• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  
10  #include "MCTargetDesc/SystemZMCTargetDesc.h"
11  #include "llvm/ADT/STLExtras.h"
12  #include "llvm/MC/MCContext.h"
13  #include "llvm/MC/MCExpr.h"
14  #include "llvm/MC/MCInst.h"
15  #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16  #include "llvm/MC/MCStreamer.h"
17  #include "llvm/MC/MCSubtargetInfo.h"
18  #include "llvm/MC/MCTargetAsmParser.h"
19  #include "llvm/Support/TargetRegistry.h"
20  
21  using namespace llvm;
22  
23  // Return true if Expr is in the range [MinValue, MaxValue].
inRange(const MCExpr * Expr,int64_t MinValue,int64_t MaxValue)24  static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
25    if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
26      int64_t Value = CE->getValue();
27      return Value >= MinValue && Value <= MaxValue;
28    }
29    return false;
30  }
31  
32  namespace {
33  enum RegisterKind {
34    GR32Reg,
35    GRH32Reg,
36    GR64Reg,
37    GR128Reg,
38    ADDR32Reg,
39    ADDR64Reg,
40    FP32Reg,
41    FP64Reg,
42    FP128Reg,
43    VR32Reg,
44    VR64Reg,
45    VR128Reg
46  };
47  
48  enum MemoryKind {
49    BDMem,
50    BDXMem,
51    BDLMem,
52    BDVMem
53  };
54  
55  class SystemZOperand : public MCParsedAsmOperand {
56  public:
57  private:
58    enum OperandKind {
59      KindInvalid,
60      KindToken,
61      KindReg,
62      KindAccessReg,
63      KindImm,
64      KindImmTLS,
65      KindMem
66    };
67  
68    OperandKind Kind;
69    SMLoc StartLoc, EndLoc;
70  
71    // A string of length Length, starting at Data.
72    struct TokenOp {
73      const char *Data;
74      unsigned Length;
75    };
76  
77    // LLVM register Num, which has kind Kind.  In some ways it might be
78    // easier for this class to have a register bank (general, floating-point
79    // or access) and a raw register number (0-15).  This would postpone the
80    // interpretation of the operand to the add*() methods and avoid the need
81    // for context-dependent parsing.  However, we do things the current way
82    // because of the virtual getReg() method, which needs to distinguish
83    // between (say) %r0 used as a single register and %r0 used as a pair.
84    // Context-dependent parsing can also give us slightly better error
85    // messages when invalid pairs like %r1 are used.
86    struct RegOp {
87      RegisterKind Kind;
88      unsigned Num;
89    };
90  
91    // Base + Disp + Index, where Base and Index are LLVM registers or 0.
92    // MemKind says what type of memory this is and RegKind says what type
93    // the base register has (ADDR32Reg or ADDR64Reg).  Length is the operand
94    // length for D(L,B)-style operands, otherwise it is null.
95    struct MemOp {
96      unsigned Base : 12;
97      unsigned Index : 12;
98      unsigned MemKind : 4;
99      unsigned RegKind : 4;
100      const MCExpr *Disp;
101      const MCExpr *Length;
102    };
103  
104    // Imm is an immediate operand, and Sym is an optional TLS symbol
105    // for use with a __tls_get_offset marker relocation.
106    struct ImmTLSOp {
107      const MCExpr *Imm;
108      const MCExpr *Sym;
109    };
110  
111    union {
112      TokenOp Token;
113      RegOp Reg;
114      unsigned AccessReg;
115      const MCExpr *Imm;
116      ImmTLSOp ImmTLS;
117      MemOp Mem;
118    };
119  
addExpr(MCInst & Inst,const MCExpr * Expr) const120    void addExpr(MCInst &Inst, const MCExpr *Expr) const {
121      // Add as immediates when possible.  Null MCExpr = 0.
122      if (!Expr)
123        Inst.addOperand(MCOperand::createImm(0));
124      else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
125        Inst.addOperand(MCOperand::createImm(CE->getValue()));
126      else
127        Inst.addOperand(MCOperand::createExpr(Expr));
128    }
129  
130  public:
SystemZOperand(OperandKind kind,SMLoc startLoc,SMLoc endLoc)131    SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
132        : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
133  
134    // Create particular kinds of operand.
