DeducedType);
1134 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1135 Deduced[Index],
1136 NewDeduced);
1137 if (Result.isNull()) {
1138 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1139 Info.FirstArg = Deduced[Index];
1140 Info.SecondArg = NewDeduced;
1141 return Sema::TDK_Inconsistent;
1142 }
1143
1144 Deduced[Index] = Result;
1145 return Sema::TDK_Success;
1146 }
1147
1148 // Set up the template argument deduction information for a failure.
1149 Info.FirstArg = TemplateArgument(ParamIn);
1150 Info.SecondArg = TemplateArgument(ArgIn);
1151
1152 // If the parameter is an already-substituted template parameter
1153 // pack, do nothing: we don't know which of its arguments to look
1154 // at, so we have to wait until all of the parameter packs in this
1155 // expansion have arguments.
1156 if (isa<SubstTemplateTypeParmPackType>(Param))
1157 return Sema::TDK_Success;
1158
1159 // Check the cv-qualifiers on the parameter and argument types.
1160 CanQualType CanParam = S.Context.getCanonicalType(Param);
1161 CanQualType CanArg = S.Context.getCanonicalType(Arg);
1162 if (!(TDF & TDF_IgnoreQualifiers)) {
1163 if (TDF & TDF_ParamWithReferenceType) {
1164 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1165 return Sema::TDK_NonDeducedMismatch;
1166 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1167 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1168 return Sema::TDK_NonDeducedMismatch;
1169 }
1170
1171 // If the parameter type is not dependent, there is nothing to deduce.
1172 if (!Param->isDependentType()) {
1173 if (!(TDF & TDF_SkipNonDependent)) {
1174 bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1175 !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1176 Param != Arg;
1177 if (NonDeduced) {
1178 return Sema::TDK_NonDeducedMismatch;
1179 }
1180 }
1181 return Sema::TDK_Success;
1182 }
1183 } else if (!Param->isDependentType()) {
1184 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1185 ArgUnqualType = CanArg.getUnqualifiedType();
1186 bool Success = (TDF & TDF_InOverloadResolution)?
1187 S.isSameOrCompatibleFunctionType(ParamUnqualType,
1188 ArgUnqualType) :
1189 ParamUnqualType == ArgUnqualType;
1190 if (Success)
1191 return Sema::TDK_Success;
1192 }
1193
1194 switch (Param->getTypeClass()) {
1195 // Non-canonical types cannot appear here.
1196 #define NON_CANONICAL_TYPE(Class, Base) \
1197 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1198 #define TYPE(Class, Base)
1199 #include "clang/AST/TypeNodes.def"
1200
1201 case Type::TemplateTypeParm:
1202 case Type::SubstTemplateTypeParmPack:
1203 llvm_unreachable("Type nodes handled above");
1204
1205 // These types cannot be dependent, so simply check whether the types are
1206 // the same.
1207 case Type::Builtin:
1208 case Type::VariableArray:
1209 case Type::Vector:
1210 case Type::FunctionNoProto:
1211 case Type::Record:
1212 case Type::Enum:
1213 case Type::ObjCObject:
1214 case Type::ObjCInterface:
1215 case Type::ObjCObjectPointer: {
1216 if (TDF & TDF_SkipNonDependent)
1217 return Sema::TDK_Success;
1218
1219 if (TDF & TDF_IgnoreQualifiers) {
1220 Param = Param.getUnqualifiedType();
1221 Arg = Arg.getUnqualifiedType();
1222 }
1223
1224 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1225 }
1226
1227 // _Complex T [placeholder extension]
1228 case Type::Complex:
1229 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1230 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1231 cast<ComplexType>(Param)->getElementType(),
1232 ComplexArg->getElementType(),
1233 Info, Deduced, TDF);
1234
1235 return Sema::TDK_NonDeducedMismatch;
1236
1237 // _Atomic T [extension]
1238 case Type::Atomic:
1239 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1240 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1241 cast<AtomicType>(Param)->getValueType(),
1242 AtomicArg->getValueType(),
1243 Info, Deduced, TDF);
1244
1245 return Sema::TDK_NonDeducedMismatch;
1246
1247 // T *
1248 case Type::Pointer: {
1249 QualType PointeeType;
1250 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1251 PointeeType = PointerArg->getPointeeType();
1252 } else if (const ObjCObjectPointerType *PointerArg
1253 = Arg->getAs<ObjCObjectPointerType>()) {
1254 PointeeType = PointerArg->getPointeeType();
1255 } else {
1256 return Sema::TDK_NonDeducedMismatch;
1257 }
1258
1259 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1260 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1261 cast<PointerType>(Param)->getPointeeType(),
1262 PointeeType,
1263 Info, Deduced, SubTDF);
1264 }
1265
1266 // T &
1267 case Type::LValueReference: {
1268 const LValueReferenceType *ReferenceArg =
1269 Arg->getAs<LValueReferenceType>();
1270 if (!ReferenceArg)
1271 return Sema::TDK_NonDeducedMismatch;
1272
1273 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1274 cast<LValueReferenceType>(Param)->getPointeeType(),
1275 ReferenceArg->getPointeeType(), Info, Deduced, 0);
1276 }
1277
1278 // T && [C++0x]
1279 case Type::RValueReference: {
1280 const RValueReferenceType *ReferenceArg =
1281 Arg->getAs<RValueReferenceType>();
1282 if (!ReferenceArg)
1283 return Sema::TDK_NonDeducedMismatch;
1284
1285 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1286 cast<RValueReferenceType>(Param)->getPointeeType(),
1287 ReferenceArg->getPointeeType(),
1288 Info, Deduced, 0);
1289 }
1290
1291 // T [] (implied, but not stated explicitly)
1292 case Type::IncompleteArray: {
1293 const IncompleteArrayType *IncompleteArrayArg =
1294 S.Context.getAsIncompleteArrayType(Arg);
1295 if (!IncompleteArrayArg)
1296 return Sema::TDK_NonDeducedMismatch;
1297
1298 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1299 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1300 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1301 IncompleteArrayArg->getElementType(),
1302 Info, Deduced, SubTDF);
1303 }
1304
1305 // T [integer-constant]
1306 case Type::ConstantArray: {
1307 const ConstantArrayType *ConstantArrayArg =
1308 S.Context.getAsConstantArrayType(Arg);
1309 if (!ConstantArrayArg)
1310 return Sema::TDK_NonDeducedMismatch;
1311
1312 const ConstantArrayType *ConstantArrayParm =
1313 S.Context.getAsConstantArrayType(Param);
1314 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1315 return Sema::TDK_NonDeducedMismatch;
1316
1317 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1318 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1319 ConstantArrayParm->getElementType(),
1320 ConstantArrayArg->getElementType(),
1321 Info, Deduced, SubTDF);
1322 }
1323
1324 // type [i]
1325 case Type::DependentSizedArray: {
1326 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1327 if (!ArrayArg)
1328 return Sema::TDK_NonDeducedMismatch;
1329
1330 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1331
1332 // Check the element type of the arrays
1333 const DependentSizedArrayType *DependentArrayParm
1334 = S.Context.getAsDependentSizedArrayType(Param);
1335 if (Sema::TemplateDeductionResult Result
1336 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1337 DependentArrayParm->getElementType(),
1338 ArrayArg->getElementType(),
1339 Info, Deduced, SubTDF))
1340 return Result;
1341
1342 // Determine the array bound is something we can deduce.
1343 NonTypeTemplateParmDecl *NTTP
1344 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1345 if (!NTTP)
1346 return Sema::TDK_Success;
1347
1348 // We can perform template argument deduction for the given non-type
1349 // template parameter.
1350 assert(NTTP->getDepth() == 0 &&
1351 "Cannot deduce non-type template argument at depth > 0");
1352 if (const ConstantArrayType *ConstantArrayArg
1353 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1354 llvm::APSInt Size(ConstantArrayArg->getSize());
1355 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1356 S.Context.getSizeType(),
1357 /*ArrayBound=*/true,
1358 Info, Deduced);
1359 }
1360 if (const DependentSizedArrayType *DependentArrayArg
1361 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1362 if (DependentArrayArg->getSizeExpr())
1363 return DeduceNonTypeTemplateArgument(S, NTTP,
1364 DependentArrayArg->getSizeExpr(),
1365 Info, Deduced);
1366
1367 // Incomplete type does not match a dependently-sized array type
1368 return Sema::TDK_NonDeducedMismatch;
1369 }
1370
1371 // type(*)(T)
1372 // T(*)()
1373 // T(*)(T)
1374 case Type::FunctionProto: {
1375 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1376 const FunctionProtoType *FunctionProtoArg =
1377 dyn_cast<FunctionProtoType>(Arg);
1378 if (!FunctionProtoArg)
1379 return Sema::TDK_NonDeducedMismatch;
1380
1381 const FunctionProtoType *FunctionProtoParam =
1382 cast<FunctionProtoType>(Param);
1383
1384 if (FunctionProtoParam->getTypeQuals()
1385 != FunctionProtoArg->getTypeQuals() ||
1386 FunctionProtoParam->getRefQualifier()
1387 != FunctionProtoArg->getRefQualifier() ||
1388 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1389 return Sema::TDK_NonDeducedMismatch;
1390
1391 // Check return types.
1392 if (Sema::TemplateDeductionResult Result =
1393 DeduceTemplateArgumentsByTypeMatch(
1394 S, TemplateParams, FunctionProtoParam->getReturnType(),
1395 FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1396 return Result;
1397
1398 return DeduceTemplateArguments(
1399 S, TemplateParams, FunctionProtoParam->param_type_begin(),
1400 FunctionProtoParam->getNumParams(),
1401 FunctionProtoArg->param_type_begin(),
1402 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
1403 }
1404
1405 case Type::InjectedClassName: {
1406 // Treat a template's injected-class-name as if the template
1407 // specialization type had been used.
1408 Param = cast<InjectedClassNameType>(Param)
1409 ->getInjectedSpecializationType();
1410 assert(isa<TemplateSpecializationType>(Param) &&
1411 "injected class name is not a template specialization type");
1412 // fall through
1413 }
1414
1415 // template-name<T> (where template-name refers to a class template)
1416 // template-name<i>
1417 // TT<T>
1418 // TT<i>
1419 // TT<>
1420 case Type::TemplateSpecialization: {
1421 const TemplateSpecializationType *SpecParam
1422 = cast<TemplateSpecializationType>(Param);
1423
1424 // Try to deduce template arguments from the template-id.
1425 Sema::TemplateDeductionResult Result
1426 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1427 Info, Deduced);
1428
1429 if (Result && (TDF & TDF_DerivedClass)) {
1430 // C++ [temp.deduct.call]p3b3:
1431 // If P is a class, and P has the form template-id, then A can be a
1432 // derived class of the deduced A. Likewise, if P is a pointer to a
1433 // class of the form template-id, A can be a pointer to a derived
1434 // class pointed to by the deduced A.
1435 //
1436 // More importantly:
1437 // These alternatives are considered only if type deduction would
1438 // otherwise fail.
1439 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1440 // We cannot inspect base classes as part of deduction when the type
1441 // is incomplete, so either instantiate any templates necessary to
1442 // complete the type, or skip over it if it cannot be completed.
1443 if (!S.isCompleteType(Info.getLocation(), Arg))
1444 return Result;
1445
1446 // Use data recursion to crawl through the list of base classes.
1447 // Visited contains the set of nodes we have already visited, while
1448 // ToVisit is our stack of records that we still need to visit.
1449 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1450 SmallVector<const RecordType *, 8> ToVisit;
1451 ToVisit.push_back(RecordT);
1452 bool Successful = false;
1453 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1454 Deduced.end());
1455 while (!ToVisit.empty()) {
1456 // Retrieve the next class in the inheritance hierarchy.
1457 const RecordType *NextT = ToVisit.pop_back_val();
1458
1459 // If we have already seen this type, skip it.
1460 if (!Visited.insert(NextT).second)
1461 continue;
1462
1463 // If this is a base class, try to perform template argument
1464 // deduction from it.
1465 if (NextT != RecordT) {
1466 TemplateDeductionInfo BaseInfo(Info.getLocation());
1467 Sema::TemplateDeductionResult BaseResult
1468 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1469 QualType(NextT, 0), BaseInfo,
1470 Deduced);
1471
1472 // If template argument deduction for this base was successful,
1473 // note that we had some success. Otherwise, ignore any deductions
1474 // from this base class.
1475 if (BaseResult == Sema::TDK_Success) {
1476 Successful = true;
1477 DeducedOrig.clear();
1478 DeducedOrig.append(Deduced.begin(), Deduced.end());
1479 Info.Param = BaseInfo.Param;
1480 Info.FirstArg = BaseInfo.FirstArg;
1481 Info.SecondArg = BaseInfo.SecondArg;
1482 }
1483 else
1484 Deduced = DeducedOrig;
1485 }
1486
1487 // Visit base classes
1488 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1489 for (const auto &Base : Next->bases()) {
1490 assert(Base.getType()->isRecordType() &&
1491 "Base class that isn't a record?");
1492 ToVisit.push_back(Base.getType()->getAs<RecordType>());
1493 }
1494 }
1495
1496 if (Successful)
1497 return Sema::TDK_Success;
1498 }
1499
1500 }
1501
1502 return Result;
1503 }
1504
1505 // T type::*
1506 // T T::*
1507 // T (type::*)()
1508 // type (T::*)()
1509 // type (type::*)(T)
1510 // type (T::*)(T)
1511 // T (type::*)(T)
1512 // T (T::*)()
1513 // T (T::*)(T)
1514 case Type::MemberPointer: {
1515 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1516 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1517 if (!MemPtrArg)
1518 return Sema::TDK_NonDeducedMismatch;
1519
1520 QualType ParamPointeeType = MemPtrParam->getPointeeType();
1521 if (ParamPointeeType->isFunctionType())
1522 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
1523 /*IsCtorOrDtor=*/false, Info.getLocation());
1524 QualType ArgPointeeType = MemPtrArg->getPointeeType();
1525 if (ArgPointeeType->isFunctionType())
1526 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
1527 /*IsCtorOrDtor=*/false, Info.getLocation());
1528
1529 if (Sema::TemplateDeductionResult Result
1530 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1531 ParamPointeeType,
1532 ArgPointeeType,
1533 Info, Deduced,
1534 TDF & TDF_IgnoreQualifiers))
1535 return Result;
1536
1537 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1538 QualType(MemPtrParam->getClass(), 0),
1539 QualType(MemPtrArg->getClass(), 0),
1540 Info, Deduced,
1541 TDF & TDF_IgnoreQualifiers);
1542 }
1543
1544 // (clang extension)
1545 //
1546 // type(^)(T)
1547 // T(^)()
1548 // T(^)(T)
1549 case Type::BlockPointer: {
1550 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1551 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1552
1553 if (!BlockPtrArg)
1554 return Sema::TDK_NonDeducedMismatch;
1555
1556 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1557 BlockPtrParam->getPointeeType(),
1558 BlockPtrArg->getPointeeType(),
1559 Info, Deduced, 0);
1560 }
1561
1562 // (clang extension)
1563 //
1564 // T __attribute__(((ext_vector_type(<integral constant>))))
1565 case Type::ExtVector: {
1566 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1567 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1568 // Make sure that the vectors have the same number of elements.
1569 if (VectorParam->getNumElements() != VectorArg->getNumElements())
1570 return Sema::TDK_NonDeducedMismatch;
1571
1572 // Perform deduction on the element types.
1573 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1574 VectorParam->getElementType(),
1575 VectorArg->getElementType(),
1576 Info, Deduced, TDF);
1577 }
1578
1579 if (const DependentSizedExtVectorType *VectorArg
1580 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1581 // We can't check the number of elements, since the argument has a
1582 // dependent number of elements. This can only occur during partial
1583 // ordering.
1584
1585 // Perform deduction on the element types.
1586 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1587 VectorParam->getElementType(),
1588 VectorArg->getElementType(),
1589 Info, Deduced, TDF);
1590 }
1591
1592 return Sema::TDK_NonDeducedMismatch;
1593 }
1594
1595 // (clang extension)
1596 //
1597 // T __attribute__(((ext_vector_type(N))))
1598 case Type::DependentSizedExtVector: {
1599 const DependentSizedExtVectorType *VectorParam
1600 = cast<DependentSizedExtVectorType>(Param);
1601
1602 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1603 // Perform deduction on the element types.
1604 if (Sema::TemplateDeductionResult Result
1605 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1606 VectorParam->getElementType(),
1607 VectorArg->getElementType(),
1608 Info, Deduced, TDF))
1609 return Result;
1610
1611 // Perform deduction on the vector size, if we can.
1612 NonTypeTemplateParmDecl *NTTP
1613 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1614 if (!NTTP)
1615 return Sema::TDK_Success;
1616
1617 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1618 ArgSize = VectorArg->getNumElements();
1619 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1620 false, Info, Deduced);
1621 }
1622
1623 if (const DependentSizedExtVectorType *VectorArg
1624 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1625 // Perform deduction on the element types.
1626 if (Sema::TemplateDeductionResult Result
1627 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1628 VectorParam->getElementType(),
1629 VectorArg->getElementType(),
1630 Info, Deduced, TDF))
1631 return Result;
1632
1633 // Perform deduction on the vector size, if we can.
