1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loop unrolling may create many similar GEPs for array accesses.
11 // e.g., a 2-level loop
12 //
13 // float a[32][32]; // global variable
14 //
15 // for (int i = 0; i < 2; ++i) {
16 // for (int j = 0; j < 2; ++j) {
17 // ...
18 // ... = a[x + i][y + j];
19 // ...
20 // }
21 // }
22 //
23 // will probably be unrolled to:
24 //
25 // gep %a, 0, %x, %y; load
26 // gep %a, 0, %x, %y + 1; load
27 // gep %a, 0, %x + 1, %y; load
28 // gep %a, 0, %x + 1, %y + 1; load
29 //
30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32 // significant slowdown in targets with limited addressing modes. For instance,
33 // because the PTX target does not support the reg+reg addressing mode, the
34 // NVPTX backend emits PTX code that literally computes the pointer address of
35 // each GEP, wasting tons of registers. It emits the following PTX for the
36 // first load and similar PTX for other loads.
37 //
38 // mov.u32 %r1, %x;
39 // mov.u32 %r2, %y;
40 // mul.wide.u32 %rl2, %r1, 128;
41 // mov.u64 %rl3, a;
42 // add.s64 %rl4, %rl3, %rl2;
43 // mul.wide.u32 %rl5, %r2, 4;
44 // add.s64 %rl6, %rl4, %rl5;
45 // ld.global.f32 %f1, [%rl6];
46 //
47 // To reduce the register pressure, the optimization implemented in this file
48 // merges the common part of a group of GEPs, so we can compute each pointer
49 // address by adding a simple offset to the common part, saving many registers.
50 //
51 // It works by splitting each GEP into a variadic base and a constant offset.
52 // The variadic base can be computed once and reused by multiple GEPs, and the
53 // constant offsets can be nicely folded into the reg+immediate addressing mode
54 // (supported by most targets) without using any extra register.
55 //
56 // For instance, we transform the four GEPs and four loads in the above example
57 // into:
58 //
59 // base = gep a, 0, x, y
60 // load base
61 // laod base + 1 * sizeof(float)
62 // load base + 32 * sizeof(float)
63 // load base + 33 * sizeof(float)
64 //
65 // Given the transformed IR, a backend that supports the reg+immediate
66 // addressing mode can easily fold the pointer arithmetics into the loads. For
67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 //
70 // mov.u32 %r1, %tid.x;
71 // mov.u32 %r2, %tid.y;
72 // mul.wide.u32 %rl2, %r1, 128;
73 // mov.u64 %rl3, a;
74 // add.s64 %rl4, %rl3, %rl2;
75 // mul.wide.u32 %rl5, %r2, 4;
76 // add.s64 %rl6, %rl4, %rl5;
77 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
78 // ld.global.f32 %f2, [%rl6+4]; // much better
79 // ld.global.f32 %f3, [%rl6+128]; // much better
80 // ld.global.f32 %f4, [%rl6+132]; // much better
81 //
82 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
83 // multiple indices to either multiple GEPs with a single index or arithmetic
84 // operations (depending on whether the target uses alias analysis in codegen).
85 // Such transformation can have following benefits:
86 // (1) It can always extract constants in the indices of structure type.
87 // (2) After such Lowering, there are more optimization opportunities such as
88 // CSE, LICM and CGP.
89 //
90 // E.g. The following GEPs have multiple indices:
91 // BB1:
92 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93 // load %p
94 // ...
95 // BB2:
96 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97 // load %p2
98 // ...
99 //
100 // We can not do CSE for to the common part related to index "i64 %i". Lowering
101 // GEPs can achieve such goals.
102 // If the target does not use alias analysis in codegen, this pass will
103 // lower a GEP with multiple indices into arithmetic operations:
104 // BB1:
105 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
106 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
107 // %3 = add i64 %1, %2 ; CSE opportunity
108 // %4 = mul i64 %j1, length_of_struct
109 // %5 = add i64 %3, %4
110 // %6 = add i64 %3, struct_field_3 ; Constant offset
111 // %p = inttoptr i64 %6 to i32*
112 // load %p
113 // ...
114 // BB2:
115 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
116 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
117 // %9 = add i64 %7, %8 ; CSE opportunity
118 // %10 = mul i64 %j2, length_of_struct
119 // %11 = add i64 %9, %10
120 // %12 = add i64 %11, struct_field_2 ; Constant offset
121 // %p = inttoptr i64 %12 to i32*
122 // load %p2
123 // ...
124 //
125 // If the target uses alias analysis in codegen, this pass will lower a GEP
126 // with multiple indices into multiple GEPs with a single index:
127 // BB1:
128 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
129 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
130 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
131 // %4 = mul i64 %j1, length_of_struct
132 // %5 = getelementptr i8* %3, i64 %4
133 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
134 // %p = bitcast i8* %6 to i32*
135 // load %p
136 // ...
137 // BB2:
138 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
139 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
140 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
141 // %10 = mul i64 %j2, length_of_struct
142 // %11 = getelementptr i8* %9, i64 %10
143 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
144 // %p2 = bitcast i8* %12 to i32*
145 // load %p2
146 // ...
147 //
148 // Lowering GEPs can also benefit other passes such as LICM and CGP.
149 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150 // indices if one of the index is variant. If we lower such GEP into invariant
151 // parts and variant parts, LICM can hoist/sink those invariant parts.