createInvalid(SMLoc StartLoc,SMLoc EndLoc)135    static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
136                                                         SMLoc EndLoc) {
137      return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
138    }
createToken(StringRef Str,SMLoc Loc)139    static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
140      auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
141      Op->Token.Data = Str.data();
142      Op->Token.Length = Str.size();
143      return Op;
144    }
145    static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind,unsigned Num,SMLoc StartLoc,SMLoc EndLoc)146    createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
147      auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
148      Op->Reg.Kind = Kind;
149      Op->Reg.Num = Num;
150      return Op;
151    }
152    static std::unique_ptr<SystemZOperand>
createAccessReg(unsigned Num,SMLoc StartLoc,SMLoc EndLoc)153    createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
154      auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
155      Op->AccessReg = Num;
156      return Op;
157    }
158    static std::unique_ptr<SystemZOperand>
createImm(const MCExpr * Expr,SMLoc StartLoc,SMLoc EndLoc)159    createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
160      auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
161      Op->Imm = Expr;
162      return Op;
163    }
164    static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind,RegisterKind RegKind,unsigned Base,const MCExpr * Disp,unsigned Index,const MCExpr * Length,SMLoc StartLoc,SMLoc EndLoc)165    createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
166              const MCExpr *Disp, unsigned Index, const MCExpr *Length,
167              SMLoc StartLoc, SMLoc EndLoc) {
168      auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
169      Op->Mem.MemKind = MemKind;
170      Op->Mem.RegKind = RegKind;
171      Op->Mem.Base = Base;
172      Op->Mem.Index = Index;
173      Op->Mem.Disp = Disp;
174      Op->Mem.Length = Length;
175      return Op;
176    }
177    static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr * Imm,const MCExpr * Sym,SMLoc StartLoc,SMLoc EndLoc)178    createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
179                 SMLoc StartLoc, SMLoc EndLoc) {
180      auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
181      Op->ImmTLS.Imm = Imm;
182      Op->ImmTLS.Sym = Sym;
183      return Op;
184    }
185  
186    // Token operands
isToken() const187    bool isToken() const override {
188      return Kind == KindToken;
189    }
getToken() const190    StringRef getToken() const {
191      assert(Kind == KindToken && "Not a token");
192      return StringRef(Token.Data, Token.Length);
193    }
194  
195    // Register operands.
isReg() const196    bool isReg() const override {
197      return Kind == KindReg;
198    }
isReg(RegisterKind RegKind) const199    bool isReg(RegisterKind RegKind) const {
200      return Kind == KindReg && Reg.Kind == RegKind;
201    }
getReg() const202    unsigned getReg() const override {
203      assert(Kind == KindReg && "Not a register");
204      return Reg.Num;
205    }
206  
207    // Access register operands.  Access registers aren't exposed to LLVM
208    // as registers.
isAccessReg() const209    bool isAccessReg() const {
210      return Kind == KindAccessReg;
211    }
212  
213    // Immediate operands.
isImm() const214    bool isImm() const override {
215      return Kind == KindImm;
216    }
isImm(int64_t MinValue,int64_t MaxValue) const217    bool isImm(int64_t MinValue, int64_t MaxValue) const {
218      return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
219    }
getImm() const220    const MCExpr *getImm() const {
221      assert(Kind == KindImm && "Not an immediate");
222      return Imm;
223    }
224  
225    // Immediate operands with optional TLS symbol.
isImmTLS() const226    bool isImmTLS() const {
227      return Kind == KindImmTLS;
228    }
229  
230    // Memory operands.
isMem() const231    bool isMem() const override {
232      return Kind == KindMem;
233    }
isMem(MemoryKind MemKind) const234    bool isMem(MemoryKind MemKind) const {
235      return (Kind == KindMem &&
236              (Mem.MemKind == MemKind ||
237               // A BDMem can be treated as a BDXMem in which the index
238               // register field is 0.
239               (Mem.MemKind == BDMem && MemKind == BDXMem)));
240    }
isMem(MemoryKind MemKind,RegisterKind RegKind) const241    bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
242      return isMem(MemKind) && Mem.RegKind == RegKind;
243    }
isMemDisp12(MemoryKind MemKind,RegisterKind RegKind) const244    bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
245      return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
246    }
isMemDisp20(MemoryKind MemKind,RegisterKind RegKind) const247    bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
248      return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
249    }
isMemDisp12Len8(RegisterKind RegKind) const250    bool isMemDisp12Len8(RegisterKind RegKind) const {
251      return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100);
252    }
addBDVAddrOperands(MCInst & Inst,unsigned N) const253    void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
254      assert(N == 3 && "Invalid number of operands");
255      assert(isMem(BDVMem) && "Invalid operand type");
256      Inst.addOperand(MCOperand::createReg(Mem.Base));
257      addExpr(Inst, Mem.Disp);
258      Inst.addOperand(MCOperand::createReg(Mem.Index));
259    }
260  
261    // Override MCParsedAsmOperand.