1634 NonTypeTemplateParmDecl *NTTP
1635 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1636 if (!NTTP)
1637 return Sema::TDK_Success;
1638
1639 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1640 Info, Deduced);
1641 }
1642
1643 return Sema::TDK_NonDeducedMismatch;
1644 }
1645
1646 case Type::TypeOfExpr:
1647 case Type::TypeOf:
1648 case Type::DependentName:
1649 case Type::UnresolvedUsing:
1650 case Type::Decltype:
1651 case Type::UnaryTransform:
1652 case Type::Auto:
1653 case Type::DependentTemplateSpecialization:
1654 case Type::PackExpansion:
1655 // No template argument deduction for these types
1656 return Sema::TDK_Success;
1657 }
1658
1659 llvm_unreachable("Invalid Type Class!");
1660 }
1661
1662 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1663 DeduceTemplateArguments(Sema &S,
1664 TemplateParameterList *TemplateParams,
1665 const TemplateArgument &Param,
1666 TemplateArgument Arg,
1667 TemplateDeductionInfo &Info,
1668 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1669 // If the template argument is a pack expansion, perform template argument
1670 // deduction against the pattern of that expansion. This only occurs during
1671 // partial ordering.
1672 if (Arg.isPackExpansion())
1673 Arg = Arg.getPackExpansionPattern();
1674
1675 switch (Param.getKind()) {
1676 case TemplateArgument::Null:
1677 llvm_unreachable("Null template argument in parameter list");
1678
1679 case TemplateArgument::Type:
1680 if (Arg.getKind() == TemplateArgument::Type)
1681 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1682 Param.getAsType(),
1683 Arg.getAsType(),
1684 Info, Deduced, 0);
1685 Info.FirstArg = Param;
1686 Info.SecondArg = Arg;
1687 return Sema::TDK_NonDeducedMismatch;
1688
1689 case TemplateArgument::Template:
1690 if (Arg.getKind() == TemplateArgument::Template)
1691 return DeduceTemplateArguments(S, TemplateParams,
1692 Param.getAsTemplate(),
1693 Arg.getAsTemplate(), Info, Deduced);
1694 Info.FirstArg = Param;
1695 Info.SecondArg = Arg;
1696 return Sema::TDK_NonDeducedMismatch;
1697
1698 case TemplateArgument::TemplateExpansion:
1699 llvm_unreachable("caller should handle pack expansions");
1700
1701 case TemplateArgument::Declaration:
1702 if (Arg.getKind() == TemplateArgument::Declaration &&
1703 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1704 return Sema::TDK_Success;
1705
1706 Info.FirstArg = Param;
1707 Info.SecondArg = Arg;
1708 return Sema::TDK_NonDeducedMismatch;
1709
1710 case TemplateArgument::NullPtr:
1711 if (Arg.getKind() == TemplateArgument::NullPtr &&
1712 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1713 return Sema::TDK_Success;
1714
1715 Info.FirstArg = Param;
1716 Info.SecondArg = Arg;
1717 return Sema::TDK_NonDeducedMismatch;
1718
1719 case TemplateArgument::Integral:
1720 if (Arg.getKind() == TemplateArgument::Integral) {
1721 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1722 return Sema::TDK_Success;
1723
1724 Info.FirstArg = Param;
1725 Info.SecondArg = Arg;
1726 return Sema::TDK_NonDeducedMismatch;
1727 }
1728
1729 if (Arg.getKind() == TemplateArgument::Expression) {
1730 Info.FirstArg = Param;
1731 Info.SecondArg = Arg;
1732 return Sema::TDK_NonDeducedMismatch;
1733 }
1734
1735 Info.FirstArg = Param;
1736 Info.SecondArg = Arg;
1737 return Sema::TDK_NonDeducedMismatch;
1738
1739 case TemplateArgument::Expression: {
1740 if (NonTypeTemplateParmDecl *NTTP
1741 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1742 if (Arg.getKind() == TemplateArgument::Integral)
1743 return DeduceNonTypeTemplateArgument(S, NTTP,
1744 Arg.getAsIntegral(),
1745 Arg.getIntegralType(),
1746 /*ArrayBound=*/false,
1747 Info, Deduced);
1748 if (Arg.getKind() == TemplateArgument::Expression)
1749 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1750 Info, Deduced);
1751 if (Arg.getKind() == TemplateArgument::Declaration)
1752 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1753 Info, Deduced);
1754
1755 Info.FirstArg = Param;
1756 Info.SecondArg = Arg;
1757 return Sema::TDK_NonDeducedMismatch;
1758 }
1759
1760 // Can't deduce anything, but that's okay.
1761 return Sema::TDK_Success;
1762 }
1763 case TemplateArgument::Pack:
1764 llvm_unreachable("Argument packs should be expanded by the caller!");
1765 }
1766
1767 llvm_unreachable("Invalid TemplateArgument Kind!");
1768 }
1769
1770 /// \brief Determine whether there is a template argument to be used for
1771 /// deduction.
1772 ///
1773 /// This routine "expands" argument packs in-place, overriding its input
1774 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1775 ///
1776 /// \returns true if there is another template argument (which will be at
1777 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1778 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1779 unsigned &ArgIdx,
1780 unsigned &NumArgs) {
1781 if (ArgIdx == NumArgs)
1782 return false;
1783
1784 const TemplateArgument &Arg = Args[ArgIdx];
1785 if (Arg.getKind() != TemplateArgument::Pack)
1786 return true;
1787
1788 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1789 Args = Arg.pack_begin();
1790 NumArgs = Arg.pack_size();
1791 ArgIdx = 0;
1792 return ArgIdx < NumArgs;
1793 }
1794
1795 /// \brief Determine whether the given set of template arguments has a pack
1796 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1797 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1798 unsigned NumArgs) {
1799 unsigned ArgIdx = 0;
1800 while (ArgIdx < NumArgs) {
1801 const TemplateArgument &Arg = Args[ArgIdx];
1802
1803 // Unwrap argument packs.
1804 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1805 Args = Arg.pack_begin();
1806 NumArgs = Arg.pack_size();
1807 ArgIdx = 0;
1808 continue;
1809 }
1810
1811 ++ArgIdx;
1812 if (ArgIdx == NumArgs)
1813 return false;
1814
1815 if (Arg.isPackExpansion())
1816 return true;
1817 }
1818
1819 return false;
1820 }
1821
1822 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1823 DeduceTemplateArguments(Sema &S,
1824 TemplateParameterList *TemplateParams,
1825 const TemplateArgument *Params, unsigned NumParams,
1826 const TemplateArgument *Args, unsigned NumArgs,
1827 TemplateDeductionInfo &Info,
1828 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1829 // C++0x [temp.deduct.type]p9:
1830 // If the template argument list of P contains a pack expansion that is not
1831 // the last template argument, the entire template argument list is a
1832 // non-deduced context.
1833 if (hasPackExpansionBeforeEnd(Params, NumParams))
1834 return Sema::TDK_Success;
1835
1836 // C++0x [temp.deduct.type]p9:
1837 // If P has a form that contains <T> or <i>, then each argument Pi of the
1838 // respective template argument list P is compared with the corresponding
1839 // argument Ai of the corresponding template argument list of A.
1840 unsigned ArgIdx = 0, ParamIdx = 0;
1841 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1842 ++ParamIdx) {
1843 if (!Params[ParamIdx].isPackExpansion()) {
1844 // The simple case: deduce template arguments by matching Pi and Ai.
1845
1846 // Check whether we have enough arguments.
1847 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1848 return Sema::TDK_Success;
1849
1850 if (Args[ArgIdx].isPackExpansion()) {
1851 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1852 // but applied to pack expansions that are template arguments.
1853 return Sema::TDK_MiscellaneousDeductionFailure;
1854 }
1855
1856 // Perform deduction for this Pi/Ai pair.
1857 if (Sema::TemplateDeductionResult Result
1858 = DeduceTemplateArguments(S, TemplateParams,
1859 Params[ParamIdx], Args[ArgIdx],
1860 Info, Deduced))
1861 return Result;
1862
1863 // Move to the next argument.
1864 ++ArgIdx;
1865 continue;
1866 }
1867
1868 // The parameter is a pack expansion.
1869
1870 // C++0x [temp.deduct.type]p9:
1871 // If Pi is a pack expansion, then the pattern of Pi is compared with
1872 // each remaining argument in the template argument list of A. Each
1873 // comparison deduces template arguments for subsequent positions in the
1874 // template parameter packs expanded by Pi.
1875 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1876
1877 // FIXME: If there are no remaining arguments, we can bail out early
1878 // and set any deduced parameter packs to an empty argument pack.
1879 // The latter part of this is a (minor) correctness issue.
1880
1881 // Prepare to deduce the packs within the pattern.
1882 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1883
1884 // Keep track of the deduced template arguments for each parameter pack
1885 // expanded by this pack expansion (the outer index) and for each
1886 // template argument (the inner SmallVectors).
1887 bool HasAnyArguments = false;
1888 for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
1889 HasAnyArguments = true;
1890
1891 // Deduce template arguments from the pattern.
1892 if (Sema::TemplateDeductionResult Result
1893 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1894 Info, Deduced))
1895 return Result;
1896
1897 PackScope.nextPackElement();
1898 }
1899
1900 // Build argument packs for each of the parameter packs expanded by this
1901 // pack expansion.
1902 if (auto Result = PackScope.finish(HasAnyArguments))
1903 return Result;
1904 }
1905
1906 return Sema::TDK_Success;
1907 }
1908
1909 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1910 DeduceTemplateArguments(Sema &S,
1911 TemplateParameterList *TemplateParams,
1912 const TemplateArgumentList &ParamList,
1913 const TemplateArgumentList &ArgList,
1914 TemplateDeductionInfo &Info,
1915 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1916 return DeduceTemplateArguments(S, TemplateParams,
1917 ParamList.data(), ParamList.size(),
1918 ArgList.data(), ArgList.size(),
1919 Info, Deduced);
1920 }
1921
1922 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1923 static bool isSameTemplateArg(ASTContext &Context,
1924 const TemplateArgument &X,
1925 const TemplateArgument &Y) {
1926 if (X.getKind() != Y.getKind())
1927 return false;
1928
1929 switch (X.getKind()) {
1930 case TemplateArgument::Null:
1931 llvm_unreachable("Comparing NULL template argument");
1932
1933 case TemplateArgument::Type:
1934 return Context.getCanonicalType(X.getAsType()) ==
1935 Context.getCanonicalType(Y.getAsType());
1936
1937 case TemplateArgument::Declaration:
1938 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1939
1940 case TemplateArgument::NullPtr:
1941 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1942
1943 case TemplateArgument::Template:
1944 case TemplateArgument::TemplateExpansion:
1945 return Context.getCanonicalTemplateName(
1946 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1947 Context.getCanonicalTemplateName(
1948 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1949
1950 case TemplateArgument::Integral:
1951 return X.getAsIntegral() == Y.getAsIntegral();
1952
1953 case TemplateArgument::Expression: {
1954 llvm::FoldingSetNodeID XID, YID;
1955 X.getAsExpr()->Profile(XID, Context, true);
1956 Y.getAsExpr()->Profile(YID, Context, true);
1957 return XID == YID;
1958 }
1959
1960 case TemplateArgument::Pack:
1961 if (X.pack_size() != Y.pack_size())
1962 return false;
1963
1964 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1965 XPEnd = X.pack_end(),
1966 YP = Y.pack_begin();
1967 XP != XPEnd; ++XP, ++YP)
1968 if (!isSameTemplateArg(Context, *XP, *YP))
1969 return false;
1970
1971 return true;
1972 }
1973
1974 llvm_unreachable("Invalid TemplateArgument Kind!");
1975 }
1976
1977 /// \brief Allocate a TemplateArgumentLoc where all locations have
1978 /// been initialized to the given location.
1979 ///
1980 /// \param S The semantic analysis object.
1981 ///
1982 /// \param Arg The template argument we are producing template argument
1983 /// location information for.
1984 ///
1985 /// \param NTTPType For a declaration template argument, the type of
1986 /// the non-type template parameter that corresponds to this template
1987 /// argument.
1988 ///
1989 /// \param Loc The source location to use for the resulting template
1990 /// argument.
1991 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)1992 getTrivialTemplateArgumentLoc(Sema &S,
1993 const TemplateArgument &Arg,
1994 QualType NTTPType,
1995 SourceLocation Loc) {
1996 switch (Arg.getKind()) {
1997 case TemplateArgument::Null:
1998 llvm_unreachable("Can't get a NULL template argument here");
1999
2000 case TemplateArgument::Type:
2001 return TemplateArgumentLoc(Arg,
2002 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2003
2004 case TemplateArgument::Declaration: {
2005 Expr *E
2006 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2007 .getAs<Expr>();
2008 return TemplateArgumentLoc(TemplateArgument(E), E);
2009 }
2010
2011 case TemplateArgument::NullPtr: {
2012 Expr *E
2013 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2014 .getAs<Expr>();
2015 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2016 E);
2017 }
2018
2019 case TemplateArgument::Integral: {
2020 Expr *E
2021 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2022 return TemplateArgumentLoc(TemplateArgument(E), E);
2023 }
2024
2025 case TemplateArgument::Template:
2026 case TemplateArgument::TemplateExpansion: {
2027 NestedNameSpecifierLocBuilder Builder;
2028 TemplateName Template = Arg.getAsTemplate();
2029 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2030 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2031 else if (QualifiedTemplateName *QTN =
2032 Template.getAsQualifiedTemplateName())
2033 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2034
2035 if (Arg.getKind() == TemplateArgument::Template)
2036 return TemplateArgumentLoc(Arg,
2037 Builder.getWithLocInContext(S.Context),
2038 Loc);
2039
2040
2041 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2042 Loc, Loc);
2043 }
2044
2045 case TemplateArgument::Expression:
2046 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2047
2048 case TemplateArgument::Pack:
2049 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2050 }
2051
2052 llvm_unreachable("Invalid TemplateArgument Kind!");
2053 }
2054
2055
2056 /// \brief Convert the given deduced template argument and add it to the set of
2057 /// fully-converted template arguments.
2058 static bool
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)2059 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2060 DeducedTemplateArgument Arg,
2061 NamedDecl *Template,
2062 QualType NTTPType,
2063 unsigned ArgumentPackIndex,
2064 TemplateDeductionInfo &Info,
2065 bool InFunctionTemplate,
2066 SmallVectorImpl<TemplateArgument> &Output) {
2067 if (Arg.getKind() == TemplateArgument::Pack) {
2068 // This is a template argument pack, so check each of its arguments against
2069 // the template parameter.
2070 SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2071 for (const auto &P : Arg.pack_elements()) {
2072 // When converting the deduced template argument, append it to the
2073 // general output list. We need to do this so that the template argument
2074 // checking logic has all of the prior template arguments available.
2075 DeducedTemplateArgument InnerArg(P);
2076 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2077 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2078 NTTPType, PackedArgsBuilder.size(),
2079 Info, InFunctionTemplate, Output))
2080 return true;
2081
2082 // Move the converted template argument into our argument pack.
2083 PackedArgsBuilder.push_back(Output.pop_back_val());
2084 }
2085
2086 // Create the resulting argument pack.
2087 Output.push_back(
2088 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
2089 return false;
2090 }
2091
2092 // Convert the deduced template argument into a template
2093 // argument that we can check, almost as if the user had written
2094 // the template argument explicitly.
2095 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2096 Info.getLocation());
2097
2098 // Check the template argument, converting it as necessary.
2099 return S.CheckTemplateArgument(Param, ArgLoc,
2100 Template,
2101 Template->getLocation(),
2102 Template->getSourceRange().getEnd(),
2103 ArgumentPackIndex,
2104 Output,
2105 InFunctionTemplate
2106 ? (Arg.wasDeducedFromArrayBound()
2107 ? Sema::CTAK_DeducedFromArrayBound
2108 : Sema::CTAK_Deduced)
2109 : Sema::CTAK_Specified);
2110 }
2111
2112 /// Complete template argument deduction for a class template partial
2113 /// specialization.
2114 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2115 FinishTemplateArgumentDeduction(Sema &S,
2116 ClassTemplatePartialSpecializationDecl *Partial,
2117 const TemplateArgumentList &TemplateArgs,
2118 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2119 TemplateDeductionInfo &Info) {
2120 // Unevaluated SFINAE context.
2121 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2122 Sema::SFINAETrap Trap(S);
2123
2124 Sema::ContextRAII SavedContext(S, Partial);
2125
2126 // C++ [temp.deduct.type]p2:
2127 // [...] or if any template argument remains neither deduced nor
2128 // explicitly specified, template argument deduction fails.
2129 SmallVector<TemplateArgument, 4> Builder;
2130 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2131 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2132 NamedDecl *Param = PartialParams->getParam(I);
2133 if (Deduced[I].isNull()) {
2134 Info.Param = makeTemplateParameter(Param);
2135 return Sema::TDK_Incomplete;
2136 }
2137
2138 // We have deduced this argument, so it still needs to be
2139 // checked and converted.
2140
2141 // First, for a non-type template parameter type that is
2142 // initialized by a declaration, we need the type of the
2143 // corresponding non-type template parameter.