152 // CGP (CodeGen Prepare) tries to sink address calculations that match the
153 // target's addressing modes. A GEP with multiple indices may not match and will
154 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155 // them. So we end up with a better addressing mode.
156 //
157 //===----------------------------------------------------------------------===//
158
159 #include "llvm/Analysis/ScalarEvolution.h"
160 #include "llvm/Analysis/LoopInfo.h"
161 #include "llvm/Analysis/MemoryBuiltins.h"
162 #include "llvm/Analysis/TargetLibraryInfo.h"
163 #include "llvm/Analysis/TargetTransformInfo.h"
164 #include "llvm/Analysis/ValueTracking.h"
165 #include "llvm/IR/Constants.h"
166 #include "llvm/IR/DataLayout.h"
167 #include "llvm/IR/Dominators.h"
168 #include "llvm/IR/Instructions.h"
169 #include "llvm/IR/LLVMContext.h"
170 #include "llvm/IR/Module.h"
171 #include "llvm/IR/PatternMatch.h"
172 #include "llvm/IR/Operator.h"
173 #include "llvm/Support/CommandLine.h"
174 #include "llvm/Support/raw_ostream.h"
175 #include "llvm/Transforms/Scalar.h"
176 #include "llvm/Transforms/Utils/Local.h"
177 #include "llvm/Target/TargetMachine.h"
178 #include "llvm/Target/TargetSubtargetInfo.h"
179 #include "llvm/IR/IRBuilder.h"
180
181 using namespace llvm;
182 using namespace llvm::PatternMatch;
183
184 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
185 "disable-separate-const-offset-from-gep", cl::init(false),
186 cl::desc("Do not separate the constant offset from a GEP instruction"),
187 cl::Hidden);
188 // Setting this flag may emit false positives when the input module already
189 // contains dead instructions. Therefore, we set it only in unit tests that are
190 // free of dead code.
191 static cl::opt<bool>
192 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
193 cl::desc("Verify this pass produces no dead code"),
194 cl::Hidden);
195
196 namespace {
197
198 /// \brief A helper class for separating a constant offset from a GEP index.
199 ///
200 /// In real programs, a GEP index may be more complicated than a simple addition
201 /// of something and a constant integer which can be trivially splitted. For
202 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
203 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
204 ///
205 /// Therefore, this class looks into the expression that computes a given GEP
206 /// index, and tries to find a constant integer that can be hoisted to the
207 /// outermost level of the expression as an addition. Not every constant in an
208 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
209 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
210 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
211 class ConstantOffsetExtractor {
212 public:
213 /// Extracts a constant offset from the given GEP index. It returns the
214 /// new index representing the remainder (equal to the original index minus
215 /// the constant offset), or nullptr if we cannot extract a constant offset.
216 /// \p Idx The given GEP index
217 /// \p GEP The given GEP
218 /// \p UserChainTail Outputs the tail of UserChain so that we can
219 /// garbage-collect unused instructions in UserChain.
220 static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
221 User *&UserChainTail, const DominatorTree *DT);
222 /// Looks for a constant offset from the given GEP index without extracting
223 /// it. It returns the numeric value of the extracted constant offset (0 if
224 /// failed). The meaning of the arguments are the same as Extract.
225 static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
226 const DominatorTree *DT);
227
228 private:
ConstantOffsetExtractor(Instruction * InsertionPt,const DominatorTree * DT)229 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
230 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
231 }
232 /// Searches the expression that computes V for a non-zero constant C s.t.
233 /// V can be reassociated into the form V' + C. If the searching is
234 /// successful, returns C and update UserChain as a def-use chain from C to V;
235 /// otherwise, UserChain is empty.
236 ///
237 /// \p V The given expression
238 /// \p SignExtended Whether V will be sign-extended in the computation of the
239 /// GEP index
240 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
241 /// GEP index
242 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
243 /// an index of an inbounds GEP is guaranteed to be
244 /// non-negative. Levaraging this, we can better split
245 /// inbounds GEPs.
246 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
247 /// A helper function to look into both operands of a binary operator.
248 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
249 bool ZeroExtended);
250 /// After finding the constant offset C from the GEP index I, we build a new
251 /// index I' s.t. I' + C = I. This function builds and returns the new
252 /// index I' according to UserChain produced by function "find".
253 ///
254 /// The building conceptually takes two steps:
255 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
256 /// that computes I
257 /// 2) reassociate the expression tree to the form I' + C.
258 ///
259 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
260 /// sext to a, b and 5 so that we have
261 /// sext(a) + (sext(b) + 5).
262 /// Then, we reassociate it to
263 /// (sext(a) + sext(b)) + 5.
264 /// Given this form, we know I' is sext(a) + sext(b).
265 Value *rebuildWithoutConstOffset();
266 /// After the first step of rebuilding the GEP index without the constant
267 /// offset, distribute s/zext to the operands of all operators in UserChain.
268 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
269 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
270 ///
271 /// The function also updates UserChain to point to new subexpressions after
272 /// distributing s/zext. e.g., the old UserChain of the above example is
273 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
274 /// and the new UserChain is
275 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
276 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
277 ///
278 /// \p ChainIndex The index to UserChain. ChainIndex is initially
279 /// UserChain.size() - 1, and is decremented during
280 /// the recursion.
281 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
282 /// Reassociates the GEP index to the form I' + C and returns I'.
283 Value *removeConstOffset(unsigned ChainIndex);
284 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
285 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
286 /// returns "sext i32 (zext i16 V to i32) to i64".