getStartLoc() const262    SMLoc getStartLoc() const override { return StartLoc; }
getEndLoc() const263    SMLoc getEndLoc() const override { return EndLoc; }
264    void print(raw_ostream &OS) const override;
265  
266    // Used by the TableGen code to add particular types of operand
267    // to an instruction.
addRegOperands(MCInst & Inst,unsigned N) const268    void addRegOperands(MCInst &Inst, unsigned N) const {
269      assert(N == 1 && "Invalid number of operands");
270      Inst.addOperand(MCOperand::createReg(getReg()));
271    }
addAccessRegOperands(MCInst & Inst,unsigned N) const272    void addAccessRegOperands(MCInst &Inst, unsigned N) const {
273      assert(N == 1 && "Invalid number of operands");
274      assert(Kind == KindAccessReg && "Invalid operand type");
275      Inst.addOperand(MCOperand::createImm(AccessReg));
276    }
addImmOperands(MCInst & Inst,unsigned N) const277    void addImmOperands(MCInst &Inst, unsigned N) const {
278      assert(N == 1 && "Invalid number of operands");
279      addExpr(Inst, getImm());
280    }
addBDAddrOperands(MCInst & Inst,unsigned N) const281    void addBDAddrOperands(MCInst &Inst, unsigned N) const {
282      assert(N == 2 && "Invalid number of operands");
283      assert(isMem(BDMem) && "Invalid operand type");
284      Inst.addOperand(MCOperand::createReg(Mem.Base));
285      addExpr(Inst, Mem.Disp);
286    }
addBDXAddrOperands(MCInst & Inst,unsigned N) const287    void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
288      assert(N == 3 && "Invalid number of operands");
289      assert(isMem(BDXMem) && "Invalid operand type");
290      Inst.addOperand(MCOperand::createReg(Mem.Base));
291      addExpr(Inst, Mem.Disp);
292      Inst.addOperand(MCOperand::createReg(Mem.Index));
293    }
addBDLAddrOperands(MCInst & Inst,unsigned N) const294    void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
295      assert(N == 3 && "Invalid number of operands");
296      assert(isMem(BDLMem) && "Invalid operand type");
297      Inst.addOperand(MCOperand::createReg(Mem.Base));
298      addExpr(Inst, Mem.Disp);
299      addExpr(Inst, Mem.Length);
300    }
addImmTLSOperands(MCInst & Inst,unsigned N) const301    void addImmTLSOperands(MCInst &Inst, unsigned N) const {
302      assert(N == 2 && "Invalid number of operands");
303      assert(Kind == KindImmTLS && "Invalid operand type");
304      addExpr(Inst, ImmTLS.Imm);
305      if (ImmTLS.Sym)
306        addExpr(Inst, ImmTLS.Sym);
307    }
308  
309    // Used by the TableGen code to check for particular operand types.
isGR32() const310    bool isGR32() const { return isReg(GR32Reg); }
isGRH32() const311    bool isGRH32() const { return isReg(GRH32Reg); }
isGRX32() const312    bool isGRX32() const { return false; }
isGR64() const313    bool isGR64() const { return isReg(GR64Reg); }
isGR128() const314    bool isGR128() const { return isReg(GR128Reg); }
isADDR32() const315    bool isADDR32() const { return isReg(ADDR32Reg); }
isADDR64() const316    bool isADDR64() const { return isReg(ADDR64Reg); }
isADDR128() const317    bool isADDR128() const { return false; }
isFP32() const318    bool isFP32() const { return isReg(FP32Reg); }
isFP64() const319    bool isFP64() const { return isReg(FP64Reg); }
isFP128() const320    bool isFP128() const { return isReg(FP128Reg); }
isVR32() const321    bool isVR32() const { return isReg(VR32Reg); }
isVR64() const322    bool isVR64() const { return isReg(VR64Reg); }
isVF128() const323    bool isVF128() const { return false; }
isVR128() const324    bool isVR128() const { return isReg(VR128Reg); }
isBDAddr32Disp12() const325    bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
isBDAddr32Disp20() const326    bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
isBDAddr64Disp12() const327    bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
isBDAddr64Disp20() const328    bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
isBDXAddr64Disp12() const329    bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
isBDXAddr64Disp20() const330    bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
isBDLAddr64Disp12Len8() const331    bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
isBDVAddr64Disp12() const332    bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
isU1Imm() const333    bool isU1Imm() const { return isImm(0, 1); }
isU2Imm() const334    bool isU2Imm() const { return isImm(0, 3); }
isU3Imm() const335    bool isU3Imm() const { return isImm(0, 7); }
isU4Imm() const336    bool isU4Imm() const { return isImm(0, 15); }
isU6Imm() const337    bool isU6Imm() const { return isImm(0, 63); }
isU8Imm() const338    bool isU8Imm() const { return isImm(0, 255); }
isS8Imm() const339    bool isS8Imm() const { return isImm(-128, 127); }
isU12Imm() const340    bool isU12Imm() const { return isImm(0, 4095); }
isU16Imm() const341    bool isU16Imm() const { return isImm(0, 65535); }
isS16Imm() const342    bool isS16Imm() const { return isImm(-32768, 32767); }
isU32Imm() const343    bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