2144 QualType NTTPType;
2145 if (NonTypeTemplateParmDecl *NTTP
2146 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2147 NTTPType = NTTP->getType();
2148 if (NTTPType->isDependentType()) {
2149 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2150 Builder.data(), Builder.size());
2151 NTTPType = S.SubstType(NTTPType,
2152 MultiLevelTemplateArgumentList(TemplateArgs),
2153 NTTP->getLocation(),
2154 NTTP->getDeclName());
2155 if (NTTPType.isNull()) {
2156 Info.Param = makeTemplateParameter(Param);
2157 // FIXME: These template arguments are temporary. Free them!
2158 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2159 Builder.data(),
2160 Builder.size()));
2161 return Sema::TDK_SubstitutionFailure;
2162 }
2163 }
2164 }
2165
2166 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2167 Partial, NTTPType, 0, Info, false,
2168 Builder)) {
2169 Info.Param = makeTemplateParameter(Param);
2170 // FIXME: These template arguments are temporary. Free them!
2171 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2172 Builder.size()));
2173 return Sema::TDK_SubstitutionFailure;
2174 }
2175 }
2176
2177 // Form the template argument list from the deduced template arguments.
2178 TemplateArgumentList *DeducedArgumentList
2179 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2180 Builder.size());
2181
2182 Info.reset(DeducedArgumentList);
2183
2184 // Substitute the deduced template arguments into the template
2185 // arguments of the class template partial specialization, and
2186 // verify that the instantiated template arguments are both valid
2187 // and are equivalent to the template arguments originally provided
2188 // to the class template.
2189 LocalInstantiationScope InstScope(S);
2190 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2191 const ASTTemplateArgumentListInfo *PartialTemplArgInfo
2192 = Partial->getTemplateArgsAsWritten();
2193 const TemplateArgumentLoc *PartialTemplateArgs
2194 = PartialTemplArgInfo->getTemplateArgs();
2195
2196 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2197 PartialTemplArgInfo->RAngleLoc);
2198
2199 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2200 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2201 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2202 if (ParamIdx >= Partial->getTemplateParameters()->size())
2203 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2204
2205 Decl *Param
2206 = const_cast<NamedDecl *>(
2207 Partial->getTemplateParameters()->getParam(ParamIdx));
2208 Info.Param = makeTemplateParameter(Param);
2209 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2210 return Sema::TDK_SubstitutionFailure;
2211 }
2212
2213 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2214 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2215 InstArgs, false, ConvertedInstArgs))
2216 return Sema::TDK_SubstitutionFailure;
2217
2218 TemplateParameterList *TemplateParams
2219 = ClassTemplate->getTemplateParameters();
2220 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2221 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2222 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2223 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2224 Info.FirstArg = TemplateArgs[I];
2225 Info.SecondArg = InstArg;
2226 return Sema::TDK_NonDeducedMismatch;
2227 }
2228 }
2229
2230 if (Trap.hasErrorOccurred())
2231 return Sema::TDK_SubstitutionFailure;
2232
2233 return Sema::TDK_Success;
2234 }
2235
2236 /// \brief Perform template argument deduction to determine whether
2237 /// the given template arguments match the given class template
2238 /// partial specialization per C++ [temp.class.spec.match].
2239 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2240 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2241 const TemplateArgumentList &TemplateArgs,
2242 TemplateDeductionInfo &Info) {
2243 if (Partial->isInvalidDecl())
2244 return TDK_Invalid;
2245
2246 // C++ [temp.class.spec.match]p2:
2247 // A partial specialization matches a given actual template
2248 // argument list if the template arguments of the partial
2249 // specialization can be deduced from the actual template argument
2250 // list (14.8.2).
2251
2252 // Unevaluated SFINAE context.
2253 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2254 SFINAETrap Trap(*this);
2255
2256 SmallVector<DeducedTemplateArgument, 4> Deduced;
2257 Deduced.resize(Partial->getTemplateParameters()->size());
2258 if (TemplateDeductionResult Result
2259 = ::DeduceTemplateArguments(*this,
2260 Partial->getTemplateParameters(),
2261 Partial->getTemplateArgs(),
2262 TemplateArgs, Info, Deduced))
2263 return Result;
2264
2265 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2266 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2267 Info);
2268 if (Inst.isInvalid())
2269 return TDK_InstantiationDepth;
2270
2271 if (Trap.hasErrorOccurred())
2272 return Sema::TDK_SubstitutionFailure;
2273
2274 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2275 Deduced, Info);
2276 }
2277
2278 /// Complete template argument deduction for a variable template partial
2279 /// specialization.
2280 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
2281 /// May require unifying ClassTemplate(Partial)SpecializationDecl and
2282 /// VarTemplate(Partial)SpecializationDecl with a new data
2283 /// structure Template(Partial)SpecializationDecl, and
2284 /// using Template(Partial)SpecializationDecl as input type.
FinishTemplateArgumentDeduction(Sema & S,VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2285 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2286 Sema &S, VarTemplatePartialSpecializationDecl *Partial,
2287 const TemplateArgumentList &TemplateArgs,
2288 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2289 TemplateDeductionInfo &Info) {
2290 // Unevaluated SFINAE context.
2291 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2292 Sema::SFINAETrap Trap(S);
2293
2294 // C++ [temp.deduct.type]p2:
2295 // [...] or if any template argument remains neither deduced nor
2296 // explicitly specified, template argument deduction fails.
2297 SmallVector<TemplateArgument, 4> Builder;
2298 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2299 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2300 NamedDecl *Param = PartialParams->getParam(I);
2301 if (Deduced[I].isNull()) {
2302 Info.Param = makeTemplateParameter(Param);
2303 return Sema::TDK_Incomplete;
2304 }
2305
2306 // We have deduced this argument, so it still needs to be
2307 // checked and converted.
2308
2309 // First, for a non-type template parameter type that is
2310 // initialized by a declaration, we need the type of the
2311 // corresponding non-type template parameter.
2312 QualType NTTPType;
2313 if (NonTypeTemplateParmDecl *NTTP =
2314 dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2315 NTTPType = NTTP->getType();
2316 if (NTTPType->isDependentType()) {
2317 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2318 Builder.data(), Builder.size());
2319 NTTPType =
2320 S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
2321 NTTP->getLocation(), NTTP->getDeclName());
2322 if (NTTPType.isNull()) {
2323 Info.Param = makeTemplateParameter(Param);
2324 // FIXME: These template arguments are temporary. Free them!
2325 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2326 Builder.size()));
2327 return Sema::TDK_SubstitutionFailure;
2328 }
2329 }
2330 }
2331
2332 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
2333 0, Info, false, Builder)) {
2334 Info.Param = makeTemplateParameter(Param);
2335 // FIXME: These template arguments are temporary. Free them!
2336 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2337 Builder.size()));
2338 return Sema::TDK_SubstitutionFailure;
2339 }
2340 }
2341
2342 // Form the template argument list from the deduced template arguments.
2343 TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
2344 S.Context, Builder.data(), Builder.size());
2345
2346 Info.reset(DeducedArgumentList);
2347
2348 // Substitute the deduced template arguments into the template
2349 // arguments of the class template partial specialization, and
2350 // verify that the instantiated template arguments are both valid
2351 // and are equivalent to the template arguments originally provided
2352 // to the class template.
2353 LocalInstantiationScope InstScope(S);
2354 VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
2355 const ASTTemplateArgumentListInfo *PartialTemplArgInfo
2356 = Partial->getTemplateArgsAsWritten();
2357 const TemplateArgumentLoc *PartialTemplateArgs
2358 = PartialTemplArgInfo->getTemplateArgs();
2359
2360 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2361 PartialTemplArgInfo->RAngleLoc);
2362
2363 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2364 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2365 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2366 if (ParamIdx >= Partial->getTemplateParameters()->size())
2367 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2368
2369 Decl *Param = const_cast<NamedDecl *>(
2370 Partial->getTemplateParameters()->getParam(ParamIdx));
2371 Info.Param = makeTemplateParameter(Param);
2372 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2373 return Sema::TDK_SubstitutionFailure;
2374 }
2375 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2376 if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
2377 false, ConvertedInstArgs))
2378 return Sema::TDK_SubstitutionFailure;
2379
2380 TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
2381 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2382 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2383 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2384 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2385 Info.FirstArg = TemplateArgs[I];
2386 Info.SecondArg = InstArg;
2387 return Sema::TDK_NonDeducedMismatch;
2388 }
2389 }
2390
2391 if (Trap.hasErrorOccurred())
2392 return Sema::TDK_SubstitutionFailure;
2393
2394 return Sema::TDK_Success;
2395 }
2396
2397 /// \brief Perform template argument deduction to determine whether
2398 /// the given template arguments match the given variable template
2399 /// partial specialization per C++ [temp.class.spec.match].
2400 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
2401 /// May require unifying ClassTemplate(Partial)SpecializationDecl and
2402 /// VarTemplate(Partial)SpecializationDecl with a new data
2403 /// structure Template(Partial)SpecializationDecl, and
2404 /// using Template(Partial)SpecializationDecl as input type.
2405 Sema::TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2406 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2407 const TemplateArgumentList &TemplateArgs,
2408 TemplateDeductionInfo &Info) {
2409 if (Partial->isInvalidDecl())
2410 return TDK_Invalid;
2411
2412 // C++ [temp.class.spec.match]p2:
2413 // A partial specialization matches a given actual template
2414 // argument list if the template arguments of the partial
2415 // specialization can be deduced from the actual template argument
2416 // list (14.8.2).
2417
2418 // Unevaluated SFINAE context.
2419 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2420 SFINAETrap Trap(*this);
2421
2422 SmallVector<DeducedTemplateArgument, 4> Deduced;
2423 Deduced.resize(Partial->getTemplateParameters()->size());
2424 if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2425 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2426 TemplateArgs, Info, Deduced))
2427 return Result;
2428
2429 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2430 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2431 Info);
2432 if (Inst.isInvalid())
2433 return TDK_InstantiationDepth;
2434
2435 if (Trap.hasErrorOccurred())
2436 return Sema::TDK_SubstitutionFailure;
2437
2438 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2439 Deduced, Info);
2440 }
2441
2442 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2443 static bool isSimpleTemplateIdType(QualType T) {
2444 if (const TemplateSpecializationType *Spec
2445 = T->getAs<TemplateSpecializationType>())
2446 return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2447
2448 return false;
2449 }
2450
2451 /// \brief Substitute the explicitly-provided template arguments into the
2452 /// given function template according to C++ [temp.arg.explicit].
2453 ///
2454 /// \param FunctionTemplate the function template into which the explicit
2455 /// template arguments will be substituted.
2456 ///
2457 /// \param ExplicitTemplateArgs the explicitly-specified template
2458 /// arguments.
2459 ///
2460 /// \param Deduced the deduced template arguments, which will be populated
2461 /// with the converted and checked explicit template arguments.
2462 ///
2463 /// \param ParamTypes will be populated with the instantiated function
2464 /// parameters.
2465 ///
2466 /// \param FunctionType if non-NULL, the result type of the function template
2467 /// will also be instantiated and the pointed-to value will be updated with
2468 /// the instantiated function type.
2469 ///
2470 /// \param Info if substitution fails for any reason, this object will be
2471 /// populated with more information about the failure.
2472 ///
2473 /// \returns TDK_Success if substitution was successful, or some failure
2474 /// condition.
2475 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2476 Sema::SubstituteExplicitTemplateArguments(
2477 FunctionTemplateDecl *FunctionTemplate,
2478 TemplateArgumentListInfo &ExplicitTemplateArgs,
2479 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2480 SmallVectorImpl<QualType> &ParamTypes,
2481 QualType *FunctionType,
2482 TemplateDeductionInfo &Info) {
2483 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2484 TemplateParameterList *TemplateParams
2485 = FunctionTemplate->getTemplateParameters();
2486
2487 if (ExplicitTemplateArgs.size() == 0) {
2488 // No arguments to substitute; just copy over the parameter types and
2489 // fill in the function type.
2490 for (auto P : Function->params())
2491 ParamTypes.push_back(P->getType());
2492
2493 if (FunctionType)
2494 *FunctionType = Function->getType();
2495 return TDK_Success;
2496 }
2497
2498 // Unevaluated SFINAE context.
2499 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2500 SFINAETrap Trap(*this);
2501
2502 // C++ [temp.arg.explicit]p3:
2503 // Template arguments that are present shall be specified in the
2504 // declaration order of their corresponding template-parameters. The
2505 // template argument list shall not specify more template-arguments than
2506 // there are corresponding template-parameters.
2507 SmallVector<TemplateArgument, 4> Builder;
2508
2509 // Enter a new template instantiation context where we check the
2510 // explicitly-specified template arguments against this function template,
2511 // and then substitute them into the function parameter types.
2512 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2513 InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
2514 DeducedArgs,
2515 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2516 Info);
2517 if (Inst.isInvalid())
2518 return TDK_InstantiationDepth;
2519
2520 if (CheckTemplateArgumentList(FunctionTemplate,
2521 SourceLocation(),
2522 ExplicitTemplateArgs,
2523 true,
2524 Builder) || Trap.hasErrorOccurred()) {
2525 unsigned Index = Builder.size();
2526 if (Index >= TemplateParams->size())
2527 Index = TemplateParams->size() - 1;
2528 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2529 return TDK_InvalidExplicitArguments;
2530 }
2531
2532 // Form the template argument list from the explicitly-specified
2533 // template arguments.
2534 TemplateArgumentList *ExplicitArgumentList
2535 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2536 Info.reset(ExplicitArgumentList);
2537
2538 // Template argument deduction and the final substitution should be
2539 // done in the context of the templated declaration. Explicit
2540 // argument substitution, on the other hand, needs to happen in the
2541 // calling context.
2542 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2543
2544 // If we deduced template arguments for a template parameter pack,
2545 // note that the template argument pack is partially substituted and record
2546 // the explicit template arguments. They'll be used as part of deduction
2547 // for this template parameter pack.
2548 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2549 const TemplateArgument &Arg = Builder[I];
2550 if (Arg.getKind() == TemplateArgument::Pack) {
2551 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2552 TemplateParams->getParam(I),
2553 Arg.pack_begin(),
2554 Arg.pack_size());
2555 break;
2556 }
2557 }
2558
2559 const FunctionProtoType *Proto
2560 = Function->getType()->getAs<FunctionProtoType>();
2561 assert(Proto && "Function template does not have a prototype?");
2562
2563 // Isolate our substituted parameters from our caller.
2564 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
2565
2566 // Instantiate the types of each of the function parameters given the
2567 // explicitly-specified template arguments. If the function has a trailing
2568 // return type, substitute it after the arguments to ensure we substitute
2569 // in lexical order.
2570 if (Proto->hasTrailingReturn()) {
2571 if (SubstParmTypes(Function->getLocation(),
2572 Function->param_begin(), Function->getNumParams(),
2573 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2574 ParamTypes))
2575 return TDK_SubstitutionFailure;
2576 }
2577
2578 // Instantiate the return type.
2579 QualType ResultType;
2580 {
2581 // C++11 [expr.prim.general]p3:
2582 // If a declaration declares a member function or member function
2583 // template of a class X, the expression this is a prvalue of type
2584 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2585 // and the end of the function-definition, member-declarator, or
2586 // declarator.
2587 unsigned ThisTypeQuals = 0;
2588 CXXRecordDecl *ThisContext = nullptr;
2589 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2590 ThisContext = Method->getParent();
2591 ThisTypeQuals = Method->getTypeQualifiers();
2592 }
2593
2594 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2595 getLangOpts().CPlusPlus11);
2596
2597 ResultType =
2598 SubstType(Proto->getReturnType(),
2599 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2600 Function->getTypeSpecStartLoc(), Function->getDeclName());
2601 if (ResultType.isNull() || Trap.hasErrorOccurred())
2602 return TDK_SubstitutionFailure;
2603 }
2604
2605 // Instantiate the types of each of the function parameters given the
2606 // explicitly-specified template arguments if we didn't do so earlier.
2607 if (!Proto->hasTrailingReturn() &&
2608 SubstParmTypes(Function->getLocation(),
2609 Function->param_begin(), Function->getNumParams(),
2610 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2611 ParamTypes))
2612 return TDK_SubstitutionFailure;
2613
2614 if (FunctionType) {
2615 *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2616 Function->getLocation(),
2617 Function->getDeclName(),
2618 Proto->getExtProtoInfo());
2619 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2620 return TDK_SubstitutionFailure;
2621 }
2622
2623 // C++ [temp.arg.explicit]p2:
2624 // Trailing template arguments that can be deduced (14.8.2) may be
2625 // omitted from the list of explicit template-arguments. If all of the
2626 // template arguments can be deduced, they may all be omitted; in this
2627 // case, the empty template argument list <> itself may also be omitted.
2628 //
2629 // Take all of the explicitly-specified arguments and put them into
2630 // the set of deduced template arguments. Explicitly-specified
2631 // parameter packs, however, will be set to NULL since the deduction
2632 // mechanisms handle explicitly-specified argument packs directly.
2633 Deduced.reserve(TemplateParams->size());
2634 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2635 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2636 if (Arg.getKind() == TemplateArgument::Pack)
2637 Deduced.push_back(DeducedTemplateArgument());
2638 else
2639 Deduced.push_back(Arg);
2640 }
2641
2642 return TDK_Success;
2643 }
2644
2645 /// \brief Check whether the deduced argument type for a call to a function
2646 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2647 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2648 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2649 QualType DeducedA) {
2650 ASTContext &Context = S.Context;
2651
2652 QualType A = OriginalArg.OriginalArgType;
2653 QualType OriginalParamType = OriginalArg.OriginalParamType;
2654
2655 // Check for type equality (top-level cv-qualifiers are ignored).