287 Value *applyExts(Value *V);
288
289 /// A helper function that returns whether we can trace into the operands
290 /// of binary operator BO for a constant offset.
291 ///
292 /// \p SignExtended Whether BO is surrounded by sext
293 /// \p ZeroExtended Whether BO is surrounded by zext
294 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
295 /// array index.
296 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
297 bool NonNegative);
298
299 /// The path from the constant offset to the old GEP index. e.g., if the GEP
300 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
301 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
302 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
303 ///
304 /// This path helps to rebuild the new GEP index.
305 SmallVector<User *, 8> UserChain;
306 /// A data structure used in rebuildWithoutConstOffset. Contains all
307 /// sext/zext instructions along UserChain.
308 SmallVector<CastInst *, 16> ExtInsts;
309 Instruction *IP; /// Insertion position of cloned instructions.
310 const DataLayout &DL;
311 const DominatorTree *DT;
312 };
313
314 /// \brief A pass that tries to split every GEP in the function into a variadic
315 /// base and a constant offset. It is a FunctionPass because searching for the
316 /// constant offset may inspect other basic blocks.
317 class SeparateConstOffsetFromGEP : public FunctionPass {
318 public:
319 static char ID;
SeparateConstOffsetFromGEP(const TargetMachine * TM=nullptr,bool LowerGEP=false)320 SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
321 bool LowerGEP = false)
322 : FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) {
323 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
324 }
325
getAnalysisUsage(AnalysisUsage & AU) const326 void getAnalysisUsage(AnalysisUsage &AU) const override {
327 AU.addRequired<DominatorTreeWrapperPass>();
328 AU.addRequired<ScalarEvolutionWrapperPass>();
329 AU.addRequired<TargetTransformInfoWrapperPass>();
330 AU.addRequired<LoopInfoWrapperPass>();
331 AU.setPreservesCFG();
332 AU.addRequired<TargetLibraryInfoWrapperPass>();
333 }
334
doInitialization(Module & M)335 bool doInitialization(Module &M) override {
336 DL = &M.getDataLayout();
337 return false;
338 }
339 bool runOnFunction(Function &F) override;
340
341 private:
342 /// Tries to split the given GEP into a variadic base and a constant offset,
343 /// and returns true if the splitting succeeds.
344 bool splitGEP(GetElementPtrInst *GEP);
345 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
346 /// Function splitGEP already split the original GEP into a variadic part and
347 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
348 /// variadic part into a set of GEPs with a single index and applies
349 /// AccumulativeByteOffset to it.
350 /// \p Variadic The variadic part of the original GEP.
351 /// \p AccumulativeByteOffset The constant offset.
352 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
353 int64_t AccumulativeByteOffset);
354 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
355 /// Function splitGEP already split the original GEP into a variadic part and
356 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
357 /// variadic part into a set of arithmetic operations and applies
358 /// AccumulativeByteOffset to it.
359 /// \p Variadic The variadic part of the original GEP.
360 /// \p AccumulativeByteOffset The constant offset.
361 void lowerToArithmetics(GetElementPtrInst *Variadic,
362 int64_t AccumulativeByteOffset);
363 /// Finds the constant offset within each index and accumulates them. If
364 /// LowerGEP is true, it finds in indices of both sequential and structure
365 /// types, otherwise it only finds in sequential indices. The output
366 /// NeedsExtraction indicates whether we successfully find a non-zero constant
367 /// offset.
368 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
369 /// Canonicalize array indices to pointer-size integers. This helps to
370 /// simplify the logic of splitting a GEP. For example, if a + b is a
371 /// pointer-size integer, we have
372 /// gep base, a + b = gep (gep base, a), b
373 /// However, this equality may not hold if the size of a + b is smaller than
374 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
375 /// pointer size before computing the address
376 /// (http://llvm.org/docs/LangRef.html#id181).
377 ///
378 /// This canonicalization is very likely already done in clang and
379 /// instcombine. Therefore, the program will probably remain the same.
380 ///
381 /// Returns true if the module changes.
382 ///
383 /// Verified in @i32_add in split-gep.ll
384 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
385 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
386 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
387 /// the constant offset. After extraction, it becomes desirable to reunion the
388 /// distributed sexts. For example,
389 ///
390 /// &a[sext(i +nsw (j +nsw 5)]
391 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
392 /// => constant extraction &a[sext(i) + sext(j)] + 5
393 /// => reunion &a[sext(i +nsw j)] + 5
394 bool reuniteExts(Function &F);
395 /// A helper that reunites sexts in an instruction.
396 bool reuniteExts(Instruction *I);
397 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
398 Instruction *findClosestMatchingDominator(const SCEV *Key,
399 Instruction *Dominatee);
400 /// Verify F is free of dead code.
401 void verifyNoDeadCode(Function &F);
402
403 bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
404 // Swap the index operand of two GEP.
405 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
406 // Check if it is safe to swap operand of two GEP.
407 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
408 Loop *CurLoop);
409
410 const DataLayout *DL;
411 DominatorTree *DT;
412 ScalarEvolution *SE;
413 const TargetMachine *TM;
414
415 LoopInfo *LI;
416 TargetLibraryInfo *TLI;
417 /// Whether to lower a GEP with multiple indices into arithmetic operations or
418 /// multiple GEPs with a single index.