isS32Imm() const344    bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
345  };
346  
347  class SystemZAsmParser : public MCTargetAsmParser {
348  #define GET_ASSEMBLER_HEADER
349  #include "SystemZGenAsmMatcher.inc"
350  
351  private:
352    MCAsmParser &Parser;
353    enum RegisterGroup {
354      RegGR,
355      RegFP,
356      RegV,
357      RegAccess
358    };
359    struct Register {
360      RegisterGroup Group;
361      unsigned Num;
362      SMLoc StartLoc, EndLoc;
363    };
364  
365    bool parseRegister(Register &Reg);
366  
367    bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
368                       bool IsAddress = false);
369  
370    OperandMatchResultTy parseRegister(OperandVector &Operands,
371                                       RegisterGroup Group, const unsigned *Regs,
372                                       RegisterKind Kind);
373  
374    bool parseAddress(unsigned &Base, const MCExpr *&Disp,
375                      unsigned &Index, bool &IsVector, const MCExpr *&Length,
376                      const unsigned *Regs, RegisterKind RegKind);
377  
378    OperandMatchResultTy parseAddress(OperandVector &Operands,
379                                      MemoryKind MemKind, const unsigned *Regs,
380                                      RegisterKind RegKind);
381  
382    OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
383                                    int64_t MaxVal, bool AllowTLS);
384  
385    bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
386  
387  public:
SystemZAsmParser(const MCSubtargetInfo & sti,MCAsmParser & parser,const MCInstrInfo & MII,const MCTargetOptions & Options)388    SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
389                     const MCInstrInfo &MII,
390                     const MCTargetOptions &Options)
391      : MCTargetAsmParser(Options, sti), Parser(parser) {
392      MCAsmParserExtension::Initialize(Parser);
393  
394      // Initialize the set of available features.
395      setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
396    }
397  
398    // Override MCTargetAsmParser.
399    bool ParseDirective(AsmToken DirectiveID) override;
400    bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
401    bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
402                          SMLoc NameLoc, OperandVector &Operands) override;
403    bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
404                                 OperandVector &Operands, MCStreamer &Out,
405                                 uint64_t &ErrorInfo,
406                                 bool MatchingInlineAsm) override;
407  
408    // Used by the TableGen code to parse particular operand types.
parseGR32(OperandVector & Operands)409    OperandMatchResultTy parseGR32(OperandVector &Operands) {
410      return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
411    }
parseGRH32(OperandVector & Operands)412    OperandMatchResultTy parseGRH32(OperandVector &Operands) {
413      return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
414    }
parseGRX32(OperandVector & Operands)415    OperandMatchResultTy parseGRX32(OperandVector &Operands) {
416      llvm_unreachable("GRX32 should only be used for pseudo instructions");
417    }
parseGR64(OperandVector & Operands)418    OperandMatchResultTy parseGR64(OperandVector &Operands) {
419      return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
420    }
parseGR128(OperandVector & Operands)421    OperandMatchResultTy parseGR128(OperandVector &Operands) {
422      return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
423    }
parseADDR32(OperandVector & Operands)424    OperandMatchResultTy parseADDR32(OperandVector &Operands) {
425      return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
426    }
parseADDR64(OperandVector & Operands)427    OperandMatchResultTy parseADDR64(OperandVector &Operands) {
428      return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
429    }
parseADDR128(OperandVector & Operands)430    OperandMatchResultTy parseADDR128(OperandVector &Operands) {
431      llvm_unreachable("Shouldn't be used as an operand");
432    }
parseFP32(OperandVector & Operands)433    OperandMatchResultTy parseFP32(OperandVector &Operands) {
434      return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
435    }
parseFP64(OperandVector & Operands)436    OperandMatchResultTy parseFP64(OperandVector &Operands) {
437      return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
438    }
parseFP128(OperandVector & Operands)439    OperandMatchResultTy parseFP128(OperandVector &Operands) {
440      return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
441    }
parseVR32(OperandVector & Operands)442    OperandMatchResultTy parseVR32(OperandVector &Operands) {
443      return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
444    }
parseVR64(OperandVector & Operands)445    OperandMatchResultTy parseVR64(OperandVector &Operands) {
446      return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