2656 if (Context.hasSameUnqualifiedType(A, DeducedA))
2657 return false;
2658
2659 // Strip off references on the argument types; they aren't needed for
2660 // the following checks.
2661 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2662 DeducedA = DeducedARef->getPointeeType();
2663 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2664 A = ARef->getPointeeType();
2665
2666 // C++ [temp.deduct.call]p4:
2667 // [...] However, there are three cases that allow a difference:
2668 // - If the original P is a reference type, the deduced A (i.e., the
2669 // type referred to by the reference) can be more cv-qualified than
2670 // the transformed A.
2671 if (const ReferenceType *OriginalParamRef
2672 = OriginalParamType->getAs<ReferenceType>()) {
2673 // We don't want to keep the reference around any more.
2674 OriginalParamType = OriginalParamRef->getPointeeType();
2675
2676 Qualifiers AQuals = A.getQualifiers();
2677 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2678
2679 // Under Objective-C++ ARC, the deduced type may have implicitly
2680 // been given strong or (when dealing with a const reference)
2681 // unsafe_unretained lifetime. If so, update the original
2682 // qualifiers to include this lifetime.
2683 if (S.getLangOpts().ObjCAutoRefCount &&
2684 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2685 AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
2686 (DeducedAQuals.hasConst() &&
2687 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
2688 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
2689 }
2690
2691 if (AQuals == DeducedAQuals) {
2692 // Qualifiers match; there's nothing to do.
2693 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2694 return true;
2695 } else {
2696 // Qualifiers are compatible, so have the argument type adopt the
2697 // deduced argument type's qualifiers as if we had performed the
2698 // qualification conversion.
2699 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2700 }
2701 }
2702
2703 // - The transformed A can be another pointer or pointer to member
2704 // type that can be converted to the deduced A via a qualification
2705 // conversion.
2706 //
2707 // Also allow conversions which merely strip [[noreturn]] from function types
2708 // (recursively) as an extension.
2709 // FIXME: Currently, this doesn't play nicely with qualification conversions.
2710 bool ObjCLifetimeConversion = false;
2711 QualType ResultTy;
2712 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2713 (S.IsQualificationConversion(A, DeducedA, false,
2714 ObjCLifetimeConversion) ||
2715 S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2716 return false;
2717
2718
2719 // - If P is a class and P has the form simple-template-id, then the
2720 // transformed A can be a derived class of the deduced A. [...]
2721 // [...] Likewise, if P is a pointer to a class of the form
2722 // simple-template-id, the transformed A can be a pointer to a
2723 // derived class pointed to by the deduced A.
2724 if (const PointerType *OriginalParamPtr
2725 = OriginalParamType->getAs<PointerType>()) {
2726 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2727 if (const PointerType *APtr = A->getAs<PointerType>()) {
2728 if (A->getPointeeType()->isRecordType()) {
2729 OriginalParamType = OriginalParamPtr->getPointeeType();
2730 DeducedA = DeducedAPtr->getPointeeType();
2731 A = APtr->getPointeeType();
2732 }
2733 }
2734 }
2735 }
2736
2737 if (Context.hasSameUnqualifiedType(A, DeducedA))
2738 return false;
2739
2740 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2741 S.IsDerivedFrom(SourceLocation(), A, DeducedA))
2742 return false;
2743
2744 return true;
2745 }
2746
2747 /// \brief Finish template argument deduction for a function template,
2748 /// checking the deduced template arguments for completeness and forming
2749 /// the function template specialization.
2750 ///
2751 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2752 /// which the deduced argument types should be compared.
2753 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs,bool PartialOverloading)2754 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2755 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2756 unsigned NumExplicitlySpecified,
2757 FunctionDecl *&Specialization,
2758 TemplateDeductionInfo &Info,
2759 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
2760 bool PartialOverloading) {
2761 TemplateParameterList *TemplateParams
2762 = FunctionTemplate->getTemplateParameters();
2763
2764 // Unevaluated SFINAE context.
2765 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2766 SFINAETrap Trap(*this);
2767
2768 // Enter a new template instantiation context while we instantiate the
2769 // actual function declaration.
2770 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2771 InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
2772 DeducedArgs,
2773 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2774 Info);
2775 if (Inst.isInvalid())
2776 return TDK_InstantiationDepth;
2777
2778 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2779
2780 // C++ [temp.deduct.type]p2:
2781 // [...] or if any template argument remains neither deduced nor
2782 // explicitly specified, template argument deduction fails.
2783 SmallVector<TemplateArgument, 4> Builder;
2784 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2785 NamedDecl *Param = TemplateParams->getParam(I);
2786
2787 if (!Deduced[I].isNull()) {
2788 if (I < NumExplicitlySpecified) {
2789 // We have already fully type-checked and converted this
2790 // argument, because it was explicitly-specified. Just record the
2791 // presence of this argument.
2792 Builder.push_back(Deduced[I]);
2793 // We may have had explicitly-specified template arguments for a
2794 // template parameter pack (that may or may not have been extended
2795 // via additional deduced arguments).
2796 if (Param->isParameterPack() && CurrentInstantiationScope) {
2797 if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
2798 Param) {
2799 // Forget the partially-substituted pack; its substitution is now
2800 // complete.
2801 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2802 }
2803 }
2804 continue;
2805 }
2806 // We have deduced this argument, so it still needs to be
2807 // checked and converted.
2808
2809 // First, for a non-type template parameter type that is
2810 // initialized by a declaration, we need the type of the
2811 // corresponding non-type template parameter.
2812 QualType NTTPType;
2813 if (NonTypeTemplateParmDecl *NTTP
2814 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2815 NTTPType = NTTP->getType();
2816 if (NTTPType->isDependentType()) {
2817 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2818 Builder.data(), Builder.size());
2819 NTTPType = SubstType(NTTPType,
2820 MultiLevelTemplateArgumentList(TemplateArgs),
2821 NTTP->getLocation(),
2822 NTTP->getDeclName());
2823 if (NTTPType.isNull()) {
2824 Info.Param = makeTemplateParameter(Param);
2825 // FIXME: These template arguments are temporary. Free them!
2826 Info.reset(TemplateArgumentList::CreateCopy(Context,
2827 Builder.data(),
2828 Builder.size()));
2829 return TDK_SubstitutionFailure;
2830 }
2831 }
2832 }
2833
2834 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2835 FunctionTemplate, NTTPType, 0, Info,
2836 true, Builder)) {
2837 Info.Param = makeTemplateParameter(Param);
2838 // FIXME: These template arguments are temporary. Free them!
2839 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2840 Builder.size()));
2841 return TDK_SubstitutionFailure;
2842 }
2843
2844 continue;
2845 }
2846
2847 // C++0x [temp.arg.explicit]p3:
2848 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2849 // be deduced to an empty sequence of template arguments.
2850 // FIXME: Where did the word "trailing" come from?
2851 if (Param->isTemplateParameterPack()) {
2852 // We may have had explicitly-specified template arguments for this
2853 // template parameter pack. If so, our empty deduction extends the
2854 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2855 const TemplateArgument *ExplicitArgs;
2856 unsigned NumExplicitArgs;
2857 if (CurrentInstantiationScope &&
2858 CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2859 &NumExplicitArgs)
2860 == Param) {
2861 Builder.push_back(TemplateArgument(
2862 llvm::makeArrayRef(ExplicitArgs, NumExplicitArgs)));
2863
2864 // Forget the partially-substituted pack; it's substitution is now
2865 // complete.
2866 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2867 } else {
2868 Builder.push_back(TemplateArgument::getEmptyPack());
2869 }
2870 continue;
2871 }
2872
2873 // Substitute into the default template argument, if available.
2874 bool HasDefaultArg = false;
2875 TemplateArgumentLoc DefArg
2876 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2877 FunctionTemplate->getLocation(),
2878 FunctionTemplate->getSourceRange().getEnd(),
2879 Param,
2880 Builder, HasDefaultArg);
2881
2882 // If there was no default argument, deduction is incomplete.
2883 if (DefArg.getArgument().isNull()) {
2884 Info.Param = makeTemplateParameter(
2885 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2886 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2887 Builder.size()));
2888 if (PartialOverloading) break;
2889
2890 return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2891 }
2892
2893 // Check whether we can actually use the default argument.
2894 if (CheckTemplateArgument(Param, DefArg,
2895 FunctionTemplate,
2896 FunctionTemplate->getLocation(),
2897 FunctionTemplate->getSourceRange().getEnd(),
2898 0, Builder,
2899 CTAK_Specified)) {
2900 Info.Param = makeTemplateParameter(
2901 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2902 // FIXME: These template arguments are temporary. Free them!
2903 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2904 Builder.size()));
2905 return TDK_SubstitutionFailure;
2906 }
2907
2908 // If we get here, we successfully used the default template argument.
2909 }
2910
2911 // Form the template argument list from the deduced template arguments.
2912 TemplateArgumentList *DeducedArgumentList
2913 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2914 Info.reset(DeducedArgumentList);
2915
2916 // Substitute the deduced template arguments into the function template
2917 // declaration to produce the function template specialization.
2918 DeclContext *Owner = FunctionTemplate->getDeclContext();
2919 if (FunctionTemplate->getFriendObjectKind())
2920 Owner = FunctionTemplate->getLexicalDeclContext();
2921 Specialization = cast_or_null<FunctionDecl>(
2922 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2923 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2924 if (!Specialization || Specialization->isInvalidDecl())
2925 return TDK_SubstitutionFailure;
2926
2927 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2928 FunctionTemplate->getCanonicalDecl());
2929
2930 // If the template argument list is owned by the function template
2931 // specialization, release it.
2932 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2933 !Trap.hasErrorOccurred())
2934 Info.take();
2935
2936 // There may have been an error that did not prevent us from constructing a
2937 // declaration. Mark the declaration invalid and return with a substitution
2938 // failure.
2939 if (Trap.hasErrorOccurred()) {
2940 Specialization->setInvalidDecl(true);
2941 return TDK_SubstitutionFailure;
2942 }
2943
2944 if (OriginalCallArgs) {
2945 // C++ [temp.deduct.call]p4:
2946 // In general, the deduction process attempts to find template argument
2947 // values that will make the deduced A identical to A (after the type A
2948 // is transformed as described above). [...]
2949 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2950 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2951 unsigned ParamIdx = OriginalArg.ArgIdx;
2952
2953 if (ParamIdx >= Specialization->getNumParams())
2954 continue;
2955
2956 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2957 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2958 return Sema::TDK_SubstitutionFailure;
2959 }
2960 }
2961
2962 // If we suppressed any diagnostics while performing template argument
2963 // deduction, and if we haven't already instantiated this declaration,
2964 // keep track of these diagnostics. They'll be emitted if this specialization
2965 // is actually used.
2966 if (Info.diag_begin() != Info.diag_end()) {
2967 SuppressedDiagnosticsMap::iterator
2968 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2969 if (Pos == SuppressedDiagnostics.end())
2970 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2971 .append(Info.diag_begin(), Info.diag_end());
2972 }
2973
2974 return TDK_Success;
2975 }
2976
2977 /// Gets the type of a function for template-argument-deducton
2978 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(Sema & S,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2979 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
2980 FunctionDecl *Fn) {
2981 // We may need to deduce the return type of the function now.
2982 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
2983 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
2984 return QualType();
2985
2986 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2987 if (Method->isInstance()) {
2988 // An instance method that's referenced in a form that doesn't
2989 // look like a member pointer is just invalid.
2990 if (!R.HasFormOfMemberPointer) return QualType();
2991
2992 return S.Context.getMemberPointerType(Fn->getType(),
2993 S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
2994 }
2995
2996 if (!R.IsAddressOfOperand) return Fn->getType();
2997 return S.Context.getPointerType(Fn->getType());
2998 }
2999
3000 /// Apply the deduction rules for overload sets.
3001 ///
3002 /// \return the null type if this argument should be treated as an
3003 /// undeduced context
3004 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)3005 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3006 Expr *Arg, QualType ParamType,
3007 bool ParamWasReference) {
3008
3009 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3010
3011 OverloadExpr *Ovl = R.Expression;
3012
3013 // C++0x [temp.deduct.call]p4
3014 unsigned TDF = 0;
3015 if (ParamWasReference)
3016 TDF |= TDF_ParamWithReferenceType;
3017 if (R.IsAddressOfOperand)
3018 TDF |= TDF_IgnoreQualifiers;
3019
3020 // C++0x [temp.deduct.call]p6:
3021 // When P is a function type, pointer to function type, or pointer
3022 // to member function type:
3023
3024 if (!ParamType->isFunctionType() &&
3025 !ParamType->isFunctionPointerType() &&
3026 !ParamType->isMemberFunctionPointerType()) {
3027 if (Ovl->hasExplicitTemplateArgs()) {
3028 // But we can still look for an explicit specialization.
3029 if (FunctionDecl *ExplicitSpec
3030 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3031 return GetTypeOfFunction(S, R, ExplicitSpec);
3032 }
3033
3034 return QualType();
3035 }
3036
3037 // Gather the explicit template arguments, if any.
3038 TemplateArgumentListInfo ExplicitTemplateArgs;
3039 if (Ovl->hasExplicitTemplateArgs())
3040 Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
3041 QualType Match;
3042 for (UnresolvedSetIterator I = Ovl->decls_begin(),
3043 E = Ovl->decls_end(); I != E; ++I) {
3044 NamedDecl *D = (*I)->getUnderlyingDecl();
3045
3046 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3047 // - If the argument is an overload set containing one or more
3048 // function templates, the parameter is treated as a
3049 // non-deduced context.
3050 if (!Ovl->hasExplicitTemplateArgs())
3051 return QualType();
3052
3053 // Otherwise, see if we can resolve a function type
3054 FunctionDecl *Specialization = nullptr;
3055 TemplateDeductionInfo Info(Ovl->getNameLoc());
3056 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3057 Specialization, Info))
3058 continue;
3059
3060 D = Specialization;
3061 }
3062
3063 FunctionDecl *Fn = cast<FunctionDecl>(D);
3064 QualType ArgType = GetTypeOfFunction(S, R, Fn);
3065 if (ArgType.isNull()) continue;
3066
3067 // Function-to-pointer conversion.
3068 if (!ParamWasReference && ParamType->isPointerType() &&
3069 ArgType->isFunctionType())
3070 ArgType = S.Context.getPointerType(ArgType);
3071
3072 // - If the argument is an overload set (not containing function
3073 // templates), trial argument deduction is attempted using each
3074 // of the members of the set. If deduction succeeds for only one
3075 // of the overload set members, that member is used as the
3076 // argument value for the deduction. If deduction succeeds for
3077 // more than one member of the overload set the parameter is
3078 // treated as a non-deduced context.
3079
3080 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3081 // Type deduction is done independently for each P/A pair, and
3082 // the deduced template argument values are then combined.
3083 // So we do not reject deductions which were made elsewhere.
3084 SmallVector<DeducedTemplateArgument, 8>
3085 Deduced(TemplateParams->size());
3086 TemplateDeductionInfo Info(Ovl->getNameLoc());
3087 Sema::TemplateDeductionResult Result
3088 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3089 ArgType, Info, Deduced, TDF);
3090 if (Result) continue;
3091 if (!Match.isNull()) return QualType();
3092 Match = ArgType;
3093 }
3094
3095 return Match;
3096 }
3097
3098 /// \brief Perform the adjustments to the parameter and argument types
3099 /// described in C++ [temp.deduct.call].
3100 ///
3101 /// \returns true if the caller should not attempt to perform any template
3102 /// argument deduction based on this P/A pair because the argument is an
3103 /// overloaded function set that could not be resolved.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)3104 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
3105 TemplateParameterList *TemplateParams,
3106 QualType &ParamType,
3107 QualType &ArgType,
3108 Expr *Arg,
3109 unsigned &TDF) {
3110 // C++0x [temp.deduct.call]p3:
3111 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
3112 // are ignored for type deduction.
3113 if (ParamType.hasQualifiers())
3114 ParamType = ParamType.getUnqualifiedType();
3115
3116 // [...] If P is a reference type, the type referred to by P is
3117 // used for type deduction.
3118 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3119 if (ParamRefType)
3120 ParamType = ParamRefType->getPointeeType();
3121
3122 // Overload sets usually make this parameter an undeduced context,
3123 // but there are sometimes special circumstances. Typically
3124 // involving a template-id-expr.
3125 if (ArgType == S.Context.OverloadTy) {
3126 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3127 Arg, ParamType,
3128 ParamRefType != nullptr);
3129 if (ArgType.isNull())
3130 return true;
3131 }
3132
3133 if (ParamRefType) {
3134 // If the argument has incomplete array type, try to complete its type.
3135 if (ArgType->isIncompleteArrayType()) {
3136 S.completeExprArrayBound(Arg);
3137 ArgType = Arg->getType();
3138 }
3139
3140 // C++0x [temp.deduct.call]p3:
3141 // If P is an rvalue reference to a cv-unqualified template
3142 // parameter and the argument is an lvalue, the type "lvalue
3143 // reference to A" is used in place of A for type deduction.