419 bool LowerGEP;
420 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
421 };
422 } // anonymous namespace
423
424 char SeparateConstOffsetFromGEP::ID = 0;
425 INITIALIZE_PASS_BEGIN(
426 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
427 "Split GEPs to a variadic base and a constant offset for better CSE", false,
428 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)429 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
430 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
431 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
432 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
433 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
434 INITIALIZE_PASS_END(
435 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
436 "Split GEPs to a variadic base and a constant offset for better CSE", false,
437 false)
438
439 FunctionPass *
440 llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
441 bool LowerGEP) {
442 return new SeparateConstOffsetFromGEP(TM, LowerGEP);
443 }
444
CanTraceInto(bool SignExtended,bool ZeroExtended,BinaryOperator * BO,bool NonNegative)445 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
446 bool ZeroExtended,
447 BinaryOperator *BO,
448 bool NonNegative) {
449 // We only consider ADD, SUB and OR, because a non-zero constant found in
450 // expressions composed of these operations can be easily hoisted as a
451 // constant offset by reassociation.
452 if (BO->getOpcode() != Instruction::Add &&
453 BO->getOpcode() != Instruction::Sub &&
454 BO->getOpcode() != Instruction::Or) {
455 return false;
456 }
457
458 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
459 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
460 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
461 if (BO->getOpcode() == Instruction::Or &&
462 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
463 return false;
464
465 // In addition, tracing into BO requires that its surrounding s/zext (if
466 // any) is distributable to both operands.
467 //
468 // Suppose BO = A op B.
469 // SignExtended | ZeroExtended | Distributable?
470 // --------------+--------------+----------------------------------
471 // 0 | 0 | true because no s/zext exists
472 // 0 | 1 | zext(BO) == zext(A) op zext(B)
473 // 1 | 0 | sext(BO) == sext(A) op sext(B)
474 // 1 | 1 | zext(sext(BO)) ==
475 // | | zext(sext(A)) op zext(sext(B))
476 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
477 // If a + b >= 0 and (a >= 0 or b >= 0), then
478 // sext(a + b) = sext(a) + sext(b)
479 // even if the addition is not marked nsw.
480 //
481 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
482 // index if the constant offset is non-negative.
483 //
484 // Verified in @sext_add in split-gep.ll.
485 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
486 if (!ConstLHS->isNegative())
487 return true;
488 }
489 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
490 if (!ConstRHS->isNegative())
491 return true;
492 }
493 }
494
495 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
496 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
497 if (BO->getOpcode() == Instruction::Add ||
498 BO->getOpcode() == Instruction::Sub) {
499 if (SignExtended && !BO->hasNoSignedWrap())
500 return false;
501 if (ZeroExtended && !BO->hasNoUnsignedWrap())
502 return false;
503 }
504
505 return true;
506 }
507
findInEitherOperand(BinaryOperator * BO,bool SignExtended,bool ZeroExtended)508 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
509 bool SignExtended,
510 bool ZeroExtended) {
511 // BO being non-negative does not shed light on whether its operands are
512 // non-negative. Clear the NonNegative flag here.
513 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
514 /* NonNegative */ false);
515 // If we found a constant offset in the left operand, stop and return that.
516 // This shortcut might cause us to miss opportunities of combining the
517 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
518 // However, such cases are probably already handled by -instcombine,
519 // given this pass runs after the standard optimizations.
520 if (ConstantOffset != 0) return ConstantOffset;
521 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
522 /* NonNegative */ false);
523 // If U is a sub operator, negate the constant offset found in the right
524 // operand.
525 if (BO->getOpcode() == Instruction::Sub)
526 ConstantOffset = -ConstantOffset;
527 return ConstantOffset;
528 }
529
find(Value * V,bool SignExtended,bool ZeroExtended,bool NonNegative)530 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
531 bool ZeroExtended, bool NonNegative) {
532 // TODO(jingyue): We could trace into integer/pointer casts, such as
533 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
534 // integers because it gives good enough results for our benchmarks.
535 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
536
537 // We cannot do much with Values that are not a User, such as an Argument.
538 User *U = dyn_cast<User>(V);
539 if (U == nullptr) return APInt(BitWidth, 0);
540
541 APInt ConstantOffset(BitWidth, 0);
542 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
543 // Hooray, we found it!
544 ConstantOffset = CI->getValue();
545 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
546 // Trace into subexpressions for more hoisting opportunities.
547 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
548 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
549 } else if (isa<SExtInst>(V)) {
550 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
551 ZeroExtended, NonNegative).sext(BitWidth);
552 } else if (isa<ZExtInst>(V)) {
553 // As an optimization, we can clear the SignExtended flag because
554 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
555 //
556 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
557 ConstantOffset =
558 find(U->getOperand(0), /* SignExtended */ false,
559 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
560 }
561
562 // If we found a non-zero constant offset, add it to the path for
563 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
564 // help this optimization.
565 if (ConstantOffset != 0)
566 UserChain.push_back(U);
567 return ConstantOffset;
568 }
569
applyExts(Value * V)570 Value *ConstantOffsetExtractor::applyExts(Value *V) {
571 Value *Current = V;
572 // ExtInsts is built in the use-def order. Therefore, we apply them to V
573 // in the reversed order.
574 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
575 if (Constant *C = dyn_cast<Constant>(Current)) {
576 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
577 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
578 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
579 } else {
580 Instruction *Ext = (*I)->clone();
581 Ext->setOperand(0, Current);
582 Ext->insertBefore(IP);
583 Current = Ext;
584 }
585 }
586 return Current;
587 }
588
rebuildWithoutConstOffset()589 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
590 distributeExtsAndCloneChain(UserChain.size() - 1);
591 // Remove all nullptrs (used to be s/zext) from UserChain.