447    }
parseVF128(OperandVector & Operands)448    OperandMatchResultTy parseVF128(OperandVector &Operands) {
449      llvm_unreachable("Shouldn't be used as an operand");
450    }
parseVR128(OperandVector & Operands)451    OperandMatchResultTy parseVR128(OperandVector &Operands) {
452      return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
453    }
parseBDAddr32(OperandVector & Operands)454    OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
455      return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
456    }
parseBDAddr64(OperandVector & Operands)457    OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
458      return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
459    }
parseBDXAddr64(OperandVector & Operands)460    OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
461      return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
462    }
parseBDLAddr64(OperandVector & Operands)463    OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
464      return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
465    }
parseBDVAddr64(OperandVector & Operands)466    OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
467      return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
468    }
469    OperandMatchResultTy parseAccessReg(OperandVector &Operands);
parsePCRel16(OperandVector & Operands)470    OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
471      return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
472    }
parsePCRel32(OperandVector & Operands)473    OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
474      return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
475    }
parsePCRelTLS16(OperandVector & Operands)476    OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
477      return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
478    }
parsePCRelTLS32(OperandVector & Operands)479    OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
480      return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
481    }
482  };
483  } // end anonymous namespace
484  
485  #define GET_REGISTER_MATCHER
486  #define GET_SUBTARGET_FEATURE_NAME
487  #define GET_MATCHER_IMPLEMENTATION
488  #include "SystemZGenAsmMatcher.inc"
489  
print(raw_ostream & OS) const490  void SystemZOperand::print(raw_ostream &OS) const {
491    llvm_unreachable("Not implemented");
492  }
493  
494  // Parse one register of the form %<prefix><number>.
parseRegister(Register & Reg)495  bool SystemZAsmParser::parseRegister(Register &Reg) {
496    Reg.StartLoc = Parser.getTok().getLoc();
497  
498    // Eat the % prefix.
499    if (Parser.getTok().isNot(AsmToken::Percent))
500      return Error(Parser.getTok().getLoc(), "register expected");
501    Parser.Lex();
502  
503    // Expect a register name.
504    if (Parser.getTok().isNot(AsmToken::Identifier))
505      return Error(Reg.StartLoc, "invalid register");
506  
507    // Check that there's a prefix.
508    StringRef Name = Parser.getTok().getString();
509    if (Name.size() < 2)
510      return Error(Reg.StartLoc, "invalid register");
511    char Prefix = Name[0];
512  
513    // Treat the rest of the register name as a register number.
514    if (Name.substr(1).getAsInteger(10, Reg.Num))
515      return Error(Reg.StartLoc, "invalid register");
516  
517    // Look for valid combinations of prefix and number.
518    if (Prefix == 'r' && Reg.Num < 16)
519      Reg.Group = RegGR;
520    else if (Prefix == 'f' && Reg.Num < 16)
521      Reg.Group = RegFP;
522    else if (Prefix == 'v' && Reg.Num < 32)
523      Reg.Group = RegV;
524    else if (Prefix == 'a' && Reg.Num < 16)
525      Reg.Group = RegAccess;
526    else
527      return Error(Reg.StartLoc, "invalid register");
528  
529    Reg.EndLoc = Parser.getTok().getLoc();
530    Parser.Lex();
531    return false;
532  }
533  
534  // Parse a register of group Group.  If Regs is nonnull, use it to map
535  // the raw register number to LLVM numbering, with zero entries
536  // indicating an invalid register.  IsAddress says whether the
537  // register appears in an address context. Allow FP Group if expecting
538  // RegV Group, since the f-prefix yields the FP group even while used
539  // with vector instructions.
parseRegister(Register & Reg,RegisterGroup Group,const unsigned * Regs,bool IsAddress)540  bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
541                                       const unsigned *Regs, bool IsAddress) {
542    if (parseRegister(Reg))
543      return true;
544    if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
545      return Error(Reg.StartLoc, "invalid operand for instruction");
546    if (Regs && Regs[Reg.Num] == 0)
547      return Error(Reg.StartLoc, "invalid register pair");
548    if (Reg.Num == 0 && IsAddress)
549      return Error(Reg.StartLoc, "%r0 used in an address");
550    if (Regs)
551      Reg.Num = Regs[Reg.Num];
552    return false;
553  }
554  
555  // Parse a register and add it to Operands.  The other arguments are as above.