3144 if (ParamRefType->isRValueReferenceType() &&
3145 !ParamType.getQualifiers() &&
3146 isa<TemplateTypeParmType>(ParamType) &&
3147 Arg->isLValue())
3148 ArgType = S.Context.getLValueReferenceType(ArgType);
3149 } else {
3150 // C++ [temp.deduct.call]p2:
3151 // If P is not a reference type:
3152 // - If A is an array type, the pointer type produced by the
3153 // array-to-pointer standard conversion (4.2) is used in place of
3154 // A for type deduction; otherwise,
3155 if (ArgType->isArrayType())
3156 ArgType = S.Context.getArrayDecayedType(ArgType);
3157 // - If A is a function type, the pointer type produced by the
3158 // function-to-pointer standard conversion (4.3) is used in place
3159 // of A for type deduction; otherwise,
3160 else if (ArgType->isFunctionType())
3161 ArgType = S.Context.getPointerType(ArgType);
3162 else {
3163 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3164 // type are ignored for type deduction.
3165 ArgType = ArgType.getUnqualifiedType();
3166 }
3167 }
3168
3169 // C++0x [temp.deduct.call]p4:
3170 // In general, the deduction process attempts to find template argument
3171 // values that will make the deduced A identical to A (after the type A
3172 // is transformed as described above). [...]
3173 TDF = TDF_SkipNonDependent;
3174
3175 // - If the original P is a reference type, the deduced A (i.e., the
3176 // type referred to by the reference) can be more cv-qualified than
3177 // the transformed A.
3178 if (ParamRefType)
3179 TDF |= TDF_ParamWithReferenceType;
3180 // - The transformed A can be another pointer or pointer to member
3181 // type that can be converted to the deduced A via a qualification
3182 // conversion (4.4).
3183 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3184 ArgType->isObjCObjectPointerType())
3185 TDF |= TDF_IgnoreQualifiers;
3186 // - If P is a class and P has the form simple-template-id, then the
3187 // transformed A can be a derived class of the deduced A. Likewise,
3188 // if P is a pointer to a class of the form simple-template-id, the
3189 // transformed A can be a pointer to a derived class pointed to by
3190 // the deduced A.
3191 if (isSimpleTemplateIdType(ParamType) ||
3192 (isa<PointerType>(ParamType) &&
3193 isSimpleTemplateIdType(
3194 ParamType->getAs<PointerType>()->getPointeeType())))
3195 TDF |= TDF_DerivedClass;
3196
3197 return false;
3198 }
3199
3200 static bool
3201 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3202 QualType T);
3203
3204 static Sema::TemplateDeductionResult DeduceTemplateArgumentByListElement(
3205 Sema &S, TemplateParameterList *TemplateParams, QualType ParamType,
3206 Expr *Arg, TemplateDeductionInfo &Info,
3207 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF);
3208
3209 /// \brief Attempt template argument deduction from an initializer list
3210 /// deemed to be an argument in a function call.
3211 static bool
DeduceFromInitializerList(Sema & S,TemplateParameterList * TemplateParams,QualType AdjustedParamType,InitListExpr * ILE,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,Sema::TemplateDeductionResult & Result)3212 DeduceFromInitializerList(Sema &S, TemplateParameterList *TemplateParams,
3213 QualType AdjustedParamType, InitListExpr *ILE,
3214 TemplateDeductionInfo &Info,
3215 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3216 unsigned TDF, Sema::TemplateDeductionResult &Result) {
3217
3218 // [temp.deduct.call] p1 (post CWG-1591)
3219 // If removing references and cv-qualifiers from P gives
3220 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is a
3221 // non-empty initializer list (8.5.4), then deduction is performed instead for
3222 // each element of the initializer list, taking P0 as a function template
3223 // parameter type and the initializer element as its argument, and in the
3224 // P0[N] case, if N is a non-type template parameter, N is deduced from the
3225 // length of the initializer list. Otherwise, an initializer list argument
3226 // causes the parameter to be considered a non-deduced context
3227
3228 const bool IsConstSizedArray = AdjustedParamType->isConstantArrayType();
3229
3230 const bool IsDependentSizedArray =
3231 !IsConstSizedArray && AdjustedParamType->isDependentSizedArrayType();
3232
3233 QualType ElTy; // The element type of the std::initializer_list or the array.
3234
3235 const bool IsSTDList = !IsConstSizedArray && !IsDependentSizedArray &&
3236 S.isStdInitializerList(AdjustedParamType, &ElTy);
3237
3238 if (!IsConstSizedArray && !IsDependentSizedArray && !IsSTDList)
3239 return false;
3240
3241 Result = Sema::TDK_Success;
3242 // If we are not deducing against the 'T' in a std::initializer_list<T> then
3243 // deduce against the 'T' in T[N].
3244 if (ElTy.isNull()) {
3245 assert(!IsSTDList);
3246 ElTy = S.Context.getAsArrayType(AdjustedParamType)->getElementType();
3247 }
3248 // Deduction only needs to be done for dependent types.
3249 if (ElTy->isDependentType()) {
3250 for (Expr *E : ILE->inits()) {
3251 if ((Result = DeduceTemplateArgumentByListElement(S, TemplateParams, ElTy,
3252 E, Info, Deduced, TDF)))
3253 return true;
3254 }
3255 }
3256 if (IsDependentSizedArray) {
3257 const DependentSizedArrayType *ArrTy =
3258 S.Context.getAsDependentSizedArrayType(AdjustedParamType);
3259 // Determine the array bound is something we can deduce.
3260 if (NonTypeTemplateParmDecl *NTTP =
3261 getDeducedParameterFromExpr(ArrTy->getSizeExpr())) {
3262 // We can perform template argument deduction for the given non-type
3263 // template parameter.
3264 assert(NTTP->getDepth() == 0 &&
3265 "Cannot deduce non-type template argument at depth > 0");
3266 llvm::APInt Size(S.Context.getIntWidth(NTTP->getType()),
3267 ILE->getNumInits());
3268
3269 Result = DeduceNonTypeTemplateArgument(
3270 S, NTTP, llvm::APSInt(Size), NTTP->getType(),
3271 /*ArrayBound=*/true, Info, Deduced);
3272 }
3273 }
3274 return true;
3275 }
3276
3277 /// \brief Perform template argument deduction by matching a parameter type
3278 /// against a single expression, where the expression is an element of
3279 /// an initializer list that was originally matched against a parameter
3280 /// of type \c initializer_list\<ParamType\>.
3281 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)3282 DeduceTemplateArgumentByListElement(Sema &S,
3283 TemplateParameterList *TemplateParams,
3284 QualType ParamType, Expr *Arg,
3285 TemplateDeductionInfo &Info,
3286 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3287 unsigned TDF) {
3288 // Handle the case where an init list contains another init list as the
3289 // element.
3290 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3291 Sema::TemplateDeductionResult Result;
3292 if (!DeduceFromInitializerList(S, TemplateParams,
3293 ParamType.getNonReferenceType(), ILE, Info,
3294 Deduced, TDF, Result))
3295 return Sema::TDK_Success; // Just ignore this expression.
3296
3297 return Result;
3298 }
3299
3300 // For all other cases, just match by type.
3301 QualType ArgType = Arg->getType();
3302 if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3303 ArgType, Arg, TDF)) {
3304 Info.Expression = Arg;
3305 return Sema::TDK_FailedOverloadResolution;
3306 }
3307 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3308 ArgType, Info, Deduced, TDF);
3309 }
3310
3311 /// \brief Perform template argument deduction from a function call
3312 /// (C++ [temp.deduct.call]).
3313 ///
3314 /// \param FunctionTemplate the function template for which we are performing
3315 /// template argument deduction.
3316 ///
3317 /// \param ExplicitTemplateArgs the explicit template arguments provided
3318 /// for this call.
3319 ///
3320 /// \param Args the function call arguments
3321 ///
3322 /// \param Specialization if template argument deduction was successful,
3323 /// this will be set to the function template specialization produced by
3324 /// template argument deduction.
3325 ///
3326 /// \param Info the argument will be updated to provide additional information
3327 /// about template argument deduction.
3328 ///
3329 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool PartialOverloading)3330 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3331 FunctionTemplateDecl *FunctionTemplate,
3332 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3333 FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
3334 bool PartialOverloading) {
3335 if (FunctionTemplate->isInvalidDecl())
3336 return TDK_Invalid;
3337
3338 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3339 unsigned NumParams = Function->getNumParams();
3340
3341 // C++ [temp.deduct.call]p1:
3342 // Template argument deduction is done by comparing each function template
3343 // parameter type (call it P) with the type of the corresponding argument
3344 // of the call (call it A) as described below.
3345 unsigned CheckArgs = Args.size();
3346 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
3347 return TDK_TooFewArguments;
3348 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
3349 const FunctionProtoType *Proto
3350 = Function->getType()->getAs<FunctionProtoType>();
3351 if (Proto->isTemplateVariadic())
3352 /* Do nothing */;
3353 else if (Proto->isVariadic())
3354 CheckArgs = NumParams;
3355 else
3356 return TDK_TooManyArguments;
3357 }
3358
3359 // The types of the parameters from which we will perform template argument
3360 // deduction.
3361 LocalInstantiationScope InstScope(*this);
3362 TemplateParameterList *TemplateParams
3363 = FunctionTemplate->getTemplateParameters();
3364 SmallVector<DeducedTemplateArgument, 4> Deduced;
3365 SmallVector<QualType, 4> ParamTypes;
3366 unsigned NumExplicitlySpecified = 0;
3367 if (ExplicitTemplateArgs) {
3368 TemplateDeductionResult Result =
3369 SubstituteExplicitTemplateArguments(FunctionTemplate,
3370 *ExplicitTemplateArgs,
3371 Deduced,
3372 ParamTypes,
3373 nullptr,
3374 Info);
3375 if (Result)
3376 return Result;
3377
3378 NumExplicitlySpecified = Deduced.size();
3379 } else {
3380 // Just fill in the parameter types from the function declaration.
3381 for (unsigned I = 0; I != NumParams; ++I)
3382 ParamTypes.push_back(Function->getParamDecl(I)->getType());
3383 }
3384
3385 // Deduce template arguments from the function parameters.
3386 Deduced.resize(TemplateParams->size());
3387 unsigned ArgIdx = 0;
3388 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3389 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size();
3390 ParamIdx != NumParamTypes; ++ParamIdx) {
3391 QualType OrigParamType = ParamTypes[ParamIdx];
3392 QualType ParamType = OrigParamType;
3393
3394 const PackExpansionType *ParamExpansion
3395 = dyn_cast<PackExpansionType>(ParamType);
3396 if (!ParamExpansion) {
3397 // Simple case: matching a function parameter to a function argument.
3398 if (ArgIdx >= CheckArgs)
3399 break;
3400
3401 Expr *Arg = Args[ArgIdx++];
3402 QualType ArgType = Arg->getType();
3403
3404 unsigned TDF = 0;
3405 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3406 ParamType, ArgType, Arg,
3407 TDF))
3408 continue;
3409
3410 // If we have nothing to deduce, we're done.
3411 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3412 continue;
3413
3414 // If the argument is an initializer list ...
3415 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3416 TemplateDeductionResult Result;
3417 // Removing references was already done.
3418 if (!DeduceFromInitializerList(*this, TemplateParams, ParamType, ILE,
3419 Info, Deduced, TDF, Result))
3420 continue;
3421
3422 if (Result)
3423 return Result;
3424 // Don't track the argument type, since an initializer list has none.
3425 continue;
3426 }
3427
3428 // Keep track of the argument type and corresponding parameter index,
3429 // so we can check for compatibility between the deduced A and A.
3430 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3431 ArgType));
3432
3433 if (TemplateDeductionResult Result
3434 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3435 ParamType, ArgType,
3436 Info, Deduced, TDF))
3437 return Result;
3438
3439 continue;
3440 }
3441
3442 // C++0x [temp.deduct.call]p1:
3443 // For a function parameter pack that occurs at the end of the
3444 // parameter-declaration-list, the type A of each remaining argument of
3445 // the call is compared with the type P of the declarator-id of the
3446 // function parameter pack. Each comparison deduces template arguments
3447 // for subsequent positions in the template parameter packs expanded by
3448 // the function parameter pack. For a function parameter pack that does
3449 // not occur at the end of the parameter-declaration-list, the type of
3450 // the parameter pack is a non-deduced context.
3451 if (ParamIdx + 1 < NumParamTypes)
3452 break;
3453
3454 QualType ParamPattern = ParamExpansion->getPattern();
3455 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3456 ParamPattern);
3457
3458 bool HasAnyArguments = false;
3459 for (; ArgIdx < Args.size(); ++ArgIdx) {
3460 HasAnyArguments = true;
3461
3462 QualType OrigParamType = ParamPattern;
3463 ParamType = OrigParamType;
3464 Expr *Arg = Args[ArgIdx];
3465 QualType ArgType = Arg->getType();
3466
3467 unsigned TDF = 0;
3468 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3469 ParamType, ArgType, Arg,
3470 TDF)) {
3471 // We can't actually perform any deduction for this argument, so stop
3472 // deduction at this point.
3473 ++ArgIdx;
3474 break;
3475 }
3476
3477 // As above, initializer lists need special handling.
3478 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3479 TemplateDeductionResult Result;
3480 if (!DeduceFromInitializerList(*this, TemplateParams, ParamType, ILE,
3481 Info, Deduced, TDF, Result)) {
3482 ++ArgIdx;
3483 break;
3484 }
3485
3486 if (Result)
3487 return Result;
3488 } else {
3489
3490 // Keep track of the argument type and corresponding argument index,
3491 // so we can check for compatibility between the deduced A and A.
3492 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3493 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3494 ArgType));
3495
3496 if (TemplateDeductionResult Result
3497 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3498 ParamType, ArgType, Info,
3499 Deduced, TDF))
3500 return Result;
3501 }
3502
3503 PackScope.nextPackElement();
3504 }
3505
3506 // Build argument packs for each of the parameter packs expanded by this
3507 // pack expansion.
3508 if (auto Result = PackScope.finish(HasAnyArguments))
3509 return Result;
3510
3511 // After we've matching against a parameter pack, we're done.
3512 break;
3513 }
3514
3515 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3516 NumExplicitlySpecified, Specialization,
3517 Info, &OriginalCallArgs,
3518 PartialOverloading);
3519 }
3520
adjustCCAndNoReturn(QualType ArgFunctionType,QualType FunctionType)3521 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
3522 QualType FunctionType) {
3523 if (ArgFunctionType.isNull())
3524 return ArgFunctionType;
3525
3526 const FunctionProtoType *FunctionTypeP =
3527 FunctionType->castAs<FunctionProtoType>();
3528 CallingConv CC = FunctionTypeP->getCallConv();
3529 bool NoReturn = FunctionTypeP->getNoReturnAttr();
3530 const FunctionProtoType *ArgFunctionTypeP =
3531 ArgFunctionType->getAs<FunctionProtoType>();
3532 if (ArgFunctionTypeP->getCallConv() == CC &&
3533 ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
3534 return ArgFunctionType;
3535
3536 FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
3537 EI = EI.withNoReturn(NoReturn);
3538 ArgFunctionTypeP =
3539 cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
3540 return QualType(ArgFunctionTypeP, 0);
3541 }
3542
3543 /// \brief Deduce template arguments when taking the address of a function
3544 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3545 /// a template.
3546 ///
3547 /// \param FunctionTemplate the function template for which we are performing
3548 /// template argument deduction.
3549 ///
3550 /// \param ExplicitTemplateArgs the explicitly-specified template
3551 /// arguments.
3552 ///
3553 /// \param ArgFunctionType the function type that will be used as the
3554 /// "argument" type (A) when performing template argument deduction from the
3555 /// function template's function type. This type may be NULL, if there is no
3556 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3557 ///
3558 /// \param Specialization if template argument deduction was successful,
3559 /// this will be set to the function template specialization produced by
3560 /// template argument deduction.
3561 ///
3562 /// \param Info the argument will be updated to provide additional information
3563 /// about template argument deduction.
3564 ///
3565 /// \returns the result of template argument deduction.
3566 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3567 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3568 TemplateArgumentListInfo *ExplicitTemplateArgs,
3569 QualType ArgFunctionType,
3570 FunctionDecl *&Specialization,
3571 TemplateDeductionInfo &Info,
3572 bool InOverloadResolution) {
3573 if (FunctionTemplate->isInvalidDecl())
3574 return TDK_Invalid;
3575
3576 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3577 TemplateParameterList *TemplateParams
3578 = FunctionTemplate->getTemplateParameters();
3579 QualType FunctionType = Function->getType();
3580 if (!InOverloadResolution)
3581 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
3582
3583 // Substitute any explicit template arguments.
3584 LocalInstantiationScope InstScope(*this);
3585 SmallVector<DeducedTemplateArgument, 4> Deduced;
3586 unsigned NumExplicitlySpecified = 0;
3587 SmallVector<QualType, 4> ParamTypes;
3588 if (ExplicitTemplateArgs) {
3589 if (TemplateDeductionResult Result
3590 = SubstituteExplicitTemplateArguments(FunctionTemplate,
3591 *ExplicitTemplateArgs,
3592 Deduced, ParamTypes,
3593 &FunctionType, Info))
3594 return Result;
3595
3596 NumExplicitlySpecified = Deduced.size();
3597 }
3598
3599 // Unevaluated SFINAE context.
3600 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3601 SFINAETrap Trap(*this);
3602
3603 Deduced.resize(TemplateParams->size());
3604
3605 // If the function has a deduced return type, substitute it for a dependent
3606 // type so that we treat it as a non-deduced context in what follows.