592 unsigned NewSize = 0;
593 for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
594 if (*I != nullptr) {
595 UserChain[NewSize] = *I;
596 NewSize++;
597 }
598 }
599 UserChain.resize(NewSize);
600 return removeConstOffset(UserChain.size() - 1);
601 }
602
603 Value *
distributeExtsAndCloneChain(unsigned ChainIndex)604 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
605 User *U = UserChain[ChainIndex];
606 if (ChainIndex == 0) {
607 assert(isa<ConstantInt>(U));
608 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
609 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
610 }
611
612 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
613 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
614 "We only traced into two types of CastInst: sext and zext");
615 ExtInsts.push_back(Cast);
616 UserChain[ChainIndex] = nullptr;
617 return distributeExtsAndCloneChain(ChainIndex - 1);
618 }
619
620 // Function find only trace into BinaryOperator and CastInst.
621 BinaryOperator *BO = cast<BinaryOperator>(U);
622 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
623 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
624 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
625 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
626
627 BinaryOperator *NewBO = nullptr;
628 if (OpNo == 0) {
629 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
630 BO->getName(), IP);
631 } else {
632 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
633 BO->getName(), IP);
634 }
635 return UserChain[ChainIndex] = NewBO;
636 }
637
removeConstOffset(unsigned ChainIndex)638 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
639 if (ChainIndex == 0) {
640 assert(isa<ConstantInt>(UserChain[ChainIndex]));
641 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
642 }
643
644 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
645 assert(BO->getNumUses() <= 1 &&
646 "distributeExtsAndCloneChain clones each BinaryOperator in "
647 "UserChain, so no one should be used more than "
648 "once");
649
650 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
651 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
652 Value *NextInChain = removeConstOffset(ChainIndex - 1);
653 Value *TheOther = BO->getOperand(1 - OpNo);
654
655 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
656 // sub-expression to be just TheOther.
657 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
658 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
659 return TheOther;
660 }
661
662 BinaryOperator::BinaryOps NewOp = BO->getOpcode();
663 if (BO->getOpcode() == Instruction::Or) {
664 // Rebuild "or" as "add", because "or" may be invalid for the new
665 // epxression.
666 //
667 // For instance, given
668 // a | (b + 5) where a and b + 5 have no common bits,
669 // we can extract 5 as the constant offset.
670 //
671 // However, reusing the "or" in the new index would give us
672 // (a | b) + 5
673 // which does not equal a | (b + 5).
674 //
675 // Replacing the "or" with "add" is fine, because
676 // a | (b + 5) = a + (b + 5) = (a + b) + 5
677 NewOp = Instruction::Add;
678 }
679
680 BinaryOperator *NewBO;
681 if (OpNo == 0) {
682 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
683 } else {
684 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
685 }
686 NewBO->takeName(BO);
687 return NewBO;
688 }
689
Extract(Value * Idx,GetElementPtrInst * GEP,User * & UserChainTail,const DominatorTree * DT)690 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
691 User *&UserChainTail,
692 const DominatorTree *DT) {
693 ConstantOffsetExtractor Extractor(GEP, DT);
694 // Find a non-zero constant offset first.
695 APInt ConstantOffset =
696 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
697 GEP->isInBounds());
698 if (ConstantOffset == 0) {
699 UserChainTail = nullptr;
700 return nullptr;
701 }
702 // Separates the constant offset from the GEP index.
703 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
704 UserChainTail = Extractor.UserChain.back();
705 return IdxWithoutConstOffset;
706 }
707
Find(Value * Idx,GetElementPtrInst * GEP,const DominatorTree * DT)708 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
709 const DominatorTree *DT) {
710 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
711 return ConstantOffsetExtractor(GEP, DT)
712 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
713 GEP->isInBounds())
714 .getSExtValue();
715 }
716
canonicalizeArrayIndicesToPointerSize(GetElementPtrInst * GEP)717 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
718 GetElementPtrInst *GEP) {
719 bool Changed = false;
720 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
721 gep_type_iterator GTI = gep_type_begin(*GEP);
722 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
723 I != E; ++I, ++GTI) {
724 // Skip struct member indices which must be i32.
725 if (isa<SequentialType>(*GTI)) {
726 if ((*I)->getType() != IntPtrTy) {
727 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
728 Changed = true;
729 }
730 }
731 }
732 return Changed;
733 }
734
735 int64_t
accumulateByteOffset(GetElementPtrInst * GEP,bool & NeedsExtraction)736 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
737 bool &NeedsExtraction) {
738 NeedsExtraction = false;
739 int64_t AccumulativeByteOffset = 0;
740 gep_type_iterator GTI = gep_type_begin(*GEP);
741 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
742 if (isa<SequentialType>(*GTI)) {
743 // Tries to extract a constant offset from this GEP index.
744 int64_t ConstantOffset =
745 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
746 if (ConstantOffset != 0) {
747 NeedsExtraction = true;
748 // A GEP may have multiple indices. We accumulate the extracted
749 // constant offset to a byte offset, and later offset the remainder of
750 // the original GEP with this byte offset.
751 AccumulativeByteOffset +=
752 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
753 }
754 } else if (LowerGEP) {
755 StructType *StTy = cast<StructType>(*GTI);
756 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
757 // Skip field 0 as the offset is always 0.