556  SystemZAsmParser::OperandMatchResultTy
parseRegister(OperandVector & Operands,RegisterGroup Group,const unsigned * Regs,RegisterKind Kind)557  SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
558                                  const unsigned *Regs, RegisterKind Kind) {
559    if (Parser.getTok().isNot(AsmToken::Percent))
560      return MatchOperand_NoMatch;
561  
562    Register Reg;
563    bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
564    if (parseRegister(Reg, Group, Regs, IsAddress))
565      return MatchOperand_ParseFail;
566  
567    Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
568                                                 Reg.StartLoc, Reg.EndLoc));
569    return MatchOperand_Success;
570  }
571  
572  // Parse a memory operand into Base, Disp, Index and Length.
573  // Regs maps asm register numbers to LLVM register numbers and RegKind
574  // says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
parseAddress(unsigned & Base,const MCExpr * & Disp,unsigned & Index,bool & IsVector,const MCExpr * & Length,const unsigned * Regs,RegisterKind RegKind)575  bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
576                                      unsigned &Index, bool &IsVector,
577                                      const MCExpr *&Length, const unsigned *Regs,
578                                      RegisterKind RegKind) {
579    // Parse the displacement, which must always be present.
580    if (getParser().parseExpression(Disp))
581      return true;
582  
583    // Parse the optional base and index.
584    Index = 0;
585    Base = 0;
586    IsVector = false;
587    Length = nullptr;
588    if (getLexer().is(AsmToken::LParen)) {
589      Parser.Lex();
590  
591      if (getLexer().is(AsmToken::Percent)) {
592        // Parse the first register and decide whether it's a base or an index.
593        Register Reg;
594        if (parseRegister(Reg))
595          return true;
596        if (Reg.Group == RegV) {
597          // A vector index register.  The base register is optional.
598          IsVector = true;
599          Index = SystemZMC::VR128Regs[Reg.Num];
600        } else if (Reg.Group == RegGR) {
601          if (Reg.Num == 0)
602            return Error(Reg.StartLoc, "%r0 used in an address");
603          // If the are two registers, the first one is the index and the
604          // second is the base.
605          if (getLexer().is(AsmToken::Comma))
606            Index = Regs[Reg.Num];
607          else
608            Base = Regs[Reg.Num];
609        } else
610          return Error(Reg.StartLoc, "invalid address register");
611      } else {
612        // Parse the length.
613        if (getParser().parseExpression(Length))
614          return true;
615      }
616  
617      // Check whether there's a second register.  It's the base if so.
618      if (getLexer().is(AsmToken::Comma)) {
619        Parser.Lex();
620        Register Reg;
621        if (parseRegister(Reg, RegGR, Regs, RegKind))
622          return true;
623        Base = Reg.Num;
624      }
625  
626      // Consume the closing bracket.
627      if (getLexer().isNot(AsmToken::RParen))
628        return Error(Parser.getTok().getLoc(), "unexpected token in address");
629      Parser.Lex();
630    }
631    return false;
632  }
633  
634  // Parse a memory operand and add it to Operands.  The other arguments
635  // are as above.
636  SystemZAsmParser::OperandMatchResultTy
parseAddress(OperandVector & Operands,MemoryKind MemKind,const unsigned * Regs,RegisterKind RegKind)637  SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
638                                 const unsigned *Regs, RegisterKind RegKind) {
639    SMLoc StartLoc = Parser.getTok().getLoc();
640    unsigned Base, Index;
641    bool IsVector;
642    const MCExpr *Disp;
643    const MCExpr *Length;
644    if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind))
645      return MatchOperand_ParseFail;
646  
647    if (IsVector && MemKind != BDVMem) {
648      Error(StartLoc, "invalid use of vector addressing");
649      return MatchOperand_ParseFail;
650    }
651  
652    if (!IsVector && MemKind == BDVMem) {
653      Error(StartLoc, "vector index required in address");
654      return MatchOperand_ParseFail;
655    }
656  
657    if (Index && MemKind != BDXMem && MemKind != BDVMem) {
658      Error(StartLoc, "invalid use of indexed addressing");
659      return MatchOperand_ParseFail;
660    }
661  
662    if (Length && MemKind != BDLMem) {
663      Error(StartLoc, "invalid use of length addressing");
664      return MatchOperand_ParseFail;
665    }
666  
667    if (!Length && MemKind == BDLMem) {
668      Error(StartLoc, "missing length in address");
669      return MatchOperand_ParseFail;
670    }
671  
672    SMLoc EndLoc =
673      SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
674    Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
675                                                 Index, Length, StartLoc,
676                                                 EndLoc));
677    return MatchOperand_Success;
678  }
679  
ParseDirective(AsmToken DirectiveID)680  bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
681    return true;
682  }
683  
ParseRegister(unsigned & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)684  bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
685                                       SMLoc &EndLoc) {
686    Register Reg;
687    if (parseRegister(Reg))
688      return true;
689    if (Reg.Group == RegGR)
690      RegNo = SystemZMC::GR64Regs[Reg.Num];
691    else if (Reg.Group == RegFP)
692      RegNo = SystemZMC::FP64Regs[Reg.Num];
693    else if (Reg.Group == RegV)
694      RegNo = SystemZMC::VR128Regs[Reg.Num];
695    else
696      // FIXME: Access registers aren't modelled as LLVM registers yet.