3607 bool HasDeducedReturnType = false;
3608 if (getLangOpts().CPlusPlus14 && InOverloadResolution &&
3609 Function->getReturnType()->getContainedAutoType()) {
3610 FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3611 HasDeducedReturnType = true;
3612 }
3613
3614 if (!ArgFunctionType.isNull()) {
3615 unsigned TDF = TDF_TopLevelParameterTypeList;
3616 if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3617 // Deduce template arguments from the function type.
3618 if (TemplateDeductionResult Result
3619 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3620 FunctionType, ArgFunctionType,
3621 Info, Deduced, TDF))
3622 return Result;
3623 }
3624
3625 if (TemplateDeductionResult Result
3626 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3627 NumExplicitlySpecified,
3628 Specialization, Info))
3629 return Result;
3630
3631 // If the function has a deduced return type, deduce it now, so we can check
3632 // that the deduced function type matches the requested type.
3633 if (HasDeducedReturnType &&
3634 Specialization->getReturnType()->isUndeducedType() &&
3635 DeduceReturnType(Specialization, Info.getLocation(), false))
3636 return TDK_MiscellaneousDeductionFailure;
3637
3638 // If the requested function type does not match the actual type of the
3639 // specialization with respect to arguments of compatible pointer to function
3640 // types, template argument deduction fails.
3641 if (!ArgFunctionType.isNull()) {
3642 if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3643 Context.getCanonicalType(Specialization->getType()),
3644 Context.getCanonicalType(ArgFunctionType)))
3645 return TDK_MiscellaneousDeductionFailure;
3646 else if(!InOverloadResolution &&
3647 !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3648 return TDK_MiscellaneousDeductionFailure;
3649 }
3650
3651 return TDK_Success;
3652 }
3653
3654 /// \brief Given a function declaration (e.g. a generic lambda conversion
3655 /// function) that contains an 'auto' in its result type, substitute it
3656 /// with TypeToReplaceAutoWith. Be careful to pass in the type you want
3657 /// to replace 'auto' with and not the actual result type you want
3658 /// to set the function to.
3659 static inline void
SubstAutoWithinFunctionReturnType(FunctionDecl * F,QualType TypeToReplaceAutoWith,Sema & S)3660 SubstAutoWithinFunctionReturnType(FunctionDecl *F,
3661 QualType TypeToReplaceAutoWith, Sema &S) {
3662 assert(!TypeToReplaceAutoWith->getContainedAutoType());
3663 QualType AutoResultType = F->getReturnType();
3664 assert(AutoResultType->getContainedAutoType());
3665 QualType DeducedResultType = S.SubstAutoType(AutoResultType,
3666 TypeToReplaceAutoWith);
3667 S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
3668 }
3669
3670 /// \brief Given a specialized conversion operator of a generic lambda
3671 /// create the corresponding specializations of the call operator and
3672 /// the static-invoker. If the return type of the call operator is auto,
3673 /// deduce its return type and check if that matches the
3674 /// return type of the destination function ptr.
3675
3676 static inline Sema::TemplateDeductionResult
SpecializeCorrespondingLambdaCallOperatorAndInvoker(CXXConversionDecl * ConversionSpecialized,SmallVectorImpl<DeducedTemplateArgument> & DeducedArguments,QualType ReturnTypeOfDestFunctionPtr,TemplateDeductionInfo & TDInfo,Sema & S)3677 SpecializeCorrespondingLambdaCallOperatorAndInvoker(
3678 CXXConversionDecl *ConversionSpecialized,
3679 SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
3680 QualType ReturnTypeOfDestFunctionPtr,
3681 TemplateDeductionInfo &TDInfo,
3682 Sema &S) {
3683
3684 CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
3685 assert(LambdaClass && LambdaClass->isGenericLambda());
3686
3687 CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
3688 QualType CallOpResultType = CallOpGeneric->getReturnType();
3689 const bool GenericLambdaCallOperatorHasDeducedReturnType =
3690 CallOpResultType->getContainedAutoType();
3691
3692 FunctionTemplateDecl *CallOpTemplate =
3693 CallOpGeneric->getDescribedFunctionTemplate();
3694
3695 FunctionDecl *CallOpSpecialized = nullptr;
3696 // Use the deduced arguments of the conversion function, to specialize our
3697 // generic lambda's call operator.
3698 if (Sema::TemplateDeductionResult Result
3699 = S.FinishTemplateArgumentDeduction(CallOpTemplate,
3700 DeducedArguments,
3701 0, CallOpSpecialized, TDInfo))
3702 return Result;
3703
3704 // If we need to deduce the return type, do so (instantiates the callop).
3705 if (GenericLambdaCallOperatorHasDeducedReturnType &&
3706 CallOpSpecialized->getReturnType()->isUndeducedType())
3707 S.DeduceReturnType(CallOpSpecialized,
3708 CallOpSpecialized->getPointOfInstantiation(),
3709 /*Diagnose*/ true);
3710
3711 // Check to see if the return type of the destination ptr-to-function
3712 // matches the return type of the call operator.
3713 if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
3714 ReturnTypeOfDestFunctionPtr))
3715 return Sema::TDK_NonDeducedMismatch;
3716 // Since we have succeeded in matching the source and destination
3717 // ptr-to-functions (now including return type), and have successfully
3718 // specialized our corresponding call operator, we are ready to
3719 // specialize the static invoker with the deduced arguments of our
3720 // ptr-to-function.
3721 FunctionDecl *InvokerSpecialized = nullptr;
3722 FunctionTemplateDecl *InvokerTemplate = LambdaClass->
3723 getLambdaStaticInvoker()->getDescribedFunctionTemplate();
3724
3725 #ifndef NDEBUG
3726 Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result =
3727 #endif
3728 S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
3729 InvokerSpecialized, TDInfo);
3730 assert(Result == Sema::TDK_Success &&
3731 "If the call operator succeeded so should the invoker!");
3732 // Set the result type to match the corresponding call operator
3733 // specialization's result type.
3734 if (GenericLambdaCallOperatorHasDeducedReturnType &&
3735 InvokerSpecialized->getReturnType()->isUndeducedType()) {
3736 // Be sure to get the type to replace 'auto' with and not
3737 // the full result type of the call op specialization
3738 // to substitute into the 'auto' of the invoker and conversion
3739 // function.
3740 // For e.g.
3741 // int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
3742 // We don't want to subst 'int*' into 'auto' to get int**.
3743
3744 QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
3745 ->getContainedAutoType()
3746 ->getDeducedType();
3747 SubstAutoWithinFunctionReturnType(InvokerSpecialized,
3748 TypeToReplaceAutoWith, S);
3749 SubstAutoWithinFunctionReturnType(ConversionSpecialized,
3750 TypeToReplaceAutoWith, S);
3751 }
3752
3753 // Ensure that static invoker doesn't have a const qualifier.
3754 // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
3755 // do not use the CallOperator's TypeSourceInfo which allows
3756 // the const qualifier to leak through.
3757 const FunctionProtoType *InvokerFPT = InvokerSpecialized->
3758 getType().getTypePtr()->castAs<FunctionProtoType>();
3759 FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
3760 EPI.TypeQuals = 0;
3761 InvokerSpecialized->setType(S.Context.getFunctionType(
3762 InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
3763 return Sema::TDK_Success;
3764 }
3765 /// \brief Deduce template arguments for a templated conversion
3766 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3767 /// conversion function template specialization.
3768 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * ConversionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3769 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
3770 QualType ToType,
3771 CXXConversionDecl *&Specialization,
3772 TemplateDeductionInfo &Info) {
3773 if (ConversionTemplate->isInvalidDecl())
3774 return TDK_Invalid;
3775
3776 CXXConversionDecl *ConversionGeneric
3777 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
3778
3779 QualType FromType = ConversionGeneric->getConversionType();
3780
3781 // Canonicalize the types for deduction.
3782 QualType P = Context.getCanonicalType(FromType);
3783 QualType A = Context.getCanonicalType(ToType);
3784
3785 // C++0x [temp.deduct.conv]p2:
3786 // If P is a reference type, the type referred to by P is used for
3787 // type deduction.
3788 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3789 P = PRef->getPointeeType();
3790
3791 // C++0x [temp.deduct.conv]p4:
3792 // [...] If A is a reference type, the type referred to by A is used
3793 // for type deduction.
3794 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3795 A = ARef->getPointeeType().getUnqualifiedType();
3796 // C++ [temp.deduct.conv]p3:
3797 //
3798 // If A is not a reference type:
3799 else {
3800 assert(!A->isReferenceType() && "Reference types were handled above");
3801
3802 // - If P is an array type, the pointer type produced by the
3803 // array-to-pointer standard conversion (4.2) is used in place
3804 // of P for type deduction; otherwise,
3805 if (P->isArrayType())
3806 P = Context.getArrayDecayedType(P);
3807 // - If P is a function type, the pointer type produced by the
3808 // function-to-pointer standard conversion (4.3) is used in
3809 // place of P for type deduction; otherwise,
3810 else if (P->isFunctionType())
3811 P = Context.getPointerType(P);
3812 // - If P is a cv-qualified type, the top level cv-qualifiers of
3813 // P's type are ignored for type deduction.
3814 else
3815 P = P.getUnqualifiedType();
3816
3817 // C++0x [temp.deduct.conv]p4:
3818 // If A is a cv-qualified type, the top level cv-qualifiers of A's
3819 // type are ignored for type deduction. If A is a reference type, the type
3820 // referred to by A is used for type deduction.
3821 A = A.getUnqualifiedType();
3822 }
3823
3824 // Unevaluated SFINAE context.
3825 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3826 SFINAETrap Trap(*this);
3827
3828 // C++ [temp.deduct.conv]p1:
3829 // Template argument deduction is done by comparing the return
3830 // type of the template conversion function (call it P) with the
3831 // type that is required as the result of the conversion (call it
3832 // A) as described in 14.8.2.4.
3833 TemplateParameterList *TemplateParams
3834 = ConversionTemplate->getTemplateParameters();
3835 SmallVector<DeducedTemplateArgument, 4> Deduced;
3836 Deduced.resize(TemplateParams->size());
3837
3838 // C++0x [temp.deduct.conv]p4:
3839 // In general, the deduction process attempts to find template
3840 // argument values that will make the deduced A identical to
3841 // A. However, there are two cases that allow a difference:
3842 unsigned TDF = 0;
3843 // - If the original A is a reference type, A can be more
3844 // cv-qualified than the deduced A (i.e., the type referred to
3845 // by the reference)
3846 if (ToType->isReferenceType())
3847 TDF |= TDF_ParamWithReferenceType;
3848 // - The deduced A can be another pointer or pointer to member
3849 // type that can be converted to A via a qualification
3850 // conversion.
3851 //
3852 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3853 // both P and A are pointers or member pointers. In this case, we
3854 // just ignore cv-qualifiers completely).
3855 if ((P->isPointerType() && A->isPointerType()) ||
3856 (P->isMemberPointerType() && A->isMemberPointerType()))
3857 TDF |= TDF_IgnoreQualifiers;
3858 if (TemplateDeductionResult Result
3859 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3860 P, A, Info, Deduced, TDF))
3861 return Result;
3862
3863 // Create an Instantiation Scope for finalizing the operator.
3864 LocalInstantiationScope InstScope(*this);
3865 // Finish template argument deduction.
3866 FunctionDecl *ConversionSpecialized = nullptr;
3867 TemplateDeductionResult Result
3868 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
3869 ConversionSpecialized, Info);
3870 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
3871
3872 // If the conversion operator is being invoked on a lambda closure to convert
3873 // to a ptr-to-function, use the deduced arguments from the conversion
3874 // function to specialize the corresponding call operator.
3875 // e.g., int (*fp)(int) = [](auto a) { return a; };
3876 if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
3877
3878 // Get the return type of the destination ptr-to-function we are converting
3879 // to. This is necessary for matching the lambda call operator's return
3880 // type to that of the destination ptr-to-function's return type.
3881 assert(A->isPointerType() &&
3882 "Can only convert from lambda to ptr-to-function");
3883 const FunctionType *ToFunType =
3884 A->getPointeeType().getTypePtr()->getAs<FunctionType>();
3885 const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
3886
3887 // Create the corresponding specializations of the call operator and
3888 // the static-invoker; and if the return type is auto,
3889 // deduce the return type and check if it matches the
3890 // DestFunctionPtrReturnType.
3891 // For instance:
3892 // auto L = [](auto a) { return f(a); };
3893 // int (*fp)(int) = L;
3894 // char (*fp2)(int) = L; <-- Not OK.
3895
3896 Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
3897 Specialization, Deduced, DestFunctionPtrReturnType,
3898 Info, *this);
3899 }
3900 return Result;
3901 }
3902
3903 /// \brief Deduce template arguments for a function template when there is
3904 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3905 ///
3906 /// \param FunctionTemplate the function template for which we are performing
3907 /// template argument deduction.
3908 ///
3909 /// \param ExplicitTemplateArgs the explicitly-specified template
3910 /// arguments.
3911 ///
3912 /// \param Specialization if template argument deduction was successful,
3913 /// this will be set to the function template specialization produced by
3914 /// template argument deduction.
3915 ///
3916 /// \param Info the argument will be updated to provide additional information
3917 /// about template argument deduction.
3918 ///
3919 /// \returns the result of template argument deduction.
3920 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3921 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3922 TemplateArgumentListInfo *ExplicitTemplateArgs,
3923 FunctionDecl *&Specialization,
3924 TemplateDeductionInfo &Info,
3925 bool InOverloadResolution) {
3926 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3927 QualType(), Specialization, Info,
3928 InOverloadResolution);
3929 }
3930
3931 namespace {
3932 /// Substitute the 'auto' type specifier within a type for a given replacement
3933 /// type.
3934 class SubstituteAutoTransform :
3935 public TreeTransform<SubstituteAutoTransform> {
3936 QualType Replacement;
3937 public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3938 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement)
3939 : TreeTransform<SubstituteAutoTransform>(SemaRef),
3940 Replacement(Replacement) {}
3941
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3942 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3943 // If we're building the type pattern to deduce against, don't wrap the
3944 // substituted type in an AutoType. Certain template deduction rules
3945 // apply only when a template type parameter appears directly (and not if
3946 // the parameter is found through desugaring). For instance:
3947 // auto &&lref = lvalue;
3948 // must transform into "rvalue reference to T" not "rvalue reference to
3949 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3950 if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3951 QualType Result = Replacement;
3952 TemplateTypeParmTypeLoc NewTL =
3953 TLB.push<TemplateTypeParmTypeLoc>(Result);
3954 NewTL.setNameLoc(TL.getNameLoc());
3955 return Result;
3956 } else {
3957 bool Dependent =
3958 !Replacement.isNull() && Replacement->isDependentType();
3959 QualType Result =
3960 SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3961 TL.getTypePtr()->getKeyword(),
3962 Dependent);
3963 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3964 NewTL.setNameLoc(TL.getNameLoc());
3965 return Result;
3966 }
3967 }
3968
TransformLambdaExpr(LambdaExpr * E)3969 ExprResult TransformLambdaExpr(LambdaExpr *E) {
3970 // Lambdas never need to be transformed.
3971 return E;
3972 }
3973
Apply(TypeLoc TL)3974 QualType Apply(TypeLoc TL) {
3975 // Create some scratch storage for the transformed type locations.
3976 // FIXME: We're just going to throw this information away. Don't build it.
3977 TypeLocBuilder TLB;
3978 TLB.reserve(TL.getFullDataSize());
3979 return TransformType(TLB, TL);
3980 }
3981 };
3982 }
3983
3984 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,QualType & Result)3985 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3986 return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3987 }
3988
3989 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3990 ///
3991 /// \param Type the type pattern using the auto type-specifier.
3992 /// \param Init the initializer for the variable whose type is to be deduced.
3993 /// \param Result if type deduction was successful, this will be set to the
3994 /// deduced type.
3995 Sema::DeduceAutoResult
DeduceAutoType(TypeLoc Type,Expr * & Init,QualType & Result)3996 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3997 if (Init->getType()->isNonOverloadPlaceholderType()) {
3998 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3999 if (NonPlaceholder.isInvalid())
4000 return DAR_FailedAlreadyDiagnosed;
4001 Init = NonPlaceholder.get();
4002 }
4003
4004 if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
4005 Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
4006 assert(!Result.isNull() && "substituting DependentTy can't fail");
4007 return DAR_Succeeded;
4008 }
4009
4010 // If this is a 'decltype(auto)' specifier, do the decltype dance.
4011 // Since 'decltype(auto)' can only occur at the top of the type, we
4012 // don't need to go digging for it.
4013 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
4014 if (AT->isDecltypeAuto()) {
4015 if (isa<InitListExpr>(Init)) {
4016 Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
4017 return DAR_FailedAlreadyDiagnosed;
4018 }
4019
4020 QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false);
4021 if (Deduced.isNull())
4022 return DAR_FailedAlreadyDiagnosed;
4023 // FIXME: Support a non-canonical deduced type for 'auto'.