758 if (Field != 0) {
759 NeedsExtraction = true;
760 AccumulativeByteOffset +=
761 DL->getStructLayout(StTy)->getElementOffset(Field);
762 }
763 }
764 }
765 return AccumulativeByteOffset;
766 }
767
lowerToSingleIndexGEPs(GetElementPtrInst * Variadic,int64_t AccumulativeByteOffset)768 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
769 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
770 IRBuilder<> Builder(Variadic);
771 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
772
773 Type *I8PtrTy =
774 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
775 Value *ResultPtr = Variadic->getOperand(0);
776 Loop *L = LI->getLoopFor(Variadic->getParent());
777 // Check if the base is not loop invariant or used more than once.
778 bool isSwapCandidate =
779 L && L->isLoopInvariant(ResultPtr) &&
780 !hasMoreThanOneUseInLoop(ResultPtr, L);
781 Value *FirstResult = nullptr;
782
783 if (ResultPtr->getType() != I8PtrTy)
784 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
785
786 gep_type_iterator GTI = gep_type_begin(*Variadic);
787 // Create an ugly GEP for each sequential index. We don't create GEPs for
788 // structure indices, as they are accumulated in the constant offset index.
789 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
790 if (isa<SequentialType>(*GTI)) {
791 Value *Idx = Variadic->getOperand(I);
792 // Skip zero indices.
793 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
794 if (CI->isZero())
795 continue;
796
797 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
798 DL->getTypeAllocSize(GTI.getIndexedType()));
799 // Scale the index by element size.
800 if (ElementSize != 1) {
801 if (ElementSize.isPowerOf2()) {
802 Idx = Builder.CreateShl(
803 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
804 } else {
805 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
806 }
807 }
808 // Create an ugly GEP with a single index for each index.
809 ResultPtr =
810 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
811 if (FirstResult == nullptr)
812 FirstResult = ResultPtr;
813 }
814 }
815
816 // Create a GEP with the constant offset index.
817 if (AccumulativeByteOffset != 0) {
818 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
819 ResultPtr =
820 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
821 } else
822 isSwapCandidate = false;
823
824 // If we created a GEP with constant index, and the base is loop invariant,
825 // then we swap the first one with it, so LICM can move constant GEP out
826 // later.
827 GetElementPtrInst *FirstGEP = dyn_cast<GetElementPtrInst>(FirstResult);
828 GetElementPtrInst *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
829 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
830 swapGEPOperand(FirstGEP, SecondGEP);
831
832 if (ResultPtr->getType() != Variadic->getType())
833 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
834
835 Variadic->replaceAllUsesWith(ResultPtr);
836 Variadic->eraseFromParent();
837 }
838
839 void
lowerToArithmetics(GetElementPtrInst * Variadic,int64_t AccumulativeByteOffset)840 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
841 int64_t AccumulativeByteOffset) {
842 IRBuilder<> Builder(Variadic);
843 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
844
845 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
846 gep_type_iterator GTI = gep_type_begin(*Variadic);
847 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
848 // don't create arithmetics for structure indices, as they are accumulated
849 // in the constant offset index.
850 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
851 if (isa<SequentialType>(*GTI)) {
852 Value *Idx = Variadic->getOperand(I);
853 // Skip zero indices.
854 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
855 if (CI->isZero())
856 continue;
857
858 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
859 DL->getTypeAllocSize(GTI.getIndexedType()));
860 // Scale the index by element size.
861 if (ElementSize != 1) {
862 if (ElementSize.isPowerOf2()) {
863 Idx = Builder.CreateShl(
864 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
865 } else {
866 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
867 }
868 }
869 // Create an ADD for each index.
870 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
871 }
872 }
873
874 // Create an ADD for the constant offset index.
875 if (AccumulativeByteOffset != 0) {
876 ResultPtr = Builder.CreateAdd(
877 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
878 }
879
880 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
881 Variadic->replaceAllUsesWith(ResultPtr);
882 Variadic->eraseFromParent();
883 }
884
splitGEP(GetElementPtrInst * GEP)885 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
886 // Skip vector GEPs.
887 if (GEP->getType()->isVectorTy())
888 return false;
889
890 // The backend can already nicely handle the case where all indices are
891 // constant.
892 if (GEP->hasAllConstantIndices())
893 return false;
894
895 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
896
897 bool NeedsExtraction;
898 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
899
900 if (!NeedsExtraction)
901 return Changed;
902 // If LowerGEP is disabled, before really splitting the GEP, check whether the
903 // backend supports the addressing mode we are about to produce. If no, this
904 // splitting probably won't be beneficial.
905 // If LowerGEP is enabled, even the extracted constant offset can not match
906 // the addressing mode, we can still do optimizations to other lowered parts
907 // of variable indices. Therefore, we don't check for addressing modes in that
908 // case.
909 if (!LowerGEP) {
910 TargetTransformInfo &TTI =
911 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
912 *GEP->getParent()->getParent());
913 unsigned AddrSpace = GEP->getPointerAddressSpace();
914 if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
915 /*BaseGV=*/nullptr, AccumulativeByteOffset,
916 /*HasBaseReg=*/true, /*Scale=*/0,
917 AddrSpace)) {
918 return Changed;
919 }
920 }
921
922 // Remove the constant offset in each sequential index. The resultant GEP
923 // computes the variadic base.
924 // Notice that we don't remove struct field indices here. If LowerGEP is
925 // disabled, a structure index is not accumulated and we still use the old
926 // one. If LowerGEP is enabled, a structure index is accumulated in the
927 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
928 // handle the constant offset and won't need a new structure index.