697      return Error(Reg.StartLoc, "invalid operand for instruction");
698    StartLoc = Reg.StartLoc;
699    EndLoc = Reg.EndLoc;
700    return false;
701  }
702  
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,SMLoc NameLoc,OperandVector & Operands)703  bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
704                                          StringRef Name, SMLoc NameLoc,
705                                          OperandVector &Operands) {
706    Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
707  
708    // Read the remaining operands.
709    if (getLexer().isNot(AsmToken::EndOfStatement)) {
710      // Read the first operand.
711      if (parseOperand(Operands, Name)) {
712        Parser.eatToEndOfStatement();
713        return true;
714      }
715  
716      // Read any subsequent operands.
717      while (getLexer().is(AsmToken::Comma)) {
718        Parser.Lex();
719        if (parseOperand(Operands, Name)) {
720          Parser.eatToEndOfStatement();
721          return true;
722        }
723      }
724      if (getLexer().isNot(AsmToken::EndOfStatement)) {
725        SMLoc Loc = getLexer().getLoc();
726        Parser.eatToEndOfStatement();
727        return Error(Loc, "unexpected token in argument list");
728      }
729    }
730  
731    // Consume the EndOfStatement.
732    Parser.Lex();
733    return false;
734  }
735  
parseOperand(OperandVector & Operands,StringRef Mnemonic)736  bool SystemZAsmParser::parseOperand(OperandVector &Operands,
737                                      StringRef Mnemonic) {
738    // Check if the current operand has a custom associated parser, if so, try to
739    // custom parse the operand, or fallback to the general approach.
740    OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
741    if (ResTy == MatchOperand_Success)
742      return false;
743  
744    // If there wasn't a custom match, try the generic matcher below. Otherwise,
745    // there was a match, but an error occurred, in which case, just return that
746    // the operand parsing failed.
747    if (ResTy == MatchOperand_ParseFail)
748      return true;
749  
750    // Check for a register.  All real register operands should have used
751    // a context-dependent parse routine, which gives the required register
752    // class.  The code is here to mop up other cases, like those where
753    // the instruction isn't recognized.
754    if (Parser.getTok().is(AsmToken::Percent)) {
755      Register Reg;
756      if (parseRegister(Reg))
757        return true;
758      Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
759      return false;
760    }
761  
762    // The only other type of operand is an immediate or address.  As above,
763    // real address operands should have used a context-dependent parse routine,
764    // so we treat any plain expression as an immediate.