4024 Deduced = Context.getCanonicalType(Deduced);
4025 Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
4026 if (Result.isNull())
4027 return DAR_FailedAlreadyDiagnosed;
4028 return DAR_Succeeded;
4029 } else if (!getLangOpts().CPlusPlus) {
4030 if (isa<InitListExpr>(Init)) {
4031 Diag(Init->getLocStart(), diag::err_auto_init_list_from_c);
4032 return DAR_FailedAlreadyDiagnosed;
4033 }
4034 }
4035 }
4036
4037 SourceLocation Loc = Init->getExprLoc();
4038
4039 LocalInstantiationScope InstScope(*this);
4040
4041 // Build template<class TemplParam> void Func(FuncParam);
4042 TemplateTypeParmDecl *TemplParam =
4043 TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
4044 nullptr, false, false);
4045 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4046 NamedDecl *TemplParamPtr = TemplParam;
4047 FixedSizeTemplateParameterListStorage<1> TemplateParamsSt(
4048 Loc, Loc, &TemplParamPtr, Loc);
4049
4050 QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
4051 assert(!FuncParam.isNull() &&
4052 "substituting template parameter for 'auto' failed");
4053
4054 // Deduce type of TemplParam in Func(Init)
4055 SmallVector<DeducedTemplateArgument, 1> Deduced;
4056 Deduced.resize(1);
4057 QualType InitType = Init->getType();
4058 unsigned TDF = 0;
4059
4060 TemplateDeductionInfo Info(Loc);
4061
4062 InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4063 if (InitList) {
4064 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4065 if (DeduceTemplateArgumentByListElement(*this, TemplateParamsSt.get(),
4066 TemplArg, InitList->getInit(i),
4067 Info, Deduced, TDF))
4068 return DAR_Failed;
4069 }
4070 } else {
4071 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4072 Diag(Loc, diag::err_auto_bitfield);
4073 return DAR_FailedAlreadyDiagnosed;
4074 }
4075
4076 if (AdjustFunctionParmAndArgTypesForDeduction(
4077 *this, TemplateParamsSt.get(), FuncParam, InitType, Init, TDF))
4078 return DAR_Failed;
4079
4080 if (DeduceTemplateArgumentsByTypeMatch(*this, TemplateParamsSt.get(),
4081 FuncParam, InitType, Info, Deduced,
4082 TDF))
4083 return DAR_Failed;
4084 }
4085
4086 if (Deduced[0].getKind() != TemplateArgument::Type)
4087 return DAR_Failed;
4088
4089 QualType DeducedType = Deduced[0].getAsType();
4090
4091 if (InitList) {
4092 DeducedType = BuildStdInitializerList(DeducedType, Loc);
4093 if (DeducedType.isNull())
4094 return DAR_FailedAlreadyDiagnosed;
4095 }
4096
4097 Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
4098 if (Result.isNull())
4099 return DAR_FailedAlreadyDiagnosed;
4100
4101 // Check that the deduced argument type is compatible with the original
4102 // argument type per C++ [temp.deduct.call]p4.
4103 if (!InitList && !Result.isNull() &&
4104 CheckOriginalCallArgDeduction(*this,
4105 Sema::OriginalCallArg(FuncParam,0,InitType),
4106 Result)) {
4107 Result = QualType();
4108 return DAR_Failed;
4109 }
4110
4111 return DAR_Succeeded;
4112 }
4113
SubstAutoType(QualType TypeWithAuto,QualType TypeToReplaceAuto)4114 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4115 QualType TypeToReplaceAuto) {
4116 return SubstituteAutoTransform(*this, TypeToReplaceAuto).
4117 TransformType(TypeWithAuto);
4118 }
4119
SubstAutoTypeSourceInfo(TypeSourceInfo * TypeWithAuto,QualType TypeToReplaceAuto)4120 TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4121 QualType TypeToReplaceAuto) {
4122 return SubstituteAutoTransform(*this, TypeToReplaceAuto).
4123 TransformType(TypeWithAuto);
4124 }
4125
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)4126 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4127 if (isa<InitListExpr>(Init))
4128 Diag(VDecl->getLocation(),
4129 VDecl->isInitCapture()
4130 ? diag::err_init_capture_deduction_failure_from_init_list
4131 : diag::err_auto_var_deduction_failure_from_init_list)
4132 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4133 else
4134 Diag(VDecl->getLocation(),
4135 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4136 : diag::err_auto_var_deduction_failure)
4137 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4138 << Init->getSourceRange();
4139 }
4140
DeduceReturnType(FunctionDecl * FD,SourceLocation Loc,bool Diagnose)4141 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4142 bool Diagnose) {
4143 assert(FD->getReturnType()->isUndeducedType());
4144
4145 if (FD->getTemplateInstantiationPattern())
4146 InstantiateFunctionDefinition(Loc, FD);
4147
4148 bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4149 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4150 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4151 Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4152 }
4153
4154 return StillUndeduced;
4155 }
4156
4157 static void
4158 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4159 bool OnlyDeduced,
4160 unsigned Level,
4161 llvm::SmallBitVector &Deduced);
4162
4163 /// \brief If this is a non-static member function,
4164 static void
AddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)4165 AddImplicitObjectParameterType(ASTContext &Context,
4166 CXXMethodDecl *Method,
4167 SmallVectorImpl<QualType> &ArgTypes) {
4168 // C++11 [temp.func.order]p3:
4169 // [...] The new parameter is of type "reference to cv A," where cv are
4170 // the cv-qualifiers of the function template (if any) and A is
4171 // the class of which the function template is a member.
4172 //
4173 // The standard doesn't say explicitly, but we pick the appropriate kind of
4174 // reference type based on [over.match.funcs]p4.
4175 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4176 ArgTy = Context.getQualifiedType(ArgTy,
4177 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
4178 if (Method->getRefQualifier() == RQ_RValue)
4179 ArgTy = Context.getRValueReferenceType(ArgTy);
4180 else
4181 ArgTy = Context.getLValueReferenceType(ArgTy);
4182 ArgTypes.push_back(ArgTy);
4183 }
4184
4185 /// \brief Determine whether the function template \p FT1 is at least as
4186 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1)4187 static bool isAtLeastAsSpecializedAs(Sema &S,
4188 SourceLocation Loc,
4189 FunctionTemplateDecl *FT1,
4190 FunctionTemplateDecl *FT2,
4191 TemplatePartialOrderingContext TPOC,
4192 unsigned NumCallArguments1) {
4193 FunctionDecl *FD1 = FT1->getTemplatedDecl();
4194 FunctionDecl *FD2 = FT2->getTemplatedDecl();
4195 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4196 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4197
4198 assert(Proto1 && Proto2 && "Function templates must have prototypes");
4199 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4200 SmallVector<DeducedTemplateArgument, 4> Deduced;
4201 Deduced.resize(TemplateParams->size());
4202
4203 // C++0x [temp.deduct.partial]p3:
4204 // The types used to determine the ordering depend on the context in which
4205 // the partial ordering is done:
4206 TemplateDeductionInfo Info(Loc);
4207 SmallVector<QualType, 4> Args2;
4208 switch (TPOC) {
4209 case TPOC_Call: {
4210 // - In the context of a function call, the function parameter types are
4211 // used.
4212 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4213 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4214
4215 // C++11 [temp.func.order]p3:
4216 // [...] If only one of the function templates is a non-static
4217 // member, that function template is considered to have a new
4218 // first parameter inserted in its function parameter list. The
4219 // new parameter is of type "reference to cv A," where cv are
4220 // the cv-qualifiers of the function template (if any) and A is
4221 // the class of which the function template is a member.
4222 //
4223 // Note that we interpret this to mean "if one of the function
4224 // templates is a non-static member and the other is a non-member";
4225 // otherwise, the ordering rules for static functions against non-static
4226 // functions don't make any sense.
4227 //
4228 // C++98/03 doesn't have this provision but we've extended DR532 to cover
4229 // it as wording was broken prior to it.
4230 SmallVector<QualType, 4> Args1;
4231
4232 unsigned NumComparedArguments = NumCallArguments1;
4233
4234 if (!Method2 && Method1 && !Method1->isStatic()) {
4235 // Compare 'this' from Method1 against first parameter from Method2.
4236 AddImplicitObjectParameterType(S.Context, Method1, Args1);
4237 ++NumComparedArguments;
4238 } else if (!Method1 && Method2 && !Method2->isStatic()) {
4239 // Compare 'this' from Method2 against first parameter from Method1.
4240 AddImplicitObjectParameterType(S.Context, Method2, Args2);
4241 }
4242
4243 Args1.insert(Args1.end(), Proto1->param_type_begin(),
4244 Proto1->param_type_end());
4245 Args2.insert(Args2.end(), Proto2->param_type_begin(),
4246 Proto2->param_type_end());
4247
4248 // C++ [temp.func.order]p5:
4249 // The presence of unused ellipsis and default arguments has no effect on
4250 // the partial ordering of function templates.
4251 if (Args1.size() > NumComparedArguments)
4252 Args1.resize(NumComparedArguments);
4253 if (Args2.size() > NumComparedArguments)
4254 Args2.resize(NumComparedArguments);
4255 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4256 Args1.data(), Args1.size(), Info, Deduced,
4257 TDF_None, /*PartialOrdering=*/true))
4258 return false;
4259
4260 break;
4261 }
4262
4263 case TPOC_Conversion:
4264 // - In the context of a call to a conversion operator, the return types
4265 // of the conversion function templates are used.
4266 if (DeduceTemplateArgumentsByTypeMatch(
4267 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4268 Info, Deduced, TDF_None,
4269 /*PartialOrdering=*/true))
4270 return false;
4271 break;
4272
4273 case TPOC_Other:
4274 // - In other contexts (14.6.6.2) the function template's function type
4275 // is used.
4276 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4277 FD2->getType(), FD1->getType(),
4278 Info, Deduced, TDF_None,
4279 /*PartialOrdering=*/true))
4280 return false;
4281 break;
4282 }
4283
4284 // C++0x [temp.deduct.partial]p11:
4285 // In most cases, all template parameters must have values in order for
4286 // deduction to succeed, but for partial ordering purposes a template
4287 // parameter may remain without a value provided it is not used in the
4288 // types being used for partial ordering. [ Note: a template parameter used
4289 // in a non-deduced context is considered used. -end note]
4290 unsigned ArgIdx = 0, NumArgs = Deduced.size();
4291 for (; ArgIdx != NumArgs; ++ArgIdx)
4292 if (Deduced[ArgIdx].isNull())
4293 break;
4294
4295 if (ArgIdx == NumArgs) {
4296 // All template arguments were deduced. FT1 is at least as specialized
4297 // as FT2.
4298 return true;
4299 }
4300
4301 // Figure out which template parameters were used.
4302 llvm::SmallBitVector UsedParameters(TemplateParams->size());
4303 switch (TPOC) {
4304 case TPOC_Call:
4305 for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4306 ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4307 TemplateParams->getDepth(),
4308 UsedParameters);
4309 break;
4310
4311 case TPOC_Conversion:
4312 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4313 TemplateParams->getDepth(), UsedParameters);
4314 break;
4315
4316 case TPOC_Other:
4317 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4318 TemplateParams->getDepth(),
4319 UsedParameters);
4320 break;
4321 }
4322
4323 for (; ArgIdx != NumArgs; ++ArgIdx)
4324 // If this argument had no value deduced but was used in one of the types
4325 // used for partial ordering, then deduction fails.
4326 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4327 return false;
4328
4329 return true;
4330 }
4331
4332 /// \brief Determine whether this a function template whose parameter-type-list
4333 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)4334 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
4335 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
4336 unsigned NumParams = Function->getNumParams();
4337 if (NumParams == 0)
4338 return false;
4339
4340 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
4341 if (!Last->isParameterPack())
4342 return false;
4343
4344 // Make sure that no previous parameter is a parameter pack.
4345 while (--NumParams > 0) {
4346 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
4347 return false;
4348 }
4349
4350 return true;
4351 }
4352
4353 /// \brief Returns the more specialized function template according
4354 /// to the rules of function template partial ordering (C++ [temp.func.order]).
4355 ///
4356 /// \param FT1 the first function template
4357 ///
4358 /// \param FT2 the second function template
4359 ///
4360 /// \param TPOC the context in which we are performing partial ordering of
4361 /// function templates.
4362 ///
4363 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
4364 /// only when \c TPOC is \c TPOC_Call.
4365 ///
4366 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
4367 /// only when \c TPOC is \c TPOC_Call.
4368 ///
4369 /// \returns the more specialized function template. If neither
4370 /// template is more specialized, returns NULL.
4371 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,unsigned NumCallArguments2)4372 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4373 FunctionTemplateDecl *FT2,
4374 SourceLocation Loc,
4375 TemplatePartialOrderingContext TPOC,
4376 unsigned NumCallArguments1,
4377 unsigned NumCallArguments2) {
4378 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4379 NumCallArguments1);
4380 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4381 NumCallArguments2);
4382
4383 if (Better1 != Better2) // We have a clear winner
4384 return Better1 ? FT1 : FT2;
4385
4386 if (!Better1 && !Better2) // Neither is better than the other
4387 return nullptr;
4388
4389 // FIXME: This mimics what GCC implements, but doesn't match up with the
4390 // proposed resolution for core issue 692. This area needs to be sorted out,
4391 // but for now we attempt to maintain compatibility.
4392 bool Variadic1 = isVariadicFunctionTemplate(FT1);
4393 bool Variadic2 = isVariadicFunctionTemplate(FT2);
4394 if (Variadic1 != Variadic2)
4395 return Variadic1? FT2 : FT1;
4396
4397 return nullptr;
4398 }
4399
4400 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)4401 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4402 if (T1 == T2)
4403 return true;
4404
4405 if (!T1 || !T2)
4406 return false;
4407
4408 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4409 }
4410
4411 /// \brief Retrieve the most specialized of the given function template
4412 /// specializations.
4413 ///
4414 /// \param SpecBegin the start iterator of the function template
4415 /// specializations that we will be comparing.
4416 ///
4417 /// \param SpecEnd the end iterator of the function template
4418 /// specializations, paired with \p SpecBegin.
4419 ///
4420 /// \param Loc the location where the ambiguity or no-specializations
4421 /// diagnostic should occur.
4422 ///
4423 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
4424 /// no matching candidates.
4425 ///
4426 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4427 /// occurs.
4428 ///
4429 /// \param CandidateDiag partial diagnostic used for each function template
4430 /// specialization that is a candidate in the ambiguous ordering. One parameter
4431 /// in this diagnostic should be unbound, which will correspond to the string
4432 /// describing the template arguments for the function template specialization.
4433 ///
4434 /// \returns the most specialized function template specialization, if
4435 /// found. Otherwise, returns SpecEnd.
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplateSpecCandidateSet & FailedCandidates,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)4436 UnresolvedSetIterator Sema::getMostSpecialized(
4437 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4438 TemplateSpecCandidateSet &FailedCandidates,
4439 SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4440 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4441 bool Complain, QualType TargetType) {
4442 if (SpecBegin == SpecEnd) {
4443 if (Complain) {
4444 Diag(Loc, NoneDiag);
4445 FailedCandidates.NoteCandidates(*this, Loc);
4446 }
4447 return SpecEnd;
4448 }
4449
4450 if (SpecBegin + 1 == SpecEnd)
4451 return SpecBegin;
4452
4453 // Find the function template that is better than all of the templates it
4454 // has been compared to.
4455 UnresolvedSetIterator Best = SpecBegin;
4456 FunctionTemplateDecl *BestTemplate
4457 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4458 assert(BestTemplate && "Not a function template specialization?");
4459 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4460 FunctionTemplateDecl *Challenger
4461 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4462 assert(Challenger && "Not a function template specialization?");
4463 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4464 Loc, TPOC_Other, 0, 0),
4465 Challenger)) {
4466 Best = I;
4467 BestTemplate = Challenger;
4468 }
4469 }
4470
4471 // Make sure that the "best" function template is more specialized than all
4472 // of the others.
4473 bool Ambiguous = false;
4474 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4475 FunctionTemplateDecl *Challenger
4476 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4477 if (I != Best &&
4478 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4479 Loc, TPOC_Other, 0, 0),
4480 BestTemplate)) {
4481 Ambiguous = true;
4482 break;
4483 }
4484 }
4485
4486 if (!Ambiguous) {
4487 // We found an answer. Return it.
4488 return Best;
4489 }
4490
4491 // Diagnose the ambiguity.
4492 if (Complain) {
4493 Diag(Loc, AmbigDiag);
4494
4495 // FIXME: Can we order the candidates in some sane way?
4496 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4497 PartialDiagnostic PD = CandidateDiag;
4498 PD << getTemplateArgumentBindingsText(
4499 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4500 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4501 if (!TargetType.isNull())
4502 HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4503 TargetType);
4504 Diag((*I)->getLocation(), PD);
4505 }
4506 }
4507
4508 return SpecEnd;
4509 }
4510
4511 /// \brief Returns the more specialized class template partial specialization
4512 /// according to the rules of partial ordering of class template partial
4513 /// specializations (C++ [temp.class.order]).
4514 ///
4515 /// \param PS1 the first class template partial specialization
4516 ///
4517 /// \param PS2 the second class template partial specialization
4518 ///
4519 /// \returns the more specialized class template partial specialization. If
4520 /// neither partial specialization is more specialized, returns NULL.