929 gep_type_iterator GTI = gep_type_begin(*GEP);
930 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
931 if (isa<SequentialType>(*GTI)) {
932 // Splits this GEP index into a variadic part and a constant offset, and
933 // uses the variadic part as the new index.
934 Value *OldIdx = GEP->getOperand(I);
935 User *UserChainTail;
936 Value *NewIdx =
937 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
938 if (NewIdx != nullptr) {
939 // Switches to the index with the constant offset removed.
940 GEP->setOperand(I, NewIdx);
941 // After switching to the new index, we can garbage-collect UserChain
942 // and the old index if they are not used.
943 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
944 RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
945 }
946 }
947 }
948
949 // Clear the inbounds attribute because the new index may be off-bound.
950 // e.g.,
951 //
952 // b = add i64 a, 5
953 // addr = gep inbounds float, float* p, i64 b
954 //
955 // is transformed to:
956 //
957 // addr2 = gep float, float* p, i64 a ; inbounds removed
958 // addr = gep inbounds float, float* addr2, i64 5
959 //
960 // If a is -4, although the old index b is in bounds, the new index a is
961 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
962 // inbounds keyword is not present, the offsets are added to the base
963 // address with silently-wrapping two's complement arithmetic".
964 // Therefore, the final code will be a semantically equivalent.
965 //
966 // TODO(jingyue): do some range analysis to keep as many inbounds as
967 // possible. GEPs with inbounds are more friendly to alias analysis.
968 bool GEPWasInBounds = GEP->isInBounds();
969 GEP->setIsInBounds(false);
970
971 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
972 if (LowerGEP) {
973 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
974 // arithmetic operations if the target uses alias analysis in codegen.
975 if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
976 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
977 else
978 lowerToArithmetics(GEP, AccumulativeByteOffset);
979 return true;
980 }
981
982 // No need to create another GEP if the accumulative byte offset is 0.
983 if (AccumulativeByteOffset == 0)
984 return true;
985
986 // Offsets the base with the accumulative byte offset.
987 //
988 // %gep ; the base
989 // ... %gep ...
990 //
991 // => add the offset
992 //
993 // %gep2 ; clone of %gep
994 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
995 // %gep ; will be removed
996 // ... %gep ...
997 //
998 // => replace all uses of %gep with %new.gep and remove %gep
999 //
1000 // %gep2 ; clone of %gep
1001 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1002 // ... %new.gep ...
1003 //
1004 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1005 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1006 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1007 // type of %gep.
1008 //
1009 // %gep2 ; clone of %gep
1010 // %0 = bitcast %gep2 to i8*
1011 // %uglygep = gep %0, <offset>
1012 // %new.gep = bitcast %uglygep to <type of %gep>
1013 // ... %new.gep ...
1014 Instruction *NewGEP = GEP->clone();
1015 NewGEP->insertBefore(GEP);
1016
1017 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1018 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1019 // used with unsigned integers later.
1020 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1021 DL->getTypeAllocSize(GEP->getType()->getElementType()));
1022 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1023 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1024 // Very likely. As long as %gep is natually aligned, the byte offset we
1025 // extracted should be a multiple of sizeof(*%gep).
1026 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1027 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1028 ConstantInt::get(IntPtrTy, Index, true),
1029 GEP->getName(), GEP);
1030 // Inherit the inbounds attribute of the original GEP.
1031 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1032 } else {
1033 // Unlikely but possible. For example,
1034 // #pragma pack(1)
1035 // struct S {
1036 // int a[3];
1037 // int64 b[8];
1038 // };
1039 // #pragma pack()
1040 //
1041 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1042 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1043 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1044 // sizeof(int64).
1045 //
1046 // Emit an uglygep in this case.
1047 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1048 GEP->getPointerAddressSpace());
1049 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1050 NewGEP = GetElementPtrInst::Create(
1051 Type::getInt8Ty(GEP->getContext()), NewGEP,
1052 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1053 GEP);
1054 // Inherit the inbounds attribute of the original GEP.
1055 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1056 if (GEP->getType() != I8PtrTy)
1057 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1058 }
1059
1060 GEP->replaceAllUsesWith(NewGEP);
1061 GEP->eraseFromParent();
1062
1063 return true;
1064 }
1065
runOnFunction(Function & F)1066 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
1067 if (skipOptnoneFunction(F))
1068 return false;
1069
1070 if (DisableSeparateConstOffsetFromGEP)
1071 return false;
1072
1073 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1074 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1075 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1076 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1077 bool Changed = false;
1078 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
1079 for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE;)
1080 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
1081 Changed |= splitGEP(GEP);
1082 // No need to split GEP ConstantExprs because all its indices are constant
1083 // already.
1084 }
1085
1086 Changed |= reuniteExts(F);
1087
1088 if (VerifyNoDeadCode)
1089 verifyNoDeadCode(F);
1090
1091 return Changed;
1092 }
1093
findClosestMatchingDominator(const SCEV * Key,Instruction * Dominatee)1094 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1095 const SCEV *Key, Instruction *Dominatee) {
1096 auto Pos = DominatingExprs.find(Key);
1097 if (Pos == DominatingExprs.end())
1098 return nullptr;
1099
1100 auto &Candidates = Pos->second;
1101 // Because we process the basic blocks in pre-order of the dominator tree, a
1102 // candidate that doesn't dominate the current instruction won't dominate any
1103 // future instruction either. Therefore, we pop it out of the stack. This
1104 // optimization makes the algorithm O(n).