765    SMLoc StartLoc = Parser.getTok().getLoc();
766    unsigned Base, Index;
767    bool IsVector;
768    const MCExpr *Expr, *Length;
769    if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs,
770                     ADDR64Reg))
771      return true;
772  
773    SMLoc EndLoc =
774      SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
775    if (Base || Index || Length)
776      Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
777    else
778      Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
779    return false;
780  }
781  
MatchAndEmitInstruction(SMLoc IDLoc,unsigned & Opcode,OperandVector & Operands,MCStreamer & Out,uint64_t & ErrorInfo,bool MatchingInlineAsm)782  bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
783                                                 OperandVector &Operands,
784                                                 MCStreamer &Out,
785                                                 uint64_t &ErrorInfo,
786                                                 bool MatchingInlineAsm) {
787    MCInst Inst;
788    unsigned MatchResult;
789  
790    MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
791                                       MatchingInlineAsm);
792    switch (MatchResult) {
793    case Match_Success:
794      Inst.setLoc(IDLoc);
795      Out.EmitInstruction(Inst, getSTI());
796      return false;
797  
798    case Match_MissingFeature: {
799      assert(ErrorInfo && "Unknown missing feature!");
800      // Special case the error message for the very common case where only
801      // a single subtarget feature is missing
802      std::string Msg = "instruction requires:";
803      uint64_t Mask = 1;
804      for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
805        if (ErrorInfo & Mask) {
806          Msg += " ";
807          Msg += getSubtargetFeatureName(ErrorInfo & Mask);
808        }
809        Mask <<= 1;
810      }
811      return Error(IDLoc, Msg);
812    }
813  
814    case Match_InvalidOperand: {
815      SMLoc ErrorLoc = IDLoc;
816      if (ErrorInfo != ~0ULL) {
817        if (ErrorInfo >= Operands.size())
818          return Error(IDLoc, "too few operands for instruction");
819  
820        ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
821        if (ErrorLoc == SMLoc())
822          ErrorLoc = IDLoc;
823      }
824      return Error(ErrorLoc, "invalid operand for instruction");
825    }
826  
827    case Match_MnemonicFail:
828      return Error(IDLoc, "invalid instruction");
829    }
830  
831    llvm_unreachable("Unexpected match type");
832  }
833  
834  SystemZAsmParser::OperandMatchResultTy
parseAccessReg(OperandVector & Operands)835  SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
836    if (Parser.getTok().isNot(AsmToken::Percent))
837      return MatchOperand_NoMatch;
838  
839    Register Reg;
840    if (parseRegister(Reg, RegAccess, nullptr))
841      return MatchOperand_ParseFail;
842  
843    Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
844                                                       Reg.StartLoc,
845                                                       Reg.EndLoc));
846    return MatchOperand_Success;
847  }
848  
849  SystemZAsmParser::OperandMatchResultTy
parsePCRel(OperandVector & Operands,int64_t MinVal,int64_t MaxVal,bool AllowTLS)850  SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
851                               int64_t MaxVal, bool AllowTLS) {
852    MCContext &Ctx = getContext();
853    MCStreamer &Out = getStreamer();
854    const MCExpr *Expr;
855    SMLoc StartLoc = Parser.getTok().getLoc();
856    if (getParser().parseExpression(Expr))
857      return MatchOperand_NoMatch;
858  
859    // For consistency with the GNU assembler, treat immediates as offsets
860    // from ".".
861    if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
862      int64_t Value = CE->getValue();
863      if ((Value & 1) || Value < MinVal || Value > MaxVal) {
864        Error(StartLoc, "offset out of range");
865        return MatchOperand_ParseFail;
866      }
867      MCSymbol *Sym = Ctx.createTempSymbol();
868      Out.EmitLabel(Sym);
869      const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
870                                                   Ctx);
871      Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
872    }
873  
874    // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
875    const MCExpr *Sym = nullptr;
876    if (AllowTLS && getLexer().is(AsmToken::Colon)) {
877      Parser.Lex();
878  
879      if (Parser.getTok().isNot(AsmToken::Identifier)) {
880        Error(Parser.getTok().getLoc(), "unexpected token");
881        return MatchOperand_ParseFail;
882      }
883  
884      MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
885      StringRef Name = Parser.getTok().getString();
886      if (Name == "tls_gdcall")
887        Kind = MCSymbolRefExpr::VK_TLSGD;
888      else if (Name == "tls_ldcall")
889        Kind = MCSymbolRefExpr::VK_TLSLDM;
890      else {
891        Error(Parser.getTok().getLoc(), "unknown TLS tag");
892        return MatchOperand_ParseFail;
893      }
894      Parser.Lex();
895  
896      if (Parser.getTok().isNot(AsmToken::Colon)) {
897        Error(Parser.getTok().getLoc(), "unexpected token");
898        return MatchOperand_ParseFail;
899      }
900      Parser.Lex();
901  
902      if (Parser.getTok().isNot(AsmToken::Identifier)) {
903        Error(Parser.getTok().getLoc(), "unexpected token");
904        return MatchOperand_ParseFail;
905      }
906  
907      StringRef Identifier = Parser.getTok().getString();
908      Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
909                                    Kind, Ctx);
910      Parser.Lex();
911    }
912  
913    SMLoc EndLoc =
914      SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
915  
916    if (AllowTLS)
917      Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
918                                                      StartLoc, EndLoc));
919    else
920      Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
921  
922    return MatchOperand_Success;
923  }
924  
925  // Force static initialization.
LLVMInitializeSystemZAsmParser()926  extern "C" void LLVMInitializeSystemZAsmParser() {
927    RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
928  }
929