4521 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4522 Sema::getMoreSpecializedPartialSpecialization(
4523 ClassTemplatePartialSpecializationDecl *PS1,
4524 ClassTemplatePartialSpecializationDecl *PS2,
4525 SourceLocation Loc) {
4526 // C++ [temp.class.order]p1:
4527 // For two class template partial specializations, the first is at least as
4528 // specialized as the second if, given the following rewrite to two
4529 // function templates, the first function template is at least as
4530 // specialized as the second according to the ordering rules for function
4531 // templates (14.6.6.2):
4532 // - the first function template has the same template parameters as the
4533 // first partial specialization and has a single function parameter
4534 // whose type is a class template specialization with the template
4535 // arguments of the first partial specialization, and
4536 // - the second function template has the same template parameters as the
4537 // second partial specialization and has a single function parameter
4538 // whose type is a class template specialization with the template
4539 // arguments of the second partial specialization.
4540 //
4541 // Rather than synthesize function templates, we merely perform the
4542 // equivalent partial ordering by performing deduction directly on
4543 // the template arguments of the class template partial
4544 // specializations. This computation is slightly simpler than the
4545 // general problem of function template partial ordering, because
4546 // class template partial specializations are more constrained. We
4547 // know that every template parameter is deducible from the class
4548 // template partial specialization's template arguments, for
4549 // example.
4550 SmallVector<DeducedTemplateArgument, 4> Deduced;
4551 TemplateDeductionInfo Info(Loc);
4552
4553 QualType PT1 = PS1->getInjectedSpecializationType();
4554 QualType PT2 = PS2->getInjectedSpecializationType();
4555
4556 // Determine whether PS1 is at least as specialized as PS2
4557 Deduced.resize(PS2->getTemplateParameters()->size());
4558 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4559 PS2->getTemplateParameters(),
4560 PT2, PT1, Info, Deduced, TDF_None,
4561 /*PartialOrdering=*/true);
4562 if (Better1) {
4563 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4564 InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
4565 Better1 = !::FinishTemplateArgumentDeduction(
4566 *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
4567 }
4568
4569 // Determine whether PS2 is at least as specialized as PS1
4570 Deduced.clear();
4571 Deduced.resize(PS1->getTemplateParameters()->size());
4572 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
4573 *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
4574 /*PartialOrdering=*/true);
4575 if (Better2) {
4576 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4577 Deduced.end());
4578 InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
4579 Better2 = !::FinishTemplateArgumentDeduction(
4580 *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
4581 }
4582
4583 if (Better1 == Better2)
4584 return nullptr;
4585
4586 return Better1 ? PS1 : PS2;
4587 }
4588
4589 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
4590 /// May require unifying ClassTemplate(Partial)SpecializationDecl and
4591 /// VarTemplate(Partial)SpecializationDecl with a new data
4592 /// structure Template(Partial)SpecializationDecl, and
4593 /// using Template(Partial)SpecializationDecl as input type.
4594 VarTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(VarTemplatePartialSpecializationDecl * PS1,VarTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4595 Sema::getMoreSpecializedPartialSpecialization(
4596 VarTemplatePartialSpecializationDecl *PS1,
4597 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
4598 SmallVector<DeducedTemplateArgument, 4> Deduced;
4599 TemplateDeductionInfo Info(Loc);
4600
4601 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
4602 "the partial specializations being compared should specialize"
4603 " the same template.");
4604 TemplateName Name(PS1->getSpecializedTemplate());
4605 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4606 QualType PT1 = Context.getTemplateSpecializationType(
4607 CanonTemplate, PS1->getTemplateArgs().data(),
4608 PS1->getTemplateArgs().size());
4609 QualType PT2 = Context.getTemplateSpecializationType(
4610 CanonTemplate, PS2->getTemplateArgs().data(),
4611 PS2->getTemplateArgs().size());
4612
4613 // Determine whether PS1 is at least as specialized as PS2
4614 Deduced.resize(PS2->getTemplateParameters()->size());
4615 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
4616 *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
4617 /*PartialOrdering=*/true);
4618 if (Better1) {
4619 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4620 Deduced.end());
4621 InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
4622 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4623 PS1->getTemplateArgs(),
4624 Deduced, Info);
4625 }
4626
4627 // Determine whether PS2 is at least as specialized as PS1
4628 Deduced.clear();
4629 Deduced.resize(PS1->getTemplateParameters()->size());
4630 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4631 PS1->getTemplateParameters(),
4632 PT1, PT2, Info, Deduced, TDF_None,
4633 /*PartialOrdering=*/true);
4634 if (Better2) {
4635 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4636 InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
4637 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4638 PS2->getTemplateArgs(),
4639 Deduced, Info);
4640 }
4641
4642 if (Better1 == Better2)
4643 return nullptr;
4644
4645 return Better1? PS1 : PS2;
4646 }
4647
4648 static void
4649 MarkUsedTemplateParameters(ASTContext &Ctx,
4650 const TemplateArgument &TemplateArg,
4651 bool OnlyDeduced,
4652 unsigned Depth,
4653 llvm::SmallBitVector &Used);
4654
4655 /// \brief Mark the template parameters that are used by the given
4656 /// expression.
4657 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4658 MarkUsedTemplateParameters(ASTContext &Ctx,
4659 const Expr *E,
4660 bool OnlyDeduced,
4661 unsigned Depth,
4662 llvm::SmallBitVector &Used) {
4663 // We can deduce from a pack expansion.
4664 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4665 E = Expansion->getPattern();
4666
4667 // Skip through any implicit casts we added while type-checking, and any
4668 // substitutions performed by template alias expansion.
4669 while (1) {
4670 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4671 E = ICE->getSubExpr();
4672 else if (const SubstNonTypeTemplateParmExpr *Subst =
4673 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4674 E = Subst->getReplacement();
4675 else
4676 break;
4677 }
4678
4679 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4680 // find other occurrences of template parameters.
4681 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4682 if (!DRE)
4683 return;
4684
4685 const NonTypeTemplateParmDecl *NTTP
4686 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4687 if (!NTTP)
4688 return;
4689
4690 if (NTTP->getDepth() == Depth)
4691 Used[NTTP->getIndex()] = true;
4692 }
4693
4694 /// \brief Mark the template parameters that are used by the given
4695 /// nested name specifier.
4696 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4697 MarkUsedTemplateParameters(ASTContext &Ctx,
4698 NestedNameSpecifier *NNS,
4699 bool OnlyDeduced,
4700 unsigned Depth,
4701 llvm::SmallBitVector &Used) {
4702 if (!NNS)
4703 return;
4704
4705 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4706 Used);
4707 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4708 OnlyDeduced, Depth, Used);
4709 }
4710
4711 /// \brief Mark the template parameters that are used by the given
4712 /// template name.
4713 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4714 MarkUsedTemplateParameters(ASTContext &Ctx,
4715 TemplateName Name,
4716 bool OnlyDeduced,
4717 unsigned Depth,
4718 llvm::SmallBitVector &Used) {
4719 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4720 if (TemplateTemplateParmDecl *TTP
4721 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4722 if (TTP->getDepth() == Depth)
4723 Used[TTP->getIndex()] = true;
4724 }
4725 return;
4726 }
4727
4728 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4729 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4730 Depth, Used);
4731 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4732 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4733 Depth, Used);
4734 }
4735
4736 /// \brief Mark the template parameters that are used by the given
4737 /// type.
4738 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4739 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4740 bool OnlyDeduced,
4741 unsigned Depth,
4742 llvm::SmallBitVector &Used) {
4743 if (T.isNull())
4744 return;
4745
4746 // Non-dependent types have nothing deducible
4747 if (!T->isDependentType())
4748 return;
4749
4750 T = Ctx.getCanonicalType(T);
4751 switch (T->getTypeClass()) {
4752 case Type::Pointer:
4753 MarkUsedTemplateParameters(Ctx,
4754 cast<PointerType>(T)->getPointeeType(),
4755 OnlyDeduced,
4756 Depth,
4757 Used);
4758 break;
4759
4760 case Type::BlockPointer:
4761 MarkUsedTemplateParameters(Ctx,
4762 cast<BlockPointerType>(T)->getPointeeType(),
4763 OnlyDeduced,
4764 Depth,
4765 Used);
4766 break;
4767
4768 case Type::LValueReference:
4769 case Type::RValueReference:
4770 MarkUsedTemplateParameters(Ctx,
4771 cast<ReferenceType>(T)->getPointeeType(),
4772 OnlyDeduced,
4773 Depth,
4774 Used);
4775 break;
4776
4777 case Type::MemberPointer: {
4778 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4779 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4780 Depth, Used);
4781 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4782 OnlyDeduced, Depth, Used);
4783 break;
4784 }
4785
4786 case Type::DependentSizedArray:
4787 MarkUsedTemplateParameters(Ctx,
4788 cast<DependentSizedArrayType>(T)->getSizeExpr(),
4789 OnlyDeduced, Depth, Used);
4790 // Fall through to check the element type
4791
4792 case Type::ConstantArray:
4793 case Type::IncompleteArray:
4794 MarkUsedTemplateParameters(Ctx,
4795 cast<ArrayType>(T)->getElementType(),
4796 OnlyDeduced, Depth, Used);
4797 break;
4798
4799 case Type::Vector:
4800 case Type::ExtVector:
4801 MarkUsedTemplateParameters(Ctx,
4802 cast<VectorType>(T)->getElementType(),
4803 OnlyDeduced, Depth, Used);
4804 break;
4805
4806 case Type::DependentSizedExtVector: {
4807 const DependentSizedExtVectorType *VecType
4808 = cast<DependentSizedExtVectorType>(T);
4809 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4810 Depth, Used);
4811 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4812 Depth, Used);
4813 break;
4814 }
4815
4816 case Type::FunctionProto: {
4817 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4818 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
4819 Used);
4820 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
4821 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
4822 Depth, Used);
4823 break;
4824 }
4825
4826 case Type::TemplateTypeParm: {
4827 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4828 if (TTP->getDepth() == Depth)
4829 Used[TTP->getIndex()] = true;
4830 break;
4831 }
4832
4833 case Type::SubstTemplateTypeParmPack: {
4834 const SubstTemplateTypeParmPackType *Subst
4835 = cast<SubstTemplateTypeParmPackType>(T);
4836 MarkUsedTemplateParameters(Ctx,
4837 QualType(Subst->getReplacedParameter(), 0),
4838 OnlyDeduced, Depth, Used);
4839 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4840 OnlyDeduced, Depth, Used);
4841 break;
4842 }
4843
4844 case Type::InjectedClassName:
4845 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4846 // fall through
4847
4848 case Type::TemplateSpecialization: {
4849 const TemplateSpecializationType *Spec
4850 = cast<TemplateSpecializationType>(T);
4851 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4852 Depth, Used);
4853
4854 // C++0x [temp.deduct.type]p9:
4855 // If the template argument list of P contains a pack expansion that is
4856 // not the last template argument, the entire template argument list is a
4857 // non-deduced context.
4858 if (OnlyDeduced &&
4859 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4860 break;
4861
4862 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4863 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4864 Used);
4865 break;
4866 }
4867
4868 case Type::Complex:
4869 if (!OnlyDeduced)
4870 MarkUsedTemplateParameters(Ctx,
4871 cast<ComplexType>(T)->getElementType(),
4872 OnlyDeduced, Depth, Used);
4873 break;
4874
4875 case Type::Atomic:
4876 if (!OnlyDeduced)
4877 MarkUsedTemplateParameters(Ctx,
4878 cast<AtomicType>(T)->getValueType(),
4879 OnlyDeduced, Depth, Used);
4880 break;
4881
4882 case Type::DependentName:
4883 if (!OnlyDeduced)
4884 MarkUsedTemplateParameters(Ctx,
4885 cast<DependentNameType>(T)->getQualifier(),
4886 OnlyDeduced, Depth, Used);
4887 break;
4888
4889 case Type::DependentTemplateSpecialization: {
4890 const DependentTemplateSpecializationType *Spec
4891 = cast<DependentTemplateSpecializationType>(T);
4892 if (!OnlyDeduced)
4893 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4894 OnlyDeduced, Depth, Used);
4895
4896 // C++0x [temp.deduct.type]p9:
4897 // If the template argument list of P contains a pack expansion that is not
4898 // the last template argument, the entire template argument list is a
4899 // non-deduced context.
4900 if (OnlyDeduced &&
4901 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4902 break;
4903
4904 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4905 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4906 Used);
4907 break;
4908 }
4909
4910 case Type::TypeOf:
4911 if (!OnlyDeduced)
4912 MarkUsedTemplateParameters(Ctx,
4913 cast<TypeOfType>(T)->getUnderlyingType(),
4914 OnlyDeduced, Depth, Used);
4915 break;
4916
4917 case Type::TypeOfExpr:
4918 if (!OnlyDeduced)
4919 MarkUsedTemplateParameters(Ctx,
4920 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4921 OnlyDeduced, Depth, Used);
4922 break;
4923
4924 case Type::Decltype:
4925 if (!OnlyDeduced)
4926 MarkUsedTemplateParameters(Ctx,
4927 cast<DecltypeType>(T)->getUnderlyingExpr(),
4928 OnlyDeduced, Depth, Used);
4929 break;
4930
4931 case Type::UnaryTransform:
4932 if (!OnlyDeduced)
4933 MarkUsedTemplateParameters(Ctx,
4934 cast<UnaryTransformType>(T)->getUnderlyingType(),
4935 OnlyDeduced, Depth, Used);
4936 break;
4937
4938 case Type::PackExpansion:
4939 MarkUsedTemplateParameters(Ctx,
4940 cast<PackExpansionType>(T)->getPattern(),
4941 OnlyDeduced, Depth, Used);
4942 break;
4943
4944 case Type::Auto:
4945 MarkUsedTemplateParameters(Ctx,
4946 cast<AutoType>(T)->getDeducedType(),
4947 OnlyDeduced, Depth, Used);
4948
4949 // None of these types have any template parameters in them.
4950 case Type::Builtin:
4951 case Type::VariableArray:
4952 case Type::FunctionNoProto:
4953 case Type::Record:
4954 case Type::Enum:
4955 case Type::ObjCInterface:
4956 case Type::ObjCObject:
4957 case Type::ObjCObjectPointer:
4958 case Type::UnresolvedUsing:
4959 #define TYPE(Class, Base)
4960 #define ABSTRACT_TYPE(Class, Base)
4961 #define DEPENDENT_TYPE(Class, Base)
4962 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4963 #include "clang/AST/TypeNodes.def"
4964 break;
4965 }
4966 }
4967
4968 /// \brief Mark the template parameters that are used by this
4969 /// template argument.
4970 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4971 MarkUsedTemplateParameters(ASTContext &Ctx,
4972 const TemplateArgument &TemplateArg,
4973 bool OnlyDeduced,
4974 unsigned Depth,
4975 llvm::SmallBitVector &Used) {
4976 switch (TemplateArg.getKind()) {
4977 case TemplateArgument::Null:
4978 case TemplateArgument::Integral:
4979 case TemplateArgument::Declaration:
4980 break;
4981
4982 case TemplateArgument::NullPtr:
4983 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
4984 Depth, Used);
4985 break;
4986
4987 case TemplateArgument::Type:
4988 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4989 Depth, Used);
4990 break;
4991
4992 case TemplateArgument::Template:
4993 case TemplateArgument::TemplateExpansion:
4994 MarkUsedTemplateParameters(Ctx,
4995 TemplateArg.getAsTemplateOrTemplatePattern(),
4996 OnlyDeduced, Depth, Used);
4997 break;
4998
4999 case TemplateArgument::Expression:
5000 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
5001 Depth, Used);
5002 break;
5003
5004 case TemplateArgument::Pack:
5005 for (const auto &P : TemplateArg.pack_elements())
5006 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
5007 break;
5008 }
5009 }
5010
5011 /// \brief Mark which template parameters can be deduced from a given
5012 /// template argument list.
5013 ///
5014 /// \param TemplateArgs the template argument list from which template
5015 /// parameters will be deduced.
5016 ///
5017 /// \param Used a bit vector whose elements will be set to \c true
5018 /// to indicate when the corresponding template parameter will be
5019 /// deduced.
5020 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5021 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
5022 bool OnlyDeduced, unsigned Depth,
5023 llvm::SmallBitVector &Used) {
5024 // C++0x [temp.deduct.type]p9:
5025 // If the template argument list of P contains a pack expansion that is not
5026 // the last template argument, the entire template argument list is a
5027 // non-deduced context.
5028 if (OnlyDeduced &&
5029 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
5030 return;
5031
5032 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5033 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
5034 Depth, Used);
5035 }
5036
5037 /// \brief Marks all of the template parameters that will be deduced by a
5038 /// call to the given function template.
MarkDeducedTemplateParameters(ASTContext & Ctx,const FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)5039 void Sema::MarkDeducedTemplateParameters(
5040 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
5041 llvm::SmallBitVector &Deduced) {
5042 TemplateParameterList *TemplateParams
5043 = FunctionTemplate->getTemplateParameters();
5044 Deduced.clear();
5045 Deduced.resize(TemplateParams->size());
5046
5047 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
5048 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
5049 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
5050 true, TemplateParams->getDepth(), Deduced);
5051 }
5052
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)5053 bool hasDeducibleTemplateParameters(Sema &S,
5054 FunctionTemplateDecl *FunctionTemplate,
5055 QualType T) {
5056 if (!T->isDependentType())
5057 return false;
5058
5059 TemplateParameterList *TemplateParams
5060 = FunctionTemplate->getTemplateParameters();
5061 llvm::SmallBitVector Deduced(TemplateParams->size());
5062 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
5063 Deduced);
5064
5065 return Deduced.any();
5066 }
5067