1105 while (!Candidates.empty()) {
1106 Instruction *Candidate = Candidates.back();
1107 if (DT->dominates(Candidate, Dominatee))
1108 return Candidate;
1109 Candidates.pop_back();
1110 }
1111 return nullptr;
1112 }
1113
reuniteExts(Instruction * I)1114 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1115 if (!SE->isSCEVable(I->getType()))
1116 return false;
1117
1118 // Dom: LHS+RHS
1119 // I: sext(LHS)+sext(RHS)
1120 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1121 // TODO: handle zext
1122 Value *LHS = nullptr, *RHS = nullptr;
1123 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1124 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1125 if (LHS->getType() == RHS->getType()) {
1126 const SCEV *Key =
1127 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1128 if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1129 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1130 NewSExt->takeName(I);
1131 I->replaceAllUsesWith(NewSExt);
1132 RecursivelyDeleteTriviallyDeadInstructions(I);
1133 return true;
1134 }
1135 }
1136 }
1137
1138 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1139 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1140 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1141 if (isKnownNotFullPoison(I)) {
1142 const SCEV *Key =
1143 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1144 DominatingExprs[Key].push_back(I);
1145 }
1146 }
1147 return false;
1148 }
1149
reuniteExts(Function & F)1150 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1151 bool Changed = false;
1152 DominatingExprs.clear();
1153 for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
1154 Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
1155 BasicBlock *BB = Node->getBlock();
1156 for (auto I = BB->begin(); I != BB->end(); ) {
1157 Instruction *Cur = &*I++;
1158 Changed |= reuniteExts(Cur);
1159 }
1160 }
1161 return Changed;
1162 }
1163
verifyNoDeadCode(Function & F)1164 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1165 for (auto &B : F) {
1166 for (auto &I : B) {
1167 if (isInstructionTriviallyDead(&I)) {
1168 std::string ErrMessage;
1169 raw_string_ostream RSO(ErrMessage);
1170 RSO << "Dead instruction detected!\n" << I << "\n";
1171 llvm_unreachable(RSO.str().c_str());
1172 }
1173 }
1174 }
1175 }
1176
isLegalToSwapOperand(GetElementPtrInst * FirstGEP,GetElementPtrInst * SecondGEP,Loop * CurLoop)1177 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1178 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1179 if (!FirstGEP || !FirstGEP->hasOneUse())
1180 return false;
1181
1182 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1183 return false;
1184
1185 if (FirstGEP == SecondGEP)
1186 return false;
1187
1188 unsigned FirstNum = FirstGEP->getNumOperands();
1189 unsigned SecondNum = SecondGEP->getNumOperands();
1190 // Give up if the number of operands are not 2.
1191 if (FirstNum != SecondNum || FirstNum != 2)
1192 return false;
1193
1194 Value *FirstBase = FirstGEP->getOperand(0);
1195 Value *SecondBase = SecondGEP->getOperand(0);
1196 Value *FirstOffset = FirstGEP->getOperand(1);
1197 // Give up if the index of the first GEP is loop invariant.
1198 if (CurLoop->isLoopInvariant(FirstOffset))
1199 return false;
1200
1201 // Give up if base doesn't have same type.
1202 if (FirstBase->getType() != SecondBase->getType())
1203 return false;
1204
1205 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1206
1207 // Check if the second operand of first GEP has constant coefficient.
1208 // For an example, for the following code, we won't gain anything by
1209 // hoisting the second GEP out because the second GEP can be folded away.
1210 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1211 // %67 = shl i64 %scevgep.sum.ur159, 2
1212 // %uglygep160 = getelementptr i8* %65, i64 %67
1213 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1214
1215 // Skip constant shift instruction which may be generated by Splitting GEPs.
1216 if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1217 isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1218 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1219
1220 // Give up if FirstOffsetDef is an Add or Sub with constant.
1221 // Because it may not profitable at all due to constant folding.
1222 if (FirstOffsetDef)
1223 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1224 unsigned opc = BO->getOpcode();
1225 if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1226 (isa<ConstantInt>(BO->getOperand(0)) ||
1227 isa<ConstantInt>(BO->getOperand(1))))
1228 return false;
1229 }
1230 return true;
1231 }
1232
hasMoreThanOneUseInLoop(Value * V,Loop * L)1233 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1234 int UsesInLoop = 0;
1235 for (User *U : V->users()) {
1236 if (Instruction *User = dyn_cast<Instruction>(U))
1237 if (L->contains(User))
1238 if (++UsesInLoop > 1)
1239 return true;
1240 }
1241 return false;
1242 }
1243
swapGEPOperand(GetElementPtrInst * First,GetElementPtrInst * Second)1244 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1245 GetElementPtrInst *Second) {
1246 Value *Offset1 = First->getOperand(1);
1247 Value *Offset2 = Second->getOperand(1);
1248 First->setOperand(1, Offset2);
1249 Second->setOperand(1, Offset1);
1250
1251 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1252 const DataLayout &DAL = First->getModule()->getDataLayout();
1253 APInt Offset(DAL.getPointerSizeInBits(
1254 cast<PointerType>(First->getType())->getAddressSpace()),
1255 0);
1256 Value *NewBase =
1257 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1258 uint64_t ObjectSize;
1259 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1260 Offset.ugt(ObjectSize)) {
1261 First->setIsInBounds(false);
1262 Second->setIsInBounds(false);
1263 } else
1264 First->setIsInBounds(true);
1265 }
1266